JP2004293752A - Hydrogen filling device and control method therefor - Google Patents

Hydrogen filling device and control method therefor Download PDF

Info

Publication number
JP2004293752A
JP2004293752A JP2003090374A JP2003090374A JP2004293752A JP 2004293752 A JP2004293752 A JP 2004293752A JP 2003090374 A JP2003090374 A JP 2003090374A JP 2003090374 A JP2003090374 A JP 2003090374A JP 2004293752 A JP2004293752 A JP 2004293752A
Authority
JP
Japan
Prior art keywords
pressure
gas storage
storage means
opening
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090374A
Other languages
Japanese (ja)
Other versions
JP4367830B2 (en
Inventor
Hirotaka Furuta
田 博 貴 古
Nobuo Aoki
木 延 夫 青
Kaname Kato
藤 要 加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Chemicals Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Chemicals Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Chemicals Co Ltd, Tokyo Gas Co Ltd filed Critical Tokyo Gas Chemicals Co Ltd
Priority to JP2003090374A priority Critical patent/JP4367830B2/en
Publication of JP2004293752A publication Critical patent/JP2004293752A/en
Application granted granted Critical
Publication of JP4367830B2 publication Critical patent/JP4367830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen filling device restricted in complication of the structure of a vehicle side by preventing a temperature rise when filling hydrogen, and to provide a control method therefor. <P>SOLUTION: This hydrogen filling device has a plurality of gas storing means such as three stages of gas cylinders B1 - B3 and opening/closing means such as opening/closing valves V1-V3 interposed in pipelines L1-L3 communicated with each fitting object of the gas storing means B2-B3, such as a vehicle 2 using hydrogen as the fuel. Pressure of the plurality of gas storing means B1-B3 is different from each other by the predetermined pressure, e.g., 5-7 MPa, and the hydrogen filling device has a control means 10 for starting filling from the gas storing means, of which pressure is lower, and for controlling opening/closing of the opening/closing valves V1-V3 so that filling of hydrogen in the gas storing means, of which pressure is higher, is started after filling of hydrogen in the gas storing means, of which pressure is lower, is completed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素を燃料として走行する自動車(例えば、燃料電池搭載車両)等に対して、水素を供給するための水素充填設備の改良に関する。
【0002】
【従来の技術】
近年、環境に対する意識の高まり、排気ガスの清浄化の要請、二酸化炭素発生量削減の要請等により、水素ガスを燃料とする車両の実用化が進んでいる。そのような水素ガスを燃料とする車両の実用化に必要不可欠な設備として、当該車両へ水素を供給するための水素ステーションがある。
図7は、そのような水素ステーションの1例を示している。
【0003】
現状では、水素ステーションSでの充填圧は25M、35Mの2種類の規格(現時点における水素ガス自動車の標準の最高充填圧力:以下、「標準圧力」と記載する)となっている。
水素ガスを燃料とする車両C(C1及び/又はC2)が走行して、車両Cに搭載された貯蔵手段(車両側蓄ガス手段Rc)内の水素ガスを消費すると、車両C側蓄ガス手段Rc内の圧力が、当該車両Cの標準圧力よりも低下する。
また、ステーションSから車両側Cの前記蓄ガス手段Rcへの水素ガスの充填の仕組みは、車両側蓄ガス手段Rc内の圧力と蓄ガス器(通常、ステーションのボンベRg)の内圧との圧力差により、水素ガスを充填する。
【0004】
ここで、高圧の気体が絞り弁等を含む流路抵抗により圧力が下がる(等エンタルピー膨張)と、通常、温度が下がる、所謂「ジュールトムソン効果」が発生する。
これに対して、水素の場合は、等エンタルピー膨張により圧力が降下する際に、その他の気体とは異なり、逆に温度が上昇する性状を示す。
【0005】
すなわち、水素ステーションS内で水素を充填中の車両側蓄ガス手段Rc内では、水素ステーションS内の蓄ガス器Rgから供給された高圧(例えば40MPa)の水素ガスは、車両側蓄ガス手段Rc内に進入した際には非常に低圧となり(例えば、40MPaから大気圧程度まで圧力低下する)、等エンタルピー膨張する結果、その温度が上昇する。
例えば40MPaから大気圧程度まで水素ガスを減圧すると約14℃昇温し、70MPaから大気圧程度まで水素ガスを減圧すると約28℃昇温する。
【0006】
ここで、車両C側の蓄ガス手段Rcは、その構造上、内部温度に制限がある。例えば、一定温度以上となれば、車両側の蓄ガス手段Rcに設けられた溶栓(一定温度以上になった際に作動して、内部のガスを逃がす機構)が作動してしまう。
【0007】
そのため、車両側の蓄ガス手段(例えば、車両側容器)の所定温度内で水素ガスを充填するため、
(A) 充填速度を遅くして車両側容器内での水素と容器内壁との熱交換時間を長くし、容器への放熱量を増加させ、温度上昇を抑制する、
(B) 車両側容器内に水素ガスを充填する際に冷却する(特許文献1参照)、
(C) 車両側容器にフィン等の伝熱促進体を設け、部分的な温度上昇を緩和する(特許文献2参照)、
という手法が、従来、一般的であった。
【0008】
しかし、上記(A)では、充填速度が遅いため、充填時間がかかりすぎてしまう。
一方、上記(B)では、冷却水や冷却設備が必要となり、レイアウト上の制限が多い車両に適用するのは困難である。
また、上記(C)では、車両側容器の構造が複雑となり、コスト高となる。
【0009】
【特許文献1】
特開2002−89793号公報
【特許文献2】
特開2002−181295号公報
【0010】
【発明が解決しようとする課題】
本発明は上述した従来技術の問題点に鑑みて提案されたものであり、水素ガス充填の際の温度上昇を防止して、車両側の構造を複雑化しないような水素充填装置及びその制御方法の提供を目的としている。
【0011】
【課題を解決するための手段】
発明者は種々研究の結果、圧力差が5MPa〜7MPa以内だと、温度上昇が比較的少ない(2℃〜3℃程度)ことを見出した。
本発明は係る見地に基づいて創作されたものである。
本発明の水素充填装置(1)は、複数の蓄ガス手段(例えば3段のボンベB1〜B3)と、該蓄ガス手段(B1〜B3)の各々の充填対象(例えば、水素を燃料とする車両2)に連通する配管系(L1〜L3)に介装された開閉手段(例えば、開閉弁V1〜V3)とを有しており、該複数の蓄ガス手段(B1〜B3)の圧力は所定圧力(例えば5MPa〜7MPa)以内ずつ相違しており、圧力が低い蓄ガス手段(B1)から充填を開始し、圧力が低い蓄ガス手段(B1)による充填が完了してから圧力が高い蓄ガス手段(B2)の充填を開始する様に前記開閉弁(V1〜V3)の開閉制御を行う様に構成された制御手段(10)を有していることを特徴としている(請求項1)。
【0012】
また、上述した水素充填装置(1)を制御するため、本発明の制御方法は、内部圧力が所定圧力(例えば5MPa〜7MPa)以内の圧力差がついている複数の蓄ガス手段(例えば3段のボンベB1〜B3)から充填対象(例えば、水素を燃料とする車両2)に水素ガスを充填するに際して、最初に最も圧力が低い蓄ガス手段(B1)を選択し、圧力が低い蓄ガス手段(B1)による充填が完了すれば当該蓄ガス手段(B1)の開閉手段(例えば、開閉弁V1)を閉鎖して、充填が完了した蓄ガス手段(B1)から所定圧力(例えば5MPa〜7MPa)だけ圧力が高い蓄ガス手段(B2)の開閉手段(例えば、開閉弁V2)を開放して当該蓄ガス手段(B2)からの充填を行い、最も高い圧力の蓄ガス手段(B3)の充填を完了するまで開閉手段(例えば、開閉弁V1〜V3)の前記閉鎖及び開閉を繰り返すことを特徴としている(請求項4)。
【0013】
係る構成を具備する本発明によれば、車両(2)側の蓄ガス手段(Rc)と水素充填装置(1)との圧力差が、水素ガスを充填しても温度上昇が比較的少ない(例えば、2℃〜3℃程度)様に設定されているので、車両(2)側の蓄ガス手段(Rc)の内部における水素の温度(断熱圧縮により水素充填装置の温度より数十度上昇している)の更なる上昇を、水素充填装置からの温度上昇が比較的少ない充填ガスと混合することにより、抑制する。
【0014】
ここで、最終段の(最も圧力が高い段の)蓄ガス手段(水素ステーション側のボンベB3)による充填が終了する際には、圧力容器に対して所定の充填圧の気体を充填する際に行われる既存のルーチン(流量を絞る等の工程)を実行することが好ましい。
【0015】
ここで、従来、異なる圧力のボンベからガスを充填する場合において、ボンベ内の圧力が減少し充填を行う際には、高圧段の蓄ガス器(ボンベ)が優先され、高圧段の蓄ガス器が充填された場合のみ、低圧断の蓄ガス器を充填する。
これに対して、上述した本発明では、何れの段であっても、所定の圧力よりも低下すれば、優劣をつけること無く、水素ステーションの水素供給機構(例えば圧縮機3)より水素ガスを充填する(例えば、水素ステーション1)側の各ボンベ(B1〜B3)の内圧が5MPa程度降圧すると、圧縮機(3)より水素ガスを充填する)のが好ましい。
【0016】
そのため、本発明の水素充填装置(1)は、水素供給機構(例えば圧縮機3)を備え、前記複数の蓄ガス手段(例えば3段のボンベB1〜B3)の圧力を計測する圧力計測手段(例えば圧力センサPB1〜PB3)を設け、水素供給機構(圧縮機3)と複数の蓄ガス手段(例えば3段のボンベB1〜B3)の各々との間に第2の開閉手段(例えば、開閉弁VC1〜VC3)を介装し、前記制御手段(10)は、蓄ガス手段(例えばボンベB1〜B3)の内圧が所定圧力(例えば、設定された圧力よりも5MPa程度降圧した数値)よりも高ければ当該蓄ガス手段(B1〜B3)と水素供給機構(圧縮機3)との間の第2の開閉手段(VC1〜VC3)を閉鎖し、何れかの蓄ガス手段(例えばボンベB1〜B3)の内圧が所定圧力以下となった場合には当該蓄ガス手段(B1〜B3)と水素供給機構(圧縮機3)との間の第2の開閉手段(VC1〜VC3)を開放するが、既に別の第2の開閉手段(VC1〜VC3の何れか)が開放されている場合には既に開放されている別の第2の開閉手段(VC1〜VC3の何れか)が閉鎖されるまで、(内圧が所定圧力以下となった蓄ガス手段と圧縮機3との間の)当該第2の開閉手段(VC1〜VC3の何れか)の閉鎖状態を維持する制御を行う様に構成されている(請求項2)。
【0017】
そして、係る水素充填装置(1)を制御するための本発明の制御方法では、圧力計測手段(例えば圧力センサPB1〜PB3)により複数の蓄ガス手段(例えば3段のボンベB1〜B3)の各々における圧力を計測する工程(S1)と、蓄ガス手段(例えばボンベB1〜B3)の内圧が所定圧力(例えば、設定された圧力よりも5MPa程度降圧した数値)よりも高ければ、蓄ガス手段(B1〜B3)の各々と水素供給機構(例えば水素ステーションの圧縮機3)との間に介装された第2の開閉手段(例えば、開閉弁VC1〜VC3)を閉鎖し、何れかの蓄ガス手段(例えばボンベB1〜B3の内の何れか)の内圧が所定圧力以下となった場合には当該蓄ガス手段と水素供給機構(圧縮機3)との間の第2の開閉手段(VC1〜VC3の内の何れか)を開放する工程(S6、S7)とを含み、第2の開閉手段(VC1〜VC3)を開放する前記工程(S6、S7)を行うに際して、既に別の第2の開閉手段が開放されている場合には、既に開放されている別の第2の開閉手段が閉鎖されるまで、内圧が所定圧力以下となった蓄ガス手段(B1〜B3の内の何れか)と水素供給機構(3)との間の当該第2の開閉手段を(VC1〜VC3の内の何れか)閉鎖した状態に維持している(請求項5)。
【0018】
さらに、本発明の水素充填装置(1)では、水素供給機構(3)と水素供給対象物(例えば、水素を燃料として使用する車両2)との間の配管系(L)に、高圧気体が保有するエネルギーにより仕事を行う機器(4:例えば、タービン4、レシプロ型機械等)と、気体圧力微調整用の流量調整機構(例えば、流量調整弁V0)を介装している(請求項3)。
ここで、当該機器(4)と気体圧力調整用の流量調整機構(例えば、流量調整弁V0)とは、どちらが上流側であっても良い(図5では、機器4が上流側となっているが、流量調整弁V0を機器4の上流側に配置しても良い)。
そして、水素供給対象物(2)と供給される水素ガスとの圧力差の大部分は、前記機器(4:例えば、タービン4、レシプロ型機械等)で生じ、充填操作上必要な場合には、前記流量調整機構(例えば、流量調整弁V0)で制御する様に構成されている。
【0019】
係る構成を具備する本発明の水素充填装置(1)によれば、水素供給機構(例えば圧縮機3)から供給される水素ガスの圧力を、水素供給対象物(2)の標準圧よりも高圧に設定し、当該高圧の水素ガスを、高圧気体が保有するエネルギーにより仕事を行う機器、例えばタービン(4)、レシプロ型機械等の機器、に流過せしめる。
高圧の水素ガスは、当該機器(4)を通過する際に外部に仕事を行いながら等エントロピー膨張し、温度が降下し、水素供給対象物(2)へ供給される。等エンタルピー膨張の場合の様に、温度上昇することは無い。そして、温度が降下した充填ガスが水素供給対象物(2)内のガスと混合することにより、水素供給対象物(2)内のガスが断熱圧縮することによる温度上昇が抑制されるのである。
【0020】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施形態について説明する。
【0021】
先ず、図1〜図4を参照して第1実施形態を説明する。
図1において、全体を符号1で表す水素充填装置は、充填対象の自動車2に水素ガスを充填するためのディスペンサーDと、水素供給機構である圧縮機3と、前記ディスペンサーDと圧縮機3を接続し水素を配送する水素供給ラインLとを有している。
【0022】
該水素供給管ラインは途中で3本の分岐ラインL1〜L3に一旦分岐した後再び水素供給ラインLに合流する。分岐ラインL1には上流側から順に第2の開閉弁VC1、圧力計PB1を備えた水素ボンベB1、第1の開閉弁V1が介装されている。同様に、分岐ラインL2、L3にも第2の開閉弁VC2、VC3;圧力計PB2、PB3を備えた水素ボンベB2、B3;第1の開閉弁V2、V3が介装されている。
図示の例では、ボンベB1の内圧<ボンベB2の内圧<ボンベB3の内圧となっており、隣合うボンベの圧力差は5〜7MPa(温度上昇が問題にならない程度の圧力差)である。
【0023】
前記ディスペンサーDは、充填開始前及び充填の終了時に開閉を行う供給バルブV0と、その供給バルブV0に対して被供給側の圧力センサP1と供給側の圧力センサP2とを有している。なお、ディスペンサーDは流量計F1を有しており、該流量計F1の計測結果は信号ラインLsfによりコントロールユニット10に送られる。
【0024】
前記ボンベに設けた圧力計PB1〜PB3は信号ラインLsiによって制御手段であるコントロールユニット10にボンベの内圧情報である信号が送られる。また、コントロールユニット10は前記ディスペンサーDを構成する前記圧力センサP1、P2とも信号ラインLsiで接続され、圧力センサP1、P2の圧力差の大きさによって被供給側である自動車2への水素ガスの供給が完了したか否かを判断している。
すなわち、ディスペンサーD内の圧力センサP1、P2により、ボンベ(B1〜B3)側と車両2に装備された容器Rc側との圧力差を求め、圧力差が等しくなれば(所定圧よりも小さくなれば)、そのボンベによる充填が完了したと看做す。
【0025】
更に、コントロールユニット10は、信号ラインLsoによって前記第1の開閉弁V1〜V3、及び第2の開閉弁VC1〜VC3の全てと接続されており、前記ボンベに設けた圧力計PB1からPB3からの情報及び前記ディスペンサーD内の圧力センサP1、P2の情報によって前記第1及び第2の開閉弁V1〜V3、VC1〜VC3の開閉を後述する制御方法によって行うように構成されている。
【0026】
尚、前記圧力センサP1、P2に代えて、流量計(質量流量を計測するタイプ)を設けてもよい。そのボンベによる充填が終了しつつあり、ボンベ側と車両容器側との圧力差が小さくなれば、水素ガス流量が小さくなることによって充填の完了を知ることが出来る。
【0027】
次に、図2を参照して水素ガス充填が完了したことを、圧力センサP1、P2の圧力差によって判断する場合の制御について説明する。
【0028】
先ず、圧力センサP1、P2によって被充填側である自動車2側の圧力とボンベ側の圧力を計測し(ステップS1)、圧力差ΔP(ΔP=P2−P1)を計算する(ステップS2)。
コントロールユニット10は、圧力差ΔPが1MPa以下であるか否かを判断し、1MPa以下であれば(ステップS3のYES)次のステップS4に進み、1MPaを超す場合(ステップS3のNO)、はステップS1以降を繰り返す。
【0029】
ステップS4では、コントロールユニット10は水素ガスH2供給中のボンベによる充填は終了したと判断する。引き続きコントロールユニット10は第1開閉弁V1〜V3の何れが開放されているかを判断する(ステップS5)。
【0030】
最も内圧の低い第1開閉弁のV1が開放されているのであれば、V2を開き、V1及びV3は閉じて(ステップS6)、再びステップS1から制御を繰り返す。また、内圧が中間である第1開閉弁のV2が開放されているのであれば、V3を開きV1及びV2は閉じて(ステップS7)、同様に再びステップS1から制御を繰り返す。更に内圧が最も高い第1開閉弁V3が開放されている(ステップS8)場合は車両への充填が終了しているので、それ以降は既存のルーチンで制御は行われる。
なお、そのルーチンは、既存のものと同一であるので、説明は省略する。
【0031】
次に、図3を参照して水素ガス充填が完了したことを、H2ガス流量により判断する場合の制御について説明する。
【0032】
先ず、水素供給ラインL0に介装した図示しない流量計によって水素供給ラインを流れるH2ガスの流量を計測する(ステップS11)。コントロールユニット10はH2ガス流量が所定流量以下になったか否かを判断しており(ステップS12)、所定流量以下となっていなければ(ステップS12のNO)、ステップS11以降を繰返し、所定流量以下となっていれば(ステップS12のYES)、H2ガス供給中のボンベによる充填は終了したと判断する(ステップS13)。
【0033】
次のステップS14では、コントロールユニット10は第1回閉弁V1〜V3の何れが開放されているかを判断する。
そして、最も内圧の低い第1開閉弁のV1が開放されているのであれば、V2を開き、V1及びV3は閉じて(ステップS15)、再びステップS11から制御を繰り返す。
また、内圧が中間である第1開閉弁のV2が開放されているのであれば、V3を開き、V1及びV2は閉じて(ステップS16)、同様に再びステップS1から制御を繰り返す。更に内圧が最も高い第1開閉弁V3が開放されている(ステップS17)場合は車両への充填が終了しているので、それ以降は既存のルーチンで制御は行われる。
【0034】
従来、異なる圧力のボンベからガスを充填する場合において、ボンベ内の圧力が減少し充填を行う際には、高圧段のボンベの充填が優先され、高圧段のボンベが充填された場合のみ、低圧段のボンベを充填していた。
これに対して、本発明では、何れの段であっても、所定の圧力よりも低下すれば(例えば、5MPa程度降圧すると)、低圧段と高圧段の優劣をつけること無く、圧縮機より水素ガスを充填する。
図4は、そのように低圧段と高圧段の優劣をつけること無く、圧縮機より水素ガスを充填する場合のルーチンを示している。
【0035】
図4を参照して、圧縮機よりボンベに水素ガスを充填する制御の流れを説明する。
各ボンベB1〜B3に設けられた圧力計PB1〜PB3によって各ボンベの内圧を測定する(ステップS21)。コントロールユニット10は、前記圧力計PB1〜PB3の内何れかが所定値以下になっているか否かを判断し(ステップS22)何れかが所定値以下となっていれば(ステップS22のYES)次のステップS23に進み、そうでない場合(ステップS22のNO)、ステップS21に戻る。
【0036】
ステップS23では、コントロールユニット10は、第2の開閉弁VC1〜VC3の内、何れかが開放状態であるか否かを判断して、何れかが開放状態であれば(ステップS23のYES)次のステップS24に進み、そうでなければ(ステップS23のNO)、ステップS26まで跳ぶ。
【0037】
ステップS24では、コントロールユニット10は、既に開放している弁に連通するボンベ、すなわち既にH2ガスの充填を行っているボンベへの充填が完了したか否かを判断しており、まだ完了していなければ(ステップS24のNO)、一旦待機して(ステップS25)、その後ステップS24以降を繰返し、完了していれば(ステップS24のYES)ステップS26に進む。
【0038】
ステップS26では、ステップS22に該当するボンベ(所定値以下のボンベ)へ充填し、開放状体の弁を閉鎖した後、制御を終了するか否かを判断し(ステップS27)、終了するのであれば(ステップS27のYES)そのまま終了し、まだ続行するなら元のステップS21から制御を繰り返す。
【0039】
前述のステップS24では、あるボンベが所定圧力以下になった場合であって、既に他のボンベが水素ガス充填中である場合には、既に充填中のボンベを優先する。換言すれば、所定圧力よりも低圧となったボンベから順に、水素ガスが充填されることを意味している。
【0040】
上述したような構成及び制御の第1実施形態に撚れば、自動車2側の蓄ガス手段Rcと水素充填装置1との圧力差が、水素ガスを充填しても温度上昇が比較的少ない(例えば、2℃〜3℃程度)様に設定されているので、車両2側の蓄ガス手段Rcの内部温度上昇を抑制できる。
また、何れの段であっても、所定の圧力よりも低下すれば、優劣をつけること無く、圧縮機3より水素ガスを充填する水素ガス充填装置1側の各ボンベ(B1〜B3)の内圧が5MPa程度降圧すると、自動的に圧縮機3より水素ガスをボンベに充填することが出来る。
【0041】
図5を参照して、第2実施形態を説明する。
図5の第2実施形態において、符号1Aで示す水素充填装置は、ガス供給側の圧縮機3とディスペンサーDとの間に、タービン4(高圧気体が保有するエネルギーにより仕事を行う機器:レシプロ型機械でも可)を介装している。そして、圧縮機3で昇圧された水素ガスの圧力を、タービン4で仕事をさせることにより、大雑把に減圧している。
水素供給ラインLのタービン4と圧縮機3との間の領域には、蓄ガス器Rgと流量計F2とが介装されている。
【0042】
ディスペンサーDは、流量調整弁V0(気体圧力調整用の流量調整機構)と、そのバルブV0に対して車両側に位置している圧力センサP1とを備えている。
そして、その圧力センサP1で計測された圧力と、流量計F2で計測された流量に基いて、コントロールユニット10Aが流量調整弁V0の弁開度を調節する。それにより、車両2に充填される水素ガスの圧力、すなわち車両2の容器Rc内の(その時点における)圧力に対応して、供給される水素ガスの流量が適切となる様に制御している。
【0043】
なお、タービン4は発電機5を回しているが、発電量が不均一となりがちである。そのため、キャパシタ或いはコンデンサC等により発電した電力は蓄電するように構成されている。
【0044】
第2実施形態において、車両2側に供給される水素ガスの流量が、車両2の容器Rc内の(その時点における)圧力に対して適切となる様に制御する態様について、図6を参照して説明する。
【0045】
先ず、圧力センサP1の計測結果と、流量計F2の計測結果とを読み込む(ステップS31)。そして、流量計F2で計測された流量を、コントロールユニット10Aに予め記憶された流量(予定された数値)と比較する(ステップS32)。ここで、「予め記憶された流量」は、コントロールユニット10Aの図示しない保存手段に記憶されており、圧力センサP1の計測値に対応して定められている。
【0046】
流量計F2で計測された流量が、予定された数値よりも小さければ(ステップS32で「流量が小」)、流量調整弁V0の開度を増加して(ステップS33)、流量を増加する。
一方、計測された流量が予定された数値よりも大きければ(ステップS32で「流量が大」)、流量調整弁V0の開度を減少して(ステップS34)、流量を減少する。
さらに、計測された流量が、予定された数値に対して許容範囲内にあれば(ステップS32でYes)、流量調整弁V0の開度はそのまま維持する(ステップS35)。
【0047】
次に、圧力計P1の計測結果が、第1の所定圧力を超えたか否かを判定する(ステップS36)。
ここで、「第1の所定圧力」は、水素供給ラインLの流量調整弁V0よりも車両2側の領域における圧力が車両2の充填圧力を超えない様にする趣旨で設定される圧力であり、車両2の充填圧力よりも配管抵抗の分と、安全を考慮した圧力の分とを合計した若干の数値だけ低圧に設定されている(例えば、充填圧力が35MPaならば、第1の所定圧力は33MPa)。
圧力計P1の計測結果が、第1の所定圧力を超えているのであれば(ステップS36でNo)、当該圧力を低下させるべく、流量調整弁V0の開度を減少する(ステップS37)。
【0048】
ステップS36がYesの場合、或いは、ステップS37の後、ステップS38において、圧力計P1の計測結果が第2の所定圧力に達したか否かを判定する(ステップS38)。
ここで、「第2の所定圧力」は、水素供給ラインLの流量調整弁V0よりも車両2側の領域における圧力(車両2の容器Rc内の圧力と概略等しい)が車両2の充填圧力に殆ど等しくなり、充填が完了しつつあることを把握するために設定された圧力である。前記「第1の所定圧力」と重点圧力の中間程度の数値に設定されている(例えば、充填圧力が35MPaならば、第2の所定圧力は34MPa)。
【0049】
圧力計P1の計測結果が第2の所定圧力に達していなければ、ステップS31以下を繰り返す(ステップS38がNoのループ)。
そして、圧力計P1の計測結果が第2の所定圧力に達していれば(ステップS38がYes)、水素供給ラインLを流れる水素ガスの流量を絞り、以下、各メーカー毎に定められた充填終了の為のルーチンを実行する(ステップS39)。
【0050】
図示の実施形態はあくまでも例示であり、本発明の技術範囲を限定する趣旨ではない旨を付記する。
例えば上述の第2実施形態において、タービンではなく、ピストン・シリンダ機構等のレシプロ型の機械に仕事をさせても良い。高圧であれば、タービンよりもレシプロ型の機械の方が有利であるからである。
【0051】
【発明の効果】
本発明の作用効果を以下に列記する。
(1) 車両側の蓄ガス手段と水素充填装置との圧力差が、水素ガスを充填しても温度上昇が比較的少ない(例えば、2℃〜3℃程度)様に設定されているので、車両側蓄ガス手段の内部温度上昇を抑制する効果が大きい。
(2) 蓄ガス手段の内圧が所定圧力よりも高ければ当該蓄ガス手段と水素供給機構との間の第2の開閉手段を閉鎖し、何れかの蓄ガス手段の内圧が所定圧力以下となった場合には当該蓄ガス手段と水素供給機構との間の第2の開閉手段を開放するが、既に別の第2の開閉手段が開放されている場合には既に開放されている別の第2の開閉手段が閉鎖されるまで、第2の開閉手段の閉鎖状態を維持するので、何れの段であっても、所定の圧力よりも低下すれば、優劣をつけること無く、水素ステーションの水素供給機構より水素ガスを充填する側の各ボンベの内圧が5MPa程度降圧すると、圧縮機より自動的に水素ガスが充填される。
(3) 水素供給機構(例えば圧縮機3)から供給される水素ガスの圧力を、水素供給対象物の標準圧よりも高圧に設定し、当該高圧の水素ガスを、高圧気体が保有するエネルギーにより仕事を行う機器、例えばタービン、レシプロ型機械等の機器に流過せしめることで、高圧の水素ガスは当該機器に対して仕事をしながら等エントロピー膨張して、温度が降下し、等エンタルピー膨張のように温度上昇することがないので、水素供給対象物内の断熱圧縮による温度上昇を抑制する効果が極めて大きい。
【図面の簡単な説明】
【図1】本発明の第1実施形態の水素充填装置の全体構成を示すブロック図。
【図2】本発明の第1実施形態の圧力差によりH2ガスの充填完了を判断する場合のフローチャート。
【図3】本発明の第1実施形態のガス流量によりH2ガスの充填完了を判断する場合のフローチャート。
【図4】本発明の第1実施例のボンベV1〜V3へH2ガスを充填するルーチンを示すフローチャート
【図5】本発明の第2実施形態の水素充填装置の全体構成を示すブロック図。
【図6】本発明の第2実施例の充填側、被充填側の圧力差を小さくする制御のルーチンを示すフローチャート。
【図7】従来技術による水素充填装置の全体構成を示すブロック図。
【符号の説明】
1、1A・・・水素充填装置
2・・・車両
3・・・圧縮機
4・・・タービン
5・・・発電機
6・・・コンデンサ
10・・・コントロールユニット
B1、B2、B3・・・ボンベ
D・・・ディスペンサー
L・・・水素供給管
P1、P2・・・圧力センサ
PB1、PB2、PB3・・・圧力計
V1、V2、V3・・・開閉弁
VC1、VC2、VC3・・・第2の開閉弁
Vs・・・流量調整弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a hydrogen filling facility for supplying hydrogen to an automobile (for example, a vehicle equipped with a fuel cell) that runs on hydrogen as a fuel.
[0002]
[Prior art]
In recent years, vehicles that use hydrogen gas as fuel have been put into practical use due to an increase in environmental awareness, a request for purifying exhaust gas, a request for reducing the amount of carbon dioxide generated, and the like. As a facility indispensable for practical use of a vehicle using hydrogen gas as a fuel, there is a hydrogen station for supplying hydrogen to the vehicle.
FIG. 7 shows an example of such a hydrogen station.
[0003]
At present, the filling pressure at the hydrogen station S is two types of 25M and 35M (the maximum filling pressure of hydrogen gas vehicles at the present time: hereinafter referred to as "standard pressure").
When the vehicle C (C1 and / or C2) using hydrogen gas as fuel runs and consumes hydrogen gas in the storage means (vehicle-side gas storage means Rc) mounted on the vehicle C, the vehicle C-side gas storage means The pressure in Rc becomes lower than the standard pressure of the vehicle C.
Further, the mechanism of filling hydrogen gas from the station S into the gas storage means Rc of the vehicle side C is based on the pressure between the pressure in the vehicle side gas storage means Rc and the internal pressure of the gas storage device (normally, the cylinder Rg of the station). The difference is filled with hydrogen gas.
[0004]
Here, when the pressure of the high-pressure gas decreases due to the flow path resistance including the throttle valve or the like (isenthalpy expansion), the temperature usually decreases, that is, the so-called “Joult-Thomson effect” occurs.
On the other hand, in the case of hydrogen, when the pressure drops due to isenthalpy expansion, unlike other gases, the temperature shows the property of increasing the temperature.
[0005]
That is, in the vehicle-side gas storage means Rc which is being filled with hydrogen in the hydrogen station S, the high-pressure (for example, 40 MPa) hydrogen gas supplied from the gas storage device Rg in the hydrogen station S is supplied to the vehicle-side gas storage means Rc. When the gas enters the inside, the pressure becomes very low (for example, the pressure drops from 40 MPa to about atmospheric pressure), and as a result of isenthalpy expansion, the temperature rises.
For example, when the pressure of the hydrogen gas is reduced from 40 MPa to the atmospheric pressure, the temperature rises by about 14 ° C., and when the pressure of the hydrogen gas is reduced from 70 MPa to the atmospheric pressure, the temperature rises by about 28 ° C.
[0006]
Here, the internal temperature of the gas storage means Rc on the vehicle C side is limited due to its structure. For example, if the temperature is equal to or higher than a certain temperature, the fusing plug provided in the gas storage means Rc on the vehicle side (a mechanism that operates when the temperature becomes equal to or higher than the certain temperature and releases internal gas) may operate.
[0007]
Therefore, in order to fill the hydrogen gas within a predetermined temperature of the gas storage means on the vehicle side (for example, the vehicle side container),
(A) Slowing the filling speed to prolong the heat exchange time between hydrogen and the container inner wall in the vehicle side container, increase the amount of heat released to the container, and suppress the temperature rise;
(B) cooling when hydrogen gas is charged into the vehicle side container (see Patent Document 1);
(C) A heat transfer enhancer such as a fin is provided in the vehicle side container to reduce a partial temperature rise (see Patent Document 2).
Conventionally, such a method has been common.
[0008]
However, in the above (A), the filling speed is slow, so that the filling time is too long.
On the other hand, in the above (B), cooling water and cooling equipment are required, and it is difficult to apply to a vehicle having many layout restrictions.
Further, in the above (C), the structure of the vehicle-side container becomes complicated and the cost increases.
[0009]
[Patent Document 1]
JP 2002-89793 A
[Patent Document 2]
JP-A-2002-181295
[0010]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-described problems of the related art, and a hydrogen filling apparatus and a control method thereof that prevent a rise in temperature at the time of filling with hydrogen gas and do not complicate the structure on the vehicle side. The purpose is to provide.
[0011]
[Means for Solving the Problems]
As a result of various studies, the inventors have found that when the pressure difference is within 5 MPa to 7 MPa, the temperature rise is relatively small (about 2 ° C. to 3 ° C.).
The present invention has been created based on such a viewpoint.
The hydrogen filling device (1) of the present invention includes a plurality of gas storage means (for example, three-stage cylinders B1 to B3) and objects to be filled by each of the gas storage means (B1 to B3) (for example, hydrogen is used as fuel). Opening / closing means (for example, opening / closing valves V1 to V3) interposed in a piping system (L1 to L3) communicating with the vehicle 2), and the pressure of the plurality of gas storage means (B1 to B3) is Filling is started from the gas storage means (B1) having a low pressure, and the storage is started after the filling by the gas storage means (B1) having a low pressure is completed. Control means (10) configured to perform opening / closing control of the on-off valves (V1 to V3) so as to start filling of the gas means (B2) is provided (claim 1). .
[0012]
Further, in order to control the hydrogen filling device (1) described above, the control method of the present invention uses a plurality of gas storage means (for example, three-stage gas storage) having an internal pressure within a predetermined pressure (for example, 5 MPa to 7 MPa). When filling the filling target (for example, the vehicle 2 using hydrogen as fuel) from the cylinders B1 to B3), first, the gas storage means (B1) having the lowest pressure is selected, and the gas storage means (B1) having the lowest pressure is selected. When the filling by B1) is completed, the opening / closing means (for example, the on-off valve V1) of the gas storage means (B1) is closed, and only a predetermined pressure (for example, 5 MPa to 7 MPa) is applied from the filled gas storage means (B1). The opening / closing means (for example, the on-off valve V2) of the gas storage means (B2) having a high pressure is opened to perform charging from the gas storage means (B2), and the filling of the gas storage means (B3) having the highest pressure is completed. Open until Means (e.g., on-off valve V1 to V3) are characterized by repeating said closing and opening of (claim 4).
[0013]
According to the present invention having such a configuration, the pressure difference between the gas storage means (Rc) on the vehicle (2) side and the hydrogen filling device (1) causes a relatively small temperature rise even when hydrogen gas is charged ( (Eg, about 2 ° C. to 3 ° C.), the temperature of hydrogen inside the gas storage means (Rc) on the vehicle (2) side (increases by several tens of degrees from the temperature of the hydrogen filling device due to adiabatic compression). ) Is suppressed by mixing with a filling gas having a relatively small temperature rise from the hydrogen filling apparatus.
[0014]
Here, when filling with the gas storage means (the cylinder B3 on the hydrogen station side) of the final stage (the stage with the highest pressure) is completed, when filling the pressure vessel with gas of a predetermined filling pressure, It is preferable to execute the existing routine (steps such as reducing the flow rate) to be performed.
[0015]
Here, conventionally, when gas is charged from a cylinder having a different pressure, when the pressure in the cylinder is reduced and filling is performed, the gas storage device (cylinder) in the high-pressure stage is prioritized, and the gas storage device in the high-pressure stage is prioritized. Only when the gas is filled, the low pressure gas storage is filled.
On the other hand, in the present invention described above, in any stage, if the pressure is lower than the predetermined pressure, hydrogen gas is supplied from the hydrogen supply mechanism (for example, the compressor 3) of the hydrogen station without giving any priority. When the internal pressure of each cylinder (B1 to B3) on the side of filling (for example, the hydrogen station 1) is reduced by about 5 MPa, hydrogen gas is preferably charged from the compressor (3).
[0016]
Therefore, the hydrogen filling apparatus (1) of the present invention includes a hydrogen supply mechanism (for example, the compressor 3), and a pressure measuring means (for example, a pressure measuring means (for example, a three-stage cylinder B1 to B3) for measuring the pressure of the plurality of gas storage means (for example, three-stage cylinders B1 to B3). For example, pressure sensors PB1 to PB3) are provided, and second opening / closing means (for example, an on-off valve) is provided between the hydrogen supply mechanism (compressor 3) and each of the plurality of gas storage means (for example, three-stage cylinders B1 to B3). VC1 to VC3), the control means (10) determines that the internal pressure of the gas storage means (for example, cylinders B1 to B3) is higher than a predetermined pressure (for example, a numerical value reduced by about 5 MPa from a set pressure). For example, the second opening / closing means (VC1 to VC3) between the gas storage means (B1 to B3) and the hydrogen supply mechanism (compressor 3) is closed, and any of the gas storage means (for example, cylinders B1 to B3) is closed. Internal pressure has fallen below the specified pressure In this case, the second opening / closing means (VC1 to VC3) between the gas storage means (B1 to B3) and the hydrogen supply mechanism (compressor 3) is opened, but another second opening / closing means (VC1) has already been opened. When any one of the internal pressures becomes equal to or lower than the predetermined pressure, the second opening / closing means (any of VC1 to VC3) which is already opened is closed. The second opening / closing means (between the gas means and the compressor 3) (VC1 to VC3) is controlled to maintain the closed state (claim 2).
[0017]
In the control method of the present invention for controlling the hydrogen filling device (1), each of the plurality of gas storage means (for example, three-stage cylinders B1 to B3) is controlled by a pressure measuring means (for example, pressure sensors PB1 to PB3). Measuring the pressure in step (S1), and if the internal pressure of the gas storage means (for example, cylinders B1 to B3) is higher than a predetermined pressure (for example, a numerical value reduced by about 5 MPa from a set pressure), the gas storage means ( B1 to B3) and the second opening / closing means (for example, on / off valves VC1 to VC3) interposed between each of the hydrogen supply mechanisms (for example, the compressor 3 of the hydrogen station), and any one of the stored gas When the internal pressure of the means (for example, any one of the cylinders B1 to B3) becomes equal to or lower than a predetermined pressure, the second opening / closing means (VC1 to VC1) between the gas storage means and the hydrogen supply mechanism (compressor 3). Of VC3 (S6, S7) to open the second opening / closing means (VC1 to VC3). When performing the steps (S6, S7) for opening the second opening / closing means (VC1 to VC3), another second opening / closing means is already opened. In this case, the gas storage means (any one of B1 to B3) whose internal pressure has become equal to or lower than the predetermined pressure and the hydrogen supply mechanism until another second opening / closing means which has already been opened are closed. The second opening / closing means between (3) and (3) is maintained in a closed state (any of VC1 to VC3).
[0018]
Furthermore, in the hydrogen filling apparatus (1) of the present invention, high-pressure gas is supplied to the piping system (L) between the hydrogen supply mechanism (3) and the hydrogen supply target (for example, the vehicle 2 using hydrogen as fuel). A device (4: for example, a turbine 4, a reciprocating machine, etc.) that performs work using the stored energy and a flow rate adjusting mechanism (eg, a flow rate adjusting valve V0) for fine adjustment of gas pressure are interposed (Claim 3). ).
Here, either the device (4) or the flow rate adjusting mechanism for gas pressure adjustment (for example, the flow rate adjusting valve V0) may be on the upstream side (in FIG. 5, the device 4 is on the upstream side). However, the flow control valve V0 may be arranged on the upstream side of the device 4).
Most of the pressure difference between the hydrogen supply object (2) and the supplied hydrogen gas is generated in the equipment (4: for example, the turbine 4, a reciprocating machine, etc.), and when necessary for the filling operation, , And is controlled by the flow control mechanism (for example, the flow control valve V0).
[0019]
According to the hydrogen filling apparatus (1) of the present invention having such a configuration, the pressure of the hydrogen gas supplied from the hydrogen supply mechanism (for example, the compressor 3) is higher than the standard pressure of the hydrogen supply target (2). And the high-pressure hydrogen gas is allowed to flow through a device that performs work using the energy held by the high-pressure gas, for example, a device such as a turbine (4) or a reciprocating machine.
The high-pressure hydrogen gas undergoes isentropic expansion while performing work to the outside when passing through the device (4), and its temperature decreases, and is supplied to the hydrogen supply target (2). There is no temperature rise as in the case of isenthalpy expansion. Then, the filling gas whose temperature has dropped is mixed with the gas in the hydrogen supply target (2), thereby suppressing a temperature rise due to adiabatic compression of the gas in the hydrogen supply target (2).
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0021]
First, a first embodiment will be described with reference to FIGS.
In FIG. 1, a hydrogen filling apparatus generally denoted by reference numeral 1 includes a dispenser D for filling a vehicle 2 to be charged with hydrogen gas, a compressor 3 serving as a hydrogen supply mechanism, and the dispenser D and the compressor 3. And a hydrogen supply line L for connecting and delivering hydrogen.
[0022]
The hydrogen supply pipe line once branches into three branch lines L1 to L3 on the way, and then joins the hydrogen supply line L again. A second on-off valve VC1, a hydrogen cylinder B1 equipped with a pressure gauge PB1, and a first on-off valve V1 are provided in the branch line L1 in this order from the upstream side. Similarly, the branch lines L2 and L3 are also provided with second on-off valves VC2 and VC3; hydrogen cylinders B2 and B3 provided with pressure gauges PB2 and PB3; first on-off valves V2 and V3, respectively.
In the illustrated example, the internal pressure of the cylinder B1 <the internal pressure of the cylinder B2 <the internal pressure of the cylinder B3, and the pressure difference between adjacent cylinders is 5 to 7 MPa (a pressure difference at which temperature rise does not matter).
[0023]
The dispenser D has a supply valve V0 that opens and closes before the start of filling and at the end of filling, and a pressure sensor P1 on the supply side and a pressure sensor P2 on the supply side with respect to the supply valve V0. The dispenser D has a flow meter F1, and the measurement result of the flow meter F1 is sent to the control unit 10 via a signal line Lsf.
[0024]
The pressure gauges PB1 to PB3 provided in the cylinders are supplied with a signal as internal pressure information of the cylinders to a control unit 10 as a control means by a signal line Lsi. Further, the control unit 10 is also connected to the pressure sensors P1 and P2 constituting the dispenser D via a signal line Lsi, and supplies the hydrogen gas to the vehicle 2 on the supply side depending on the magnitude of the pressure difference between the pressure sensors P1 and P2. It is determined whether the supply has been completed.
That is, the pressure difference between the cylinder (B1 to B3) side and the container Rc side mounted on the vehicle 2 is determined by the pressure sensors P1 and P2 in the dispenser D, and if the pressure difference becomes equal (the pressure difference becomes smaller than the predetermined pressure). B), it is considered that the filling with the cylinder is completed.
[0025]
Further, the control unit 10 is connected to all of the first on-off valves V1 to V3 and the second on-off valves VC1 to VC3 by a signal line Lso, and is connected to pressure gauges PB1 to PB3 provided on the cylinder. The first and second on-off valves V1 to V3 and VC1 to VC3 are configured to be opened and closed according to information and information from the pressure sensors P1 and P2 in the dispenser D by a control method described later.
[0026]
Note that a flow meter (a type that measures a mass flow rate) may be provided instead of the pressure sensors P1 and P2. When the filling by the cylinder is being completed and the pressure difference between the cylinder side and the vehicle container side is small, the completion of the filling can be known by reducing the hydrogen gas flow rate.
[0027]
Next, with reference to FIG. 2, a description will be given of a control in a case where the completion of the hydrogen gas filling is determined based on a pressure difference between the pressure sensors P1 and P2.
[0028]
First, the pressure sensors P1 and P2 measure the pressure on the vehicle 2 side, which is the filling side, and the pressure on the cylinder side (step S1), and calculate a pressure difference ΔP (ΔP = P2−P1) (step S2).
The control unit 10 determines whether or not the pressure difference ΔP is 1 MPa or less. If the pressure difference ΔP is 1 MPa or less (YES in step S3), the process proceeds to the next step S4, and if it exceeds 1 MPa (NO in step S3), Step S1 and subsequent steps are repeated.
[0029]
In step S4, the control unit 10 determines that the filling with the cylinder during the supply of the hydrogen gas H2 has been completed. Subsequently, the control unit 10 determines which of the first on-off valves V1 to V3 is open (step S5).
[0030]
If V1 of the first on-off valve having the lowest internal pressure is open, V2 is opened, V1 and V3 are closed (Step S6), and the control is repeated from Step S1 again. If V2 of the first on-off valve having an intermediate internal pressure is open, V3 is opened and V1 and V2 are closed (Step S7), and the control is repeated from Step S1 again. Further, when the first on-off valve V3 having the highest internal pressure is open (step S8), the filling of the vehicle has been completed, and thereafter the control is performed by the existing routine.
Note that the routine is the same as the existing routine, and a description thereof will be omitted.
[0031]
Next, with reference to FIG. 3, a description will be given of a control in the case where the completion of the hydrogen gas filling is determined based on the H2 gas flow rate.
[0032]
First, the flow rate of the H2 gas flowing through the hydrogen supply line is measured by a flow meter (not shown) provided in the hydrogen supply line L0 (step S11). The control unit 10 determines whether or not the H2 gas flow rate has become equal to or less than a predetermined flow rate (step S12). If the H2 gas flow rate has not become equal to or less than the predetermined flow rate (NO in step S12), the control unit 10 repeats the steps from step S11 onward. Is satisfied (YES in step S12), it is determined that the filling by the cylinder during the supply of the H2 gas is completed (step S13).
[0033]
In the next step S14, the control unit 10 determines which of the first closing valves V1 to V3 is open.
If V1 of the first on-off valve having the lowest internal pressure is open, V2 is opened, V1 and V3 are closed (Step S15), and the control is repeated from Step S11 again.
If V2 of the first on-off valve having an intermediate internal pressure is open, V3 is opened, V1 and V2 are closed (Step S16), and the control is repeated from Step S1 again. Further, when the first on-off valve V3 having the highest internal pressure is open (step S17), the filling of the vehicle has been completed, and thereafter, the control is performed by the existing routine.
[0034]
Conventionally, when gas is filled from a cylinder with a different pressure, when the pressure in the cylinder is reduced and filling is performed, the filling of the high-pressure cylinder is prioritized, and only when the high-pressure cylinder is filled, the low-pressure cylinder is charged. The column cylinder was filled.
On the other hand, according to the present invention, in any stage, if the pressure is lower than a predetermined pressure (for example, if the pressure is reduced by about 5 MPa), hydrogen is supplied from the compressor without giving priority to the low pressure stage and the high pressure stage. Fill with gas.
FIG. 4 shows a routine for charging the compressor with hydrogen gas without giving priority to the low-pressure stage and the high-pressure stage.
[0035]
Referring to FIG. 4, the flow of control for filling the cylinder with hydrogen gas from the compressor will be described.
The internal pressure of each cylinder is measured by the pressure gauges PB1 to PB3 provided in each cylinder B1 to B3 (step S21). The control unit 10 determines whether or not any of the pressure gauges PB1 to PB3 is equal to or less than a predetermined value (step S22). If any of the pressure gauges is equal to or less than the predetermined value (YES in step S22), If not (NO in step S22), the process returns to step S21.
[0036]
In step S23, the control unit 10 determines whether or not any of the second on-off valves VC1 to VC3 is open, and if any is open (YES in step S23), If not (NO in step S23), the process jumps to step S26.
[0037]
In step S24, the control unit 10 determines whether or not the filling of the cylinder communicating with the valve that has already been opened, that is, the cylinder that has already been filled with the H2 gas, has been completed. If not (NO in step S24), the process waits once (step S25), and then repeats step S24 and subsequent steps. If completed (YES in step S24), the process proceeds to step S26.
[0038]
In step S26, after filling the cylinder corresponding to step S22 (cylinder having a predetermined value or less), closing the valve of the open body, it is determined whether or not to end the control (step S27). If (YES in step S27), the process is terminated, and if the process is to be continued, the control is repeated from the original step S21.
[0039]
In the above-described step S24, when a certain cylinder becomes lower than a predetermined pressure and another cylinder is already being filled with hydrogen gas, priority is given to the cylinder already being filled. In other words, it means that hydrogen gas is filled in order from the cylinder having a pressure lower than the predetermined pressure.
[0040]
By twisting the first embodiment of the configuration and control as described above, the pressure difference between the gas storage means Rc on the vehicle 2 side and the hydrogen filling device 1 causes a relatively small temperature rise even when hydrogen gas is charged ( (For example, about 2 ° C. to 3 ° C.), it is possible to suppress an increase in the internal temperature of the gas storage means Rc on the vehicle 2 side.
In any stage, if the pressure is lower than a predetermined pressure, the internal pressures of the cylinders (B1 to B3) of the hydrogen gas filling device 1 for filling the hydrogen gas from the compressor 3 are maintained without any difference. When the pressure is reduced by about 5 MPa, the compressor 3 can automatically fill the cylinder with hydrogen gas.
[0041]
The second embodiment will be described with reference to FIG.
In the second embodiment of FIG. 5, a hydrogen filling device denoted by reference numeral 1A is a turbine 4 (a device that performs work using energy held by high-pressure gas: reciprocating type) between a compressor 3 on the gas supply side and a dispenser D. Machine is also possible). The pressure of the hydrogen gas pressurized by the compressor 3 is roughly reduced by causing the turbine 4 to work.
In a region of the hydrogen supply line L between the turbine 4 and the compressor 3, a gas storage device Rg and a flow meter F2 are interposed.
[0042]
The dispenser D includes a flow control valve V0 (a flow control mechanism for adjusting gas pressure) and a pressure sensor P1 located on the vehicle side with respect to the valve V0.
Then, based on the pressure measured by the pressure sensor P1 and the flow rate measured by the flow meter F2, the control unit 10A adjusts the valve opening of the flow control valve V0. Thereby, the flow rate of the supplied hydrogen gas is controlled to be appropriate in accordance with the pressure of the hydrogen gas charged in the vehicle 2, that is, the pressure (at that time) in the container Rc of the vehicle 2. .
[0043]
Although the turbine 4 rotates the generator 5, the amount of power generation tends to be uneven. Therefore, the power generated by the capacitor or the capacitor C is stored.
[0044]
In the second embodiment, an embodiment in which the flow rate of the hydrogen gas supplied to the vehicle 2 is controlled so as to be appropriate for the pressure (at that time) in the container Rc of the vehicle 2 will be described with reference to FIG. Will be explained.
[0045]
First, the measurement result of the pressure sensor P1 and the measurement result of the flow meter F2 are read (step S31). Then, the flow rate measured by the flow meter F2 is compared with a flow rate (planned numerical value) stored in the control unit 10A in advance (step S32). Here, the "pre-stored flow rate" is stored in a storage unit (not shown) of the control unit 10A, and is determined corresponding to the measurement value of the pressure sensor P1.
[0046]
If the flow rate measured by the flow meter F2 is smaller than the predetermined numerical value ("the flow rate is small" in step S32), the opening degree of the flow control valve V0 is increased (step S33), and the flow rate is increased.
On the other hand, if the measured flow rate is larger than the predetermined numerical value (“the flow rate is large” in step S32), the opening degree of the flow control valve V0 is reduced (step S34), and the flow rate is reduced.
Further, if the measured flow rate is within the allowable range with respect to the planned numerical value (Yes in step S32), the opening of the flow rate adjustment valve V0 is maintained as it is (step S35).
[0047]
Next, it is determined whether or not the measurement result of the pressure gauge P1 has exceeded a first predetermined pressure (step S36).
Here, the “first predetermined pressure” is a pressure set for the purpose of preventing a pressure in a region closer to the vehicle 2 than the flow control valve V 0 of the hydrogen supply line L from exceeding a filling pressure of the vehicle 2. The pressure is set to a low value by a small numerical value that is a sum of the pipe resistance and the pressure in consideration of safety than the filling pressure of the vehicle 2 (for example, if the filling pressure is 35 MPa, the first predetermined pressure is set). Is 33 MPa).
If the measurement result of the pressure gauge P1 exceeds the first predetermined pressure (No in step S36), the opening degree of the flow control valve V0 is reduced to reduce the pressure (step S37).
[0048]
If step S36 is Yes, or after step S37, in step S38, it is determined whether or not the measurement result of the pressure gauge P1 has reached the second predetermined pressure (step S38).
Here, the “second predetermined pressure” is such that the pressure in the region of the hydrogen supply line L closer to the vehicle 2 than the flow control valve V0 (which is substantially equal to the pressure in the container Rc of the vehicle 2) is equal to the filling pressure of the vehicle 2. It is almost equal, and the pressure is set to grasp that the filling is being completed. The value is set to a value intermediate between the "first predetermined pressure" and the emphasis pressure (for example, if the filling pressure is 35 MPa, the second predetermined pressure is 34 MPa).
[0049]
If the measurement result of the pressure gauge P1 has not reached the second predetermined pressure, step S31 and subsequent steps are repeated (step S38 is a loop of No).
If the measurement result of the pressure gauge P1 has reached the second predetermined pressure (Yes in step S38), the flow rate of the hydrogen gas flowing through the hydrogen supply line L is reduced, and thereafter, the filling completion determined for each manufacturer is completed. (Step S39).
[0050]
Note that the illustrated embodiment is merely an example, and is not intended to limit the technical scope of the present invention.
For example, in the above-described second embodiment, a reciprocating machine such as a piston / cylinder mechanism may be used instead of the turbine. At high pressures, reciprocating machines are more advantageous than turbines.
[0051]
【The invention's effect】
The effects of the present invention are listed below.
(1) Since the pressure difference between the gas storage means on the vehicle side and the hydrogen filling device is set so that the temperature rise is relatively small (for example, about 2 ° C. to 3 ° C.) even when hydrogen gas is charged, The effect of suppressing a rise in the internal temperature of the vehicle-side gas storage means is great.
(2) If the internal pressure of the gas storage means is higher than the predetermined pressure, the second opening / closing means between the gas storage means and the hydrogen supply mechanism is closed, and the internal pressure of any of the gas storage means becomes lower than the predetermined pressure. The second opening / closing means between the gas storage means and the hydrogen supply mechanism is opened, but if another second opening / closing means is already opened, another second opening / closing means is already opened. Until the second opening / closing means is closed, the closed state of the second opening / closing means is maintained. Therefore, in any stage, if the pressure drops below a predetermined pressure, the hydrogen of the hydrogen station is maintained without any difference. When the internal pressure of each cylinder on the side charged with hydrogen gas from the supply mechanism is reduced by about 5 MPa, the compressor is automatically charged with hydrogen gas.
(3) The pressure of the hydrogen gas supplied from the hydrogen supply mechanism (for example, the compressor 3) is set to be higher than the standard pressure of the hydrogen supply target, and the high-pressure hydrogen gas is changed by the energy held by the high-pressure gas. By letting it flow through equipment that performs work, for example, turbines, equipment such as reciprocating machines, the high-pressure hydrogen gas undergoes isentropic expansion while working on the equipment, and the temperature drops, causing the isenthalpy expansion. Since the temperature does not rise as described above, the effect of suppressing the temperature rise due to adiabatic compression in the hydrogen supply target is extremely large.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of a hydrogen filling apparatus according to a first embodiment of the present invention.
FIG. 2 is a flowchart in the case of judging completion of H2 gas filling based on a pressure difference according to the first embodiment of the present invention.
FIG. 3 is a flowchart in the case of judging completion of H2 gas filling based on a gas flow rate according to the first embodiment of the present invention.
FIG. 4 is a flowchart showing a routine for filling the cylinders V1 to V3 with H2 gas according to the first embodiment of the present invention;
FIG. 5 is a block diagram showing an overall configuration of a hydrogen filling apparatus according to a second embodiment of the present invention.
FIG. 6 is a flowchart illustrating a control routine for reducing a pressure difference between a filling side and a filling side according to a second embodiment of the present invention.
FIG. 7 is a block diagram showing the overall configuration of a hydrogen filling apparatus according to the related art.
[Explanation of symbols]
1, 1A ... hydrogen filling device
2 ... Vehicle
3 ... Compressor
4 ... turbine
5 ... generator
6 ... Capacitor
10 ・ ・ ・ Control unit
B1, B2, B3 ... cylinder
D ・ ・ ・ Dispenser
L: hydrogen supply pipe
P1, P2 ... pressure sensor
PB1, PB2, PB3 ... pressure gauge
V1, V2, V3 ... On-off valve
VC1, VC2, VC3 ... second on-off valve
Vs: Flow control valve

Claims (5)

複数の蓄ガス手段と、該蓄ガス手段の各々の充填対象に連通する配管系に介装された開閉弁とを有しており、該複数の蓄ガス手段の圧力は所定圧力以内ずつ相違しており、圧力が低い蓄ガス手段から充填を開始し、圧力が低い蓄ガス手段による充填が完了してから圧力が高い蓄ガス手段からの充填を開始する様に前記開閉弁の開閉制御を行う様に構成された制御手段を有していることを特徴とする水素充填装置。It has a plurality of gas storage means, and an on-off valve interposed in a piping system communicating with each filling object of the gas storage means, and the pressures of the plurality of gas storage means differ within a predetermined pressure. The opening / closing control of the on-off valve is performed such that the filling is started from the gas storage means having a low pressure and the filling is started from the gas storage means having a high pressure after the filling by the gas storage means having a low pressure is completed. A hydrogen filling apparatus having control means configured as described above. 水素供給機構を備え、前記複数の蓄ガス手段の圧力を計測する圧力計測手段を設け、水素供給機構と複数の蓄ガス手段の各々との間に第2の開閉手段を介装し、前記制御手段は、蓄ガス手段の内圧が所定圧力よりも高ければ当該蓄ガス手段と水素供給機構との間の第2の開閉手段を閉鎖し、何れかの蓄ガス手段の内圧が所定圧力以下となった場合には当該蓄ガス手段と水素供給機構との間の第2の開閉手段を開放するが、既に別の第2の開閉手段が開放されている場合には、既に開放されている別の第2の開閉手段が閉鎖されるまで、該第2の開閉手段の閉鎖状態を維持する制御を行う様に構成されている請求項1の水素充填装置。A hydrogen supply mechanism, pressure measurement means for measuring the pressure of the plurality of gas storage means, and a second opening / closing means interposed between the hydrogen supply mechanism and each of the plurality of gas storage means; The means closes the second opening / closing means between the gas storage means and the hydrogen supply mechanism if the internal pressure of the gas storage means is higher than the predetermined pressure, and the internal pressure of any of the gas storage means becomes lower than the predetermined pressure. In this case, the second opening / closing means between the gas storage means and the hydrogen supply mechanism is opened. However, when another second opening / closing means is already opened, another already opened second opening / closing means is opened. 2. The hydrogen filling apparatus according to claim 1, wherein control is performed to maintain the closed state of the second opening / closing means until the second opening / closing means is closed. 水素供給機構と水素供給対象物との間の配管系に、高圧気体が保有するエネルギーにより仕事を行う機器と、気体圧力調整用の流量調整機構を介装している当該機器の水素供給対象物側には気体圧力微調整用の流量調整機構を介装していることを特徴とする水素充填装置。In the piping system between the hydrogen supply mechanism and the hydrogen supply target, a device that performs work using the energy held by the high-pressure gas, and the hydrogen supply target of the device in which a flow rate adjustment mechanism for adjusting gas pressure is interposed A hydrogen filling apparatus characterized in that a flow rate adjusting mechanism for fine adjustment of gas pressure is interposed on the side. 請求項1の水素充填装置を制御する制御方法において、内部圧力が所定圧力以内の圧力差がついている複数の蓄ガス手段から充填対象に水素ガスを充填するに際して、最初に最も圧力が低い蓄ガス手段を選択し、圧力が低い蓄ガス手段による充填が完了すれば当該蓄ガス手段の開閉手段を閉鎖して、充填が完了した蓄ガス手段から前記所定圧力だけ圧力が高い蓄ガス手段の開閉手段を開放して当該蓄ガス手段からの充填を行い、最も高い圧力の蓄ガス手段の充填を完了するまで開閉手段の前記閉鎖及び開閉を繰り返すことを特徴とする制御方法。2. A control method for controlling a hydrogen filling apparatus according to claim 1, wherein when a hydrogen gas is charged from a plurality of gas storage means having internal pressures having a pressure difference within a predetermined pressure into a filling object, the storage gas having the lowest pressure is first used. The means is selected, and when the filling by the low pressure gas storage means is completed, the opening / closing means of the gas storage means is closed, and the opening / closing means of the gas storage means whose pressure is higher by the predetermined pressure from the completely charged gas storage means. And charging and discharging from the gas storage means, and repeating the closing and opening and closing of the opening and closing means until the filling of the gas storage means with the highest pressure is completed. 圧力計測手段により複数の蓄ガス手段の各々における圧力を計測する工程と、蓄ガス手段の内圧が所定圧力よりも高ければ、蓄ガス手段の各々と水素供給機構との間に介装された第2の開閉手段を閉鎖し、何れかの蓄ガス手段の内圧が所定圧力以下となった場合には当該蓄ガス手段と水素供給機構との間の第2の開閉手段を開放する工程とを含み、第2の開閉手段を開放する前記工程を行うに際して、既に別の第2の開閉手段が開放されている場合には、既に開放されている別の第2の開閉手段が閉鎖されるまで、内圧が所定圧力以下となった蓄ガス手段と水素供給機構との間の当該第2の開閉手段を閉鎖した状態に維持する請求項4の制御方法。A step of measuring the pressure in each of the plurality of gas storage means by the pressure measurement means, and, if the internal pressure of the gas storage means is higher than a predetermined pressure, a step interposed between each of the gas storage means and the hydrogen supply mechanism. Closing the second opening / closing means, and opening the second opening / closing means between the gas storage means and the hydrogen supply mechanism when the internal pressure of any one of the gas storage means becomes a predetermined pressure or less. When performing the step of opening the second opening / closing means, if another second opening / closing means is already opened, the other opened second opening / closing means is closed until it is closed. 5. The control method according to claim 4, wherein the second opening / closing means between the gas storage means whose internal pressure is equal to or lower than a predetermined pressure and the hydrogen supply mechanism is kept closed.
JP2003090374A 2003-03-28 2003-03-28 Hydrogen filling device Expired - Fee Related JP4367830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090374A JP4367830B2 (en) 2003-03-28 2003-03-28 Hydrogen filling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090374A JP4367830B2 (en) 2003-03-28 2003-03-28 Hydrogen filling device

Publications (2)

Publication Number Publication Date
JP2004293752A true JP2004293752A (en) 2004-10-21
JP4367830B2 JP4367830B2 (en) 2009-11-18

Family

ID=33404016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090374A Expired - Fee Related JP4367830B2 (en) 2003-03-28 2003-03-28 Hydrogen filling device

Country Status (1)

Country Link
JP (1) JP4367830B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207561A (en) * 2004-01-26 2005-08-04 Honda Motor Co Ltd Fuel gas station and fuel gas supply method
JP2006316994A (en) * 2005-05-09 2006-11-24 Honda Motor Co Ltd Pressure operated cooling system for increasing refueling speed and on-board high pressure vehicle gas storage tank capacity
JP2007092927A (en) * 2005-09-29 2007-04-12 Hitachi Ltd Gas feeder
JP2007232117A (en) * 2006-03-02 2007-09-13 Tatsuno Corp High-pressure gas charging device
JP2008223784A (en) * 2007-03-08 2008-09-25 Toyota Motor Corp Fuel supply device and vehicle
WO2009006852A1 (en) * 2007-07-12 2009-01-15 Huanen Xu Low consumption and intelligent safe gas-supply system for gas tanks
WO2010075219A1 (en) * 2008-12-23 2010-07-01 Texaco Development Corporation Variable volume hydrogen storage
JP2010531413A (en) * 2007-06-15 2010-09-24 テスコム・コーポレーション Apparatus and method for delivery of fluid from a row of containers and replenishment of a row of containers
CN102829325A (en) * 2011-06-17 2012-12-19 气体产品与化学公司 Pressure cycle management in compressed gas dispensing systems
CN104266081A (en) * 2014-09-11 2015-01-07 新兴能源装备股份有限公司 Automobile gas filling sub-station for hydraulic natural gas
JP2016084902A (en) * 2014-10-28 2016-05-19 Jxエネルギー株式会社 Operation method of hydrogen station, and hydrogen station
JP2016153656A (en) * 2015-02-20 2016-08-25 株式会社神戸製鋼所 Gas filling system
JP2016526136A (en) * 2013-05-31 2016-09-01 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Cascading method and system for replenishing distributed hydrogen
JP2016169824A (en) * 2015-03-13 2016-09-23 株式会社神戸製鋼所 Gas supply system, hydrogen station including the same, life determination method for accumulator, and method of using gas supply system
JP2016183685A (en) * 2015-03-25 2016-10-20 Jxエネルギー株式会社 Pressure accumulator unit, hydrogen station, and hydrogen filling method
JP2016536540A (en) * 2013-08-28 2016-11-24 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Integrated electrochemical compressor and cascade storage method and system
CN107339602A (en) * 2016-04-28 2017-11-10 现代自动车株式会社 Hydrogen fill method for fuel-cell vehicle
JP2018066390A (en) * 2016-10-17 2018-04-26 大陽日酸株式会社 Gas charging method and gas charging equipment
CN113090933A (en) * 2020-01-08 2021-07-09 国家能源投资集团有限责任公司 Control method of hydrogen filling station
JP2021143684A (en) * 2020-03-10 2021-09-24 株式会社タツノ Filling device
DE112020001033T5 (en) 2019-03-29 2021-12-02 Kitz Corporation HYDROGEN GAS FILLING PROCESS AND HYDROGEN STATION
CN114909604A (en) * 2021-02-08 2022-08-16 国家能源投资集团有限责任公司 Hydrogenation control method and device for hydrogenation station and hydrogenation station

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033277B2 (en) * 2019-01-22 2022-03-10 株式会社タツノ Calibration method of hydrogen filling device
CN112283577A (en) * 2020-11-04 2021-01-29 太原理工大学 Vehicle-mounted high-pressure hydrogen grading filling system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207561A (en) * 2004-01-26 2005-08-04 Honda Motor Co Ltd Fuel gas station and fuel gas supply method
JP2006316994A (en) * 2005-05-09 2006-11-24 Honda Motor Co Ltd Pressure operated cooling system for increasing refueling speed and on-board high pressure vehicle gas storage tank capacity
JP2012017850A (en) * 2005-05-09 2012-01-26 Honda Motor Co Ltd Pressure powered cooling system for enhancing refueling speed and capacity of on board high pressure vehicle gas storage tank
JP2007092927A (en) * 2005-09-29 2007-04-12 Hitachi Ltd Gas feeder
JP4560841B2 (en) * 2006-03-02 2010-10-13 株式会社タツノ・メカトロニクス High pressure gas filling device
JP2007232117A (en) * 2006-03-02 2007-09-13 Tatsuno Corp High-pressure gas charging device
JP2008223784A (en) * 2007-03-08 2008-09-25 Toyota Motor Corp Fuel supply device and vehicle
JP2010531413A (en) * 2007-06-15 2010-09-24 テスコム・コーポレーション Apparatus and method for delivery of fluid from a row of containers and replenishment of a row of containers
WO2009006852A1 (en) * 2007-07-12 2009-01-15 Huanen Xu Low consumption and intelligent safe gas-supply system for gas tanks
US8539972B2 (en) 2007-07-12 2013-09-24 Beijing Bolken Equipment Corporation Low consumption and intelligent safe gas-supply system using gas tanks
WO2010075219A1 (en) * 2008-12-23 2010-07-01 Texaco Development Corporation Variable volume hydrogen storage
US8061392B2 (en) 2008-12-23 2011-11-22 Texaco Inc. Variable volume hydrogen storage
KR101475999B1 (en) * 2011-06-17 2014-12-23 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Pressure cycle management in compressed gas dispensing systems
JP2013002635A (en) * 2011-06-17 2013-01-07 Air Products & Chemicals Inc Pressure cycle management in compressed gas dispensation system
US8899278B2 (en) 2011-06-17 2014-12-02 Air Products And Chemicals, Inc. Pressure cycle management in compressed gas dispensing systems
CN102829325A (en) * 2011-06-17 2012-12-19 气体产品与化学公司 Pressure cycle management in compressed gas dispensing systems
CN102829325B (en) * 2011-06-17 2016-05-18 气体产品与化学公司 Pressures cycle management in Compressed Gas distribution system
US10295122B2 (en) 2013-05-31 2019-05-21 Nuvera Fuel Cells, LLC Distributed hydrogen refueling cascade method and system
US10077871B2 (en) 2013-05-31 2018-09-18 Nuvera Fuel Cells, LLC Distributed hydrogen refueling cascade method and system
JP2016526136A (en) * 2013-05-31 2016-09-01 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Cascading method and system for replenishing distributed hydrogen
JP2016536540A (en) * 2013-08-28 2016-11-24 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Integrated electrochemical compressor and cascade storage method and system
US10072342B2 (en) 2013-08-28 2018-09-11 Nuvera Fuel Cells, LLC Integrated electrochemical compressor and cascade storage method and system
CN104266081A (en) * 2014-09-11 2015-01-07 新兴能源装备股份有限公司 Automobile gas filling sub-station for hydraulic natural gas
JP2016084902A (en) * 2014-10-28 2016-05-19 Jxエネルギー株式会社 Operation method of hydrogen station, and hydrogen station
US10400954B2 (en) 2015-02-20 2019-09-03 Kobe Steel, Ltd. Gas filling system
KR20170102994A (en) * 2015-02-20 2017-09-12 가부시키가이샤 고베 세이코쇼 Gas filling system
WO2016133068A1 (en) * 2015-02-20 2016-08-25 株式会社神戸製鋼所 Gas filling system
JP2016153656A (en) * 2015-02-20 2016-08-25 株式会社神戸製鋼所 Gas filling system
KR101989722B1 (en) * 2015-02-20 2019-06-14 가부시키가이샤 고베 세이코쇼 Gas filling system
JP2016169824A (en) * 2015-03-13 2016-09-23 株式会社神戸製鋼所 Gas supply system, hydrogen station including the same, life determination method for accumulator, and method of using gas supply system
JP2016183685A (en) * 2015-03-25 2016-10-20 Jxエネルギー株式会社 Pressure accumulator unit, hydrogen station, and hydrogen filling method
CN107339602A (en) * 2016-04-28 2017-11-10 现代自动车株式会社 Hydrogen fill method for fuel-cell vehicle
JP2018066390A (en) * 2016-10-17 2018-04-26 大陽日酸株式会社 Gas charging method and gas charging equipment
DE112020001033T5 (en) 2019-03-29 2021-12-02 Kitz Corporation HYDROGEN GAS FILLING PROCESS AND HYDROGEN STATION
CN113090933A (en) * 2020-01-08 2021-07-09 国家能源投资集团有限责任公司 Control method of hydrogen filling station
CN113090933B (en) * 2020-01-08 2022-12-09 国家能源投资集团有限责任公司 Control method of hydrogen filling station
JP2021143684A (en) * 2020-03-10 2021-09-24 株式会社タツノ Filling device
JP7022396B2 (en) 2020-03-10 2022-02-18 株式会社タツノ Filling device
CN114909604A (en) * 2021-02-08 2022-08-16 国家能源投资集团有限责任公司 Hydrogenation control method and device for hydrogenation station and hydrogenation station

Also Published As

Publication number Publication date
JP4367830B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP2004293752A (en) Hydrogen filling device and control method therefor
CN112253990B (en) High-pressure hydrogen filling system based on temperature rise control and filling method thereof
US8286675B2 (en) Temperature-compensated dispensing of compressed gases
US8539972B2 (en) Low consumption and intelligent safe gas-supply system using gas tanks
CN102667302B (en) Gas filling system, gas filling method, and vehicle
US6755225B1 (en) Transportable hydrogen refueling station
JP5115565B2 (en) vehicle
US20040118476A1 (en) Gas distribution system
CN112212208A (en) Filling system and method for combined work of hydrogenation machine and supercharging equipment
CN110953480A (en) Safe and rapid hydrogenation machine, hydrogenation system, hydrogenation station and hydrogenation method
JP5839545B2 (en) Hydrogen station
JP2006316817A (en) Hydrogen feed method and hydrogen feed device
JP2007092927A (en) Gas feeder
JP5387846B2 (en) Gas station and gas filling system
WO2011016091A1 (en) Gas filling device and gas filling method
JP2984812B2 (en) Method and apparatus for filling compressed fuel gas into cylinder
KR102286842B1 (en) The method for detecting malfunction of the high pressure cylinder disposed in a fuel cell system
JP2015197190A (en) Hydrogen gas charging facility
JP2008064160A (en) Device for and method of filling compressed gaseous hydrogen
JP2018054032A (en) High-pressure hydrogen manufacturing system
US20230366514A1 (en) Method for operating a drive unit operated with gaseous fuel
JP6196659B2 (en) Hydrogen gas filling system and hydrogen gas filling method
CN214222755U (en) High-pressure hydrogen filling system based on temperature rise control
JP6136021B2 (en) Fuel gas filling system and fuel gas filling method
JP5299855B2 (en) vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees