JP2004292256A - Ozonizer - Google Patents

Ozonizer Download PDF

Info

Publication number
JP2004292256A
JP2004292256A JP2003088199A JP2003088199A JP2004292256A JP 2004292256 A JP2004292256 A JP 2004292256A JP 2003088199 A JP2003088199 A JP 2003088199A JP 2003088199 A JP2003088199 A JP 2003088199A JP 2004292256 A JP2004292256 A JP 2004292256A
Authority
JP
Japan
Prior art keywords
electrode
dielectric
ozone
side electrode
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003088199A
Other languages
Japanese (ja)
Inventor
Sukenobu Morimitsu
亮信 森光
Takeshi Sakurai
彪 櫻井
Masahiro Kurano
倉野正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2003088199A priority Critical patent/JP2004292256A/en
Publication of JP2004292256A publication Critical patent/JP2004292256A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and inexpensively produce an ozonizer with high efficiency. <P>SOLUTION: The ozonizer is composed of the three layers of: a high voltage-side electrode 4; a dielectric layer 2 of quartz glass (or synthetic quartz glass, or SiO<SB>2</SB>, or mica) with a thickness of several hundreds μm to several mm; and a grounded electrode 1. As the high voltage-side electrode 4 and the grounded electrode 1, a printed electrode of gold, silver, copper or platinum is used. The high voltage-side electrode 4 is provided with many opening parts 5 with a diameter of several hundreds μm to several mm at the lengthwise and crosswise pitch of several hundreds μm. At the time when high frequency high voltage is applied to the space between both the electrodes, dielectric barrier discharge is generated at the opening parts 5, and ultraviolet rays are generated, so that oxygen as a gaseous starting material is ionized and changed into ozone. An MgO film 3 is formed on the surface of the high voltage-side electrode 4 and the surface of the dielectric substance 2 on the side of the opening parts 5 for increasing the efficiency of generating ozone and preventing the wear of the electrodes. By the constitution, the adhesion between the dielectric substance and the electrode is made satisfactory, the efficiency of generating ozone improves, and the production can be made easy and inexpensive. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、オゾン発生装置に関し、特に、誘電体バリア放電を利用したオゾン発生装置に関する。
【0002】
【従来の技術】
オゾン発生装置は、産業廃棄物の処理の際に発生するNOxの除去や、空気洗浄機や、脱臭装置や、植物の活性化などに用いられている。オゾン発生法には、数多くの手法がある。必要なオゾン生成量に応じて、熱プラズマによる方法や、電解法による方法や、放電法による方法等が選択されている。そのなかでも、上下水道や工業排水の殺菌、消臭、脱色、パルプ漂白、医療機器の殺菌等を行う際に用いられるオゾン発生装置は、無声放電を用いた装置が一般的である。
【0003】
このようなオゾン発生装置は、体積が大きく、電気効率が低い等の理由から、近年、沿面放電を用いた平板型のオゾン発生装置が開発されてきた。最近では、水にオゾンを効率的に吸収させることができるレベルの高濃度オゾンを高効率で発生させるオゾン発生装置が開発されている。オゾン発生装置の誘電体としてはセラミックスが用いられ、高圧側と接地側の電極の素材としては、セラミックスに金属(アルミ等)膜を積層したもの等が使用されている。オゾン発生用の放電装置には、ヒートシンクやペルチエ素子等の冷却装置が設けられている。
【0004】
【発明が解決しようとする課題】
しかし、従来のオゾン発生装置では、装置の構造が非常に複雑であり、製造に手間やコストがかかるという問題がある。
【0005】
本発明の目的は、上記従来の問題を解決して、容易かつ安価に製造できて高効率なオゾン発生装置を実現することである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明では、オゾン発生装置を、多数の放電開口部を有する転写式の金,銀,銅,プラチナのいずれかからなる印刷電極で形成された高圧側電極と、連続する前記印刷電極で形成された接地電極と、高圧側電極と接地電極とに挟まれた合成石英ガラス、石英ガラス、SiO、マイカのいずれかで形成された誘電体層とを具備する構成とした。このように構成したことにより、高効率にオゾンを発生するオゾン発生装置を容易かつ安価に製造することが実現できる。また、これらの放電装置における放電面側の電極表面と開口側誘電体表面にMgO膜や窒化アルミニウム膜を塗布することで、電極の磨耗防止、放電装置の長寿命化が達成できる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について、図1〜図8を参照しながら詳細に説明する。
【0008】
(第1の実施の形態)
本発明による第1の実施の形態は、多数の放電開口部を有する印刷電極で形成された高圧側電極と、連続する印刷電極で形成された接地電極と、高圧側電極と接地電極とに挟まれた誘電体層とを備えた3層構造のオゾン発生装置である。
【0009】
図1は、本発明による第1の実施の形態におけるオゾン発生装置の概念図である。図1において、高圧側電極4と接地電極1は、金、銀、銅、プラチナのいずれかの金属と樹脂で構成された転写シートを熱燒結させることで、樹脂を飛ばし、薄膜としてそれらの金属を誘電体に密着させた印刷電極である。誘電体2は、合成石英ガラスである。また、誘電体は、石英ガラス、SiO、マイカのいずれかでもよい。MgO膜3は、高圧側電極4の表面と後述の放電開口部側に面した誘電体表面を覆う保護膜である。接地電極1は、高周波高電圧を印加する電極である。放電開口部5は、放電が起こる部位である。放電装置の放電面積は100mm×100mmとした。
【0010】
オゾン発生装置は、上層の高圧側電極3と、厚さ150μmの合成石英ガラスからなる誘電体層2と、下層の接地電極1の3層からなる。最上層の高圧側電極3と、最下層の接地電極2は、金、銀、銅、プラチナのいずれかより選ばれた厚さ25μmのベタ転写シート式の印刷電極である。これらの材質を用いることにより、低コストで容易に電極が作製できる。上層の高圧側電極4は、数百μm〜数mmの開口部5が、数百μmの縦横のピッチで多数設けられている。
【0011】
上記のように構成された本発明による第1の実施の形態におけるオゾン発生装置の動作を説明する。図1に示すオゾン発生装置の高圧側電極4と接地電極1との間に、周波数が10KHzで5kVの高周波高電圧を印加する。誘電体バリア放電が、放電開口部5において発生し、それに伴い紫外線が発生する。この紫外線の作用により、雰囲気中の酸素が電離し、オゾンが生成される。オゾン発生装置における最上層の直径数百μm〜数mmの放電開口部5において、オゾン生成を効率的に行うことができる。また、高圧側電極4の表面と開口部に面した誘電体2の表面には、オゾン生成の効率化のため、MgO膜3が形成されている。MgO膜3は無くても動作する。
【0012】
オゾン発生効率を確認するために、図1に示す構造のオゾン発生装置の寸法とし、放電装置の材質が異なる本発明の仕様と、従来までのオゾン発生装置とで、大気中放電の比較を行った。従来の放電装置は、誘電体がアルミナセラミック、電極がアルミ厚膜印刷電極である。また、MgOの蒸着膜の電極磨耗防止効果と、オゾン発生の効率を確認するため、高圧側電極の表面と放電開口部に面した誘電体表面にMgO膜を蒸着したものと、蒸着しないものとの大気中放電も比較することにした。
【0013】
従来の材質で構成された放電装置と、図1に示す本発明で検討した放電装置によるオゾン発生効率の比較の結果を、図2に示す。図2より、誘電体を合成石英ガラスとし、電極を印刷電極とした放電装置は、同電力を加えた際、従来の放電装置のオゾン発生効率とそれほど引けを取らないことが確かめられた。
【0014】
図3に、高電圧印加側電極の表面と開口に面した誘電体表面にMgO膜を蒸着したものとしないものとで、80%のオゾン生成維持率における寿命の比と、それぞれのオゾン発生量を示す。MgO膜ありのものは、なしのものより寿命、オゾン発生効率ともに良好であり、MgO膜の優位性が確認された。
【0015】
印刷電極を用いたことで、誘電体との密着性の良好な電極を、安価で且つ容易に製造できる。誘電体と電極との密着状態が良好になることは、誘電体層、金属層の均一な層形成につながり、均一な電場が形成できることになる。このことで、面に対して均一に放電が可能となり、オゾン発生効率が向上する。2つの電極に誘電体が挟まれたサンドイッチ型の3層構造であり、低コストで製造が容易に行える。しかも、電極材料を、導電率のよい金、銀、銅、プラチナという印刷電極とすることにより、エネルギーロスが少なくて済む。
【0016】
上記のように、本発明による第1の実施の形態では、オゾン発生装置を多数の放電開口部を有する金、銀、銅、プラチナのいずれかによる印刷電極で形成された高圧側電極と、連続する前記印刷電極で形成された接地電極と、高圧側電極と接地電極とに挟まれた合成石英ガラス、石英ガラス、SiO 、マイカのいずれかで形成された誘電体層とを備えた3層構造としたので、高効率なオゾン発生装置を、容易かつ安価に製造できる。また、MgO膜もしくは窒化アルミニウム膜を、高電圧印加側の電極表面と放電開口部に面した誘電体表面に設けることにより、電極の磨耗防止による長寿命、オゾン発生効率の向上が得られる
【0017】
次に、オゾン発生効率に関わる誘電体厚さと高電圧印加側の放電開口径の関係について検討した。本発明の放電装置に印加電圧をかけた場合に、オゾン発生効率に依存する電場はどのように分布するかを求めた。図4に、開口径100μm,誘電体厚み100μmの放電装置に4kVの電圧をかけた際に発生する静電位分布を求めた図を示す。図5に、放電開口径と放電開口部付近の電場の関係をまとめた図を示す。図6には、誘電体の厚みと放電開口付近の電場の関係をまとめた図を示す。
【0018】
放電装置にかかる静電位分布は、放電開口付近で最も強くなり、開口付近では10m/Vに達した。開口径の縮小に伴う電場は増加を示し、誘電体の厚さの縮小に伴う電場も増加傾向を示した。オゾン発生量には電場の強度が反映されるため、オゾン生成効率は誘電体の厚さと開口径に依存することが分かる。開口径寸法に対して誘電体寸法が大きいと、電場のロスが大きくなり、オゾン生成効率が下がることが分かる。図6に示すように、放電開口径を100μmとした場合の電場は、誘電体の厚さが100μm以下から急激に上昇している。つまり、誘電体の厚さが開口径以下となると、電場の増加がより著しくなる。従って、オゾン発生の高効率を考慮する上で、誘電体厚さをT(m), 開口径をD(m)とすると、少なくともT≦Dを満足することが、放電装置構造上好ましいと考えられる。
【0019】
(第2の実施の形態)
本発明による第2の実施の形態は、多数の放電開口部を有する印刷電極で形成された第1の高圧側電極と、連続する印刷電極で形成された接地電極と、第1の高圧側電極と接地電極とに挟まれた石英ガラスで形成された第1の誘電体層と、多数の放電開口部を有する印刷電極で形成された第2の高圧側電極と、第2の高圧側電極と接地電極とに挟まれた石英ガラスで形成された第2の誘電体層とを備えた5層構造のオゾン発生装置である。また、誘電体は、石英ガラス、SiO、マイカのいずれかでもよく、印刷電極は、金、銀、銅、プラチナのいずれかでもよい。
【0020】
図7は、本発明による第2の実施の形態におけるオゾン発生装置の概念図である。図7において、接地電極1は、金、銀、銅、プラチナのいずれかの印刷電極により形成された電極である。誘電体2は、合成石英ガラス、石英ガラス、SiO、マイカのいずれかである。MgO膜3は、保護膜である。高圧側電極4は、金、銀、銅、プラチナのいずれかの印刷電極であり、高周波高電圧を印加する電極である。開口部5は、放電が起こる部位である。
【0021】
中央層の接地電極1が、厚さ数十μm〜数mmの誘電体2に挟まれている。最外層面は、直径数十μm〜数mmの放電開口部5が、縦横数百μmのピッチで多数開けられた高圧側電極4である。高圧側電極4と、誘電体2と、接地電極1と、誘電体2と、高圧側電極4の5層からなっている。
【0022】
図8は、本発明による第2の実施の形態におけるオゾン発生装置の他の例を説明した概念図である。図8において、オゾナイザ6は、5層構造のオゾン発生素子である。原料ガス7は、酸素を含む圧縮気体である。オゾンガス8は、生成されたオゾンである。このオゾン発生装置は、両面に放電面をもつオゾナイザ6を、数mm程度の間隔でパラレルに配列したものである。
【0023】
上記のように構成された本発明による第2の実施の形態におけるオゾン発生装置の動作を説明する。図7に示すオゾン発生装置の高圧側電極4と接地電極1との間に、数kHzで数kVの高周波高圧電流を印加する。誘電体バリア放電が、開口部5において発生し、それに伴い紫外線が発生する。この紫外線の作用により、雰囲気中の酸素がオゾンに変化する。放電開口部5がある最外層の両面の電極を利用するので、広い表面積でオゾンを発生させることができる。また、高圧側電極4の表面と開口側に面した誘電体2の表面には、オゾン生成の効率化のため、MgO膜3が形成されている。MgO膜3は無くても動作する。
【0024】
図8に示す5層構造の平面型放電素子であるオゾナイザ6を複数枚パラレル配列したオゾン発生装置の電極間に、酸素を含む圧縮ガスである原料ガス7を吹き付ける。オゾナイザ6の枚数を増やすことで、容易に放電面積を拡大できる。このようにして、高効率にオゾンガス8を発生させ、同時に冷却を効率的に行うことができる。したがって、大掛かりな冷却装置が必要なく、オゾン発生装置をコンパクト化できる。また、製造作業が容易になり、低コストで製造できる。
【0025】
上記のように、本発明による第2の実施の形態では、オゾン発生装置を、多数の放電開口部を有する印刷電極で形成された第1の高圧側電極と、連続する印刷電極で形成された接地電極と、第1の高圧側電極と接地電極とに挟まれた石英ガラスで形成された第1の誘電体層と、多数の放電開口部を有する印刷電極で形成された第2の高圧側電極と、第2の高圧側電極と接地電極とに挟まれた石英ガラスで形成された第2の誘電体層とを備えた5層構造としたので、高効率なオゾン発生装置を、容易かつ安価に製造できる。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明では、オゾン発生装置を、多数の開口部を有する金、銀、銅、プラチナのいずれかの印刷電極で形成された高圧側電極と、連続する印刷電極で形成された接地電極と、高圧側電極と接地電極とに挟まれた石英ガラス、合成石英ガラス、SiO、マイカのいずれかで形成された誘電体層とを具備する構成としたので、高効率なオゾン発生装置を容易かつ安価に製造できる。また、放電面である電極表面と開口側に面した誘電体表面にMgO膜もしくは窒化アルミニウム膜を設けることで、オゾン発生効率が向上し、長寿命化が実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態におけるオゾン発生装置の概念図、
【図2】本発明の第1の実施の形態におけるオゾン発生装置と従来の放電装置とのオゾン発生効率の比較表、
【図3】MgO膜の有無による放電装置の性能の違いを比較する表、
【図4】放電装置の電圧印加時の静電分布図、
【図5】放電開口部の径と電場の関係を示すグラフ、
【図6】誘電体の厚さと電場の関係を示すグラフ、
【図7】本発明の第2の実施の形態におけるオゾン発生装置の概念図、
【図8】本発明の第2の実施の形態におけるオゾン発生装置の他の例の概念図である。
【符号の説明】
1 接地電極
2 誘電体
3 MgO膜
4 高圧側電極
5 放電開口部
6 オゾナイザ
7 原料ガス
8 オゾンガス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ozone generator, and more particularly, to an ozone generator using dielectric barrier discharge.
[0002]
[Prior art]
The ozone generator is used for removing NOx generated during the treatment of industrial waste, an air washer, a deodorizer, and plant activation. There are many ozone generation methods. A method using thermal plasma, a method using an electrolytic method, a method using a discharge method, and the like are selected according to the required amount of generated ozone. Above all, an ozone generator used for sterilization, deodorization, decolorization, pulp bleaching, sterilization of medical equipment, and the like of water and sewage and industrial wastewater is generally a device using silent discharge.
[0003]
In recent years, flat-plate-type ozone generators using creeping discharge have been developed because such ozone generators are large in volume and low in electric efficiency. Recently, an ozone generator has been developed that efficiently generates high-concentration ozone at a level that allows water to absorb ozone efficiently. Ceramics are used as a dielectric material of the ozone generator, and a material obtained by laminating a metal (aluminum or the like) film on ceramics or the like is used as a material for electrodes on the high voltage side and the ground side. The discharge device for generating ozone is provided with a cooling device such as a heat sink or a Peltier element.
[0004]
[Problems to be solved by the invention]
However, the conventional ozone generating apparatus has a problem that the structure of the apparatus is very complicated, and it takes time and effort to manufacture.
[0005]
An object of the present invention is to solve the above-mentioned conventional problems and to realize a highly efficient ozone generator which can be easily and inexpensively manufactured.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, an ozone generator is provided with a high-pressure side electrode formed of a transfer-type printed electrode made of any one of gold, silver, copper, and platinum having a large number of discharge openings. A ground electrode formed of the continuous printed electrodes, and a dielectric layer formed of any of synthetic quartz glass, quartz glass, SiO 2 , and mica sandwiched between the high-voltage side electrode and the ground electrode. Configuration. With this configuration, it is possible to easily and inexpensively manufacture an ozone generator that generates ozone with high efficiency. In addition, by applying an MgO film or an aluminum nitride film to the surface of the electrode on the discharge surface side and the surface of the dielectric on the opening side in these discharge devices, it is possible to prevent wear of the electrodes and extend the life of the discharge device.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
[0008]
(First Embodiment)
In the first embodiment according to the present invention, a high-voltage electrode formed by a printing electrode having a large number of discharge openings, a ground electrode formed by a continuous printing electrode, and a high-voltage electrode and a ground electrode are sandwiched. An ozone generator having a three-layer structure including a dielectric layer provided.
[0009]
FIG. 1 is a conceptual diagram of an ozone generator according to a first embodiment of the present invention. In FIG. 1, a high-pressure side electrode 4 and a ground electrode 1 are formed by thermally sintering a transfer sheet made of any one of gold, silver, copper, and platinum and a resin, thereby skipping the resin and forming a thin film of the metal. Is a printed electrode in which is adhered to a dielectric. The dielectric 2 is a synthetic quartz glass. The dielectric may be quartz glass, SiO 2 , or mica. The MgO film 3 is a protective film that covers the surface of the high-voltage side electrode 4 and the dielectric surface facing the discharge opening described later. The ground electrode 1 is an electrode for applying a high frequency high voltage. The discharge opening 5 is a site where a discharge occurs. The discharge area of the discharge device was 100 mm × 100 mm.
[0010]
The ozone generator comprises three layers: an upper high-voltage electrode 3, a dielectric layer 2 made of synthetic quartz glass having a thickness of 150 μm, and a lower ground electrode 1. The uppermost high voltage side electrode 3 and the lowermost ground electrode 2 are solid transfer sheet type printing electrodes having a thickness of 25 μm selected from gold, silver, copper, and platinum. By using these materials, an electrode can be easily manufactured at low cost. The upper layer high voltage side electrode 4 is provided with a large number of openings 5 of several hundred μm to several mm at a vertical and horizontal pitch of several hundred μm.
[0011]
The operation of the ozone generator according to the first embodiment of the present invention configured as described above will be described. A high frequency high voltage of 5 kV at a frequency of 10 KHz is applied between the high voltage side electrode 4 and the ground electrode 1 of the ozone generator shown in FIG. A dielectric barrier discharge is generated in the discharge opening 5, and accordingly, ultraviolet light is generated. Oxygen in the atmosphere is ionized by the action of the ultraviolet rays, and ozone is generated. Ozone can be efficiently generated in the discharge opening 5 having a diameter of several hundred μm to several mm in the uppermost layer in the ozone generator. An MgO film 3 is formed on the surface of the high-voltage side electrode 4 and the surface of the dielectric 2 facing the opening in order to increase the efficiency of ozone generation. It operates without the MgO film 3.
[0012]
In order to confirm the ozone generation efficiency, a comparison was made between atmospheric discharge between the specifications of the present invention in which the dimensions of the ozone generator having the structure shown in FIG. Was. In a conventional discharge device, the dielectric is alumina ceramic and the electrode is an aluminum thick-film printed electrode. In order to confirm the electrode abrasion prevention effect of the deposited MgO film and the efficiency of ozone generation, the MgO film was deposited on the surface of the high-pressure side electrode and the dielectric surface facing the discharge opening, and the MgO film was not deposited. We also decided to compare the discharge in the atmosphere.
[0013]
FIG. 2 shows the results of a comparison of the ozone generation efficiency between the discharge device made of the conventional material and the discharge device studied in the present invention shown in FIG. From FIG. 2, it was confirmed that the discharge device using the synthetic quartz glass as the dielectric material and the printed electrode as the electrode did not compare so much with the ozone generation efficiency of the conventional discharge device when the same power was applied.
[0014]
FIG. 3 shows the ratio of the life at an ozone generation and maintenance rate of 80%, and the ozone generation amount for the case where the MgO film is deposited on the surface of the high voltage application side electrode and the case where the MgO film is not deposited on the dielectric surface facing the opening. Is shown. Those with the MgO film had better life and ozone generation efficiency than those without the MgO film, confirming the superiority of the MgO film.
[0015]
By using the printed electrode, an electrode having good adhesion to the dielectric can be easily manufactured at low cost. Good adhesion between the dielectric and the electrode leads to uniform formation of the dielectric layer and the metal layer, and a uniform electric field can be formed. Thereby, the surface can be uniformly discharged, and the ozone generation efficiency is improved. It has a sandwich-type three-layer structure in which a dielectric is sandwiched between two electrodes, and can be easily manufactured at low cost. In addition, energy loss can be reduced by using gold, silver, copper, and platinum printed electrodes having good conductivity as the electrode material.
[0016]
As described above, in the first embodiment according to the present invention, the ozone generator is connected to a high-pressure side electrode formed of a printed electrode made of any of gold, silver, copper, and platinum having a large number of discharge openings. A ground electrode formed by the printed electrode described above, and a dielectric layer formed of any of synthetic quartz glass, quartz glass, SiO 2 , and mica sandwiched between the high-voltage side electrode and the ground electrode. Because of the layer structure, a highly efficient ozone generator can be easily and inexpensively manufactured. Further, by providing the MgO film or the aluminum nitride film on the surface of the electrode on the high voltage application side and on the surface of the dielectric facing the discharge opening, it is possible to obtain a long life and an improvement in ozone generation efficiency by preventing abrasion of the electrode. ]
Next, the relationship between the dielectric thickness related to the ozone generation efficiency and the discharge opening diameter on the high voltage application side was examined. When an applied voltage was applied to the discharge device of the present invention, the distribution of an electric field depending on the ozone generation efficiency was determined. FIG. 4 is a view showing the distribution of electrostatic potentials generated when a voltage of 4 kV is applied to a discharge device having an opening diameter of 100 μm and a dielectric thickness of 100 μm. FIG. 5 shows a diagram summarizing the relationship between the discharge opening diameter and the electric field near the discharge opening. FIG. 6 is a diagram summarizing the relationship between the thickness of the dielectric and the electric field near the discharge opening.
[0018]
The electrostatic potential distribution applied to the discharge device became strongest near the discharge opening and reached 10 8 m / V near the opening. The electric field increased with the decrease in the aperture diameter, and the electric field also increased with the decrease in the thickness of the dielectric. Since the intensity of the electric field is reflected in the ozone generation amount, it can be seen that the ozone generation efficiency depends on the thickness and the opening diameter of the dielectric. It can be seen that when the dielectric size is larger than the opening size, the electric field loss increases, and the ozone generation efficiency decreases. As shown in FIG. 6, when the discharge opening diameter is 100 μm, the electric field sharply increases from a dielectric thickness of 100 μm or less. That is, when the thickness of the dielectric is smaller than the diameter of the opening, the electric field increases more remarkably. Therefore, considering the high efficiency of ozone generation, if the thickness of the dielectric is T (m) and the diameter of the opening is D (m), it is considered preferable to satisfy at least T ≦ D in terms of the discharge device structure. Can be
[0019]
(Second embodiment)
A second embodiment according to the present invention includes a first high voltage side electrode formed by a printing electrode having a large number of discharge openings, a ground electrode formed by a continuous printing electrode, and a first high voltage side electrode. A first dielectric layer formed of quartz glass sandwiched between the first electrode and a ground electrode, a second high-voltage electrode formed of a printed electrode having a large number of discharge openings, and a second high-voltage electrode. This is an ozone generator having a five-layer structure including a ground electrode and a second dielectric layer formed of quartz glass sandwiched between the ground electrodes. The dielectric may be any of quartz glass, SiO 2 , and mica, and the printed electrode may be any of gold, silver, copper, and platinum.
[0020]
FIG. 7 is a conceptual diagram of an ozone generator according to the second embodiment of the present invention. In FIG. 7, the ground electrode 1 is an electrode formed of any one of gold, silver, copper, and platinum printed electrodes. The dielectric 2 is any of synthetic quartz glass, quartz glass, SiO 2 , and mica. The MgO film 3 is a protective film. The high voltage side electrode 4 is a printed electrode of any of gold, silver, copper, and platinum, and is an electrode to which a high frequency high voltage is applied. The opening 5 is a site where a discharge occurs.
[0021]
The ground electrode 1 of the central layer is sandwiched between dielectrics 2 having a thickness of several tens μm to several mm. The outermost layer surface is the high-voltage side electrode 4 in which a large number of discharge openings 5 having a diameter of several tens of μm to several mm are opened at a pitch of several hundred μm in length and width. The high voltage side electrode 4, the dielectric 2, the ground electrode 1, the dielectric 2, and the high voltage side electrode 4 are composed of five layers.
[0022]
FIG. 8 is a conceptual diagram illustrating another example of the ozone generator according to the second embodiment of the present invention. In FIG. 8, an ozonizer 6 is an ozone generating element having a five-layer structure. The source gas 7 is a compressed gas containing oxygen. The ozone gas 8 is generated ozone. In this ozone generator, ozonizers 6 having discharge surfaces on both sides are arranged in parallel at intervals of about several mm.
[0023]
The operation of the ozone generator according to the second embodiment of the present invention configured as described above will be described. A high frequency high voltage current of several kHz at several kHz is applied between the high voltage side electrode 4 and the ground electrode 1 of the ozone generator shown in FIG. A dielectric barrier discharge is generated in the opening 5, and accordingly, ultraviolet light is generated. Oxygen in the atmosphere is changed to ozone by the action of the ultraviolet light. Since the electrodes on both surfaces of the outermost layer having the discharge opening 5 are used, ozone can be generated with a large surface area. An MgO film 3 is formed on the surface of the high-voltage side electrode 4 and the surface of the dielectric 2 facing the opening side to increase the efficiency of ozone generation. It operates without the MgO film 3.
[0024]
A source gas 7, which is a compressed gas containing oxygen, is blown between electrodes of an ozone generator in which a plurality of ozonizers 6, which are flat discharge elements having a five-layer structure shown in FIG. 8, are arranged in parallel. By increasing the number of the ozonizers 6, the discharge area can be easily enlarged. In this manner, the ozone gas 8 can be generated with high efficiency, and at the same time, the cooling can be efficiently performed. Therefore, a large-scale cooling device is not required, and the ozone generator can be made compact. Further, the manufacturing operation is facilitated and the manufacturing can be performed at low cost.
[0025]
As described above, in the second embodiment according to the present invention, the ozone generating device is formed by the first high-voltage side electrode formed by the printing electrode having a large number of discharge openings, and the continuous printing electrode. A ground electrode, a first dielectric layer formed of quartz glass sandwiched between the first high-voltage side electrode and the ground electrode, and a second high-voltage side formed by a printed electrode having a number of discharge openings Since it has a five-layer structure including the electrode and the second dielectric layer formed of quartz glass sandwiched between the second high-voltage side electrode and the ground electrode, a highly efficient ozone generator can be easily and easily provided. It can be manufactured at low cost.
[0026]
【The invention's effect】
As is apparent from the above description, in the present invention, the ozone generator, gold, silver, copper having a large number of openings, a high-pressure side electrode formed of any one of platinum printed electrodes, a continuous printed electrode And a dielectric layer formed of any one of quartz glass, synthetic quartz glass, SiO 2 , and mica sandwiched between the high-voltage side electrode and the ground electrode. An efficient ozone generator can be easily and inexpensively manufactured. Further, by providing the MgO film or the aluminum nitride film on the electrode surface which is the discharge surface and the dielectric surface facing the opening side, the ozone generation efficiency is improved and the life can be extended.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an ozone generator according to a first embodiment of the present invention;
FIG. 2 is a comparison table of ozone generation efficiency between the ozone generation device according to the first embodiment of the present invention and a conventional discharge device,
FIG. 3 is a table comparing the difference in the performance of a discharge device depending on the presence or absence of an MgO film,
FIG. 4 is an electrostatic distribution diagram when a voltage is applied to the discharge device,
FIG. 5 is a graph showing a relationship between a diameter of a discharge opening and an electric field,
FIG. 6 is a graph showing a relationship between a dielectric thickness and an electric field,
FIG. 7 is a conceptual diagram of an ozone generator according to a second embodiment of the present invention;
FIG. 8 is a conceptual diagram of another example of the ozone generator according to the second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ground electrode 2 Dielectric 3 MgO film 4 High voltage side electrode 5 Discharge opening 6 Ozonizer 7 Source gas 8 Ozone gas

Claims (7)

高圧側電極と接地電極に挟まれた誘電体で構成されるオゾン発生装置において、前記高圧側電極と前記接地電極とを金、銀、銅、またはプラチナのいずれか一つから選択された印刷電極で構成し、前記誘電体層を合成石英ガラス、石英ガラス、SiO、マイカのいずれか一つから選択して構成したことを特徴とするオゾン発生装置。In an ozone generating device comprising a dielectric sandwiched between a high voltage side electrode and a ground electrode, the high voltage side electrode and the ground electrode are printed electrodes selected from gold, silver, copper, or platinum. Wherein the dielectric layer is selected from any one of synthetic quartz glass, quartz glass, SiO 2 , and mica. 前記印刷電極は、熱焼結により形成したものであることを特徴とする請求項1に記載のオゾン発生装置。The ozone generator according to claim 1, wherein the printed electrode is formed by thermal sintering. 前記高圧側電極を、多数の放電開口部を有する印刷電極で形成したことを特徴とする請求項1に記載のオゾン発生装置。2. The ozone generator according to claim 1, wherein the high-voltage side electrode is formed by a printed electrode having a large number of discharge openings. 前記高圧側電極の表面と放電開口部側に面した前記誘電体表面にMgO膜もしくは窒化アルミニウム膜を設けたことを特徴とする請求項1または2に記載のオゾン発生装置。3. The ozone generator according to claim 1, wherein an MgO film or an aluminum nitride film is provided on a surface of the high-voltage side electrode and a surface of the dielectric facing the discharge opening side. 前記誘電体の厚さをD(m)とし、電極開口径をT(m)とした場合、前記誘電体厚さと電極開口径の関係をD≦Tとすることを特徴とする請求項1から4のいずれか一つに記載のオゾン発生装置。The relationship between the dielectric thickness and the electrode opening diameter is set to D ≦ T, where D (m) is the thickness of the dielectric and T (m) is the electrode opening diameter. 4. The ozone generator according to any one of 4. 前記接地電極を中央層に配置し、前記接地電極を誘電体で挟み、さらに前記誘電体を前記高圧側電極で覆う構造としたことを特徴とする請求項1に記載のオゾン発生装置。The ozone generator according to claim 1, wherein the ground electrode is arranged in a central layer, the ground electrode is sandwiched between dielectrics, and the dielectric is covered with the high-voltage side electrode. 前記接地電極を中央層に配置し、前記接地電極を誘電体で挟み、さらに前記誘電体を前記高圧側電極で覆う構造としたオゾン発生装置を数mm間隔で複数枚パラレル配列したことを特徴とする請求項6に記載のオゾン発生装置。The ground electrode is disposed in a central layer, the ground electrode is sandwiched between dielectrics, and a plurality of ozone generators having a structure in which the dielectric is covered with the high-voltage side electrode are arranged in parallel at a few mm intervals. The ozone generator according to claim 6.
JP2003088199A 2003-03-27 2003-03-27 Ozonizer Withdrawn JP2004292256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088199A JP2004292256A (en) 2003-03-27 2003-03-27 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088199A JP2004292256A (en) 2003-03-27 2003-03-27 Ozonizer

Publications (1)

Publication Number Publication Date
JP2004292256A true JP2004292256A (en) 2004-10-21

Family

ID=33402393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088199A Withdrawn JP2004292256A (en) 2003-03-27 2003-03-27 Ozonizer

Country Status (1)

Country Link
JP (1) JP2004292256A (en)

Similar Documents

Publication Publication Date Title
KR101515729B1 (en) Encapsulated metal microtip microplasma devices, arrays and fabrication methods
JP5025903B2 (en) Micro discharge device and utilization
KR100624732B1 (en) Surface discharge type air cleaning device
US4320301A (en) Device for the production of ozone
US20230042251A1 (en) Methods and apparatus for generating atmospheric pressure, low temperature plasma background
KR100407447B1 (en) Apparatus for generating ozone in high concentration
JPH04264349A (en) High-output-beam generating apparatus
JP2015506054A (en) Non-thermal plasma cell
JPS6186403A (en) Ozonizer constructed with ceramic
JP2004292256A (en) Ozonizer
JP2004105517A (en) Ion generating element, method for producing the same, ion generator, and electric appliance with the generator
JP3844890B2 (en) Ozone generator
US6559580B1 (en) Compact multistage spark gap switch
US11866326B2 (en) Apparatus for highly efficient cold-plasma ozone production
KR0130733B1 (en) Plasma discharge generating apparatus
JPH10245204A (en) Apparatus for discharge in gas
KR101582315B1 (en) Ozone Generator
JPS62278105A (en) Ozone-generator
CN2382713Y (en) High efficiency low temperature plasma ozone generater
KR100471566B1 (en) Discharge Tube for Ozone Generating and Ozone Generator Using the Same
EP0837032A1 (en) An ozone generator
KR20020040401A (en) High Efficiency and High Concentration Ozone Generation System
JP2004167315A (en) Gas exciting apparatus and gas exciting method
RU2227119C2 (en) Electrical ozonizer
RU154043U1 (en) OZONE GENERATOR USING A PULSED SLIDING DISCHARGE

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060116

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070730

A521 Written amendment

Effective date: 20070802

Free format text: JAPANESE INTERMEDIATE CODE: A523