JP2004292287A - Method of manufacturing glass optical element - Google Patents

Method of manufacturing glass optical element Download PDF

Info

Publication number
JP2004292287A
JP2004292287A JP2003090328A JP2003090328A JP2004292287A JP 2004292287 A JP2004292287 A JP 2004292287A JP 2003090328 A JP2003090328 A JP 2003090328A JP 2003090328 A JP2003090328 A JP 2003090328A JP 2004292287 A JP2004292287 A JP 2004292287A
Authority
JP
Japan
Prior art keywords
glass material
glass
molding
present
simulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090328A
Other languages
Japanese (ja)
Other versions
JP4256190B2 (en
Inventor
Koichi Sato
浩一 佐藤
Yasuhiro Fujiwara
康裕 藤原
Takashi Igari
隆 猪狩
Shigeaki Omi
成明 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003090328A priority Critical patent/JP4256190B2/en
Publication of JP2004292287A publication Critical patent/JP2004292287A/en
Application granted granted Critical
Publication of JP4256190B2 publication Critical patent/JP4256190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of continuously and stably manufacturing a high precision optical glass element having excellent appearance quality. <P>SOLUTION: The method of continuously manufacturing the glass optical element is a method for press-molding the glass base materials softened by heating successively using a molding die. In the method, a simulation press molding is carried out using a glass base material (simulation glass base material) worked into a nearly the same shape and composed of a glass different from the regular glass base material under a condition equal to the press molding condition before the regular glass base material is press molded to obtain the desired optical element and after that the regular glass base material is molded. The simulation press molding is carried out using the simulation glass base material under the molding condition equal to the press molding condition using the regular glass base material every time when the press molding of the regular glass base material is carried out the prescribed number of times. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形後に研削研磨をすることなしにガラスレンズなどのガラス光学素子を製造する方法に関する。特に、本発明は、高い外観品質のガラス光学素子を安定して製造することが可能なガラス光学素子の製造方法に関する。
【0002】
【従来の技術】
ガラスレンズなどのガラス光学素子を、プレス成形後に研削研磨をすることなしに製造する方法が広く実用されている。しかし、プレス成形するガラス素材の種類によっては成形面との融着やワレが発生し易い場合がある。このように、融着やワレが発生し易いガラス素材を押圧成形する場合、融着やカン・ワレを防止するために、ガラス素材表面および型表面に対してコーティングを設けることが種々提案されている。
【0003】
例えば、特許文献1(特公平2−31012号公報)には、ガラスと型の相互に対向する表面のうち少なくとも一方に炭素膜を形成することにより、ガラスと型との融着を防止する方法が記載されている。特許文献2(特開2002−348127号公報)には、成形用ガラス素材表面にMn、Fe、Co、Ni、Crより選ばれた1種以上の元素からなる酸化物をコートすることにより、ガラスと型との融着を防止する方法が記載されている。また、特許文献3(特許第2583593号公報)には、成形するガラス素材よりも転移点の高いガラス硝材にて、成形型の温度を変えずに所定数成形することよる、成形型の清浄方法が記載されている。
【0004】
【特許文献1】特公平2−31012号公報
【特許文献2】特開2002−348127号公報
【特許文献3】特許第2583593号公報
【0005】
【発明が解決しようとする課題】
特許文献1に記載の方法によれば、成形型へのガラス融着を抑制する上で、一定の効果が見られる。しかし、成形サイクルタイムを短くした成形の場合、外観品質の維持などの条件を全て満足するガラス光学素子は得られない。例えば、5000ショットを越える連続プレスにおいて、カン・ワレの発生やガラス光学素子表面にクモリやキズが生じて外観品質が悪化することが避けられなかった。特に、成形された光学素子が離型時に割れると、工程を止めて破片を除去する必要が生じるなど、生産上の大きな支障となる。
【0006】
特許文献2に記載の技術では、ガラス素材表面に酸化物をコートした場合、成形品表面の酸化物膜を剥がす工程が新たに必要になり、コスト高になるなどの問題があった。
特許文献3に記載の技術では、転移点が高いガラス素材を、低い温度の成形型によって成形を行う必要がある。そのため、型面や離型膜面にキズなどの物理的ダメージが発生し、以後の成形において外観品質の低下や離型膜消耗の悪化などの問題が発生してしまう。
【0007】
そこで本発明は、上記問題点に鑑み、外観品質の優れた高精度な光学ガラス素子を連続的に安定して製造できる方法を提供することを目的とする。特に、割れやすい硝種からなるガラスを用いてもカン・ワレを防止しつつ外観品質の優れた高精度な光学ガラス素子を製造できる方法を提供することを目的とする。さらに、本発明は、成形型より高温のガラス素材を成形型に供給し、押圧成形を行う、いわゆる非等温プレスであって、かつ比較的高温(例えば、Tg付近)で離型する成形方法であっても、プレス成形を安定して実施して、高精度な光学ガラス素子を連続的に製造できる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者による詳細な解析調査の結果、以下のことが明らかになった。
ガラス素材を押圧成形するために使用する成形型には、型加工後の表面、又は型に離型膜を成膜した後の表面に、加工や成膜によって強制的に切断された結合など、物理的又は化学的に活性の高い構造が存在している。また、押圧成形休止後の成形型の成形面にも、型の降温、揮発などの影響でこうした活性の高い構造が再生されることがある。そのため、成形初期の型もしくは離型膜表面は、ガラス素材との間で反応を起こし易い。その結果、型面もしくは型面上に成膜した離型膜の一部が消耗したり、ガラス素材が型面もしくは型面上に成膜した離型膜に融着し、ダメージを受ける傾向があり、この傾向は、成形初期に特に大きい。その結果、以後の連続的な成形において、この成形初期に、型表面や離型膜に生じたダメージを起点として、成形される光学素子の外観品質の低下、カン・ワレの発生が引き起こされる。
【0009】
上記型加工後、又は型に離型膜を成膜した後の表面に関する以外に、多数のガラス素材を連続的に押圧成形すると以下の現象が見られることも明らかになった。
連続的にガラス素材を押圧成形すると、型もしくは離型膜の表面にガラス素材の成分が微量堆積し、ガラス素材との離型性が徐々に損なわれていく。その結果、ガラスが型面もしくは型面上に成膜した離型膜に融着し易くなり、型面もしくは型面上に成膜した離型膜の一部が消耗するなどのダメージを受けることがある。そして、以後の連続的な成形において、このダメージを起点として、外観品質の低下、カン・ワレの発生が引き起こされる。
【0010】
そこで、本発明の第1の態様は、
加熱軟化したガラス素材を、逐次、成形型を用いて押圧成形することにより、ガラス光学素子を連続的に製造する方法であって、
所望の光学素子を得るためのガラス素材(本ガラス素材)の押圧成形に先立ち、前記本ガラス素材とほぼ等しい形状に加工され、本ガラス素材とは異なるガラスからなるガラス素材(模擬ガラス素材)を用いて本ガラス素材の押圧成形と等しい成形条件にて模擬押圧成形を行い、
その後、本ガラス素材の押圧成形を行うことを特徴とする、
前記製造方法である。
本発明の第2の態様は、
加熱軟化したガラス素材を、逐次、成形型を用いて押圧成形することにより、ガラス光学素子を連続的に製造する方法であって、
所望の光学素子を得るためのガラス素材(本ガラス素材)の押圧成形を所定回数行うごとに、前記本ガラス素材とほぼ等しい形状に加工され、本ガラス素材とは異なるガラスからなるガラス素材(模擬ガラス素材)を用いて、本ガラス素材の押圧成形と等しい成形条件にて模擬押圧成形を行うことを特徴とする、
前記製造方法である。
【0011】
本発明の第1及び第2の態様においては、以下の態様が好ましい。
(1)本ガラス素材が、還元性又は揮発性成分を含有するガラス素材であり、模擬ガラス素材がこれらの成分を含有しないガラス素材である。
(2)前記成形条件は、成形型を所定温度に予熱し、成形型より高い温度に加熱され軟化したガラス素材を成形型に供給し、ただちに押圧成形することを含む。
(3)模擬ガラス素材は、本ガラス素材に用いるガラスの屈伏点温度±50℃の範囲に屈伏点を有するガラスからなる。
(4)本ガラス素材が、フツリン酸塩系、リン酸塩系、ホウリン酸塩系、又はホウ酸塩系ガラスからなる。
(5)本ガラス素材がガラス成分として、酸化チタン、酸化ニオブ、酸化タングステン、酸化ビスマス、塩素、及びフッ素の少なくとも1種を含むリン酸系、又はフツリン酸系ガラスからなる。
(6)模擬ガラス素材が、ケイ酸塩系、又はホウケイ酸塩系ガラスからなる。
(7)模擬ガラス素材が、着色されている。
【0012】
さらに、本発明は、着色されたガラス素材であって、加熱軟化したガラス素材を、成形型を用いて押圧成形することによりガラス光学素子を製造する方法において模擬ガラス素材として用いられるガラス素材に関する。
【0013】
以下、本発明の第1の態様について説明する。
本発明の第1の態様は、加熱軟化したガラス素材を、逐次、成形型を用いて押圧成形することにより、ガラス光学素子を連続的に製造する方法である。
本発明の第1の態様では、本ガラス素材の押圧成形に先立ち、本ガラス素材とほぼ等しい形状に加工され、本ガラス素材とは異なるガラス素材からなる模擬ガラス素材を用いて本ガラス素材の押圧成形と等しい成形条件にて模擬押圧成形を行い、その後、本ガラス素材の押圧成形を行って光学素子を連続的に成形する。
【0014】
本発明者らの検討によれば、上記した、成形初期の離型膜のダメージの発生は、成形温度およびガラス素材の組成に強く依存し、成形温度は高いほど大きいことが明らかになった。また、同じ成形温度では、成形初期のダメージの強度は、ケイ酸塩系ガラス<ホウケイ酸塩系ガラス<<ホウ酸塩系ガラス<ホウリン酸塩系ガラス<リン酸塩系ガラス<フツリン酸塩系ガラスの順となることも判明した。
【0015】
上記序列から明らかな様に、ガラス素材が、フツリン酸系ガラス、リン酸塩系ガラス、ホウリン酸塩系ガラス、ホウ酸塩系ガラスなど、リン酸塩やホウ酸塩を主成分とするガラスの場合、成形初期に型面もしくは型面上に成膜した離型膜の一部が消耗したり、ガラスが型面もしくは型面上に成膜した離型膜に融着するなどのダメージを受け易い。その結果、以後の連続的な成形において、この成形初期のダメージを起点として、外観品質の低下、カン・ワレの発生が引き起こされる。特に、フツリン酸系ガラス、リン酸塩系ガラスにおいて、この傾向が顕著である。
【0016】
特に、本ガラス素材が、例えば、ガラス成分として、Pを 12〜34%、B を0.2〜15%(モル%表示)含有するもの、特に、そのうちでもPとBの合計含有量が15〜35%であるものは、成形初期に型面もしくは型面上に成膜した離型膜の一部が消耗したり、ガラスが型面もしくは型面上に成膜した離型膜に融着するなどのダメージを受け易い。
【0017】
より具体的には、モル%で、P 12〜34%、B 0.2〜15%、Nb 0〜25%、WO 0〜40%並びにLiO、NaOおよびKOの中から選ばれる少なくとも1種のR’O 4〜45%およびBaO、ZnOおよびSrOから選ばれる少なくとも1種のRO 0〜30%(30%は含まず)を含み、かつ上記成分の合計含有量が94%以上であるガラス素材は、成形初期に型面もしくは型面上に成膜した離型膜の一部が消耗したり、ガラスが型面もしくは型面上に成膜した離型膜に融着するなどのダメージを受け易い。
【0018】
したがって、本ガラス素材が上記のようなガラスである場合、本発明の第1の態様では、成形始動時に模擬ガラス素材にて、少なくとも成形装置が安定するまで成形することにより、成形初期のダメージを緩和し、その後の継続的な成形において外観品質の悪化やカン・ワレを防ぐことができる。模擬ガラス素材は、上記序列のなかから、成形初期のダメージの強度の小さいガラス素材から選択され、本ガラス素材がフツリン酸系ガラス、リン酸塩系ガラスのようなリン酸塩系のガラスからなる場合、模擬ガラス素材は、リン酸塩を含まないガラスから選ばれることが好ましい。
【0019】
また、本ガラス素材が酸化チタン、酸化ニオブ、酸化タングステン、塩素、フッ素のいずれかを含むガラスである時にも同様に成形初期に型面もしくは型面上の離型膜にダメージを与えやすい。従って、模擬ガラス素材を用いて、少なくとも成形装置が安定するまで成形することが好ましい。このとき、模擬ガラス素材としてこれらの成分を含まないガラス素材を用いることが好ましい。、本発明の第1の態様は、特に屈折率ndが1.6以上、アッベ数νdが35以下の、高屈折率、高分散の光学ガラスを用いた本ガラス素材を押圧成形するときに、特に有効である。これらのガラス素材には、還元性の成分である、酸化チタン、酸化ニオブ、酸化タングステン、又は酸化ビスマスを含有させる場合が多い。更に、屈折率ndが1.75以上、アッベ数νdが20〜28.5の光学ガラスに有効である。
また、低屈折率、低分散ガラス光学素子を成形する場合に、揮発性成分である塩素やフッ素を含有させる場合があるがこのような本ガラス素材にも本発明は適している。
【0020】
本発明では、プレス始動時に本ガラス素材の成形条件と同様の条件で、型面もしくは型面上に成膜した離型膜にダメージを与えない模擬ガラス素材で成形操作をする。ここでいう成形条件とは、成形温度、成形圧の条件を含む。これにより、型面もしくは型面上に成膜した離型膜の表面の活性状態を大幅に低下させ、ガラスと型面もしくは型面上に成膜した離型膜との反応性や密着性が著しく低下し、離型性を向上させることができる。これは、模擬ガラス素材の成形によって、型面、又は離型膜の未結合末端など活性部位を低減させる働きをもつからであると考えられる。このため、本ガラス素材による成形時に、カン・ワレや型面への融着を防止できる。
【0021】
また、模擬ガラス素材としては、本ガラス素材とほぼ等しい形状に加工されたガラス素材を用いる。従って、模擬ガラス素材は、本ガラス素材と略同体積である。さらに、模擬ガラス素材の成形条件は本ガラス素材の成形条件と実質的に同一とする。これにより、プレス条件の変更などの工程上のロスなく、本ガラス素材へのプレス成形に移行でき、以後、安定して本ガラス素材を成形することができる。模擬ガラス素材の組成としては、前述の様に、本ガラス素材よりも成形初期のダメージ強度が小さい組成を選択する。また、模擬ガラス素材による成形回数は、型面もしくは型面上に成膜した離型膜の表面の活性状態を考慮して適宜決定でき、少なくとも成形装置が安定する(成形面の活性が低下し、またプレス条件の再現性が得られる)まで模擬ガラス素材による成形を行う。模擬ガラス素材の成形は、通常は、5回以上が好ましく、10回以上がさらに好ましい。これにより、成形型の成形面の活性状態は安定化し、所定の効果が得られるようになる。模擬ガラス素材の成形は、実質的に20回以下で充分である。
【0022】
模擬ガラス素材は、本ガラス素材の成形と同条件で成形が可能であり、かつ、カン・ワレや型面への融着の発生がなく、型面もしくは型面上に成膜した離型膜に与えるダメージが前記ガラス素材よりも少ないガラス素材から選ばれる。このような観点から、ケイ酸塩系ガラスやホウケイ酸塩系ガラスなど、ケイ酸塩を、ガラス成分として最も多く含有するものであることが好ましい。模擬ガラス素材として好ましいガラスは、例えば、SiOを30〜55wt%含有するものが好ましく、また、このうち、Bを5〜30wt%含有し、SiOとBの合計含有量が56〜70wt%であるものが好ましい。また、前述の様に、酸化チタン、酸化ニオブ、酸化タングステン、フッ素、及び塩素を含まないものであることが好ましい。
【0023】
模擬ガラス素材は、本ガラス素材に用いるガラスとほぼ同じ成形温度範囲を有するものが好ましい。これは、模擬ガラス素材を本ガラス素材と実質的に同じ成形条件で押圧成形できるからである。これにより、模擬ガラス成形後、条件変更をせずに本ガラス素材の成形を遂行できる。具体的には、模擬ガラス素材の屈伏点温度は、本ガラス素材の屈伏点温度に対し、±50℃の範囲に屈伏点(Ts)を有することが好ましい。より好ましくは、模擬ガラス素材の屈伏点温度は、本ガラス素材の屈伏点温度に対し±15℃の範囲に屈伏点(Ts)を有する。また、模擬ガラス素材のTg(転移点)も本ガラス素材のTgに対して±50℃の範囲内であることが好ましい。
【0024】
本発明の第1の態様における模擬ガラス素材のプレスは、型加工後、又は型表面への離型膜形成後、本ガラス素材のプレス成形を始動する直前に行ない、成形条件を変更せずに本ガラス素材の成形を行うことが好ましい。これは、本ガラス成型前に成形条件(温度、プレス圧力)を変更することによって、新たに成形面の活性を上げたり、ガラス素材にもたらす諸条件の再現性を損なうからである。尚、加工や成膜直後以外にも、プレス装置休止後、プレス成形の始動時にも、模擬ガラス素材のプレスを行うことにより、プレス装置安定化を図ることができる。
【0025】
次に、本発明の第2の態様について説明する。
本発明の第2の態様は、加熱軟化したガラス素材を、逐次、成形型を用いて押圧成形することにより、ガラス光学素子を連続的に製造する方法である。
本発明の第2の態様では、本ガラス素材の押圧成形を所定回数行うごとに、本ガラス素材とは異なるガラスからなる模擬ガラス素材を用いて、本ガラス素材の押圧成形と等しい成形条件にて模擬押圧成形を行う。ここでも成形条件とは、成形温度と成形圧を含む。即ち、ガラス光学素子の押圧成形の所定回数ごとに、型面もしくは型面上に成膜した離型膜に与えるダメージが本ガラス素材よりも少ない模擬ガラス素材を用いてプレス成形を行う。模擬ガラス素材によるプレス成形の回数は、型の離型性が所定の状態まで回復するまで行うことが適当である。
【0026】
模擬ガラス素材によるプレス成形によって、型面もしくは型面上に成膜した離型膜に微量堆積したガラス素材の成分を除去し、型の離型性をある程度、またはプレス成形前と同程度まで回復(リフレッシュ)させることができる。離型性が回復することで、ガラスと型面もしくは型面上に成膜した離型膜との反応性や密着性が著しく低下し、カン・ワレが防止できる。
【0027】
模擬ガラス素材は、第1の態様と同様に、本ガラス素材とほぼ等しい形状に加工されたガラス素材である。従って、模擬ガラス素材は、本ガラス素材と略同体積、略同形状であり、かつ、同条件で成形できることにより、プレス条件の変更などの工程上のロスなく、本ガラス素材へのプレス成形に移行でき、以後、安定して本ガラス素材を成形することができる。模擬ガラス素材は、本ガラス素材よりもダメージ強度が小さいガラス組成を有するガラスから選択する。また、模擬押圧成形は、本ガラス素材の押圧成形の所定回数ごとに行い、この模擬押圧成形の頻度は、例えば、本ガラス素材の押圧成形回数1000回毎が好ましく、500回毎がさらに好ましい。模擬押圧成形における、模擬ガラス素材の押圧成形の回数は、型の離型性の程度を考慮して適宜決定でき、例えば、5回以上が好ましく、10回以上がさらに好ましい。模擬ガラス素材の押圧成形の回数の上限は、特に無く、型の離型性の回復の程度を考慮して適宜決定でき、例えば、20回程度である。
【0028】
本発明の第2の態様において適用する本ガラス素材、及び模擬ガラス素材については、本発明の第1の態様と同様のものが使用できる。
【0029】
実際のガラス光学素子の製造に際しては、本発明の第1の態様及び第2の態様を併用することが好ましい。
【0030】
以下、本発明の第1の態様及び第2の態様に共通した事項について説明する。
本発明の製造方法は、加熱軟化したガラス素材を、予熱した成形型で押圧成形することによりガラス光学素子を製造する方法、又はガラス素材を、成形型に導入した状態でガラス素材と成形型を加熱し、押圧成形することによるガラス光学素子の製造方法に適用することができる。特に、ガラス素材を、成形型温度より高温に予熱した後、成形型に供給し、ただちに押圧成形を行うプレス方法の場合に好適である。例えば、ガラス粘度で、10ポアズ未満に相当する温度、好ましくは10〜10ポアズに相当する温度のガラス素材を、ガラス粘度で10〜1012ポアズに相当する温度に加熱した成形型に供給して押圧成形することができる。このとき、成形型に供給された高温のガラスと型表面の間では、瞬時に熱交換が起き、型表面、或いは型に設けられた離型膜はダメージを受けやすい状態となり、ガラス融着や離型膜消耗に起因する外観品質の悪化やカン・ワレが大きくなる傾向が強い。従って、本発明の効果が顕著に得られる。尚、ガラス素材を成形型に供給するにあたっては、ガラス素材を気流により浮上状態で搬送し、型に供給することが好ましい。加熱軟化したガラス素材は、搬送治具などとの接触により、表面欠陥を起こしやすいからである。
【0031】
特に、本発明の製造方法は、ガラス素材を気流により浮上させながら加熱することにより軟化させ、かつ加熱軟化したガラス素材を落下させることにより予熱した成形型に移送し、次いでただちに押圧成形することによりガラス光学素子を製造する方法に適用することができる。押圧成形開始後、又は開始と同時に成形されたガラス素材の冷却を開始し、Tg付近の温度で離型することができる。このとき、離型温度をガラス粘度で1012〜1013.5ポアズに相当する温度とすることが好ましい。これはサイクルタイム短縮に有利であり、本発明によりカン・ワレが抑止されるために、良品が効率よく得られるからである。
【0032】
模擬ガラス素材は、着色されていることが好ましい。模擬ガラス素材は、ガラス素材と略同体積で、かつ、同条件で成形できるので、模擬ガラス素材の成形後、連続して、ガラス素材の成形に移行することができる。この場合、模擬ガラス素材の成形品と本ガラス素材の成形品が混在する恐れがある。また、本ガラス素材と模擬ガラス素材も混在する恐れがある。したがって、模擬ガラス素材を着色させることにより、ガラス素材と模擬ガラス素材、及び、模擬ガラス素材の成形品とガラス素材の成形品とを瞬時かつ確実に区別することができることが望まれる。
【0033】
模擬ガラス素材を着色する方法としては、成形初期のダメージのない方法で、かつ、成形により消色しない方法であることが必要である。また、模擬ガラス素材の製造における装置への汚染やダメージを与えないことが好ましい。このような観点から、模擬ガラス素材を着色する方法としては、着色剤のガラス原料への添加による方法が好ましい。着色用添加剤としては、例えば、Fe、Cr、Co、Ni、Mn、Cuの酸化物が好ましく、特にFe、Cr、Niが好ましい。着色用添加剤の添加量は0.1wt%以下が好ましい。好ましくは0.005〜0.05wt%の範囲である。
【0034】
本発明は、着色されたガラス素材であって、加熱軟化したガラス素材を、成形型を用いて押圧成形することによりガラス光学素子を製造する方法において模擬ガラス素材として用いられるガラス素材を包含する。
【0035】
本発明に用いる成形型母材として、例えば、SiC、WC、TiC、TaC、BN、TiN、AlN、Si、SiO、Al 、ZrO 、W、Ta、Mo、サーメット、サイアロン、ムライト、カーボン・コンポジット(C/C)、カーボンファイバー(CF)、WC−Co合金、結晶化ガラスを含むガラス素材、ステンレス系耐熱性金属等から選ばれる材料が有効に使用できる。成形型は、成形面に離型膜を有していることが好ましい。また、離型膜としては、炭素を主成分として含有する膜が、効果とコストの点で望ましい。炭素を主成分として含有する膜としては、例えば、ダイヤモンド状炭素膜(以下、DLC)、水素化ダイヤモンド状炭素膜(以下、DLC:H)、テトラヘドラルアモルファス炭素膜(以下、ta−C)水素化テトラヘドラルアモルファス炭素膜(以下、ta−C:H)、アモルファス炭素膜(以下、a−C)、水素化アモルファス炭素膜(以下、a−C:H)等から選ばれる炭素系被膜を挙げることができる。こうした離型膜は、真空蒸着法、スパッタ法、などのほか、CVD法、DC−プラズマCVD法、RF−プラズマCVD法、マイクロ波プラズマCVD法、ECR−プラズマCVD法、光CVD法、レーザーCVD法等のプラズマCVD法、イオンプレーティング法などのイオン化蒸着法、スパッタ法、蒸着法やFCA法など、公知の方法により適宜成膜することができる。好ましくは、スパッタ法、イオンプレーティング法が用いられる。この他、離型膜としては、例えば、Si,TiAlN,TiCrN,CrN,Cr,AlN,TiN等の窒化物被膜もしくは複合多層膜または積層膜(AlN/CrN,TiN/CrN等)、Pt−Au,Pt−Ir−Au,Pt−Rh−Auなど白金を主成分とする貴金属合金被膜を含有するものも適用できる。離型膜の膜厚は、例えば、0.1nm〜1000nmであることができる。
【0036】
更に、本発明に適用するガラス素材には、その表面に離型性又は滑り性を目的として、炭素を含有する層を設けることが好ましい。炭素含有層の形成には、炭素材料を用いた蒸着法や、炭化水素の熱分解によりガラス素材表面に炭素を堆積させる方法などを適宜用いることができる。ガラス素材上の炭素含有層の膜厚は、0.1〜10nmであることが好適である。
炭素を含有する層は、本ガラス素材に設ける他、模擬ガラス素材にも設けることもできる。
【0037】
本発明の製造方法により製造される光学素子としては、例えば、レンズ、プリズム、ミラー、グレーティング、マイクロレンズ、積層型回折格子などを挙げることができ、特に制約は無い。本発明の製造方法は、少なくともひとつの非球面を有する光学レンズの製造に好適である。光学素子の形状は、例えば、両凸、凸メニスカスレンズ、両凹、凹メニスカスレンズなどであることができ、特に、周囲に肉厚の小さい部分を有する両凸レンズや中心肉厚の小さい凹メニスカスレンズや両凹レンズの製造に本発明の製造方法は有効である。これは、上記形状のガラス光学素子はカン、ワレが最も起きやすいためである。本発明の製造方法により製造される光学素子の用途としては、特に制約は無いが、例えば、カメラ(ビデオカメラ、デジタルカメラ、モバイル端末内臓カメラなどを含む)用撮像系レンズ、光ピックアップレンズなどがある。特に、高屈折率、高分散、及び低屈折率、低分分散の光学ガラスを用いる、カメラ用撮像系に好適に用いられる。
【0038】
【実施例】
次に実施例により本発明をさらに詳細に説明する。
[本発明の第1の態様]
(実施例1)
プレス成形用型
プレス成形用型は、図2に示すように、基盤材料として炭化ケイ素(SiC)焼結体31を用い、研削によりプレス成形型形状に加工後、更に成形面側にCVD法により炭化ケイ素膜32を形成して、更に研削研磨して製造されるべきガラス成形体に対応する形状に鏡面仕上げして成形型を得た。更に成形型の炭化ケイ素膜32上に、i−カーボン膜33をイオンプレーティング法により500Å成膜して成形面40を有する、φ18mm(芯取後φ15mm)両凸ガラスレンズ用の下型34を得た。図1に示す上型35も、上記下型34と同様の方法によって得られた。上型35及び下型34は、図1に示すように、同軸上にセットされ、プレス成形の際には、上型35と下型34とこれをガイドする案内型36から成形型39が構成されている。下型34及び上型35の加熱は、胴型37外周に取り付けた成形型ヒーター44で行い、下型34及び上型35内に挿入した2つの型測温用熱電対42にて制御される。更に胴型37の温度は、上型及び下型の各胴型37内に挿入した胴型測温用熱電対43にて測温される。
【0039】
浮上治具
上述の成形型加熱機構を有する密閉チャンバー(図示せず)内には、図3に示す浮上治具10(10a、10b)、ガイド手段50(50a、50b)、ガラス素材を加熱軟化するガラス軟化ヒーター(図示せず)が設けられている。浮上治具10は、グラッシーカーボンからなる分割浮上治具(以下、GC分割浮上治具と呼ぶ)であり、ガイド手段50も同材質による分割円筒形ガイド(以下GC分割円筒形ガイドと呼ぶ)である。さらに、ガラス素材1は、GC分割浮上治具内部から供給される200〜600ml/minの98%N+2%H ガスの噴出によって、浮上保持される。
【0040】
本ガラス素材および模擬ガラス素材
本実施例の本ガラス素材はリン酸塩系の光学ガラスAからなり、ガラス素材の成形前に、このガラス素材と同条件でプレス成形できる、ホウケイ酸塩系のガラスからなる模擬ガラス素材aにて、下記に記載の方法にて、10回のプレス成形を行った後、連続して、本ガラス素材の成形を行った。本ガラス素材A及び模擬ガラス素材aの組成及びガラス転移温度及び屈伏点は表3に示す。成形装置としては、上記のi−カーボン膜成膜後の成形用型を用いた。なお、用いた模擬ガラス素材は、着色剤であるFeを0.01wt%添加し、青緑色に着色しており、ガラス素材および成形品において、模擬ガラス素材は瞬時かつ確実に区別することができる。
【0041】
加熱軟化及びプレス工程
上述のプレス成形機構(図1及び2)並びにガラス加熱機構(図3)が収められた成形機の密閉チャンバー内を真空排気した後、98%N+2%Hガスを導入し、密閉チャンバー内を同ガス雰囲気とした。次に、図1に示す成形型ヒーター44にて、型測温用熱電対42で測温した上型35及び下型34の温度(型温度)が550℃になるまで加熱し同温度で保持した。尚、このときは、上型と下型は別の位置でそれぞれ加熱され、成形の際に図1に示すように、一体の成形型として組み立てられる。一方、ガラス軟化ヒーターにて、GC分割浮上治具10上のガラス素材1の温度(予熱温度)を、650℃まで加熱保持する。
【0042】
次に、加熱軟化したガラス素材1を浮上保持したGC分割浮上治具10は下型34直上まで速やかに移動し、次いで、図4に示す如く、GC分割浮上治具10aとGC分割浮上治具10bがそれぞれ左右水平方向へ瞬時に移動して開口することで、下型34の成形面40にガラス素材1を落下させて載せる。この時、GC分割浮上治具10の直上には、ガラス素材1の最外径に対して適度なクリアランスを保つような内径寸法を有するGC分割円筒形ガイド50が設置されており、GC分割浮上治具10が開口してガラス素材1が落下する際に、ガラス素材1と下型34とのセッティングズレ量が最小限となるようなガイドの役目を果たす。
【0043】
ガラス素材落下後は、GC分割円筒形ガイド50aともう一方の50bがそれぞれ左右水平方向へ移動して開口する。そのため、下型34上部には何ら障害物がなくなり、瞬時に成形型支持台38が下型34を、下型34の同軸上方に成形型支持台38ごと固定セットしてある上型35まで上昇させ、図1に示すように上型35と下型34をガイドする案内型36で構成される成形型内で、ガラス素材1を10秒間100kg/cm の圧力にて加圧成形して所定の肉厚とし、次いで、成形型ヒーターを断電する。さらに、ガラス成形体及び成形型を放冷して、70秒後型測温用熱電対43で測温した上型35及び下型34の温度が、ガラスの転移点付近となる420℃〜450℃になったところで、成形型からガラス成形体を離型し取り出した。
【0044】
このようにして得られたガラス成形体(外径φ18mm、肉厚2.9mm、両凸レンズ)のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が8000回までのいずれの成形体(レンズ)も、カン、ワレが認められず、良好なものであった。
【0045】
(比較例1)
実施例1と同様にして、光学ガラスAのガラス素材をプレス始動時から成形した。このようにして得られたガラス成形体(外径φ18mm、肉厚2.9mm、両凸レンズ)のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が約800回から、カン・ワレが、おおよそ、200ショットにつき1回の率で発生し始め、プレスショット数が約2000回から、目視外観及び実体顕微鏡で評価した表面状態が外観品質の基準を下回る様になり、プレスは2000回で中止した。
【0046】
(実施例2〜3)
ガラス素材および模擬ガラス素材の組成、予熱温度、型温度、模擬ガラス素材への着色剤および添加量を表1のとおり、変更した以外は実施例1と同様に、プレスによりガラス素子を成形した。このようにして得られたガラス成形体のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が8000回までのいずれの成形体(レンズ)も良好なものであった。
【0047】
(実施例4)
ガラス素材および模擬ガラス素材
本実施例のガラス素材は光学ガラスAであり、本ガラス素材の成形前に、この本ガラス素材と同条件でプレス成形できるホウケイ酸塩系ガラスの模擬ガラス素材aにて、下記に記載の方法にて、10回のプレス成形を行った後、連続して、本ガラス素材の成形を行った。なお、この模擬ガラス素材は、着色剤であるFeを0.01wt%添加し、青緑色に着色しており、ガラス素材および成形品において、模擬材は瞬時かつ確実に区別することができた。
【0048】
このガラス素材を図5に示す成形装置内に設置し、窒素ガス雰囲気中で、590℃まで加熱して150kg/cm の圧力で1分間加圧する。圧力を解除した後、冷却速度を−50℃/minで480℃になるまで冷却し、その後は−200℃/min以上の速度で冷却を行い、プレス成形物の温度が200℃以下に下がった後、ガラス成形体を取り出した。なお、成形型として、CVD法により作製した多結晶SiCの成形面をRmax=18nmに鏡面研磨した後、成形面に離型膜として、イオンプレーティング法成膜装置を用いて、DLC:H膜を成膜したものを用いた。
【0049】
このようにして得られたガラス成形体(外径φ12mm、肉厚1.2mm、両凸レンズ)のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が8000回までのいずれの成形体(レンズ)もカン、ワレが認められず良好なものであった。
【0050】
【表1】

Figure 2004292287
【0051】
[本発明の第2の態様]
(実施例5)
実施例1による成形後、同じ成形装置、及び本ガラス素材(光学ガラスA)を用いて、プレスを行ない、同様の形状の両凸レンズを成形した。成形工程は、実施例1と同様である。但し、下記に記載の方法にて、光学ガラスAのガラス素材を500回プレスする毎に、模擬ガラス素材aを用いて10回のプレス成形を行う方法にて連続して、ガラス素材の成形を行った。
【0052】
このようにして得られたガラス成形体2(外径φ18mm、肉厚2.9mm、両凸レンズ)のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が20000回までのいずれの成形体(レンズ)も良好なものであった。
【0053】
(比較例2)
実施例5と同様にして、光学ガラスAからなるガラス素材を連続して成形した。このようにして得られたガラス成形体2(外径φ18mm、肉厚2.9mm、両凸レンズ)のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が約800回から、カン・ワレが、おおよそ、500ショットにつき1回の率で発生し始め、プレスショット数が約2800回から、外観品質が基準を下回る様になり、プレスは12000回で中止した。
【0054】
(実施例6〜7)
ガラス素材および模擬ガラス素材の組成、予熱温度、型温度、模擬ガラス素材への着色剤および添加量を表2のとおり、変更した以外は実施例5と同様に、プレスによりガラス素子を成形した。このようにして得られたガラス成形体のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が20000回までのいずれの成形体(レンズ)も良好なものであった。
【0055】
(実施例8)
本ガラス素材および模擬ガラス素材を実施例4と同様にし、実施例4の成形に続いて、同様の方法でプレスした。但し、本ガラス素材を500回プレスする毎に10回の模擬プレス成形を行う方法にて連続して、本ガラス素材の成形を行った。なお、この模擬ガラス素材は、着色剤であるFeを0.01wt%添加し、青緑色に着色しており、ガラス素材および成形品において、模擬材は瞬時かつ確実に区別することができる。このようにして得られたガラス成形体のアニール後の性能を、干渉計による面精度と、目視外観及び実体顕微鏡による表面状態の2点について評価した結果、プレスショット数が20000回までのいずれの成形体(レンズ)も良好なものであった。
【0056】
【表2】
Figure 2004292287
【0057】
【表3】
Figure 2004292287
【0058】
【発明の効果】
以上のように、本発明の製造方法は、成形始動時に型面へのガラス融着やガラス成形体のカン・ワレを防ぎ、ガラス素材が融着やカン・ワレが発生し易いリン酸塩、フツリン酸塩やホウ酸塩を主成分とする場合または高屈折率成分である酸化チタン、酸化ニオブ、酸化タングステン、フッ素、塩素を含む場合でも、高い外観品質のガラス光学素子を短いタクトで大量に製造するために有効である。
【図面の簡単な説明】
【図1】成形型での押圧成形の概略説明図である。
【図2】成形型の下型の概略説明図である。
【図3】軟化したガラス素材の成形型(下型)への移送方法の概略説明図である。
【図4】軟化したガラス素材の成形型(下型)への移送方法の概略説明図である。
【図5】成形型での押圧成形の概略説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a glass optical element such as a glass lens without grinding and polishing after press molding. In particular, the present invention relates to a method for manufacturing a glass optical element capable of stably manufacturing a glass optical element having high appearance quality.
[0002]
[Prior art]
2. Description of the Related Art A method of manufacturing a glass optical element such as a glass lens without performing grinding and polishing after press molding has been widely used. However, depending on the type of the glass material to be press-molded, fusion with the molding surface or cracking may easily occur. As described above, in the case of pressing and molding a glass material in which fusion or cracking is likely to occur, various proposals have been made to provide a coating on the glass material surface and the mold surface in order to prevent fusion and cracking. I have.
[0003]
For example, Patent Document 1 (Japanese Patent Publication No. 2-31012) discloses a method of preventing fusion between glass and a mold by forming a carbon film on at least one of mutually facing surfaces of the glass and the mold. Is described. Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-348127) discloses that glass is formed by coating a surface of a glass material for molding with an oxide comprising at least one element selected from Mn, Fe, Co, Ni, and Cr. A method for preventing fusion between the mold and the mold is described. Also, Patent Document 3 (Japanese Patent No. 2583593) discloses a method of cleaning a molding die by molding a predetermined number of glass glass materials having a higher transition point than the glass material to be molded without changing the temperature of the molding die. Is described.
[0004]
[Patent Document 1] Japanese Patent Publication No. 2-31012
[Patent Document 2] JP-A-2002-348127
[Patent Document 3] Japanese Patent No. 2583593
[0005]
[Problems to be solved by the invention]
According to the method described in Patent Document 1, a certain effect can be seen in suppressing glass fusion to a mold. However, in the case of molding in which the molding cycle time is shortened, a glass optical element that satisfies all conditions such as maintaining the appearance quality cannot be obtained. For example, in a continuous press exceeding 5,000 shots, it was inevitable that the appearance quality deteriorated due to generation of cracks and clouding and scratches on the glass optical element surface. In particular, if the molded optical element breaks at the time of mold release, there is a great obstacle to production, such as the need to stop the process and remove fragments.
[0006]
In the technique described in Patent Document 2, when an oxide is coated on the surface of a glass material, a step of peeling off an oxide film on the surface of a molded product is newly required, and there is a problem that the cost is increased.
In the technique described in Patent Document 3, it is necessary to mold a glass material having a high transition point with a low temperature molding die. For this reason, physical damage such as scratches occurs on the mold surface and the release film surface, and problems such as deterioration of appearance quality and deterioration of release film wear occur in subsequent molding.
[0007]
In view of the above problems, an object of the present invention is to provide a method for continuously and stably producing a high-precision optical glass element having excellent appearance quality. In particular, it is an object of the present invention to provide a method capable of manufacturing a high-precision optical glass element having excellent appearance quality while preventing cracking even when using glass made of a glass type that is easily broken. Further, the present invention is a so-called non-isothermal press in which a glass material having a higher temperature than the mold is supplied to the mold and press-molded, and a molding method in which the mold is released at a relatively high temperature (for example, around Tg). Even if it exists, it aims at providing the method which can perform a press molding stably and can manufacture a highly accurate optical glass element continuously.
[0008]
[Means for Solving the Problems]
As a result of a detailed analysis and investigation by the present inventors, the following has become clear.
For the mold used to press-mold the glass material, the surface after the mold processing, or the surface after the release film is formed on the mold, such as the bond forcibly cut by processing or film formation, There are physically or chemically active structures. In addition, the structure having such high activity may be regenerated on the molding surface of the molding die after the press molding is stopped due to the temperature decrease, volatilization and the like of the die. For this reason, the surface of the mold or the release film in the early stage of molding tends to react with the glass material. As a result, the mold surface or a part of the release film formed on the mold surface is consumed, or the glass material is likely to be damaged by being fused to the mold surface or the release film formed on the mold surface. Yes, this tendency is particularly large at the beginning of molding. As a result, in the subsequent continuous molding, the appearance quality of the optical element to be molded is deteriorated and cracks occur due to damage caused on the mold surface and the release film in the initial stage of the molding.
[0009]
In addition to the surface after the mold processing or after the release film was formed on the mold, it was also found that the following phenomena were observed when a large number of glass materials were continuously pressed and formed.
When a glass material is continuously pressed and formed, a small amount of components of the glass material are deposited on the surface of a mold or a release film, and the releasability from the glass material is gradually deteriorated. As a result, the glass is easily fused to the mold surface or the release film formed on the mold surface, and the glass is damaged such as a part of the mold surface or the release film formed on the mold surface is consumed. There is. Then, in the subsequent continuous molding, from the damage, the appearance quality is degraded, and cracking is caused.
[0010]
Therefore, a first aspect of the present invention is:
A method for continuously manufacturing a glass optical element by sequentially heating and softening a glass material by pressing using a molding die,
Prior to press-molding a glass material (real glass material) to obtain a desired optical element, a glass material (simulated glass material) that is processed into a shape substantially equal to the real glass material and made of glass different from the real glass material is used. Perform simulated press forming under the same forming conditions as press forming of this glass material using
Thereafter, the present glass material is subjected to press molding,
This is the manufacturing method.
A second aspect of the present invention provides:
A method for continuously manufacturing a glass optical element by sequentially heating and softening a glass material by pressing using a molding die,
Every time the glass material (the present glass material) is pressed and formed a predetermined number of times to obtain a desired optical element, the glass material is processed into a shape substantially equal to the present glass material and made of a glass different from the present glass material (simulated glass material). Using a glass material) to perform simulated press forming under the same forming conditions as the press forming of the present glass material.
This is the manufacturing method.
[0011]
In the first and second aspects of the present invention, the following aspects are preferred.
(1) The present glass material is a glass material containing a reducing or volatile component, and the simulated glass material is a glass material not containing these components.
(2) The molding conditions include preheating the molding die to a predetermined temperature, supplying the glass material heated to a temperature higher than the molding die and softened to the molding die, and immediately press-molding.
(3) The simulated glass material is made of glass having a deformation point within a range of a deformation point temperature ± 50 ° C. of the glass used for the present glass material.
(4) The present glass material is made of a fluorophosphate-based, phosphate-based, borate-based, or borate-based glass.
(5) The present glass material is made of a phosphate-based or fluorophosphate-based glass containing at least one of titanium oxide, niobium oxide, tungsten oxide, bismuth oxide, chlorine, and fluorine as a glass component.
(6) The simulated glass material is made of silicate glass or borosilicate glass.
(7) The simulation glass material is colored.
[0012]
Furthermore, the present invention relates to a glass material used as a simulated glass material in a method of manufacturing a glass optical element by pressing a glass material that has been heated and softened by using a molding die.
[0013]
Hereinafter, the first embodiment of the present invention will be described.
A first aspect of the present invention is a method for continuously manufacturing a glass optical element by successively press-molding a heat-softened glass material using a mold.
In the first aspect of the present invention, prior to press molding of the present glass material, the present glass material is processed into a shape substantially equal to the present glass material, and the present glass material is pressed by using a simulated glass material different from the present glass material. Simulated press forming is performed under the same forming conditions as the forming, and then the present glass material is pressed to continuously form an optical element.
[0014]
According to the study of the present inventors, it has been clarified that the occurrence of the damage of the release film in the early stage of the molding strongly depends on the molding temperature and the composition of the glass material, and the higher the molding temperature is, the larger the damage is. At the same molding temperature, the intensity of damage at the initial stage of molding is as follows: silicate glass <borosilicate glass << borate glass <borophosphate glass <phosphate glass <fluorophosphate system. It was also found that the order was glass.
[0015]
As is clear from the above ranking, the glass material is made of glass containing a phosphate or borate as a main component, such as a fluorophosphate-based glass, a phosphate-based glass, a borate-based glass, and a borate-based glass. In such a case, a part of the mold surface or the release film formed on the mold surface in the early stage of molding is consumed, or the glass is damaged by being fused to the mold surface or the release film formed on the mold surface. easy. As a result, in the subsequent continuous molding, the appearance quality is degraded, and cracking occurs due to the damage at the initial stage of molding. In particular, this tendency is remarkable in a fluorophosphate-based glass and a phosphate-based glass.
[0016]
In particular, when the present glass material is, for example, P 2 O 5 12-34%, B 2 O 3 Containing 0.2 to 15% (indicated by mol%), in particular, P 2 O 5 And B 2 O 3 In the case where the total content of is from 15 to 35%, part of the mold surface or the release film formed on the mold surface in the early stage of molding was consumed, or glass was formed on the mold surface or the mold surface. It is susceptible to damage such as fusion to the release film.
[0017]
More specifically, in mole%, P 2 O 5 12-34%, B 2 O 3 0.2-15%, Nb 2 O 5 0-25%, WO 3 0-40% and Li 2 O, Na 2 O and K 2 At least one R ′ selected from O 2 A glass material containing 0 to 30% (not including 30%) of at least one RO selected from O4 to 45% and BaO, ZnO and SrO, and having a total content of the above components of 94% or more, In the early stage of molding, the mold surface or a part of the release film formed on the mold surface is easily consumed, and the glass is easily damaged by fusing to the mold surface or the release film formed on the mold surface.
[0018]
Therefore, when the present glass material is the above-described glass, in the first aspect of the present invention, at the time of starting molding, the simulated glass material is molded at least until the molding apparatus is stabilized, thereby reducing damage at the initial molding. It can relax and prevent appearance quality deterioration and cracking in subsequent continuous molding. The simulated glass material is selected from the glass materials having a low intensity of damage at the initial stage of molding from the above-mentioned order, and the present glass material is made of a phosphate glass such as a fluorophosphate glass and a phosphate glass. In this case, the simulated glass material is preferably selected from glasses containing no phosphate.
[0019]
Similarly, when the present glass material is a glass containing any of titanium oxide, niobium oxide, tungsten oxide, chlorine, and fluorine, the mold surface or the release film on the mold surface is easily damaged in the early stage of molding. Therefore, it is preferable to form the simulated glass material at least until the forming apparatus is stabilized. At this time, it is preferable to use a glass material not containing these components as the simulated glass material. In the first embodiment of the present invention, particularly when the present glass material is pressed using a high refractive index, high dispersion optical glass having a refractive index nd of 1.6 or more and an Abbe number νd of 35 or less, Especially effective. These glass materials often contain titanium oxide, niobium oxide, tungsten oxide, or bismuth oxide, which is a reducing component. Further, it is effective for optical glass having a refractive index nd of 1.75 or more and an Abbe number νd of 20 to 28.5.
Further, when molding a low refractive index, low dispersion glass optical element, chlorine or fluorine which is a volatile component may be contained, but the present invention is also suitable for such a glass material.
[0020]
In the present invention, a molding operation is performed with a simulated glass material that does not damage the mold surface or the release film formed on the mold surface under the same conditions as the molding conditions of the present glass material at the time of starting the press. Here, the molding conditions include conditions of molding temperature and molding pressure. As a result, the active state of the surface of the mold surface or the release film formed on the mold surface is significantly reduced, and the reactivity and adhesion between the glass and the release film formed on the mold surface or the mold surface are improved. This significantly reduces the releasability. It is considered that this is because the formation of the simulated glass material has a function of reducing active sites such as a mold surface or an unbonded end of a release film. For this reason, at the time of molding with the present glass material, it is possible to prevent melting and cracking to the mold surface.
[0021]
Further, as the simulation glass material, a glass material processed into a shape substantially equal to the present glass material is used. Therefore, the simulated glass material has substantially the same volume as the present glass material. Further, the molding conditions of the simulated glass material are substantially the same as the molding conditions of the present glass material. Thereby, it is possible to shift to press molding to the present glass material without loss in a process such as a change in press conditions, and thereafter, the present glass material can be formed stably. As described above, as the composition of the simulated glass material, a composition having a smaller initial damage strength than the present glass material is selected. In addition, the number of times of molding with the simulated glass material can be appropriately determined in consideration of the activation state of the surface of the mold surface or the release film formed on the mold surface, and at least the molding apparatus is stabilized (the activity of the molding surface decreases. Until the reproducibility of the pressing conditions is obtained). The molding of the simulated glass material is usually preferably performed 5 times or more, more preferably 10 times or more. Thereby, the active state of the molding surface of the mold is stabilized, and a predetermined effect can be obtained. Substantially 20 times or less is sufficient for forming the simulated glass material.
[0022]
The simulated glass material can be molded under the same conditions as the molding of the present glass material, and does not cause cracking on the mold surface or the mold surface. Is selected from glass materials that cause less damage to the glass material. From such a viewpoint, it is preferable that a silicate such as a silicate glass or a borosilicate glass contains the largest amount of a silicate as a glass component. Preferred glass as the simulated glass material is, for example, SiO 2 2 Is preferably contained in an amount of 30 to 55% by weight. 2 O 3 From 5 to 30 wt%, and SiO 2 And B 2 O 3 Having a total content of 56 to 70 wt% is preferred. As described above, it is preferable that the material does not contain titanium oxide, niobium oxide, tungsten oxide, fluorine, and chlorine.
[0023]
The simulated glass material preferably has a forming temperature range substantially the same as the glass used for the present glass material. This is because the simulated glass material can be pressed under substantially the same molding conditions as the present glass material. Thus, after forming the simulated glass, the present glass material can be formed without changing the conditions. Specifically, it is preferable that the sagging point temperature of the simulated glass material has a sagging point (Ts) in a range of ± 50 ° C. with respect to the sagging point temperature of the present glass material. More preferably, the sagging point temperature of the simulated glass material has a sagging point (Ts) in a range of ± 15 ° C. with respect to the sagging point temperature of the present glass material. The Tg (transition point) of the simulated glass material is also preferably within a range of ± 50 ° C. with respect to the Tg of the present glass material.
[0024]
The press of the simulated glass material in the first embodiment of the present invention is performed immediately after starting the press forming of the present glass material after the mold processing or after the release film is formed on the mold surface, without changing the forming conditions. The glass material is preferably formed. This is because, by changing the molding conditions (temperature, pressing pressure) before the main glass molding, the activity of the molding surface is newly increased, and the reproducibility of various conditions brought to the glass material is impaired. In addition, immediately after processing and film formation, the press device can be stabilized by pressing the simulated glass material even after the press device is stopped and when press molding is started.
[0025]
Next, a second embodiment of the present invention will be described.
A second aspect of the present invention is a method for continuously manufacturing a glass optical element by sequentially press-molding a heat-softened glass material using a molding die.
In the second aspect of the present invention, every time the press molding of the present glass material is performed a predetermined number of times, using a simulated glass material made of a glass different from the present glass material, under the same molding conditions as the press molding of the present glass material. Simulated press molding is performed. Here, the molding conditions include the molding temperature and the molding pressure. That is, press molding is performed using a simulated glass material that causes less damage to the mold surface or the release film formed on the mold surface every predetermined number of times of the press molding of the glass optical element. It is appropriate that the number of times of press molding using the simulated glass material is performed until the mold releasability of the mold is restored to a predetermined state.
[0026]
Press molding with a simulated glass material removes a small amount of glass material components deposited on the mold surface or the release film formed on the mold surface, and recovers the mold releasability to some extent or to the same level as before press molding (Refresh). When the releasability is recovered, the reactivity and adhesion between the glass and the mold surface or the release film formed on the mold surface are significantly reduced, and cracking can be prevented.
[0027]
The simulated glass material is a glass material processed into a shape substantially equal to the present glass material, as in the first embodiment. Therefore, the simulated glass material has substantially the same volume and substantially the same shape as the present glass material, and can be formed under the same conditions. The transfer can be performed, and thereafter, the present glass material can be formed stably. The simulated glass material is selected from glasses having a glass composition having a smaller damage strength than the present glass material. Further, the simulated press molding is performed every predetermined number of times of the press molding of the present glass material, and the frequency of the simulated press molding is, for example, preferably every 1000 times of the press molding of the present glass material, and more preferably every 500 times. The number of times the simulated glass material is pressed in the simulated press molding can be appropriately determined in consideration of the degree of mold release, and is, for example, preferably 5 or more, more preferably 10 or more. The upper limit of the number of times the simulated glass material is pressed is not particularly limited, and can be appropriately determined in consideration of the degree of recovery of the mold releasability, and is, for example, about 20 times.
[0028]
As the present glass material and the simulated glass material applied in the second embodiment of the present invention, those similar to the first embodiment of the present invention can be used.
[0029]
When manufacturing an actual glass optical element, it is preferable to use the first and second aspects of the present invention together.
[0030]
Hereinafter, matters common to the first and second aspects of the present invention will be described.
The manufacturing method of the present invention is a method of manufacturing a glass optical element by press-molding a heat-softened glass material with a preheated mold, or a glass material and a mold in a state where the glass material is introduced into the mold. The present invention can be applied to a method for manufacturing a glass optical element by heating and pressing. In particular, the present invention is suitable for a press method in which a glass material is preheated to a temperature higher than the mold temperature, and then supplied to the mold and immediately subjected to press molding. For example, with a glass viscosity of 10 9 Temperature corresponding to less than Poise, preferably 10 6 -10 8 A glass material with a temperature equivalent to poise 8 -10 12 It can be supplied to a mold heated to a temperature corresponding to poise to perform press molding. At this time, heat exchange occurs instantaneously between the high-temperature glass supplied to the molding die and the mold surface, and the mold surface or the release film provided on the mold is easily damaged, so that glass fusion or fusion occurs. There is a strong tendency that the appearance quality is deteriorated due to consumption of the release film, and that cracking is increased. Therefore, the effect of the present invention is remarkably obtained. In supplying the glass material to the molding die, it is preferable that the glass material be transported in a floating state by an air current and supplied to the mold. This is because the heat-softened glass material easily causes a surface defect due to contact with a transport jig or the like.
[0031]
In particular, the production method of the present invention is to soften the glass material by heating it while floating by air flow, and transfer the heated and softened glass material to a preheated mold by dropping it, and then press molding immediately. The present invention can be applied to a method for manufacturing a glass optical element. The cooling of the formed glass material is started after or simultaneously with the start of the press forming, and the mold can be released at a temperature around Tg. At this time, the release temperature was set to 10 12 -10 13.5 Preferably, the temperature is equivalent to poise. This is advantageous in shortening the cycle time, and since the present invention suppresses cracking, a good product can be obtained efficiently.
[0032]
The simulated glass material is preferably colored. The simulated glass material can be molded under substantially the same volume and under the same conditions as the glass material, so that the molding of the simulated glass material can be continuously shifted to the molding of the glass material. In this case, there is a possibility that a molded product of the simulated glass material and a molded product of the present glass material are mixed. Further, the present glass material and the simulated glass material may be mixed. Therefore, it is desired that by coloring the simulated glass material, the glass material and the simulated glass material, and the molded product of the simulated glass material and the molded product of the glass material can be instantaneously and reliably distinguished.
[0033]
As a method of coloring the simulated glass material, it is necessary to use a method that does not cause damage at the initial stage of molding and a method that does not lose color by molding. Further, it is preferable not to cause contamination or damage to the apparatus in the production of the simulated glass material. From such a viewpoint, as a method of coloring the simulated glass material, a method of adding a coloring agent to the glass raw material is preferable. As the coloring additive, for example, oxides of Fe, Cr, Co, Ni, Mn, and Cu are preferable, and Fe, Cr, and Ni are particularly preferable. The amount of the coloring additive is preferably 0.1% by weight or less. Preferably, it is in the range of 0.005 to 0.05 wt%.
[0034]
The present invention encompasses a colored glass material, which is used as a simulated glass material in a method of manufacturing a glass optical element by press-molding a heat-softened glass material using a molding die.
[0035]
As a mold base material used in the present invention, for example, SiC, WC, TiC, TaC, BN, TiN, AlN, Si 3 N 4 , SiO 2 , Al 2 O 3 , ZrO 2 , W, Ta, Mo, cermet, sialon, mullite, carbon composite (C / C), carbon fiber (CF), WC-Co alloy, glass material including crystallized glass, stainless heat-resistant metal, etc. Materials can be used effectively. The mold preferably has a release film on the molding surface. Further, as the release film, a film containing carbon as a main component is preferable in terms of effect and cost. Examples of the film containing carbon as a main component include a diamond-like carbon film (hereinafter, DLC), a hydrogenated diamond-like carbon film (hereinafter, DLC: H), and a tetrahedral amorphous carbon film (hereinafter, ta-C). A carbon-based film selected from a hydrogenated tetrahedral amorphous carbon film (hereinafter, ta-C: H), an amorphous carbon film (hereinafter, aC), a hydrogenated amorphous carbon film (hereinafter, aC: H), and the like. Can be mentioned. Such a release film may be formed by a CVD method, a DC-plasma CVD method, an RF-plasma CVD method, a microwave plasma CVD method, an ECR-plasma CVD method, an optical CVD method, a laser CVD method, in addition to a vacuum deposition method, a sputtering method, or the like. A film can be appropriately formed by a known method such as a plasma CVD method such as a method, an ionization evaporation method such as an ion plating method, a sputtering method, an evaporation method, and an FCA method. Preferably, a sputtering method or an ion plating method is used. In addition, as the release film, for example, Si 3 N 4 , TiAlN, TiCrN, CrN, Cr X N Y , AlN, TiN or other nitride coating or composite multilayer film or laminated film (AlN / CrN, TiN / CrN, etc.), Pt-Au, Pt-Ir-Au, Pt-Rh-Au Those containing an alloy coating can also be applied. The thickness of the release film can be, for example, 0.1 nm to 1000 nm.
[0036]
Further, the glass material applied to the present invention is preferably provided with a carbon-containing layer on the surface for the purpose of releasing or slipping. For forming the carbon-containing layer, a vapor deposition method using a carbon material, a method of depositing carbon on the surface of a glass material by thermal decomposition of a hydrocarbon, or the like can be used as appropriate. The thickness of the carbon-containing layer on the glass material is preferably 0.1 to 10 nm.
The layer containing carbon can be provided not only on the present glass material but also on a simulated glass material.
[0037]
Examples of the optical element manufactured by the manufacturing method of the present invention include a lens, a prism, a mirror, a grating, a microlens, a laminated diffraction grating, and the like, and there is no particular limitation. The manufacturing method of the present invention is suitable for manufacturing an optical lens having at least one aspheric surface. The shape of the optical element can be, for example, a biconvex, convex meniscus lens, biconcave, concave meniscus lens, etc., and in particular, a biconvex lens having a small wall thickness around the periphery or a concave meniscus lens having a small center wall thickness. The manufacturing method of the present invention is effective for manufacturing a biconcave lens. This is because the glass optical element having the above shape is most liable to bend and crack. The use of the optical element manufactured by the manufacturing method of the present invention is not particularly limited, and examples thereof include an imaging system lens for a camera (including a video camera, a digital camera, a camera with a built-in mobile terminal, and the like), an optical pickup lens, and the like. is there. In particular, it is suitably used for a camera imaging system using an optical glass having a high refractive index, a high dispersion, a low refractive index, and a low dispersion.
[0038]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[First embodiment of the present invention]
(Example 1)
Press mold
As shown in FIG. 2, the press-molding die uses a silicon carbide (SiC) sintered body 31 as a base material, processes it into a press-molding die shape by grinding, and further forms a silicon carbide film 32 on the molding surface side by a CVD method. Was formed and further ground and polished to a shape corresponding to a glass molded body to be produced, thereby obtaining a molding die. Further, an i-carbon film 33 is formed on the silicon carbide film 32 of the mold by 500 [deg.] By ion plating to form a lower mold 34 for a bi-convex glass lens having a molding surface 40 and a diameter of 18 mm (15 mm after centering). Obtained. The upper mold 35 shown in FIG. 1 was also obtained by the same method as the lower mold 34 described above. As shown in FIG. 1, the upper mold 35 and the lower mold 34 are set coaxially, and at the time of press molding, a molding mold 39 is composed of the upper mold 35, the lower mold 34, and the guide mold 36 that guides them. Have been. The lower mold 34 and the upper mold 35 are heated by a mold heater 44 attached to the outer periphery of the body mold 37, and controlled by two thermocouples 42 for temperature measurement inserted into the lower mold 34 and the upper mold 35. . Further, the temperature of the shell mold 37 is measured by a shell-type temperature measuring thermocouple 43 inserted in each of the upper mold and the lower mold 37.
[0039]
Floating jig
In a closed chamber (not shown) having the above-described mold heating mechanism, a floating jig 10 (10a, 10b), a guide means 50 (50a, 50b) shown in FIG. A heater (not shown) is provided. The floating jig 10 is a divided floating jig made of glassy carbon (hereinafter, referred to as a GC divided floating jig), and the guide means 50 is also a divided cylindrical guide made of the same material (hereinafter, referred to as a GC divided cylindrical guide). is there. Further, the glass material 1 is supplied with 200% to 600 ml / min of 98% N supplied from the inside of the GC divided floating jig. 2 + 2% H 2 It is levitated and held by the jet of gas.
[0040]
Genuine glass material and simulated glass material
The present glass material of this embodiment is made of a phosphate optical glass A. Before forming the glass material, the glass material can be press-molded under the same conditions as the glass material. After the press molding was performed 10 times by the method described below, the present glass material was continuously molded. Table 3 shows the composition, glass transition temperature, and yield point of the present glass material A and the simulated glass material a. As a molding device, a molding die after the formation of the i-carbon film was used. The simulated glass material used was a coloring agent Fe 2 O 3 Is added in an amount of 0.01% by weight and colored blue-green, so that the simulated glass material can be instantaneously and reliably distinguished between the glass material and the molded product.
[0041]
Heat softening and pressing process
After evacuating the inside of the closed chamber of the molding machine containing the above-mentioned press forming mechanism (FIGS. 1 and 2) and the glass heating mechanism (FIG. 3), 98% N 2 + 2% H 2 Gas was introduced, and the inside of the closed chamber was set to the same gas atmosphere. Next, the molding die heater 44 shown in FIG. 1 is heated until the temperature (mold temperature) of the upper mold 35 and the lower mold 34 measured with the thermocouple 42 for mold temperature (mold temperature) reaches 550 ° C. and is maintained at the same temperature. did. At this time, the upper mold and the lower mold are separately heated at different positions, and are assembled as an integral mold as shown in FIG. 1 during molding. On the other hand, the temperature (preheating temperature) of the glass material 1 on the GC divided floating jig 10 is heated and maintained at 650 ° C. by the glass softening heater.
[0042]
Next, the GC divided floating jig 10 which floats and holds the heat-softened glass material 1 quickly moves to immediately above the lower mold 34, and then, as shown in FIG. 4, the GC divided floating jig 10a and the GC divided floating jig. The glass material 1 is dropped and placed on the molding surface 40 of the lower die 34 by instantaneously moving and opening each of the right and left horizontal directions. At this time, a GC divided cylindrical guide 50 having an inner diameter dimension that maintains an appropriate clearance with respect to the outermost diameter of the glass material 1 is installed directly above the GC divided floating jig 10. When the jig 10 is opened and the glass material 1 falls, it serves as a guide for minimizing the amount of setting deviation between the glass material 1 and the lower mold 34.
[0043]
After the glass material falls, the GC divided cylindrical guide 50a and the other 50b move in the left and right horizontal directions to open. Therefore, there is no obstacle at the upper part of the lower mold 34, and the molding die support 38 instantaneously rises to the upper mold 35 where the lower mold 34 is fixedly set together with the molding die support 38 above the lower mold 34. Then, as shown in FIG. 1, the glass material 1 was placed in a molding die composed of an upper die 35 and a guide die 36 for guiding the lower die 34 at a rate of 100 kg / cm for 10 seconds. 2 Then, the mold heater is pressurized to a predetermined thickness, and then the mold heater is turned off. Furthermore, the glass molded body and the mold were allowed to cool, and after 70 seconds, the temperatures of the upper mold 35 and the lower mold 34 measured by the thermocouple 43 for mold temperature measurement became 420 ° C. to 450 ° C. near the glass transition point. When the temperature reached ° C, the glass molded body was released from the mold and taken out.
[0044]
The annealed performance of the glass molded body (outside diameter φ18 mm, wall thickness 2.9 mm, biconvex lens) obtained in this manner was evaluated for surface accuracy by an interferometer, visual appearance, and surface state by a stereomicroscope. As a result of evaluation, any molded product (lens) having a number of press shots of up to 8000 was satisfactory without any cans and cracks.
[0045]
(Comparative Example 1)
In the same manner as in Example 1, a glass material of the optical glass A was formed from the start of pressing. The annealed performance of the glass molded body (outside diameter φ18 mm, wall thickness 2.9 mm, biconvex lens) obtained in this manner was evaluated for surface accuracy by an interferometer, visual appearance, and surface state by a stereomicroscope. As a result of the evaluation, from the number of press shots of about 800, perception of cracking began to occur at a rate of approximately once per 200 shots, and from the number of press shots of about 2000, the visual appearance and the surface evaluated by a stereomicroscope. The condition fell below the standard for appearance quality, and the press was stopped after 2000 times.
[0046]
(Examples 2-3)
A glass element was formed by pressing in the same manner as in Example 1 except that the composition of the glass material and the simulated glass material, the preheating temperature, the mold temperature, the colorant and the amount added to the simulated glass material were changed as shown in Table 1. The performance of the glass molded body obtained in this way after annealing was evaluated for two points of surface accuracy by an interferometer, visual appearance, and surface state by a stereomicroscope. The molded article (lens) was also good.
[0047]
(Example 4)
Glass material and simulated glass material
The glass material of the present embodiment is an optical glass A, and before molding of the present glass material, a borosilicate-based simulated glass material a which can be press-molded under the same conditions as the present glass material is subjected to the following method. After the press molding was performed 10 times, the present glass material was continuously molded. Note that this simulated glass material is made of Fe, which is a coloring agent. 2 O 3 Was added in an amount of 0.01% by weight and colored blue-green, so that the simulation material could be instantaneously and reliably distinguished between the glass material and the molded product.
[0048]
This glass material was placed in a forming apparatus shown in FIG. 5 and heated to 590 ° C. in a nitrogen gas atmosphere to 150 kg / cm 2. 2 Pressure for 1 minute. After releasing the pressure, cooling was performed at a cooling rate of −50 ° C./min to 480 ° C., and thereafter, cooling was performed at a rate of −200 ° C./min or more, and the temperature of the press-formed product dropped to 200 ° C. or less. Thereafter, the glass molded body was taken out. As a molding die, a polycrystalline SiC produced by a CVD method is mirror-polished to Rmax = 18 nm, and then a DLC: H film is formed on the molding surface by using an ion plating method film forming apparatus as a release film. Was used.
[0049]
The annealed performance of the glass molded body (outside diameter φ12 mm, wall thickness 1.2 mm, biconvex lens) obtained in this manner was evaluated for surface accuracy by an interferometer, visual appearance, and surface state by a stereomicroscope. As a result of the evaluation, any molded product (lens) having a number of press shots of up to 8000 was good without any cans and cracks.
[0050]
[Table 1]
Figure 2004292287
[0051]
[Second embodiment of the present invention]
(Example 5)
After forming according to Example 1, pressing was performed using the same forming apparatus and the present glass material (optical glass A) to form a biconvex lens having a similar shape. The molding process is the same as in the first embodiment. However, each time the glass material of the optical glass A is pressed 500 times by the method described below, the molding of the glass material is continuously performed by a method of performing the press molding 10 times using the simulated glass material a. went.
[0052]
The performance after annealing of the glass molded body 2 (outside diameter φ18 mm, wall thickness 2.9 mm, biconvex lens) obtained in this manner was evaluated by measuring the surface accuracy with an interferometer, the visual appearance, and the surface state with a stereomicroscope. As a result of evaluation, all the molded articles (lenses) having a number of press shots of up to 20,000 times were good.
[0053]
(Comparative Example 2)
In the same manner as in Example 5, a glass material made of the optical glass A was continuously formed. The annealed performance of the glass molded body 2 (outside diameter φ18 mm, wall thickness 2.9 mm, biconvex lens) obtained in this manner was evaluated for the surface accuracy using an interferometer, the visual appearance, and the surface state using a stereomicroscope. As a result of the evaluation, the number of press shots starts to be generated at about 800 times, and the occurrence of can-wales starts to occur at a rate of approximately once per 500 shots. The press was stopped at 12,000 times.
[0054]
(Examples 6 and 7)
A glass element was formed by pressing in the same manner as in Example 5, except that the composition of the glass material and the simulated glass material, the preheating temperature, the mold temperature, the colorant and the amount added to the simulated glass material were changed as shown in Table 2. The performance of the glass molded body thus obtained after annealing was evaluated for surface accuracy by an interferometer, visual appearance, and surface state by a stereomicroscope. The molded article (lens) was also good.
[0055]
(Example 8)
The present glass material and the simulated glass material were made in the same manner as in Example 4, and pressed in the same manner as in Example 4, following the molding. However, each time the present glass material was pressed 500 times, the present glass material was continuously formed by a method of performing simulated press forming 10 times. Note that this simulated glass material is made of Fe, which is a coloring agent. 2 O 3 Is added in an amount of 0.01% by weight and colored blue-green, so that the simulation material can be instantaneously and reliably distinguished between the glass material and the molded product. The performance of the glass molded body thus obtained after annealing was evaluated for surface accuracy by an interferometer, visual appearance, and surface state by a stereomicroscope. The molded article (lens) was also good.
[0056]
[Table 2]
Figure 2004292287
[0057]
[Table 3]
Figure 2004292287
[0058]
【The invention's effect】
As described above, the manufacturing method of the present invention prevents glass fusion to the mold surface and cracking of the glass molded body at the time of molding start, and the glass material is likely to cause fusion or cracking of the phosphate, Even if it contains fluoric acid or borate as a main component or contains high refractive index components such as titanium oxide, niobium oxide, tungsten oxide, fluorine and chlorine, a large amount of glass optical elements with high appearance quality can be produced in a short time. Effective for manufacturing.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of press molding with a molding die.
FIG. 2 is a schematic explanatory view of a lower mold of a molding die.
FIG. 3 is a schematic explanatory view of a method for transferring a softened glass material to a forming die (lower die).
FIG. 4 is a schematic explanatory view of a method for transferring a softened glass material to a forming die (lower die).
FIG. 5 is a schematic explanatory view of press molding with a molding die.

Claims (10)

加熱軟化したガラス素材を、逐次、成形型を用いて押圧成形することにより、ガラス光学素子を連続的に製造する方法であって、
所望の光学素子を得るためのガラス素材(以下、本ガラス素材という)の押圧成形に先立ち、前記本ガラス素材とほぼ等しい形状に加工され、本ガラス素材とは異なるガラスからなるガラス素材(以下、模擬ガラス素材という)を用いて本ガラス素材の押圧成形と等しい成形条件にて模擬押圧成形を行い、
その後、本ガラス素材の押圧成形を行うことを特徴とする、前記製造方法。
A method for continuously manufacturing a glass optical element by sequentially heating and softening a glass material by pressing using a molding die,
Prior to press molding of a glass material (hereinafter, referred to as the present glass material) for obtaining a desired optical element, a glass material (hereinafter, referred to as a glass material) that is processed into a shape substantially equal to the present glass material and is made of glass different from the present glass material. Simulated press molding under the same molding conditions as the press molding of the present glass material using a simulated glass material)
Thereafter, the present glass material is subjected to pressure molding.
加熱軟化したガラス素材を、逐次、成形型を用いて押圧成形することにより、ガラス光学素子を連続的に製造する方法であって、
所望の光学素子を得るためのガラス素材(以下、本ガラス素材という)の押圧成形を所定回数行うごとに、前記本ガラス素材とほぼ等しい形状に加工され、本ガラス素材とは異なるガラスからなるガラス素材(以下、模擬ガラス素材という)を用いて、本ガラス素材の押圧成形と等しい成形条件にて模擬押圧成形を行うことを特徴とする、前記製造方法。
A method for continuously manufacturing a glass optical element by sequentially heating and softening a glass material by pressing using a molding die,
Every time the glass material (hereinafter, referred to as the present glass material) is pressed and formed a predetermined number of times to obtain a desired optical element, the glass material is processed into a shape substantially equal to the present glass material, and is made of glass different from the present glass material. The method according to claim 1, wherein a simulated press forming is performed using a material (hereinafter, referred to as a simulated glass material) under the same forming conditions as the press forming of the present glass material.
本ガラス素材が、還元性又は揮発性成分を含有するガラス素材であり、模擬ガラス素材がこれらの成分を含有しないガラス素材である請求項1または2に記載の製造方法。The production method according to claim 1 or 2, wherein the present glass material is a glass material containing a reducing or volatile component, and the simulated glass material is a glass material not containing these components. 前記成形条件は、成形型を所定温度に予熱し、成形型より高い温度に加熱され軟化したガラス素材を成形型に供給し、ただちに押圧成形することを含む、請求項1〜3のいずれか1項に記載の製造方法。4. The molding method according to claim 1, wherein the molding conditions include preheating the molding die to a predetermined temperature, supplying the glass material heated and softened to a temperature higher than the molding die to the molding die, and immediately pressing the glass material. The production method according to the paragraph. 模擬ガラス素材は、本ガラス素材に用いるガラスの屈伏点温度±50℃の範囲に屈伏点を有するガラスからなる、請求項1〜4のいずれか1項に記載の製造方法。The method according to any one of claims 1 to 4, wherein the simulated glass material is made of glass having a deformation point within a range of a deformation point temperature of glass used for the present glass material ± 50 ° C. 本ガラス素材が、フツリン酸塩系、リン酸塩系、ホウリン酸塩系、又はホウ酸塩系ガラスからなる、請求項1〜5のいずれか1項に記載の製造方法。The production method according to any one of claims 1 to 5, wherein the glass material is made of a fluorophosphate-based, phosphate-based, borate-based, or borate-based glass. 本ガラス素材がガラス成分として、酸化チタン、酸化ニオブ、酸化タングステン、酸化ビスマス、塩素、及びフッ素の少なくとも1種を含むリン酸系、又はフツリン酸系ガラスからなる、請求項1〜5のいずれか1項に記載の製造方法。The glass material according to any one of claims 1 to 5, wherein the glass material is a phosphate-based glass containing at least one of titanium oxide, niobium oxide, tungsten oxide, bismuth oxide, chlorine, and fluorine, or a fluorophosphate-based glass. Item 2. The production method according to item 1. 模擬ガラス素材が、ケイ酸塩系、又はホウケイ酸塩系ガラスからなる、請求項1〜7のいずれか1項に記載の製造方法。The method according to claim 1, wherein the simulated glass material is made of a silicate glass or a borosilicate glass. 模擬ガラス素材が、着色されている、請求項1〜8のいずれか1項に記載の製造方法。The method according to claim 1, wherein the simulated glass material is colored. 着色したガラス素材であって、加熱軟化したガラス素材を、成形型を用いて押圧成形することによりガラス光学素子を製造する方法において模擬ガラス素材として用いられるガラス素材。A glass material used as a simulated glass material in a method of manufacturing a glass optical element by press-molding a colored glass material, which has been heated and softened, using a molding die.
JP2003090328A 2003-03-28 2003-03-28 Manufacturing method of glass optical element Expired - Fee Related JP4256190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090328A JP4256190B2 (en) 2003-03-28 2003-03-28 Manufacturing method of glass optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090328A JP4256190B2 (en) 2003-03-28 2003-03-28 Manufacturing method of glass optical element

Publications (2)

Publication Number Publication Date
JP2004292287A true JP2004292287A (en) 2004-10-21
JP4256190B2 JP4256190B2 (en) 2009-04-22

Family

ID=33403983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090328A Expired - Fee Related JP4256190B2 (en) 2003-03-28 2003-03-28 Manufacturing method of glass optical element

Country Status (1)

Country Link
JP (1) JP4256190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651522A (en) * 2021-09-14 2021-11-16 李莉华 Non-isothermal glass molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651522A (en) * 2021-09-14 2021-11-16 李莉华 Non-isothermal glass molding method
CN113651522B (en) * 2021-09-14 2023-08-15 李莉华 Non-isothermal glass molding process

Also Published As

Publication number Publication date
JP4256190B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
KR101347944B1 (en) Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
KR101348051B1 (en) Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
US8826695B2 (en) Method for manufacturing optical glass element
CN100404446C (en) Process for mass-producing optical elements
US20050204776A1 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the optical element
US20100292066A1 (en) Glass material for mold pressing, method for manufacturing same, and method for manufacturing optical glass element
JP5364568B2 (en) Glass material for press molding, method for manufacturing glass material for press molding, and method for manufacturing optical element
US6070436A (en) Manufacturing method for molded glass articles
JP4677279B2 (en) Manufacturing method of molded body
JP4603767B2 (en) Manufacturing method of glass optical element
JP5081385B2 (en) Manufacturing method of glass optical lens
JP4255292B2 (en) Optical element molding glass material and optical element manufacturing method
JP2005213091A (en) Method for manufacturing glass optical element
JP2986647B2 (en) Method for manufacturing optical glass element
JP4256190B2 (en) Manufacturing method of glass optical element
JP4425071B2 (en) Glass material for mold press, manufacturing method thereof, and manufacturing method of optical element
JP4056010B2 (en) Manufacturing method of press-molding glass preform and manufacturing method of glass optical element
JP7132589B2 (en) Optical glass, preforms for precision press molding, and optical elements
JP5442420B2 (en) Thickness determination method and manufacturing method of glass material for precision press molding, and manufacturing method of glass optical element
JPH08217466A (en) Method for forming glass optical element
JPH02243524A (en) Press-molding of optical element
JPH09194217A (en) Die for forming glass optical element
JPH06127955A (en) Method and apparatus for producing glass blank material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees