JP2004292661A - Method of decomposition treatment of rigid urethane resin and method for producing regenerated resin - Google Patents

Method of decomposition treatment of rigid urethane resin and method for producing regenerated resin Download PDF

Info

Publication number
JP2004292661A
JP2004292661A JP2003087772A JP2003087772A JP2004292661A JP 2004292661 A JP2004292661 A JP 2004292661A JP 2003087772 A JP2003087772 A JP 2003087772A JP 2003087772 A JP2003087772 A JP 2003087772A JP 2004292661 A JP2004292661 A JP 2004292661A
Authority
JP
Japan
Prior art keywords
urethane resin
decomposition
resin
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087772A
Other languages
Japanese (ja)
Other versions
JP3895293B2 (en
Inventor
Taro Fukaya
太郎 深谷
Min Tai Kao
カオ・ミン・タイ
Shihoko Satani
志保子 佐谷
Shinetsu Fujieda
新悦 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003087772A priority Critical patent/JP3895293B2/en
Publication of JP2004292661A publication Critical patent/JP2004292661A/en
Application granted granted Critical
Publication of JP3895293B2 publication Critical patent/JP3895293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a regenerated resin suitable for practical use by setting suitable conditions in the decomposition treatment of urethane resins. <P>SOLUTION: A urethane resin and a decomposer are charged into an extruder 1 to allow decomposition of the urethane resin to proceed. It is determined whether the decomposition of the urethane resin is sufficient or not based on the proportion of the urethane resin to the decomposer, heating temperature and the time for the decomposition treatment. When it is determined that the decomposition of the urethane resin is insufficient, supplementary heating to heat a treated object obtained from the decomposition treatment is conducted. An isocyanate compound or a compound with an epoxy group is mixed with the treated object which has been subjected to the decomposition treatment and the supplementary heating to be conducted depending on circumstances to obtain a regenerated resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ウレタン樹脂のリサイクル技術に関し、詳しくは、品質の良いウレタン樹脂分解物を得るための硬質ウレタン樹脂の分解処理方法及びウレタン樹脂分解物を用いた再生樹脂の製造方法に関する。
【0002】
【従来の技術】
ウレタン樹脂は、例えば、冷蔵庫の断熱材、建材、クッション材などとして広く用いられており、近年、これらの廃棄物のリサイクルに対する要望が高まり、それぞれの分野においてこれらの廃棄物の再利用が研究されている。しかし、ウレタン樹脂は3次元の網目構造を有する熱硬化性樹脂であるためにリサイクルが困難であり、現状では埋め立てや焼却などの処分がされている。
【0003】
ウレタン樹脂を化学的に分解する方法は、古くから様々な報告がされている。下記特許文献1には、アルカノールアミンなどのアミン化合物でポリウレタンフォームを分解し、その後分解物を分離回収する方法が記載されている。しかし、相溶性の良いアミン化合物とポリオールとの分離は非常に難しいので、この方法は工業的には不向きである。また、下記特許文献2には、分解剤としてポリオール及びアミノエタノールを用いてポリウレタンフォームを分解し、接着助剤として再生する方法が記載されている。しかしこの方法ではバッチ式で行っているため、処理のために190℃で11時間、230℃でも2時間を要している。加えて、バッチ式でウレタン樹脂を分解する場合には、ウレタン樹脂の嵩高さと熱伝導率の低さが非常に品質に悪影響を及ぼす。例えば、フラスコを用いてオイルバスで加熱してウレタンを分解させる場合、オイルバスに接している壁面のウレタンはすぐに分解するが、フラスコ中央部にはなかなか熱が伝わらないため中央部にあるウレタンの分解開始時間が遅れてしまう。また、嵩高いウレタンを一度にフラスコ内に供給することは難しく、少しずつ継ぎ足しながら分解していっても、ウレタンの投入時間によって分解開始時間に差が生じてしまう。この例では最大11時間の分解開始時間のズレが生じ、充分に分解されなかったものや熱を加えすぎて熱劣化したものがウレタン樹脂分解物の均一性を低下するため、その品質は劣悪である。
【0004】
他方、例えば下記特許文献3のように押出機を用いて分解する方法もある。この場合、ウレタン樹脂の分解処理を施す時間は、押出し長さの設計の制限を受けるため、長時間の処理を施すことはできない。
【0005】
【特許文献1】
特公昭42−10634号公報
【0006】
【特許文献2】
特開平6−184513号公報
【0007】
【特許文献3】
特開2000−281831公報
【0008】
【発明が解決しようとする課題】
上記の他にも様々な分解方法が提案されているが、ウレタン樹脂を分解液化する研究はされていても、満足な品質の再生樹脂を製造することができるウレタン樹脂分解物を得るためにどのように分解処理の条件を設定すればよいか検討されていないのが現状である。従って、ウレタン分解物を得ることができても、品質の安定しないものしか得られず、実用に適した物性を有する再生樹脂を得るのは困難である。従って、ウレタン樹脂のリサイクルには大きな障害がある。
【0009】
本発明は、このような問題に鑑みてなされたものであり、実用に適した再生樹脂を製造可能なウレタン樹脂分解物を得るためのウレタン樹脂の分解処理方法及びそれを用いた再生樹脂の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の一態様によれば、硬質ウレタン樹脂の分解処理方法は、硬質ウレタン樹脂及び分解剤を押出機に投入し加熱して該硬質ウレタン樹脂の分解を進行させる分解処理工程と、前記硬質ウレタン樹脂と前記分解剤との割合、加熱温度及び分解処理時間に基づいて前記硬質ウレタン樹脂の分解が十分であるか否かを判断する判断工程と、前記判断工程において前記硬質ウレタン樹脂の分解が十分でないと判断した時に、前記分解処理工程で得られる被処理物を加熱する補助加熱工程とを有することを要旨とする。
【0011】
上記判断工程は、温度T[゜K]における定数kを下記のように設定する工程と、
k=2 (300<T)
k=1 (270<T≦300)
k=1/3 (240<T≦270)
k=1/10 (210<T≦240)
k=1/40 (180<T≦210)
k=1/200(140≦T≦180)
k=0 (T<140)
前記分解処理工程において温度T[゜K]で処理される処理時間ΔH[時間]及び前記定数kから、温度T[゜K]におけるパラメータΔZ=k×ΔH×100を算出し、前記分解処理工程の全処理温度についてパラメータΔZを加算して合計値Zを算出する工程と、前記分解処理工程における分解剤1重量部に対する硬質ウレタン樹脂の重量部数Nに応じて、前記合計値Zを下記式で示すZの適正範囲と比較する工程と、
N<2.5の場合 3≦Z≦15
2.5≦N≦5の場合 5≦Z≦25
5<Nの場合 10≦Z≦30
前記合計値Zが前記Zの適正範囲未満である場合に、前記硬質ウレタン樹脂の分解が十分でないと判断する工程とを有するように構成できる。
【0012】
又、本発明の一態様によれば、再生樹脂の製造方法は、ウレタン樹脂及び分解剤を押出機に投入し加熱して該ウレタン樹脂の分解を進行させる分解処理工程と、前記分解処理工程におけるウレタン樹脂と分解剤との割合、加熱温度及び分解処理時間に基づいて前記ウレタン樹脂の分解が十分であるか否かを判断する判断工程と、前記判断工程において前記ウレタン樹脂の分解が十分でないと判断した時に、前記分解処理工程で得られる被処理物を加熱する補助加熱工程と、前記分解処理工程及び状況に応じて行われる補助加熱工程を経た被処理物にイソシアネート化合物又はエポキシ基を有する化合物を配合して再生樹脂を得る工程とを有することを要旨とする。
【0013】
【発明の実施の形態】
ウレタン樹脂の分解には、分解剤を用いた化学的分解法及び加水分解法があるが、本発明は、化学的分解法で行うウレタン樹脂の分解処理に関する。分解剤にはアミン化合物が用いられ、ポリオール化合物又はポリオールの金属アルコラートと併用してもよい。従って、分解剤の使用形態としては、アミン化合物単独、アミン化合物とポリオール化合物又はポリオールの金属アルコラートとの混合などの形態が挙げられる。
【0014】
ウレタン樹脂の分解反応は、例えばモノエタノールアミン又はジエタノールアミンを用いた場合、以下のようになる。
【0015】
【化1】

Figure 2004292661
【化2】
Figure 2004292661
これらの反応の最終生成物には、原料イソシアネート由来のアミン成分が生成する。イソシアネート成分の大半はMDIやTDIなどであり、これらから最終的にMDAやTDAが残存する。これらの芳香族アミンは、実際にエポキシ樹脂の硬化剤として使用されていることもあり、エポキシ基と極めて反応しやすい。これらが分解物中に多ければ多いほど、エポキシ樹脂との反応性が増し、再生樹脂の強度も上がる。本発明は、ウレタン樹脂の分解が最後まで進み、且つ、炭化のような過剰反応を起こさない処理条件を求めて分解処理を調節するウレタン樹脂の分解処理方法である。最終生成物として芳香族ジアミンが生じる、モノエタノールアミン又はジエタノールアミンによる分解において特に有効である。
【0016】
ウレタン樹脂のウレタン結合の切断は、分解方法や分解剤の違いにより程度の差はあるが、分解剤によって徐々に低分子化するのであって、すべてのウレタン結合が一斉に切れて分解物が生成するという事はまず無い。つまり、分解処理中のウレタン樹脂中には、未分解ウレタン樹脂、ウレタン樹脂構成成分のオリゴマー及びモノマーと、残存分解剤とが混在する。品質のよいウレタン樹脂分解物を得るために重要なことは、添加した分解剤がすべて消費されて、ウレタン樹脂構成成分のオリゴマー及びモノマーのみ、望ましくはモノマーだけになることである。筆者らの研究では、ウレタン樹脂に熱を加え過ぎると、樹脂分解物が次第に炭化して物性が低下することを確認している。また、ウレタン樹脂に加える熱が不足すると、十分に分解されないだけでなく、その樹脂分解物に再度熱をかけた際に再度分解が進む場合もあり得るので、樹脂分解物を用いて再生する製品の品質安定化が難しい。従って、品質のよい樹脂分解物を得るために、ウレタン樹脂の分解処理における加熱温度と加熱時間とを適正な値に設定する必要がある。
【0017】
一方、ウレタン樹脂の分解反応を均一に進行させるには、ウレタン樹脂と分解剤との混合均一化をできる限り素早く効率的に行う必要があり、この点で、使用する分解処理装置としては押出機が適している。押出機は、加熱、混合及び圧縮(加圧)を同時に行うことができ、混合効率がよいので、投入したウレタン樹脂の分解を均一に進行させ易く、分解の進行を制御し易い。また、バッチ式などの処理装置と比べると、分解の進行を速くすることができるので、経済効率も高い。しかし、押出機は、押出し長さの設計限界や押出し抵抗によって加熱時間を余り長く設定することができない。このため、必要な加熱時間を確保するには、押出機での加熱処理の後に補助的な加熱処理が必要となる。この場合、一旦押出機を経た被処理物は、ウレタン樹脂と分解剤とが混合され被処理物の均一性が高いので、バッチ式の装置を用いても補助加熱処理は良好に行える。
【0018】
本発明においては、上記を勘案して、品質のよい樹脂分解物が得られるウレタン樹脂の分解処理の処理温度及び処理時間の適正な値を決定する。そして、これらを用いて、押出機における分解処理(一次処理)の設定条件を評価して、補助加熱処理(二次処理)が必要か否かを判断し、必要な補助加熱処理の条件を決定することができる。
【0019】
先ず、品質のよい樹脂分解物が得られるウレタン樹脂の処理温度及び処理時間の適正値及び分解進行の評価について説明する。
【0020】
(処理温度及び処理時間の適正値及び分解進行の評価)
本願発明者らの実験結果によれば、ウレタン樹脂に一定量の分解剤を混合して一定温度で加熱処理した時、処理時間の増加に従ってウレタン樹脂の分解が進行し、被処理物の粘度が低下する。しかし、その後、被処理物の粘度は上昇し始め、樹脂分解物が次第に炭化する。そして、被処理物が最も均一で被処理物を用いてウレタン樹脂又はエポキシ樹脂を再生した時の再生樹脂の品質が安定するのは、被処理物の粘度が最低値の時である。つまり、被処理物の粘度が最低値となる処理時間が、その加熱温度における最適処理時間となる。これに従って、加熱温度tと最適処理時間hとの関係を調べると、下記式(1)が成り立つことを見出した。
【0021】
【数1】
=a・t−21.5 (但し、a=1056) (1)
加熱温度=t(一定)の時、単位時間当りの分解進行度ΔD(最適処理時間における分解進行度を1とする割合)は、下記式(2)で表すことができ、処理時間hの時の分解進行度Dは、D=ΔD×h=h/hとなる。
【0022】
【数2】
ΔD=1/h=a’・t 21.5 (2)
(但し、a’=1/a)
他方、加熱温度が時間によって変化する場合、単位時間毎に加熱温度t(n=1,2,・・・)をとると、単位時間当りの分解進行度ΔD=a’・t 21.5(n=1,2,・・・)を処理開始から時間hまで合計すれば、その合計値は時間hにおける分解進行度Dであり、下記式(3)のように合計値が1となる時間が最適処理時間hとなる。
【0023】
【数3】
Figure 2004292661
但し、ウレタン樹脂に加える分解剤の量が上記の場合と異なる場合、a及びa’が異なるので、上記から得られる分解進行度ΔDの合計値及び最適処理時間hも異なる。
【0024】
(補助加熱処理の設定)
押出機を用いてウレタン樹脂を加熱し分解処理(一次処理)した時、押出機の入口から出口まで上記の単位時間当りの分解進行度ΔDを合計し、合計値が1に至らなければ、不足分に相当する分解処理を補助加熱処理(二次処理)として行えばよい。例えば、押出機から排出した被処理物をそのまま保温容器中でほぼ一定温度に保つ場合、分解進行度の不足分から補助加熱処理の時間を求める計算は理論的には比較的容易である。
【0025】
しかし、実際の分解処理においては、被処理物の分解進行度は、処理装置の構造や作業条件等によって部分的なばらつきや誤差が生じるので、最適値を含むある程度の幅をもった範囲を適正処理時間とすることが実際的である。
【0026】
上記を勘案して、単位時間当りの分解進行度の合計の計算による補助加熱処理(二次処理)の条件決定は、以下のような近似的な処理に従って行うことができ、センサーにより検出される押出機の温度データやそれを用いて得られる温度勾配データ等を用いて、以下の手順によってコンピュータ等により簡単に実施できる。
【0027】
1)分解処理の温度T[゜K]における定数kを下記のように設定する。
【0028】
k=2 (300<T)
k=1 (270<T≦300)
k=1/3 (240<T≦270)
k=1/10 (210<T≦240)
k=1/40 (180<T≦210)
k=1/200(140≦T≦180)
k=0 (T<140)
2)押出機による一次処理において温度T[゜K]で処理される処理時間ΔH[時間]及び上記定数kから、温度T[゜K]の処理におけるパラメータΔZ=k×ΔH×100を算出し、分解処理工程の全処理温度についてパラメータΔZを加算し合計値Zを算出する。
【0029】
3)分解剤1重量部に対するウレタン樹脂の重量部数Nに応じて、上記パラメータΔZの合計値Zを下記式で示すZの適正範囲と比較し、適正範囲にあるか否かを判断する。
【0030】
N<2.5の時 3≦Z≦15
2.5≦N≦5の時 5≦Z≦25
5<Nの時 10≦Z≦30
4)合計値Zが上記3)のZの適正範囲にある場合は、二次処理(補助加熱処理)は行わない。合計値Zが上記適正範囲未満である場合は、この合計値Zと補助加熱処理のパラメータの合計値Zとの和が上記3)の適正範囲に入るように、補助加熱処理における温度T[゜K]及び温度Tで処理される処理時間ΔHTs[時間]を設定する。この設定は、温度T[゜K]におけるパラメータΔZTs=k×ΔHTs×100及びパラメータΔZTsの合計値Zの計算によって行う。合計値Zが過剰である場合は、上記適正範囲に入るように、一次処理における温度T[゜K]及び温度T[゜K]で処理される処理時間H[時間]を設定し直す。
【0031】
必要に応じて、更に、三次処理以降を補足設定してもよい。
【0032】
パラメータの合計値の値が低いとウレタン樹脂が充分に分解されず分子量の大きい分解物ができる。合計値が高いと分解物が熱劣化し、炭化が始まる。但し、処理温度T及びT[゜K]は、413〜573゜K(140〜300℃)が好ましく、より好ましくは473〜553゜K(200〜280℃)がよい。これより温度が低いと、処理時間が長すぎるため経済的に好ましくなく、温度が高すぎると処理時間が短すぎてその制御が難しい。
【0033】
被処理物の温度、つまり、処理装置内の温度が測定できない場合は、処理装置の設定温度を被処理物の温度とみなしても差し支えない。この点に関しても、バッチ式装置の場合は、樹脂に圧力を加えて熱伝導を促進できないので装置の温度と被処理物の温度が大きく異なっている場合があり、押出機による処理が有利である。
【0034】
分解剤とウレタン樹脂の比は特に制限されないが、分解剤1重量部に対してウレタン樹脂の量が2.5重量部以上5重量部以下にすることが好ましい。この範囲よりウレタン樹脂の量が少ないと、分解物中に反応しなかった分解剤が残って分解物及び再生品の物性の低下を引き起こし、これよりウレタン樹脂の量が多いと、処理時間がかかってしまうため経済的に好ましくない。
【0035】
上記Zの値が得られる被処理物すべてにおいて上記の範囲内にあるのが好ましいが、実際には、被処理物の分解進行度は、分解装置の構造などによって部分的なばらつきが生じる。例えば、装置の形状によって部分的に分解開始時間の差が生じたり、被処理物の取り扱い作業によってばらつきが生じたりする。こういった場合、被処理物中に異なる分解進行度の分解物が存在することになるが、重量比で全量の85%以上が適正な分解進行度にあれば、得られる被処理物の物性は良好となる。
【0036】
上記評価方法による処理時間の決定の一例を以下に示す。
【0037】
例えば、250℃の押出機で5分分解し、その後200℃の反応容器で30分保温、その後10分に10℃ずつ140℃まで除冷したとすると、ΔZの値は表1のようになる。
【0038】
【表1】
Figure 2004292661
この場合のウレタン樹脂の分解処理におけるパラメータΔZは上記の通りとなり、この合計値Zによってウレタン樹脂の分解進行状況が把握できる。故に、分解剤の添加量に応じて、パラメータΔZの合計値Zが適正範囲となるように上記加熱プロセスを適宜調整・変更すればよい。決定した条件に従って分解処理を経ることにより、品質が安定した樹脂分解物を得ることができるので、樹脂の再生が容易になる。
【0039】
なお、上記の近似的方法より正確な方法として、処理温度[゜K]を処理時間h[時間]の関数T(h)として、我々の実験によって求められた下記式(4)に従ってZ値を計算し、Zの値が30以上200以下(ただし、分解剤1重量部に対してウレタン樹脂は2.5〜5重量部)となるように好ましい処理時間を決定する方法がある。本来はこの式の積分計算により分解進行度を求めるのがよいが、式が複雑で計算が煩雑になるため、先に述べた方法の方が簡易である。
【0040】
【数4】
Figure 2004292661
(ウレタン樹脂、分解剤及び分解装置)
被処理物であるウレタン樹脂としては、ウレタン結合、尿素結合などを持つ硬質ウレタン樹脂であれば如何なるものでも良い。ここでは、原料ポリオールの水酸基価が250mgKOH/g以上のものを硬質ウレタンと定義する。またイソシアヌレート結合を持つイソシアヌレート材も含み、ウレタン樹脂と同様に本発明の分解処理方法を適用できる。この場合、原料のイソシアネートの分子量はいくらであってもよい。このようなウレタン樹脂の用途として、例えば、冷蔵庫や建材などの断熱材などが挙げられる。
【0041】
本発明は、アミン化合物単独で分解する場合に特に適していて、その中でもモノアルカノールアミンまたはジアルカノールアミンを用いた分解において最も適している。アミン化合物としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、プロパンジアミン、2−エチルヘキシルアミン、イソプロパノールアミン、2−(2−アミノエチルアミノ)エタノール、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、エチルアミノエタノール、アミノブタノール、n−プロピルアミン、ジ−n−プロピルアミン、n−アミルアミン、イソブチルアミン、メチルジエチルアミン、シクロヘキシルアミン、ピペラジン、ピペリジン、アニリン、トルイジン、ベンジルアミン、フェニレンジアミン、キシリレンジアミン、クロロアニリン、ピリジン、ピコリン、N−メチルモルフォリン、エチルモルフォリン、ピラゾール等があげられる。これらの分解剤の中で、モノエタノールアミン又はジエタノールアミンを用いた時、よりよい効果が得られる。必要に応じて、上記の分解剤に添加剤を加えてもよい。添加剤は、分解剤の反応を極端に阻害しないものであれば添加することができ、例えば、水、アルコール、ポリオールなどの希釈剤や、無機粒子、有機粒子などの充填材などが挙げられる。ポリオール化合物の例としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,5−ペンタジオール、1,6−ヘキサンジオール、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、グリセリン、ポリエチレングリコールなどが挙げられる。その添加量は、添加剤の物性に応じて適宜調節すればよい。水や低分子アルコールなどの沸点が150℃以下の添加剤については、分解装置中で揮発して最終的にウレタン樹脂分解物から離脱することから、その添加量に特に制限をつける必要は無いが、多量の添加は揮発熱によって装置の温度を低下させるので注意が必要である。好ましくは、ウレタン樹脂の重量の半分以下に抑える。また、無機粒子、有機粒子などの充填材については、反応を阻害しない程度であれば添加量に特に制限は無いが、ウレタン樹脂と同重量以下に抑えることが好ましい。
【0042】
分解装置としては、一次処理については押出機型のような加熱、混合及び圧縮が同時に可能な分解装置が望ましいが、二次処理についてはいかなるものであってもよく、公知の各種分解装置が用いられる。また、複数の分解装置を適宜組み合わせて用いることができ、例えば、ある分解装置で分解処理した被処理物をドラム缶などに詰めて保温、加温などすることによって二次処理としてもよい。図1に示すような押出機1を用いて分解処理を実施すると、処理を連続的に効率よく行うことができる。
【0043】
図1は、前述の一次処理を行うための押出機の一例を示し、押出機1は、温度制御可能なヒータを備えたシリンダ部3、シリンダ部3の内壁に内接する回転制御可能なスクリュ5、シリンダ部3の一端に設けられる投入口7、シリンダ部3の他端に設けられる排出管9、及び、投入口7と排出管9との間に設けられる供給口11を有する。シリンダ部3のヒータは、シリンダ部3の温度が局部的に異なるように設定可能で、例えば、供給口11の前後で加熱温度を変化させることができる。シリンダ部3の温度をウレタン樹脂の分解温度に設定し、押出機への投入物がスクリュ5の回転によって投入口7から供給口11迄進行する時間がウレタン樹脂の分解に要する時間に合うようにスクリュ5の回転速度を設定して、ウレタン樹脂及び分解剤を投入口7から投入すると、ウレタン樹脂の分解が始まり、排出管9の方向へ移動する。必要に応じて、添加剤を供給口11から被処理物に混合することもできる。最終的に、ウレタン樹脂は液状の分解物となって排出管9から排出される。このような分解装置では、ウレタン樹脂の分解開始時間のばらつきを抑えることができるため、分解処理条件の調整が容易且つ正確である。
【0044】
押出機1による一次処理が不十分である場合、押出機1から排出される被処理物は、排出管9から二次処理(補助加熱処理)を行うための二次処理装置へ供給される。
【0045】
図2は、二次処理装置の一例を示し、この二次処理装置21は、押出機1の排出管9から供給される被処理物を収容するための容器23と、容器23を覆う断熱材25とを有し、被処理物を保温することにより余熱で分解を進行させる。容器23の蓋23’に取り付けた温度センサー27によって内部温度を継続的に検出することにより、二次処理条件の予測とのずれを修正することができる。
【0046】
図3は、バッチ式の二次処理装置の例を示し、この二次処理装置31は、押出機1の排出管9から供給される被処理物を収容するための処理槽33と、処理槽33に付設され温度調節機能を備えたヒータ35と、攪拌装置37とを有し、ヒータ35で被処理物を加熱することにより分解を進行させる。二次処理を終えた被処理物は、処理槽33の底部に設けられた排出管39のバルブを開けて排出する。
【0047】
図4は、押出機を二次処理装置として用いた例を示し、この二次処理装置41は、温度制御可能なヒータを備えたシリンダ部43、シリンダ部43の内壁に内接する回転制御可能なスクリュ45、押出機1の排出管9に接続される投入口47、及び、シリンダ部33の他端に設けられる排出管49を有する。シリンダ部43及びスクリュ45は、押出機1のシリンダ部3及びスクリュ5と同様の働きをする。シリンダ43は、ヒータに代えて断熱材で覆って保温するように構成してもよい。
【0048】
図5は、保温型の二次処理装置の他の例を示し、この二次処理8装置51は、断熱材で形成された保温槽53と、保温槽53内に設けられ押出機1の排出管9に接続される螺旋管55とを有する。排出管9から供給される被処理物は、螺旋管55を通過する間保温されて余熱により分解が進行し、排出管57から排出される。
【0049】
(再生樹脂の製造方法及び再生剤)
ウレタン樹脂の分解物から樹脂を再生するには、分解物を再硬化させる再生剤が用いられる。再生剤としては、エポキシ樹脂及びイソシアネート化合物が知られており、公知のものから必要に応じて適宜選択して用いることができる。エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するものであればよく、その具体的例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトール系のノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、脂環式エポキシ樹脂、トリまたはテトラ(ヒドロキシフェニル)アルカンから誘導されるエポキシ樹脂、ビスヒドロキシビフェニル系エポキシ樹脂、フェノールアラルキル樹脂のエポキシ化物などが挙げられるが、特に限定されるものではない。エポキシ化合物は、単独でまたは2種以上混合して使用することもできる。イソシアネート化合物は、1分子中に2個以上のイソシアネート基を有するものであれば良く、その具体的例としては、1,5−ナフタレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルジメチルメタンジイソシアネート、4,4’−ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3−フェニレンジイソシアネート,1,4−フェニレンジイソシアネート、トリレンジイソシアネート、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート,ピリジンジイソシアネート、ジシクロヘキシルメタン−4,4−ジイソシアネート,メチルシクロヘキサンジイソシアネート等のジイソシアネート化合物;ジメチレントリフェニルメタンテトライソシアネート、トリフェニルメタントリイソシアネート、ポリメチレンポリフェニルポリイソシアネート等の多官能イソシアネート化合物;グリセリンやトリメチロールプロパン等のポリオール類と上記ジイソシアネート化合物との付加反応物、等が挙げられるが、特に限定されるものではない。イソシアネート化合物は、単
独で用いても2種以上を混合して用いてもよい。
【0050】
再生樹脂の成形方法は、必要に応じて適宜決定される。例えば、再生剤として液状のエポキシ樹脂を用いる場合は、分解物とエポキシ樹脂とを万能攪拌機等を用いて混合して、混合物を室温〜200℃の温度で成形型に流し込み、1時間〜1晩程度加熱硬化させることによって再生樹脂の成形体が得られる。混合の際に、有機物粒子又は無機物粒子などを充填材として加えたり、可塑剤、カップリング剤等を配合たりしてもよい。
【0051】
また、ウレタン発泡体を生成する場合は、被処理物にイソシアネート化合物を添加混合するが、イソシアネート化合物の添加によって結合生成及び発泡が温度に応じた速度で進行するので、室温〜150℃の温度で混合物を成形型に投入して成形する。必要に応じて、ウレタン樹脂原料であるポリオール化合物や、発泡剤、整泡剤、充填剤、触媒等を被処理物に添加してもよい。
【0052】
被処理物つまりウレタン樹脂分解物を冷却により固化させた固形物を用いる場合は、この固形物と、固形のエポキシ樹脂又はイソシアネート化合物とを細かく粉砕して木粉や無機物粒子等と混合し、プレス成形機等を用いて加熱・加圧成形して硬化させることにより、成形体を得ることができる。硬化温度は、使用するウレタン樹脂分解物、エポキシ樹脂及びイソシアネート化合物の融点又は軟化点等によって異なるが、概して80〜200℃程度がよい。
【0053】
【実施例】
以下、実施例に基づいて本発明を詳細に説明する。
【0054】
なお、以下の操作において用いるウレタン樹脂は下記のものであり、Z値の算出は、前述のパラメータΔZの合計による近似的方法に従った。
【0055】
[ウレタン樹脂A]
水酸基価約455mgKOH/gのポリオールSU−464(三井化学(株)製)と、TDI主体のコスモネートT−80(三井化学(株)製)を等量混合して得られたウレタン樹脂。
【0056】
[ウレタン樹脂B]
冷蔵庫の断熱材に用いられているウレタン樹脂。ポリオールの水酸基価=450mgKOH/g、イソシアネートの%NCO=31.4。
【0057】
[ウレタン樹脂C]
水酸基価280mgKOH/gのポリエチレングリコール100重量部にピュアMDIを65.2重量部混合して発泡させたポリウレタン樹脂。
【0058】
[ヌレート樹脂]
建材の断熱材として使用されて、建築現場より廃棄されたイソシアヌレート樹脂。
【0059】
(実施例1)
押出機の加熱温度を250℃に設定し、投入から2分後に投入物が排出されるように押出し速度を設定した。ウレタン樹脂A/ジエタノールアミン(以下、DEA)=3/1の混合比でウレタン樹脂A及びDEAを押出機に投入して混練による分解処理(一次処理)を行い、排出された被処理物を200℃の反応容器中で30分保温した後10分に20℃ずつ自然冷却した(二次処理)ウレタン樹脂分解物を用意した。被処理物を押出機から反応容器に移す時間は数分であり、ここではその間のΔZ値を無視した。二次処理を経た樹脂分解物のZ値は2.94であり、その粘度は7800mPa・s(60℃)であった。この分解物を少量ずつとり、更に、175℃のオーブンにそれぞれ投入して表2に示す時間の加熱による分解処理を行った(三次処理)。
【0060】
得られたウレタン樹脂分解物は、原料のポリオール(SU−464)に10重量%の割合で混合し、イソシアネート(コスモネートT−80)を加えて発泡させることによりウレタン再生を行った。
【0061】
また、エポキシ再生については、上述で得られたウレタン樹脂分解物をビスフェノールA型エポキシ樹脂(EP4100E、旭電化(株)製)と重量比1:1で混合した後150℃で反応させることにより、再生エポキシ樹脂を得た。
【0062】
その結果を表2に示す。なお、表中の粘度は、ウレタン樹脂分解物の60℃における値である。また、ウレタン再生については、問題なく再生できたものは○、再生に支障があったものは△、再生できなかったものは×を示した。エポキシ再生については、問題なく再生できたものは○、問題なく再生できて特にガラス転移温度が高かったものは◎、再生に支障があったものは△、再生できなかったものは×を示した。
【0063】
Z値が5〜25の範囲となるウレタン樹脂分解物はおおむね粘度が低くなっていることが確認できた。又、その範囲では良好にウレタン樹脂に再生できることが確認できた。Z値=20の付近において樹脂分解物に黒い固形分が析出し始め、Z値が25以上ではその存在が顕著になり、ウレタンの再生に支障をきたした。エポキシの再生では、Z値が5以下の範囲では、樹脂分解物の粘度が高くエポキシ樹脂との混合が困難であったが、再生することができた。Z値が5以上25以下の範囲では、樹脂分解物の粘度が低くなり作業性も向上し、Z値が10近辺で最も高いガラス転移温度を示した。Z値が20以上の範囲でも、樹脂分解物はエポキシ樹脂と反応し硬化したが、黒い固形成分が混ざったため見栄えが悪かった。
【0064】
【表2】
Figure 2004292661
(実施例2〜4)
三次処理の処理温度を200℃(実施例2)、225℃(実施例3)又は250℃(実施例4)に変更したこと以外は実施例1と同じ条件で、ウレタン樹脂Aの分解処理、再生ウレタン樹脂及び再生エポキシ樹脂の調製を行った。その結果を表3〜5(表3:実施例2、表4:実施例3、表5:実施例4)に示す。いずれの温度においても、Z値が5〜25の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0065】
【表3】
Figure 2004292661
【表4】
Figure 2004292661
【表5】
Figure 2004292661
(実施例5)
実施例1と同様の設定の押出機で、ウレタン樹脂A/DEAの混合比を4/1に変更してウレタン樹脂A及びDEAを投入して分解処理し(一次処理)、液状の被処理物を得た。この被処理物のZは2.94で、粘度は約50000mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して再度表6の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらは各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加えて再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後に150℃に加熱して再生エポキシ樹脂を得た。その結果を表6に示す。Z値が5〜25の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0066】
【表6】
Figure 2004292661
(実施例6)
実施例1と同様の設定の押出機で、ウレタン樹脂A/モノエタノールアミン(以下、MEA)=3/1の割合でウレタン樹脂A及びMEAを混合して分解処理(一次処理)し、液状の被処理物を得た。この被処理物のZ値は2.94で、60℃における粘度は約3100mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表7に示す時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらは、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加えて再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表7に示す。樹脂分解物のZ値が5〜25の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0067】
【表7】
Figure 2004292661
(実施例7)
実施例1と同様の押出機で、ウレタン樹脂A/MEA=4/1の割合でウレタン樹脂A及びMEAを混合して分解処理し、液状の被処理物を得た(一次処理)。この被処理物のZ値は2.94で、60℃における粘度は約4900mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表8の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を各々得た。これらは、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表8に示す。Z値が5〜25の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0068】
【表8】
Figure 2004292661
(実施例8)
実施例1と同様の設定の押出機で、ウレタン樹脂A/MEA=5.5/1の割合でウレタン樹脂A及びMEAを混合して分解処理し、液状の被処理物を得た(一次処理)。この被処理物のZ値は2.94で、60℃における粘度は約21500mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表9の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらは、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表9に示す。Z値が10〜25の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0069】
【表9】
Figure 2004292661
(実施例9)
実施例1と同様の設定の押出機で、ウレタン樹脂A/MEA=7/1の割合でウレタン樹脂A及びMEAを混合して分解処理し、液状の被処理物を得た。この被処理物のZ値は2.94で、60℃における粘度は約38700mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表10の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらは、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加えて再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表10に示す。Z値が10〜30の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0070】
【表10】
Figure 2004292661
(実施例10)
実施例1と同様の設定の押出機で、ウレタン樹脂A/MEA=2/1の割合でウレタン樹脂A及びMEAを混合して分解処理し、液状の被処理物を得た(一次処理)。この被処理物のZ値は2.94で、60℃における粘度は約2560mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表11の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらを、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表11に示す。Z値が3〜15の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0071】
【表11】
Figure 2004292661
(実施例11)
実施例1と同様の設定の押出機で、ウレタン樹脂A/ヘキサメチレンジアミン(以下、HMDA)=2/1の割合でウレタン樹脂A及びHMDAを混合して分解し、液状の被処理物を得た。この被処理物のZ値は2.94で、60℃における粘度は約3860mPa・sであった。この分解物を少量ずつとり、200℃のオーブンにそれぞれ投入して表12の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらを、各々、実施例11と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表12に示す。Z値が3〜15の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0072】
【表12】
Figure 2004292661
(実施例12)
実施例1と同様の設定の押出機で、ウレタン樹脂A/HMDA=3/1の割合でウレタン樹脂A及びHMDAを混合して分解処理し、液状の被処理物を得た(一次処理)。この被処理物のZ値は2.94で、60℃における粘度は約7100mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表13の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらを、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表13に示す。Z値が5〜25の範囲ではおおむね粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0073】
【表13】
Figure 2004292661
(実施例13)
実施例1と同様の設定の押出機で、ウレタン樹脂A/DEA/ポリエチレングリコール#200(以下、PEG200)=3/1/0.5の割合でウレタン樹脂A、DEA及びPEGを混合して分解処理し、液状の被処理物を得た(一次処理)。この被処理物のZ値は2.94で、60℃における粘度は約4500mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表14の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらを、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表14に示す。Z値が5〜25の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。但し、エポキシ樹脂のガラス転移温度は、PEG200を加えなかった実施例1〜4と比べると低い値を示した。
【0074】
【表14】
Figure 2004292661
(実施例14)
実施例1と同様の設定の押出機で、ウレタン樹脂A/MEA/PEG200=5.5/1/0.5の割合でウレタン樹脂A、MEA及びPEGを混合して分解処理し、液状の被処理物を得た(一次処理)。この被処理物のZ値は2.94で、60℃における粘度は約12500mPa・sであった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表15の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらを、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果を表15に示す。Z値が10〜30の範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。但し、エポキシ樹脂のガラス転移温度は、PEG200を加えなかった実施例8と比べると低い値を示した。
【0075】
【表15】
Figure 2004292661
(実施例15〜17)
実施例1と同様の設定の押出機で、ウレタン樹脂B/DEA=2/1(実施例15)、3/1(実施例16)又は5/1(実施例17)の割合でウレタン樹脂B及びDEAを混合して分解処理し、液状の被処理物を得た(一次処理)。この被処理物のZ値は2.94であった。この被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表16〜18(表16:実施例15、表17:実施例16、表18:実施例17)の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらを、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果をそれぞれ表16〜18に示す。Z値が前記の適正範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0076】
【表16】
Figure 2004292661
【表17】
Figure 2004292661
【表18】
Figure 2004292661
(実施例18〜20)
実施例1と同様の設定の押出機で、ウレタン樹脂C/DEA=2/1(実施例18)、3/1(実施例19)又は5/1(実施例20)の割合でウレタン樹脂C及びDEAを混合して分解処理し、液状の被処理物を得た(一次処理)。被処理物のZは実施例18〜20のいずれも2.94であった。被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表19〜21(表19:実施例18、表20:実施例19、表21:実施例20)の時間の加熱による分解処理を行って(二次処理)ウレタン樹脂分解物を得た。これらは、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果をそれぞれ表19〜21に示す。Z値が前記適正範囲ではおおむねウレタン樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0077】
【表19】
Figure 2004292661
【表20】
Figure 2004292661
【表21】
Figure 2004292661
(実施例21〜23)
実施例1と同様の設定の押出機で、ヌレート樹脂/DEA=2/1(実施例21)、3/1(実施例22)又は5/1(実施例23)の割合でヌレート樹脂及びDEAを混合して分解処理し(一次処理)、液状の被処理物を得た。被処理物のZ値は、実施例21〜23のいずれも2.94であった。被処理物を少量ずつとり、200℃のオーブンにそれぞれ投入して表22〜24(表22:実施例21、表23:実施例22、表24:実施例23)の時間の加熱による分解処理を行って(二次処理)ヌレート樹脂分解物を得た。これらは、各々、実施例1と同様に、原料のポリオールに10重量%の割合で混合してイソシアネートを加え再生ウレタン樹脂を、あるいは、エポキシ樹脂と重量比1:1で混合した後150℃に加熱して再生エポキシ樹脂を得た。その結果をそれぞれ表22〜24に示す。
【0078】
Z値が前述の適正範囲ではおおむねヌレート樹脂分解物の粘度が低くなっていて、良好にウレタン樹脂やエポキシ樹脂に再生できることが確認できた。
【0079】
【表22】
Figure 2004292661
【表23】
Figure 2004292661
【表24】
Figure 2004292661
上記実施例1〜23の要旨をまとめたものを表25に示す。尚、表中の「再生に適したZの値」は結果の評価から定めた値であって、誤差等を含み得るものであり、絶対的なものではないことは言うまでも無い。いずれのウレタン樹脂の分解処理においても、分解剤1重量部に対しウレタン2.5重量部未満の場合は3≦Z≦15、ウレタン2.5重量部以上5重量部以下では5≦Z≦25、ウレタン5重量部を超える場合は10≦Z≦30となる時に再生に適した状態となっていることが確認された。
【0080】
【表25】
Figure 2004292661
(実施例24)
ウレタン樹脂Aをガラス棒を用いて押しつぶして熱を伝え易くし、ウレタン樹脂A/DEA=3/1の混合比で試験管にウレタン樹脂A及びDEAを入れ、200℃のオイルバス中で加熱して分解処理を行った。目視観察でウレタン樹脂Aが液状と確認できた時間は約5分であり、この時ウレタン樹脂分解液は均一であったので、ウレタン樹脂分解物は均一に分解しているとみなした。
【0081】
オイルバス投入から取出しまでの時間を表26のように変更したこと以外は上記分解処理と同様の操作を繰り返し行い、得られたウレタン樹脂分解物の粘度を測定した。また、一番粘度の低かった分解物について、ゲル浸透クロマトグラフィー(GPC)を用いて分子量分布を測定した。その結果を表26に示す。尚、表中の分子量は、ポリスチレン換算の分子量であり、実際の分子量とは異なる。表26の結果によると、粘度はZ値が5〜20の範囲付近で最も低い値を示し、Z値が25以上の範囲では多数の炭化物の生成が確認された。
【0082】
【表26】
Figure 2004292661
(比較例1)
容量1000mlのフラスコ中に200gのジエタノールアミンを入れ、200℃のオイルバスを用いて加熱し、これに600gのウレタン樹脂を少しずつ投入して分解処理を行った。全ウレタン樹脂の投入終了までに要した時間は10時間半であり、投入終了後さらに30分オイルバス中で加熱を継続した。ウレタン樹脂分解物のZ値は1.25〜27.5の範囲で、このうちZ値が5〜25の範囲にあるものは76%であった。ウレタン樹脂分解物には炭化した固形成分が多数見られた。また、粘度は3800mPa・s(60℃)であり、実施例1〜4や実施例24に比べて高い粘度を示した。分子量分布は10000以下の広範囲にあり、数平均分子量は1900であった。
【0083】
得られたウレタン樹脂分解物の一部を、原料のポリオールに10重量%の割合で混合し、イソシアネート(コスモネートT−80)を加えて発泡させたところ、分解物中にある炭化物の影響でセル荒れを起こし、うまく再生できなかった。また、ウレタン樹脂分解物の残部をビスフェノールA型エポキシ樹脂と重量比1:1で混合した後150℃で反応させたところ、再生エポキシ樹脂を得たが、炭化物を多数含んでいたため見た目も悪く、実施例1〜4や実施例24にて作成した樹脂よりもガラス転移温度が低かった。
【0084】
(実施例25)
ウレタン樹脂A/MEA=4/1の混合比でウレタン樹脂A及びMEAを250℃の押出機に投入して分解処理し(一次処理)、投入から2分後に排出された被処理物を250℃に保たれた管の中を15分間かけて通過させてさらに分解処理を進めた。この時の被処理物のZ値は約8.5であった。その後、冷却液と熱交換して被処理物の温度を2分間で100℃まで冷却し、得られたウレタン樹脂分解物をドラム缶に採取した。得られたウレタン樹脂分解物を、原料のポリオールに10重量%の割合で混合し、イソシアネート(コスモネートT−80)を加えて発泡したところ、良好な発泡体が得られた。また、ウレタン樹脂分解物をビスフェノールA型エポキシ樹脂と重量比1:1で混合した後150℃で反応させることにより再生エポキシ樹脂を得ることができ、そのガラス転移温度は100℃以上であった。
【0085】
(実施例26)
ウレタン樹脂A/MEA=4/1の混合比で250℃の押出機にウレタン樹脂A及びMEAを投入して滞留時間2分の分解処理を行い(一次処理)、その後、周囲を断熱材で覆ったドラム缶に被処理物を採取し、10分でドラム缶いっぱいに被処理物を詰めた。ドラム缶中の被処理物の温度は190〜200℃であった。ドラム缶内の被処理物は180℃に冷却するまでに2時間、140℃にまで冷却するまでに6時間かかった。この時点のZの値を計算すると、表27のように、Z=10.8〜11.2であった。得られたウレタン樹脂分解物を、原料のポリオールに10重量%の割合で混合し、イソシアネート(コスモネートT−80)を加えて発泡したところ、良好な発泡体が得られた。また、得られたウレタン樹脂分解物をビスフェノールA型エポキシ樹脂と重量比1:1で混合した後150℃で反応させることにより、再生エポキシ樹脂を得ることができ、そのガラス転移温度は100℃以上であった。
【0086】
【表27】
Figure 2004292661
【0087】
【発明の効果】
本発明によれば、ウレタン樹脂やエポキシ樹脂に再生し易いウレタン樹脂分解物を得るためのウレタン樹脂の分解条件が容易に決定でき、良好な再生樹脂が提供されるので、ウレタン樹脂のリサイクルを促進することができる。
【図面の簡単な説明】
【図1】本発明に係るウレタン樹脂の分解処理方法の一次処理を実施する押出機型の装置の一実施形態を示す概略構成図。
【図2】本発明に係るウレタン樹脂の処理方法の二次処理を実施する二次処理装置の一実施形態を示す概略構成図。
【図3】本発明に係るウレタン樹脂の処理方法の二次処理を実施する二次処理装置の他の実施形態を示す概略構成図。
【図4】本発明に係るウレタン樹脂の処理方法の二次処理を実施する二次処理装置の更に他の実施形態を示す概略構成図。
【図5】本発明に係るウレタン樹脂の処理方法の二次処理を実施する二次処理装置の更に他の実施形態を示す概略構成図。
【符号の説明】
1 押出機、 3 シリンダ部、 5 スクリュ、
7 投入口7、 9 排出管、 11 供給口
11,21,31,41 二次処理装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a urethane resin recycling technique, and more particularly, to a method for decomposing a hard urethane resin to obtain a high-quality urethane resin decomposed product, and a method for manufacturing a recycled resin using the urethane resin decomposed product.
[0002]
[Prior art]
Urethane resins are widely used, for example, as heat insulating materials for refrigerators, building materials, cushioning materials, etc.In recent years, there has been an increasing demand for recycling these wastes, and the reuse of these wastes has been studied in various fields. ing. However, since urethane resin is a thermosetting resin having a three-dimensional network structure, it is difficult to recycle it, and at present, it is disposed of by landfill or incineration.
[0003]
Various methods for chemically decomposing urethane resin have been reported for a long time. Patent Document 1 listed below describes a method in which a polyurethane foam is decomposed with an amine compound such as an alkanolamine, and then the decomposed product is separated and recovered. However, this method is not industrially suitable because it is very difficult to separate the amine compound and the polyol having good compatibility. Further, Patent Document 2 below describes a method of decomposing a polyurethane foam using a polyol and aminoethanol as decomposing agents and regenerating the polyurethane foam as an adhesion aid. However, since this method is performed in a batch system, it takes 11 hours at 190 ° C. and 2 hours even at 230 ° C. for processing. In addition, when the urethane resin is decomposed in a batch system, the bulkiness and low thermal conductivity of the urethane resin greatly affect the quality. For example, when urethane is decomposed by heating in an oil bath using a flask, urethane on the wall in contact with the oil bath is immediately decomposed, but heat is not easily transmitted to the center of the flask, so urethane in the center is difficult. Decomposition start time is delayed. Further, it is difficult to supply bulky urethane into the flask at one time, and even if the urethane is decomposed while being added little by little, there is a difference in the decomposition start time depending on the urethane charging time. In this example, the decomposition start time is shifted up to 11 hours, and the quality of the urethane resin decomposed product is inferior because those that are not sufficiently decomposed or those that have been thermally degraded due to excessive application of heat reduce the uniformity of the urethane resin decomposed product. is there.
[0004]
On the other hand, there is also a method of decomposing using an extruder, for example, as in Patent Document 3 below. In this case, since the time for performing the decomposition treatment of the urethane resin is limited by the design of the extrusion length, it is not possible to perform the treatment for a long time.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 42-10634
[0006]
[Patent Document 2]
JP-A-6-184513
[0007]
[Patent Document 3]
JP 2000-281831 A
[0008]
[Problems to be solved by the invention]
Various decomposition methods other than those described above have been proposed.Even though studies have been made to decompose and liquefy urethane resin, any method for obtaining a urethane resin decomposition product capable of producing a regenerated resin of satisfactory quality has been proposed. At present, it is not considered whether to set the conditions of the decomposition process as described above. Therefore, even if a urethane decomposition product can be obtained, only a product having unstable quality can be obtained, and it is difficult to obtain a recycled resin having physical properties suitable for practical use. Therefore, there is a major obstacle in recycling urethane resin.
[0009]
The present invention has been made in view of such a problem, and a method for decomposing a urethane resin to obtain a urethane resin decomposed product capable of producing a recycled resin suitable for practical use, and production of a recycled resin using the same. The aim is to provide a method.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, according to one embodiment of the present invention, a method for decomposing a hard urethane resin comprises the steps of charging a hard urethane resin and a decomposing agent into an extruder and heating the same to progress the decomposition of the hard urethane resin. A decomposition treatment step, a determination step of determining whether or not the decomposition of the hard urethane resin is sufficient based on the ratio of the hard urethane resin and the decomposer, a heating temperature and a decomposition processing time; and The gist of the present invention is to include an auxiliary heating step of heating an object to be processed obtained in the decomposition treatment step when it is determined that the decomposition of the hard urethane resin is not sufficient.
[0011]
The determining step includes setting a constant k at the temperature T [゜ K] as follows:
k = 2 (300 <T)
k = 1 (270 <T ≦ 300)
k = 1/3 (240 <T ≦ 270)
k = 1/10 (210 <T ≦ 240)
k = 1/40 (180 <T ≦ 210)
k = 1/200 (140 ≦ T ≦ 180)
k = 0 (T <140)
Processing time ΔH for processing at temperature T [゜ K] in the decomposition processing stepTFrom [time] and the constant k, a parameter ΔZ at a temperature T [゜ K] is obtained.T= K × ΔHT× 100 is calculated, and the parameter ΔZ is calculated for all processing temperatures in the decomposition processing step.TAnd calculating the total value Z according to the number of parts by weight N of the hard urethane resin with respect to 1 part by weight of the decomposing agent in the decomposition treatment step. The process of
When N <2.5 3 ≦ Z ≦ 15
2.5 ≦ N ≦ 5 5 ≦ Z ≦ 25
When 5 <N 10 ≦ Z ≦ 30
Determining that the decomposition of the hard urethane resin is not sufficient when the total value Z is less than the appropriate range of Z.
[0012]
Further, according to one aspect of the present invention, a method for producing a recycled resin includes: a decomposition treatment step in which a urethane resin and a decomposing agent are charged into an extruder and heated to promote decomposition of the urethane resin; A determination step of determining whether the urethane resin is sufficiently decomposed based on the ratio of the urethane resin and the decomposer, the heating temperature and the decomposition time, and that the urethane resin is not sufficiently decomposed in the determination step. When determined, an auxiliary heating step of heating the object to be processed obtained in the decomposition treatment step, and a compound having an isocyanate compound or an epoxy group in the object to be processed through the decomposition treatment step and the auxiliary heating step performed depending on the situation. And a step of obtaining a recycled resin by blending
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The decomposition of the urethane resin includes a chemical decomposition method and a hydrolysis method using a decomposing agent, and the present invention relates to a decomposition treatment of the urethane resin performed by the chemical decomposition method. An amine compound is used as the decomposing agent, and may be used in combination with a polyol compound or a metal alcoholate of a polyol. Accordingly, examples of the use form of the decomposing agent include forms such as an amine compound alone, and a mixture of an amine compound with a polyol compound or a metal alcoholate of a polyol.
[0014]
The decomposition reaction of the urethane resin is as follows when, for example, monoethanolamine or diethanolamine is used.
[0015]
Embedded image
Figure 2004292661
Embedded image
Figure 2004292661
In the final products of these reactions, an amine component derived from the raw isocyanate is formed. Most of the isocyanate component is MDI, TDI, or the like, from which MDA or TDA ultimately remains. These aromatic amines are actually used as a curing agent for an epoxy resin, and are very easily reacted with an epoxy group. The more these are contained in the decomposition product, the more the reactivity with the epoxy resin is increased, and the strength of the regenerated resin is also increased. The present invention is a method for decomposing a urethane resin, in which the decomposition of the urethane resin proceeds to the end, and the decomposing process is adjusted by finding processing conditions that do not cause an excessive reaction such as carbonization. It is particularly effective in decomposition with monoethanolamine or diethanolamine, which produces aromatic diamines as end products.
[0016]
The degree of urethane bond cleavage of the urethane resin varies depending on the decomposition method and decomposition agent, but the molecular weight is gradually reduced by the decomposition agent, and all urethane bonds are cut at once to produce a decomposition product. It is unlikely that you will. That is, the undecomposed urethane resin, the oligomers and monomers of the urethane resin constituent components, and the remaining decomposer are mixed in the urethane resin being decomposed. What is important for obtaining a good-quality urethane resin decomposed product is that all the added decomposing agents are consumed, and only the oligomers and monomers of the urethane resin constituent components, and preferably only the monomers, are consumed. The authors' research has confirmed that when too much heat is applied to the urethane resin, the resin decomposition product is gradually carbonized to deteriorate the physical properties. In addition, if the heat applied to the urethane resin is insufficient, not only is it not sufficiently decomposed, but also if the resin decomposed product is heated again, the decomposition may proceed again. Quality stabilization is difficult. Therefore, in order to obtain a high-quality resin decomposition product, it is necessary to set the heating temperature and the heating time in the urethane resin decomposition process to appropriate values.
[0017]
On the other hand, in order for the decomposition reaction of the urethane resin to proceed uniformly, it is necessary to mix and homogenize the urethane resin and the decomposing agent as quickly and efficiently as possible. Is suitable. The extruder can simultaneously perform heating, mixing, and compression (pressurization), and has a high mixing efficiency. Therefore, it is easy to uniformly progress the decomposition of the charged urethane resin and to control the progress of the decomposition. Further, as compared with a processing apparatus of a batch type or the like, the progress of the decomposition can be accelerated, so that the economic efficiency is high. However, the extruder cannot set the heating time too long due to the design limit of the extrusion length or the extrusion resistance. For this reason, in order to secure a necessary heating time, an auxiliary heating process is required after the heating process in the extruder. In this case, since the urethane resin and the decomposing agent are mixed and the uniformity of the processed object is high in the processed object once passed through the extruder, the auxiliary heat treatment can be favorably performed even by using a batch type apparatus.
[0018]
In the present invention, in consideration of the above, appropriate values of the processing temperature and the processing time of the urethane resin decomposition processing that can obtain a high-quality resin decomposition product are determined. Using these, the set conditions of the decomposition process (primary process) in the extruder are evaluated, it is determined whether or not the auxiliary heating process (secondary process) is necessary, and the necessary conditions of the auxiliary heating process are determined. can do.
[0019]
First, a description will be given of an appropriate value of a processing temperature and a processing time of a urethane resin from which a high-quality resin decomposition product is obtained and an evaluation of the progress of decomposition.
[0020]
(Appropriate values of processing temperature and processing time and evaluation of decomposition progress)
According to the experimental results of the present inventors, when a certain amount of a decomposing agent is mixed with a urethane resin and heated at a constant temperature, the decomposition of the urethane resin progresses as the treatment time increases, and the viscosity of the object to be treated is increased. descend. However, thereafter, the viscosity of the object to be processed starts to increase, and the resin decomposition product is gradually carbonized. The quality of the regenerated resin when the object to be processed is the most uniform and the urethane resin or the epoxy resin is regenerated by using the object to be processed is stable when the viscosity of the object to be processed is the lowest value. That is, the processing time at which the viscosity of the object to be processed becomes the minimum value is the optimum processing time at the heating temperature. Accordingly, the heating temperature t and the optimal processing time hsBy examining the relationship with, it was found that the following equation (1) holds.
[0021]
(Equation 1)
hs= At-21.5    (However, a = 1056(1)
Heating temperature = tcIn the case of (constant), the decomposition progress rate ΔD per unit time (the ratio of the decomposition progress rate in the optimal processing time as 1) can be expressed by the following equation (2), and the decomposition progress rate in the processing time h DhIs Dh= ΔD × h = h / hsBecomes
[0022]
(Equation 2)
ΔD = 1 / hs= A '· tc 21.5                  (2)
(However, a '= 1 / a)
On the other hand, if the heating temperature changes with time, the heating temperature tn(N = 1, 2,...), The degree of decomposition ΔD per unit timen= A '· tn 21.5(N = 1, 2,...) Is the time h from the start of processing.nSum up to the time hnDegree of decomposition DnThe time when the total value becomes 1 as in the following equation (3) is the optimal processing time h.sBecomes
[0023]
(Equation 3)
Figure 2004292661
However, when the amount of the decomposing agent added to the urethane resin is different from the above case, a and a 'are different, so that the decomposition progression ΔD obtained from the above is obtained.nTotal value and optimal processing time hsIs also different.
[0024]
(Setting of auxiliary heat treatment)
When the urethane resin is heated and decomposed (primary treatment) using an extruder, the decomposition progress rate ΔD per unit time is from the inlet to the outlet of the extruder.nIf the total value does not reach 1, a decomposition process corresponding to the shortage may be performed as an auxiliary heating process (secondary process). For example, when the object discharged from the extruder is kept at a substantially constant temperature in a heat-insulating container, it is theoretically relatively easy to calculate the auxiliary heating time from the shortage of the degree of decomposition.
[0025]
However, in actual disassembly processing, the degree of decomposition of the object to be treated may vary within a certain range including the optimum value because partial variations and errors may occur depending on the structure of the processing apparatus, operating conditions, and the like. It is practical to set the processing time.
[0026]
In consideration of the above, the condition determination of the auxiliary heating process (secondary process) by calculating the sum of the degree of decomposition progress per unit time can be performed according to the following approximate process and detected by the sensor. Using the temperature data of the extruder, the temperature gradient data obtained by using the data, and the like, it can be easily performed by a computer or the like according to the following procedure.
[0027]
1) The constant k at the temperature T [゜ K] of the decomposition process is set as follows.
[0028]
k = 2 (300 <T)
k = 1 (270 <T ≦ 300)
k = 1/3 (240 <T ≦ 270)
k = 1/10 (210 <T ≦ 240)
k = 1/40 (180 <T ≦ 210)
k = 1/200 (140 ≦ T ≦ 180)
k = 0 (T <140)
2) Processing time ΔH at temperature T [゜ K] in primary processing by the extruderTFrom the [time] and the constant k, the parameter ΔZ in the process of the temperature T [゜ K] is obtained.T= K × ΔHT× 100 is calculated, and the parameter ΔZ is calculated for all the processing temperatures in the decomposition processing step.TAre added to calculate a total value Z.
[0029]
3) According to the number N of parts by weight of the urethane resin with respect to 1 part by weight of the decomposing agent, the above parameter ΔZTIs compared with an appropriate range of Z represented by the following equation to determine whether or not the value is within the appropriate range.
[0030]
When N <2.5 3 ≦ Z ≦ 15
When 2.5 ≦ N ≦ 5 5 ≦ Z ≦ 25
When 5 <N 10 ≦ Z ≦ 30
4) When the total value Z is within the appropriate range of Z in the above 3), the secondary processing (auxiliary heating processing) is not performed. If the total value Z is less than the appropriate range, the total value Z and the total value Z of the parameters of the auxiliary heat treatment are set.sAnd the temperature T in the auxiliary heat treatment so that the sum ofs[゜ K] and temperature TsProcessing time ΔHTsSet [Time]. This setting is based on the temperature TsParameter ΔZ in [゜ K]Ts= K × ΔHTs× 100 and parameter ΔZTsTotal value Z ofsIs calculated. When the total value Z is excessive, the processing time H at the temperature T [゜ K] and the temperature T [゜ K] in the primary processing is set so as to fall within the appropriate range.TReset [Time].
[0031]
If necessary, the tertiary process and the subsequent processes may be additionally set.
[0032]
When the value of the total value of the parameters is low, the urethane resin is not sufficiently decomposed, and a decomposition product having a large molecular weight is formed. If the total value is high, the decomposition product is thermally degraded and carbonization starts. However, the processing temperatures T and Ts[ΔK] is preferably 413 to 573 ° K (140 to 300 ° C), and more preferably 473 to 553 ° K (200 to 280 ° C). If the temperature is lower than this, the processing time is too long, which is not economically preferable. If the temperature is too high, the processing time is too short and the control thereof is difficult.
[0033]
When the temperature of the processing object, that is, the temperature in the processing apparatus cannot be measured, the set temperature of the processing apparatus may be regarded as the temperature of the processing object. Also in this regard, in the case of a batch type apparatus, heat cannot be promoted by applying pressure to the resin, so that the temperature of the apparatus may be greatly different from the temperature of the object to be processed, and the treatment by an extruder is advantageous. .
[0034]
The ratio of the decomposing agent to the urethane resin is not particularly limited, but it is preferable that the amount of the urethane resin is not less than 2.5 parts by weight and not more than 5 parts by weight based on 1 part by weight of the decomposing agent. If the amount of the urethane resin is smaller than this range, the unreacted decomposing agent remains in the decomposed product, causing degradation of the properties of the decomposed product and the regenerated product.If the amount of the urethane resin is larger than this, processing time is increased. This is not economically desirable.
[0035]
It is preferable that the value of Z is within the above range for all the objects to be processed. However, in practice, the degree of decomposition of the object to be processed partially varies depending on the structure of the decomposition apparatus. For example, a difference in the decomposition start time partially occurs depending on the shape of the apparatus, and variation occurs due to the work of handling the workpiece. In such a case, the decomposition products having different degrees of decomposition progress exist in the object to be processed. If 85% or more of the total amount in the weight ratio is at the appropriate degree of decomposition, the physical properties of the obtained object to be processed are obtained. Is good.
[0036]
An example of the determination of the processing time by the above evaluation method is shown below.
[0037]
For example, assuming that the composition is decomposed in an extruder at 250 ° C. for 5 minutes, then kept in a reaction vessel at 200 ° C. for 30 minutes, and then cooled in 10 minutes at 10 ° C. to 140 ° C., the value of ΔZ is as shown in Table 1. .
[0038]
[Table 1]
Figure 2004292661
In this case, the parameter ΔZ in the urethane resin decomposition process is as described above, and the progress of the urethane resin decomposition can be grasped from the total value Z. Therefore, the heating process may be appropriately adjusted or changed in accordance with the amount of the decomposing agent so that the total value Z of the parameter ΔZ is in an appropriate range. By subjecting the resin to a decomposition treatment in accordance with the determined conditions, it is possible to obtain a resin decomposition product having a stable quality, thereby facilitating the regeneration of the resin.
[0039]
As a more accurate method than the above approximate method, the Z value is calculated according to the following equation (4) obtained by our experiment, using the processing temperature [゜ K] as a function T (h) of the processing time h [time]. There is a method of calculating and determining a preferable treatment time such that the value of Z is 30 or more and 200 or less (however, the urethane resin is 2.5 to 5 parts by weight with respect to 1 part by weight of the decomposing agent). Originally, it is better to calculate the degree of decomposition by the integral calculation of this equation. However, since the equation is complicated and the calculation is complicated, the above-described method is simpler.
[0040]
(Equation 4)
Figure 2004292661
(Urethane resin, decomposition agent and decomposition equipment)
As the urethane resin to be processed, any hard urethane resin having a urethane bond, a urea bond, or the like may be used. Here, a raw material polyol having a hydroxyl value of 250 mgKOH / g or more is defined as hard urethane. It also includes an isocyanurate material having an isocyanurate bond, and the decomposition treatment method of the present invention can be applied similarly to the urethane resin. In this case, the molecular weight of the raw material isocyanate may be any. Applications of such urethane resins include, for example, heat insulating materials such as refrigerators and building materials.
[0041]
The present invention is particularly suitable for decomposing with an amine compound alone, and is most suitable for decomposing with a monoalkanolamine or dialkanolamine. Examples of the amine compound include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, tetramethylenediamine, hexamethylenediamine, propanediamine, 2-ethylhexylamine, isopropanolamine, 2- (2-aminoethylamino) ethanol, -Amino-2-hydroxymethyl-1,3-propanediol, ethylaminoethanol, aminobutanol, n-propylamine, di-n-propylamine, n-amylamine, isobutylamine, methyldiethylamine, cyclohexylamine, piperazine, piperidine , Aniline, toluidine, benzylamine, phenylenediamine, xylylenediamine, chloroaniline, pyridine, picoline, N-methylmorpholine, ethyl Folin, pyrazole, and the like. A better effect is obtained when monoethanolamine or diethanolamine is used among these decomposing agents. If necessary, an additive may be added to the above-mentioned decomposing agent. The additive can be added as long as it does not extremely hinder the reaction of the decomposing agent, and examples thereof include diluents such as water, alcohol, and polyol, and fillers such as inorganic particles and organic particles. Examples of the polyol compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentadiol, 1,6-hexanediol, polyoxyethylene glycol, polyoxypropylene glycol, Glycerin, polyethylene glycol and the like can be mentioned. What is necessary is just to adjust the addition amount suitably according to the physical property of an additive. Additives with a boiling point of 150 ° C. or less, such as water and low molecular alcohols, are volatilized in the decomposer and eventually separated from the urethane resin decomposed product, so there is no need to particularly limit the amount added. Attention must be paid to the fact that a large amount of addition lowers the temperature of the apparatus due to the heat of evaporation. Preferably, the weight is suppressed to half or less of the weight of the urethane resin. The amount of the filler such as inorganic particles and organic particles is not particularly limited as long as the reaction is not hindered, but is preferably suppressed to the same weight or less as the urethane resin.
[0042]
As the decomposer, a decomposer capable of simultaneously heating, mixing and compressing, such as an extruder type, is desirable for the primary treatment, but any secondary treatment may be used, and various known decomposers are used. Can be In addition, a plurality of decomposition apparatuses can be used in appropriate combination. For example, a secondary treatment may be performed by packing an object to be processed decomposed by a certain decomposition apparatus in a drum or the like and keeping the temperature or heating. When the decomposition treatment is performed using the extruder 1 as shown in FIG. 1, the treatment can be continuously and efficiently performed.
[0043]
FIG. 1 shows an example of an extruder for performing the above-mentioned primary treatment. The extruder 1 includes a cylinder section 3 having a temperature-controllable heater, and a screw 5 capable of rotating and inscribed on the inner wall of the cylinder section 3. , A charging port 7 provided at one end of the cylinder section 3, a discharge pipe 9 provided at the other end of the cylinder section 3, and a supply port 11 provided between the charging port 7 and the discharge pipe 9. The heater of the cylinder unit 3 can be set so that the temperature of the cylinder unit 3 is locally different. For example, the heating temperature can be changed before and after the supply port 11. The temperature of the cylinder section 3 is set to the decomposition temperature of the urethane resin, and the screw to be fed into the extruder is advanced so that the time required for the rotation of the screw 5 to proceed from the input port 7 to the supply port 11 matches the time required for the decomposition of the urethane resin. When the rotation speed of 5 is set and the urethane resin and the decomposing agent are introduced from the introduction port 7, the urethane resin starts to be decomposed and moves toward the discharge pipe 9. If necessary, the additive can be mixed into the object through the supply port 11. Finally, the urethane resin is discharged from the discharge pipe 9 as a liquid decomposition product. In such a decomposer, it is possible to suppress the variation of the urethane resin decomposition start time, and therefore, it is easy and accurate to adjust the decomposition processing conditions.
[0044]
When the primary treatment by the extruder 1 is insufficient, the workpiece to be discharged from the extruder 1 is supplied from a discharge pipe 9 to a secondary treatment device for performing a secondary treatment (auxiliary heating treatment).
[0045]
FIG. 2 shows an example of the secondary processing device. The secondary processing device 21 includes a container 23 for accommodating the workpiece to be supplied from the discharge pipe 9 of the extruder 1 and a heat insulating material covering the container 23. 25, and the decomposition proceeds with residual heat by keeping the material to be treated warm. By continuously detecting the internal temperature by the temperature sensor 27 attached to the lid 23 'of the container 23, it is possible to correct a deviation from the prediction of the secondary processing condition.
[0046]
FIG. 3 shows an example of a batch-type secondary processing apparatus. The secondary processing apparatus 31 includes a processing tank 33 for storing an object to be processed supplied from the discharge pipe 9 of the extruder 1, and a processing tank 33. The apparatus has a heater 35 provided with a temperature control function attached to 33, and a stirring device 37. The heater 35 heats an object to be processed to cause decomposition. The object to be processed after the secondary processing is discharged by opening a valve of a discharge pipe 39 provided at the bottom of the processing tank 33.
[0047]
FIG. 4 shows an example in which an extruder is used as a secondary processing device. This secondary processing device 41 has a cylinder portion 43 having a temperature-controllable heater, and a rotation controllable inscribed inside wall of the cylinder portion 43. It has a screw 45, an input port 47 connected to the discharge pipe 9 of the extruder 1, and a discharge pipe 49 provided at the other end of the cylinder section 33. The cylinder part 43 and the screw 45 have the same function as the cylinder part 3 and the screw 5 of the extruder 1. The cylinder 43 may be configured so as to keep the temperature covered by a heat insulating material instead of the heater.
[0048]
FIG. 5 shows another example of the heat retaining type secondary treatment device. The secondary treatment 8 device 51 includes a heat retaining tank 53 formed of a heat insulating material and a discharge tank of the extruder 1 provided in the heat retaining tank 53. A spiral tube 55 connected to the tube 9. The object to be processed supplied from the discharge pipe 9 is kept warm while passing through the spiral pipe 55, undergoes decomposition by residual heat, and is discharged from the discharge pipe 57.
[0049]
(Method for producing recycled resin and regenerating agent)
In order to regenerate the resin from the decomposed product of the urethane resin, a regenerant for re-hardening the decomposed product is used. As the regenerating agent, an epoxy resin and an isocyanate compound are known, and can be appropriately selected from known ones as needed. The epoxy resin has only to have two or more epoxy groups in one molecule, and specific examples thereof include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolak type epoxy resin, and a cresol novolak type. Epoxy resin, naphthol novolak epoxy resin, bisphenol A novolak epoxy resin, naphthalene diol epoxy resin, alicyclic epoxy resin, epoxy resin derived from tri or tetra (hydroxyphenyl) alkane, bishydroxybiphenyl Examples include epoxy resins and epoxidized phenol aralkyl resins, but are not particularly limited. Epoxy compounds can be used alone or in combination of two or more. The isocyanate compound only needs to have two or more isocyanate groups in one molecule, and specific examples thereof include 1,5-naphthalenediisocyanate, 4,4′-diphenylmethane diisocyanate, and 4,4′-diphenyl. Dimethylmethane diisocyanate, 4,4'-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene Diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone Diisocyanate compounds such as isocyanate, pyridine diisocyanate, dicyclohexylmethane-4,4-diisocyanate, and methylcyclohexane diisocyanate; polyfunctional isocyanate compounds such as dimethylenetriphenylmethanetetraisocyanate, triphenylmethanetriisocyanate, and polymethylenepolyphenylpolyisocyanate; glycerin And addition products of polyols such as trimethylolpropane and the above-mentioned diisocyanate compounds, but are not particularly limited. Isocyanate compounds are simply
They may be used alone or as a mixture of two or more.
[0050]
The method of molding the recycled resin is appropriately determined as needed. For example, when a liquid epoxy resin is used as a regenerant, the decomposed product and the epoxy resin are mixed using a universal stirrer or the like, and the mixture is poured into a mold at a temperature of room temperature to 200 ° C., for 1 hour to 1 night. By performing heat curing to a certain degree, a molded article of a recycled resin is obtained. At the time of mixing, organic or inorganic particles may be added as a filler, or a plasticizer, a coupling agent, or the like may be blended.
[0051]
When a urethane foam is produced, an isocyanate compound is added to and mixed with the object to be treated.Since the addition of the isocyanate compound causes the bond generation and foaming to proceed at a rate according to the temperature, the temperature is from room temperature to 150 ° C. The mixture is put into a mold and molded. If necessary, a polyol compound as a urethane resin raw material, a foaming agent, a foam stabilizer, a filler, a catalyst, and the like may be added to the object.
[0052]
When using a solid material obtained by solidifying the material to be treated, that is, the urethane resin decomposed product by cooling, the solid material and the solid epoxy resin or isocyanate compound are finely pulverized, mixed with wood powder or inorganic particles, and pressed. A molded article can be obtained by heating and pressure molding using a molding machine or the like and curing. The curing temperature varies depending on the melting point or softening point of the urethane resin decomposed product, the epoxy resin, and the isocyanate compound, but is generally preferably about 80 to 200 ° C.
[0053]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0054]
The urethane resin used in the following operation is as follows, and the Z value was calculated according to the above-described approximate method using the sum of the parameters ΔZ.
[0055]
[Urethane resin A]
A urethane resin obtained by mixing equal amounts of a polyol SU-464 (manufactured by Mitsui Chemicals, Inc.) having a hydroxyl value of about 455 mgKOH / g and Cosmonate T-80 (manufactured by Mitsui Chemicals, Inc.) mainly composed of TDI.
[0056]
[Urethane resin B]
Urethane resin used for refrigerator insulation. Hydroxyl value of polyol = 450 mgKOH / g,% NCO of isocyanate = 31.4.
[0057]
[Urethane resin C]
Polyurethane resin foamed by mixing 65.2 parts by weight of pure MDI with 100 parts by weight of polyethylene glycol having a hydroxyl value of 280 mgKOH / g.
[0058]
[Nurate resin]
Isocyanurate resin used as a heat insulating material for building materials and discarded from building sites.
[0059]
(Example 1)
The heating temperature of the extruder was set at 250 ° C., and the extrusion speed was set so that the charge was discharged 2 minutes after the charge. The urethane resin A and DEA are mixed at a mixing ratio of urethane resin A / diethanolamine (hereinafter, DEA) = 3/1 into an extruder to perform a decomposition treatment (primary treatment) by kneading, and the discharged material to be treated is heated to 200 ° C. After keeping the temperature in the reaction vessel for 30 minutes, the urethane resin decomposed product was naturally cooled (secondary treatment) at 20 ° C. every 10 minutes (secondary treatment). The time required to transfer the object from the extruder to the reaction vessel was several minutes, and the ΔZ value during that time was ignored here. The Z value of the resin decomposition product after the secondary treatment was 2.94, and the viscosity was 7,800 mPa · s (60 ° C.). This decomposed product was taken little by little, and further placed in an oven at 175 ° C., respectively, and subjected to a decomposition treatment by heating for the time shown in Table 2 (tertiary treatment).
[0060]
The resulting urethane resin decomposed product was mixed with a raw material polyol (SU-264) at a ratio of 10% by weight, and was added with isocyanate (Cosmonate T-80) to foam, thereby performing urethane regeneration.
[0061]
For epoxy regeneration, the urethane resin decomposition product obtained above was mixed with a bisphenol A type epoxy resin (EP4100E, manufactured by Asahi Denka Co., Ltd.) at a weight ratio of 1: 1 and reacted at 150 ° C. A recycled epoxy resin was obtained.
[0062]
Table 2 shows the results. In addition, the viscosity in a table | surface is a value in 60 degreeC of a urethane resin decomposition product. Regarding urethane regeneration, ○ indicates that it could be reproduced without any problem, Δ indicates that it had trouble in reproduction, and X indicates that it could not be reproduced. Regarding epoxy regeneration, those that could be regenerated without any problems were marked with ○, those that could be regenerated without any problems with particularly high glass transition temperature, ◎, those that had trouble with the regeneration, and those that could not be regenerated were indicated with x. .
[0063]
It was confirmed that the urethane resin decomposed product having a Z value in the range of 5 to 25 generally had a low viscosity. In addition, it was confirmed that the urethane resin could be well regenerated in that range. When the Z value was around 20, black solids began to precipitate in the resin decomposition product, and when the Z value was 25 or more, the presence thereof became remarkable, which hindered urethane regeneration. In the regeneration of epoxy, when the Z value was in the range of 5 or less, the viscosity of the resin decomposition product was so high that mixing with the epoxy resin was difficult, but the epoxy resin could be regenerated. When the Z value was in the range of 5 or more and 25 or less, the viscosity of the resin decomposition product was lowered and workability was improved, and the highest glass transition temperature was exhibited when the Z value was around 10. Even when the Z value was in the range of 20 or more, the resin decomposition product reacted with the epoxy resin and was cured, but the appearance was poor because a black solid component was mixed.
[0064]
[Table 2]
Figure 2004292661
(Examples 2 to 4)
Decomposition treatment of urethane resin A under the same conditions as in Example 1 except that the treatment temperature of the tertiary treatment was changed to 200 ° C. (Example 2), 225 ° C. (Example 3) or 250 ° C. (Example 4), A recycled urethane resin and a recycled epoxy resin were prepared. The results are shown in Tables 3 to 5 (Table 3: Example 2, Table 4: Example 3, Table 5: Example 4). At any temperature, when the Z value was in the range of 5 to 25, the viscosity of the urethane resin decomposed product was generally low, and it was confirmed that the urethane resin or epoxy resin could be satisfactorily regenerated.
[0065]
[Table 3]
Figure 2004292661
[Table 4]
Figure 2004292661
[Table 5]
Figure 2004292661
(Example 5)
In an extruder having the same settings as in Example 1, the mixing ratio of urethane resin A / DEA was changed to 4/1, and urethane resins A and DEA were charged and subjected to decomposition treatment (primary treatment) to obtain a liquid object. Got. The Z to be processed was 2.94 and the viscosity was about 50,000 mPa · s. A small amount of the object to be treated was taken, placed in an oven at 200 ° C., and decomposed by heating again for the time shown in Table 6 (secondary treatment) to obtain a urethane resin decomposed product. Each of them was mixed with the raw material polyol at a ratio of 10% by weight, and isocyanate was added thereto in the same manner as in Example 1 to mix a regenerated urethane resin or an epoxy resin at a weight ratio of 1: 1, and then heated to 150 ° C. Upon heating, a regenerated epoxy resin was obtained. Table 6 shows the results. When the Z value was in the range of 5 to 25, the viscosity of the urethane resin decomposed product was generally low, and it was confirmed that the urethane resin or epoxy resin could be favorably regenerated.
[0066]
[Table 6]
Figure 2004292661
(Example 6)
Using an extruder having the same settings as in Example 1, urethane resin A and MEA were mixed at a ratio of urethane resin A / monoethanolamine (hereinafter referred to as MEA) of 3/1 and subjected to a decomposition treatment (primary treatment) to obtain a liquid An object to be treated was obtained. The Z value of this object was 2.94, and the viscosity at 60 ° C. was about 3100 mPa · s. A small amount of the object to be treated was placed in an oven at 200 ° C. and subjected to a decomposition treatment by heating for the time shown in Table 7 (secondary treatment) to obtain a urethane resin decomposition product. These were mixed with the starting polyol at a ratio of 10% by weight and mixed with the isocyanate in the same manner as in Example 1 to obtain a regenerated urethane resin or an epoxy resin at a weight ratio of 1: 1. To obtain a regenerated epoxy resin. Table 7 shows the results. When the Z value of the resin decomposition product is in the range of 5 to 25, the viscosity of the urethane resin decomposition product is generally low, and it has been confirmed that the urethane resin or epoxy resin can be favorably regenerated.
[0067]
[Table 7]
Figure 2004292661
(Example 7)
In the same extruder as in Example 1, urethane resin A and MEA were mixed at a ratio of urethane resin A / MEA = 4/1 and subjected to a decomposition treatment to obtain a liquid object to be treated (primary treatment). The Z value of this object was 2.94, and the viscosity at 60 ° C. was about 4900 mPa · s. A small amount of the object to be treated was taken, placed in an oven at 200 ° C., and decomposed by heating for the time shown in Table 8 (secondary treatment) to obtain urethane resin decomposed products. Each of them was mixed with the raw material polyol at a ratio of 10% by weight and added with isocyanate in the same manner as in Example 1, and then mixed with a regenerated urethane resin or an epoxy resin at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. Table 8 shows the results. When the Z value was in the range of 5 to 25, the viscosity of the urethane resin decomposed product was generally low, and it was confirmed that the urethane resin or epoxy resin could be favorably regenerated.
[0068]
[Table 8]
Figure 2004292661
(Example 8)
In an extruder having the same settings as in Example 1, urethane resin A and MEA were mixed at a ratio of urethane resin A / MEA = 5.5 / 1 and subjected to decomposition treatment to obtain a liquid object to be treated (primary treatment). ). The Z value of this object was 2.94, and the viscosity at 60 ° C. was about 21500 mPa · s. A small amount of the object to be treated was placed in an oven at 200 ° C. and subjected to a decomposition treatment by heating for the time shown in Table 9 (secondary treatment) to obtain a urethane resin decomposition product. Each of them was mixed with the raw material polyol at a ratio of 10% by weight and added with isocyanate in the same manner as in Example 1, and then mixed with a regenerated urethane resin or an epoxy resin at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. Table 9 shows the results. When the Z value is in the range of 10 to 25, the viscosity of the urethane resin decomposed product is generally low, and it has been confirmed that the urethane resin and the epoxy resin can be favorably regenerated.
[0069]
[Table 9]
Figure 2004292661
(Example 9)
Using an extruder having the same settings as in Example 1, urethane resin A and MEA were mixed at a ratio of urethane resin A / MEA = 7/1 and subjected to decomposition treatment to obtain a liquid object to be processed. The Z value of the object was 2.94, and the viscosity at 60 ° C. was about 38,700 mPa · s. A small amount of the object to be treated was taken, placed in an oven at 200 ° C., and decomposed by heating for the time shown in Table 10 (secondary treatment) to obtain a urethane resin decomposed product. These were mixed with the starting polyol at a ratio of 10% by weight and mixed with the isocyanate in the same manner as in Example 1 to obtain a regenerated urethane resin or an epoxy resin at a weight ratio of 1: 1. To obtain a regenerated epoxy resin. Table 10 shows the results. When the Z value is in the range of 10 to 30, the viscosity of the urethane resin decomposed product is generally low, and it has been confirmed that the urethane resin or epoxy resin can be satisfactorily regenerated.
[0070]
[Table 10]
Figure 2004292661
(Example 10)
Using an extruder having the same settings as in Example 1, urethane resin A and MEA were mixed at a ratio of urethane resin A / MEA = 2/1 and subjected to decomposition treatment to obtain a liquid object to be treated (primary treatment). The Z value of this object was 2.94, and the viscosity at 60 ° C. was about 2560 mPa · s. A small amount of the object to be treated was taken, placed in an oven at 200 ° C., and subjected to decomposition treatment by heating for the time shown in Table 11 (secondary treatment) to obtain a urethane resin decomposition product. Each of these was mixed with the raw material polyol at a ratio of 10% by weight and the isocyanate was added thereto in the same manner as in Example 1, and the regenerated urethane resin or the epoxy resin was mixed at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. Table 11 shows the results. When the Z value was in the range of 3 to 15, the viscosity of the urethane resin decomposed product was generally low, and it was confirmed that the urethane resin or epoxy resin could be favorably regenerated.
[0071]
[Table 11]
Figure 2004292661
(Example 11)
In an extruder having the same settings as in Example 1, urethane resin A and HMDA were mixed and decomposed at a ratio of urethane resin A / hexamethylenediamine (hereinafter, HMDA) of 2/1 to obtain a liquid processed object. Was. The Z value of the object was 2.94, and the viscosity at 60 ° C. was about 3860 mPa · s. A small amount of this decomposed product was taken, placed in an oven at 200 ° C., and decomposed by heating for the time shown in Table 12 (secondary treatment) to obtain a urethane resin decomposed product. Each of these was mixed with the raw material polyol at a ratio of 10% by weight and the isocyanate was added thereto in the same manner as in Example 11, and the regenerated urethane resin or the epoxy resin was mixed at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. Table 12 shows the results. When the Z value was in the range of 3 to 15, the viscosity of the urethane resin decomposed product was generally low, and it was confirmed that the urethane resin or epoxy resin could be favorably regenerated.
[0072]
[Table 12]
Figure 2004292661
(Example 12)
Using an extruder having the same settings as in Example 1, urethane resin A and HMDA were mixed at a ratio of urethane resin A / HMDA = 3/1 and subjected to a decomposition treatment to obtain a liquid object to be treated (primary treatment). The Z value of this object was 2.94, and the viscosity at 60 ° C. was about 7100 mPa · s. A small amount of the object to be treated was placed in an oven at 200 ° C. and subjected to decomposition treatment by heating for the time shown in Table 13 (secondary treatment) to obtain a urethane resin decomposition product. Each of these was mixed with the raw material polyol at a ratio of 10% by weight and the isocyanate was added thereto in the same manner as in Example 1, and the regenerated urethane resin or the epoxy resin was mixed at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. Table 13 shows the results. When the Z value was in the range of 5 to 25, the viscosity was generally low, and it was confirmed that the urethane resin and the epoxy resin could be well reproduced.
[0073]
[Table 13]
Figure 2004292661
(Example 13)
Using an extruder having the same settings as in Example 1, urethane resin A, DEA and PEG were mixed and decomposed at a ratio of urethane resin A / DEA / polyethylene glycol # 200 (hereinafter, PEG200) = 3/1 / 0.5. It processed and obtained the liquid to-be-processed object (primary processing). The Z value of this object was 2.94, and the viscosity at 60 ° C. was about 4500 mPa · s. A small amount of the object to be treated was taken, placed in an oven at 200 ° C., and decomposed by heating for the time shown in Table 14 (secondary treatment) to obtain a urethane resin decomposed product. Each of these was mixed with the raw material polyol at a ratio of 10% by weight and the isocyanate was added thereto in the same manner as in Example 1, and the regenerated urethane resin or the epoxy resin was mixed at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. Table 14 shows the results. When the Z value was in the range of 5 to 25, the viscosity of the urethane resin decomposed product was generally low, and it was confirmed that the urethane resin or epoxy resin could be favorably regenerated. However, the glass transition temperature of the epoxy resin was lower than those of Examples 1 to 4 in which PEG200 was not added.
[0074]
[Table 14]
Figure 2004292661
(Example 14)
In an extruder having the same settings as in Example 1, urethane resin A, MEA and PEG were mixed at a ratio of urethane resin A / MEA / PEG200 = 5.5 / 1 / 0.5 to be subjected to a decomposition treatment to obtain a liquid coating. A processed product was obtained (primary treatment). The Z value of this object was 2.94, and the viscosity at 60 ° C. was about 12,500 mPa · s. A small amount of the object to be treated was placed in an oven at 200 ° C. and subjected to a decomposition treatment by heating for the time shown in Table 15 (secondary treatment) to obtain a urethane resin decomposed product. Each of these was mixed with the raw material polyol at a ratio of 10% by weight and the isocyanate was added thereto in the same manner as in Example 1, and the regenerated urethane resin or the epoxy resin was mixed at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. Table 15 shows the results. When the Z value is in the range of 10 to 30, the viscosity of the urethane resin decomposed product is generally low, and it has been confirmed that the urethane resin or epoxy resin can be satisfactorily regenerated. However, the glass transition temperature of the epoxy resin was lower than that of Example 8 in which PEG200 was not added.
[0075]
[Table 15]
Figure 2004292661
(Examples 15 to 17)
In an extruder having the same setting as in Example 1, urethane resin B / DEA was set at a ratio of 2/1 (Example 15), 3/1 (Example 16) or 5/1 (Example 17). And DEA were mixed and decomposed to obtain a liquid object to be treated (primary treatment). The Z value of this object was 2.94. A small amount of the object to be treated is taken, placed in a 200 ° C. oven, and decomposed by heating for the time shown in Tables 16 to 18 (Table 16: Example 15, Table 17: Example 16, Table 18: Example 17). The treatment was performed (secondary treatment) to obtain a urethane resin decomposition product. Each of these was mixed with the raw material polyol at a ratio of 10% by weight and the isocyanate was added thereto in the same manner as in Example 1, and the regenerated urethane resin or the epoxy resin was mixed at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. The results are shown in Tables 16 to 18, respectively. When the Z value is in the above-mentioned appropriate range, the viscosity of the urethane resin decomposed product is generally low, and it has been confirmed that the urethane resin or epoxy resin can be satisfactorily regenerated.
[0076]
[Table 16]
Figure 2004292661
[Table 17]
Figure 2004292661
[Table 18]
Figure 2004292661
(Examples 18 to 20)
Using an extruder having the same settings as in Example 1, the urethane resin C / DEA was set at a ratio of 2/1 (Example 18), 3/1 (Example 19) or 5/1 (Example 20). And DEA were mixed and decomposed to obtain a liquid object to be treated (primary treatment). The Z of the object to be treated was 2.94 in all of Examples 18 to 20. A small amount of the object to be treated is taken, put into a 200 ° C. oven, and decomposed by heating for the time shown in Tables 19 to 21 (Table 19: Example 18, Table 20: Example 19, Table 21: Example 20). (Secondary treatment) to obtain a urethane resin decomposition product. Each of them was mixed with the raw material polyol at a ratio of 10% by weight and added with isocyanate in the same manner as in Example 1, and then mixed with a regenerated urethane resin or an epoxy resin at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. The results are shown in Tables 19 to 21, respectively. When the Z value is in the appropriate range, the viscosity of the urethane resin decomposed product is generally low, and it has been confirmed that the urethane resin or epoxy resin can be satisfactorily regenerated.
[0077]
[Table 19]
Figure 2004292661
[Table 20]
Figure 2004292661
[Table 21]
Figure 2004292661
(Examples 21 to 23)
In an extruder having the same setting as in Example 1, a nullate resin / DEA = 2/1 (Example 21), a 3/1 (Example 22) or a 5/1 (Example 23) ratio of a nullate resin and DEA. Were mixed and decomposed (primary treatment) to obtain a liquid object to be treated. The Z value of the object to be processed was 2.94 in all of Examples 21 to 23. A small amount of the object to be treated is taken, placed in a 200 ° C. oven, and decomposed by heating for the time shown in Tables 22 to 24 (Table 22, Example 21, Table 23, Example 22, Table 24, Example 23). (Secondary treatment) to obtain a degraded nurate resin. Each of them was mixed with the raw material polyol at a ratio of 10% by weight and added with isocyanate in the same manner as in Example 1, and then mixed with a regenerated urethane resin or an epoxy resin at a weight ratio of 1: 1. Upon heating, a regenerated epoxy resin was obtained. The results are shown in Tables 22 to 24, respectively.
[0078]
When the Z value is in the above-mentioned appropriate range, the viscosity of the decomposed product of the nurate resin is generally low, and it has been confirmed that the urethane resin and the epoxy resin can be satisfactorily regenerated.
[0079]
[Table 22]
Figure 2004292661
[Table 23]
Figure 2004292661
[Table 24]
Figure 2004292661
Table 25 shows the summary of Examples 1 to 23. It should be noted that the “value of Z suitable for reproduction” in the table is a value determined from the evaluation of the result and may include an error or the like, and it is needless to say that it is not absolute. In any of the urethane resin decomposition treatments, 3 ≦ Z ≦ 15 when the urethane resin is less than 2.5 parts by weight per 1 part by weight of the decomposing agent, and 5 ≦ Z ≦ 25 when the urethane is 2.5 to 5 parts by weight. When the urethane content exceeds 5 parts by weight, it is confirmed that the condition suitable for reproduction is satisfied when 10 ≦ Z ≦ 30.
[0080]
[Table 25]
Figure 2004292661
(Example 24)
The urethane resin A is crushed with a glass rod to facilitate heat transmission, and the urethane resin A and DEA are put in a test tube at a mixing ratio of urethane resin A / DEA = 3/1, and heated in a 200 ° C. oil bath. To perform a decomposition process. The time during which the urethane resin A was confirmed to be liquid by visual observation was about 5 minutes. At this time, since the urethane resin decomposed liquid was uniform, it was considered that the urethane resin decomposed product was decomposed uniformly.
[0081]
The same operation as the above-described decomposition treatment was repeated except that the time from oil bath introduction to removal was changed as shown in Table 26, and the viscosity of the obtained urethane resin decomposition product was measured. The molecular weight distribution of the decomposed product having the lowest viscosity was measured using gel permeation chromatography (GPC). The results are shown in Table 26. In addition, the molecular weight in the table is a molecular weight in terms of polystyrene, and is different from an actual molecular weight. According to the results in Table 26, the viscosity exhibited the lowest value near the range where the Z value was 5 to 20, and the formation of many carbides was confirmed when the Z value was 25 or more.
[0082]
[Table 26]
Figure 2004292661
(Comparative Example 1)
200 g of diethanolamine was placed in a 1000 ml flask, heated using a 200 ° C. oil bath, and 600 g of a urethane resin was gradually added thereto to perform a decomposition treatment. The time required until the completion of the introduction of all the urethane resins was 10 and a half hours, and heating was continued in the oil bath for another 30 minutes after the completion of the introduction. The Z value of the decomposed product of the urethane resin was in the range of 1.25 to 27.5, and among them, the Z value in the range of 5 to 25 was 76%. Many carbonized solid components were found in the urethane resin decomposition product. The viscosity was 3800 mPa · s (60 ° C.), which was higher than those of Examples 1 to 4 and Example 24. The molecular weight distribution was in a wide range of 10,000 or less, and the number average molecular weight was 1,900.
[0083]
A part of the obtained urethane resin decomposed product was mixed with the raw material polyol at a ratio of 10% by weight, and isocyanate (Cosmonate T-80) was added to foam the product. The cell was rough and could not be reproduced properly. Further, when the remaining portion of the urethane resin decomposed product was mixed with the bisphenol A type epoxy resin at a weight ratio of 1: 1 and reacted at 150 ° C., a regenerated epoxy resin was obtained, but the appearance was poor because it contained many carbides. The glass transition temperature was lower than the resins prepared in Examples 1 to 4 and Example 24.
[0084]
(Example 25)
The urethane resin A and the MEA were introduced into a 250 ° C. extruder at a mixing ratio of urethane resin A / MEA = 4/1 to perform a decomposition treatment (primary treatment). For 15 minutes to further disassemble. At this time, the Z value of the object to be processed was about 8.5. Thereafter, heat exchange was performed with the cooling liquid to cool the temperature of the object to be treated to 100 ° C. in two minutes, and the obtained urethane resin decomposition product was collected in a drum. The obtained urethane resin decomposed product was mixed with a polyol as a raw material at a ratio of 10% by weight, and foamed by adding isocyanate (Cosmonate T-80), whereby a good foam was obtained. Further, the urethane resin decomposed product was mixed with the bisphenol A type epoxy resin at a weight ratio of 1: 1 and reacted at 150 ° C. to obtain a regenerated epoxy resin, and the glass transition temperature was 100 ° C. or higher.
[0085]
(Example 26)
The urethane resin A and MEA were charged into a 250 ° C. extruder at a mixing ratio of urethane resin A / MEA = 4/1, and a decomposition treatment was performed for a residence time of 2 minutes (primary treatment). The to-be-processed material was collected in the drum which was made, and the to-be-processed material was filled up to the drum in 10 minutes. The temperature of the object in the drum was 190 to 200 ° C. It took 2 hours for the object in the drum to cool to 180 ° C. and 6 hours for cooling to 140 ° C. When the value of Z at this time was calculated, Z = 10.8 to 11.2 as shown in Table 27. The obtained urethane resin decomposed product was mixed with a polyol as a raw material at a ratio of 10% by weight, and foamed by adding isocyanate (Cosmonate T-80), whereby a good foam was obtained. Also, by mixing the obtained urethane resin decomposed product with a bisphenol A type epoxy resin at a weight ratio of 1: 1 and reacting at 150 ° C., a regenerated epoxy resin can be obtained, and its glass transition temperature is 100 ° C. or higher. Met.
[0086]
[Table 27]
Figure 2004292661
[0087]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, since the decomposition conditions of the urethane resin for obtaining the urethane resin decomposition product which can be easily regenerated into a urethane resin or an epoxy resin can be easily determined and a good regenerated resin is provided, the recycling of the urethane resin is promoted. can do.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an extruder-type apparatus for performing a primary treatment of a urethane resin decomposition treatment method according to the present invention.
FIG. 2 is a schematic configuration diagram showing an embodiment of a secondary processing device that performs secondary processing of the urethane resin processing method according to the present invention.
FIG. 3 is a schematic configuration diagram showing another embodiment of a secondary processing device that performs secondary processing of the urethane resin processing method according to the present invention.
FIG. 4 is a schematic configuration diagram showing still another embodiment of a secondary processing device that performs secondary processing of the urethane resin processing method according to the present invention.
FIG. 5 is a schematic configuration diagram showing still another embodiment of a secondary processing device for performing secondary processing of the urethane resin processing method according to the present invention.
[Explanation of symbols]
1 extruder, 3 cylinder part, 5 screw,
7 input port 7, 9 discharge pipe, 11 supply port
11, 21, 31, 41 Secondary treatment device

Claims (4)

硬質ウレタン樹脂及び分解剤を押出機に投入し加熱して該硬質ウレタン樹脂の分解を進行させる分解処理工程と、
前記硬質ウレタン樹脂と前記分解剤との割合、加熱温度及び分解処理時間に基づいて前記硬質ウレタン樹脂の分解が十分であるか否かを判断する判断工程と、
前記判断工程において前記硬質ウレタン樹脂の分解が十分でないと判断した時に、前記分解処理工程で得られる被処理物を加熱する補助加熱工程と
を有することを特徴とする硬質ウレタン樹脂の分解処理方法。
A decomposition treatment step in which the hard urethane resin and the decomposing agent are charged into an extruder and heated to progress the decomposition of the hard urethane resin,
A determination step of determining whether or not the decomposition of the hard urethane resin is sufficient based on the ratio of the hard urethane resin and the decomposing agent, a heating temperature and a decomposition time,
An auxiliary heating step of heating an object to be processed obtained in the decomposition step when it is determined in the determination step that the decomposition of the hard urethane resin is not sufficient.
前記判断工程は、
温度T[゜K]における定数kを下記のように設定する工程と、
k=2 (300<T)
k=1 (270<T≦300)
k=1/3 (240<T≦270)
k=1/10 (210<T≦240)
k=1/40 (180<T≦210)
k=1/200(140≦T≦180)
k=0 (T<140)
前記分解処理工程において温度T[゜K]で処理される処理時間ΔH[時間]及び前記定数kから、温度T[゜K]におけるパラメータΔZ=k×ΔH×100を算出し、前記分解処理工程の全処理温度についてパラメータΔZを加算して合計値Zを算出する工程と、
前記分解処理工程における分解剤1重量部に対する硬質ウレタン樹脂の重量部数Nに応じて、前記合計値Zを下記式で示すZの適正範囲と比較する工程と、
N<2.5の場合 3≦Z≦15
2.5≦N≦5の場合 5≦Z≦25
5<Nの場合 10≦Z≦30
前記合計値Zが前記Zの適正範囲未満である場合に、前記硬質ウレタン樹脂の分解が十分でないと判断する工程と
を有する請求項1記載の分解処理方法。
The determining step includes:
Setting a constant k at the temperature T [゜ K] as follows:
k = 2 (300 <T)
k = 1 (270 <T ≦ 300)
k = 1/3 (240 <T ≦ 270)
k = 1/10 (210 <T ≦ 240)
k = 1/40 (180 <T ≦ 210)
k = 1/200 (140 ≦ T ≦ 180)
k = 0 (T <140)
A parameter ΔZ T = k × ΔH T × 100 at the temperature T [゜ K] is calculated from the processing time ΔH T [time] and the constant k in the decomposition processing step at the temperature T [゜ K]. Calculating a total value Z by adding a parameter ΔZ T for all processing temperatures in the decomposition processing step;
A step of comparing the total value Z with an appropriate range of Z represented by the following formula according to the number N of parts by weight of the hard urethane resin with respect to 1 part by weight of the decomposing agent in the decomposition treatment step;
When N <2.5 3 ≦ Z ≦ 15
2.5 ≦ N ≦ 5 5 ≦ Z ≦ 25
When 5 <N 10 ≦ Z ≦ 30
2. The method according to claim 1, further comprising: judging that the hard urethane resin is not sufficiently decomposed when the total value Z is less than an appropriate range of Z.
前記分解剤は、モノアルカノールアミンまたはジアルカノールアミンであることを特徴とする請求項1又は2に記載の分解処理方法。The method according to claim 1, wherein the decomposing agent is a monoalkanolamine or a dialkanolamine. ウレタン樹脂及び分解剤を押出機に投入し加熱して該ウレタン樹脂の分解を進行させる分解処理工程と、
前記分解処理工程におけるウレタン樹脂と分解剤との割合、加熱温度及び分解処理時間に基づいて前記ウレタン樹脂の分解が十分であるか否かを判断する判断工程と、
前記判断工程において前記ウレタン樹脂の分解が十分でないと判断した時に、前記分解処理工程で得られる被処理物を加熱する補助加熱工程と、
前記分解処理工程及び状況に応じて行われる補助加熱工程を経た被処理物にイソシアネート化合物又はエポキシ基を有する化合物を配合して再生樹脂を得る工程と
を有することを特徴とする再生樹脂の製造方法。
A decomposition treatment step in which a urethane resin and a decomposing agent are charged into an extruder and heated to promote decomposition of the urethane resin,
A determining step of determining whether the urethane resin has been sufficiently decomposed based on the ratio of the urethane resin and the decomposing agent in the decomposition step, a heating temperature and a decomposition time,
When it is determined that the urethane resin is not sufficiently decomposed in the determining step, an auxiliary heating step of heating the object to be processed obtained in the decomposing step,
Blending an isocyanate compound or a compound having an epoxy group with the object to be processed after the decomposition treatment step and the auxiliary heating step performed depending on the situation to obtain a recycled resin. .
JP2003087772A 2003-03-27 2003-03-27 Method for decomposing hard urethane resin and method for producing recycled resin Expired - Fee Related JP3895293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087772A JP3895293B2 (en) 2003-03-27 2003-03-27 Method for decomposing hard urethane resin and method for producing recycled resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087772A JP3895293B2 (en) 2003-03-27 2003-03-27 Method for decomposing hard urethane resin and method for producing recycled resin

Publications (2)

Publication Number Publication Date
JP2004292661A true JP2004292661A (en) 2004-10-21
JP3895293B2 JP3895293B2 (en) 2007-03-22

Family

ID=33402082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087772A Expired - Fee Related JP3895293B2 (en) 2003-03-27 2003-03-27 Method for decomposing hard urethane resin and method for producing recycled resin

Country Status (1)

Country Link
JP (1) JP3895293B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257356A (en) * 2005-03-18 2006-09-28 Toshiba Corp Decomposition method for urethane resin
JP2007091861A (en) * 2005-09-28 2007-04-12 Toshiba Corp Resin composition and regenerated resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257356A (en) * 2005-03-18 2006-09-28 Toshiba Corp Decomposition method for urethane resin
JP2007091861A (en) * 2005-09-28 2007-04-12 Toshiba Corp Resin composition and regenerated resin

Also Published As

Publication number Publication date
JP3895293B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
Behrendt et al. The chemical recycling of polyurethanes
US20020171164A1 (en) Process and apparatus for making a thermoset foam
JPH0447703B2 (en)
EP3794065A1 (en) Improved method of recycling polyurethane materials
JPH05163325A (en) Method of preparing molding made of polyurethane form and moling obtained thus
JP2024501461A (en) How to recover raw materials from polyurethane foam
JP2004292661A (en) Method of decomposition treatment of rigid urethane resin and method for producing regenerated resin
US7138435B2 (en) Method of decomposing thermosetting resin, apparatus and heat control program
JP4012026B2 (en) Foaming plastic liquefaction apparatus and liquefaction method
EP1367089B1 (en) Method of treating urethane resin, composition for recycling same, and regeneration method
JP2005336500A (en) Method for decomposing foamed urethane resin and method for producing resin composition
JP4282211B2 (en) Method for decomposing urethane resin and method for producing resin composition
JP3851798B2 (en) Decomposition method of thermosetting resin, decomposition apparatus thereof, and control program thereof
JP4319298B2 (en) Decomposition and recovery method of polyurethane resin
JP3895332B2 (en) Urethane resin recovery method and urethane resin regeneration method
JP2004168956A (en) Method for treating urethane resin, decomposition product of urethane resin, method for producing regenerated resin and regenerated resin
JP3836409B2 (en) Resin composition
KR101411439B1 (en) Decomposition products of polyurethane and decomposition process of polyurethane
JPS6332085B2 (en)
JP4039680B2 (en) Urethane resin treatment method, urethane resin decomposition product, recycled resin production method, and recycled resin
JP3993056B2 (en) Method for preparing urethane resin decomposition composition, powder material for molding and method for producing molding material
JP3833586B2 (en) Resin composition
JP2008231181A (en) Resin composition, method of decomposing urethane resin and urethane resin decomposition apparatus
EP4249548A1 (en) Process for the preparation of polyurethane foam bodies with recycling of particles in the form of a depolymerisate
JP2006096783A (en) Method for producing regenerated resin and method for producing molding material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

LAPS Cancellation because of no payment of annual fees