JP2004291154A - Battery mounted robot - Google Patents

Battery mounted robot Download PDF

Info

Publication number
JP2004291154A
JP2004291154A JP2003086802A JP2003086802A JP2004291154A JP 2004291154 A JP2004291154 A JP 2004291154A JP 2003086802 A JP2003086802 A JP 2003086802A JP 2003086802 A JP2003086802 A JP 2003086802A JP 2004291154 A JP2004291154 A JP 2004291154A
Authority
JP
Japan
Prior art keywords
charging
secondary battery
fuel cell
robot
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086802A
Other languages
Japanese (ja)
Inventor
Hideki Ogawa
秀樹 小川
Daisuke Yamamoto
大介 山本
Nobutaka Kikuiri
信孝 菊入
Nobuhito Matsuhira
信人 松日楽
Taku Yoshimi
卓 吉見
Kaoru Suzuki
薫 鈴木
Junko Hirokawa
潤子 廣川
Shuichi Nakamoto
秀一 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003086802A priority Critical patent/JP2004291154A/en
Publication of JP2004291154A publication Critical patent/JP2004291154A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a robot for personal use wherein it is not necessary to return to a charging station for charging if a mounted secondary battery is used up to dispense with the charging station, and the problem wherein the robot is not available during the charging period is solved, and which can work without charging for a long time. <P>SOLUTION: The robot has a rechargeable secondary battery built in the robot, a fuel cell for charging the secondary battery, and a charging circuit as an auxiliary battery in a robot body so that the power generating function of the fuel cell is maintained to keep charging of the secondary battery, and the secondary battery and the fuel cell are combinedly used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、家庭内あるいは公共施設内において、一般ユーザーに各種サービスを提供する機能を持つ個人利用向けロボットに係り、特に、ロボットに内蔵搭載した2次電池への充電手段に関する。
【0002】
【従来の技術】
ここ近年は、オフィスや病院等の一般公共施設内、さらには家庭内にも個人利用用途でロボットが入るようになってきた。一般家庭内に入ったロボットの代表としては、ソニー株式会社が開発したペットを模擬したペットロボットAIBO(http://www.jp.aibo.com/)や、家庭用パーソナルコンピュータ同様に電子メールやインターネット情報の検索、家電製品のリモコン操作などの機能を有したロボット(例えば、日本電気株式会社のPaPeRo(http://www.incx.nec.co.jp/robot/))、あるいは家庭内の巡回監視の機能を持つ移動ロボットなど各種開発され発表されている。この場合、これらロボットの駆動用電源としては、一般に充放電が可能な2次バッテリ電池を内蔵して利用するものが多く、搭載するバッテリが消耗したり、あるいは作業等を行わない待機時には、この2次バッテリ電池への充電を目的とした充電ステーションに、何らかの方法で戻るか、人がセットしてやることで、接続プラグを介して充電ステーション側に装着して充電を行うことが行われていた。
【0003】
【特許文献1】
特開2001−125641公報
【特許文献2】
特開2002−325707公報
【0004】
【発明が解決しようとする課題】
しかしながらこの場合、ロボットがユーザから与えられた指示で作業中であっても搭載する2次バッテリ電池の容量が消耗したときは作業続行が不可能となり、搭載する2次電池を充電するために専用の充電ステーションに何らかの方法によって戻り、ドッキング装着して充電を行う必要があった。あるいはまた、作業等を行わない待機時間中には、次の稼働に備えて、常に搭載したバッテリの容量を満たすため充電ステーションに戻す必要もあった。これは一定時間毎に室内を巡回監視するようプログラム指示した場合にも、必ず一旦は充電ステーションに戻ってバッテリに充電することとなり、
その時間帯は監視が出来ないなど稼働効率の点からもよいとは言えず、不便であった。
【0005】
また、ロボット搭載の機能を利用するためロボットを屋外に持ち出したりした場合には、充電ステーションも一緒に持っていく必要があったり、場合によっては屋外では充電ステーションが使用できないことも充分に想定され、ロボットが利用できなくなったり、あるいは取り替えようの2次バッテリ電池を別途用意しておくなど利用上も不便であった。このことは、停電時や何かの災害が発生して一般家庭内のコンセントから電気が使用できないときにも当てはまることである。
この発明は、上記のような事情に鑑みてなされたものであって、その目的は、搭載する2次バッテリ電池が消耗しても、わざわざ充電するために充電ステーションに戻る必要もなく、充電ステーションが不要になるとともに、充電時間にロボットが使用できないといった問題も軽減され、長時間の無充電稼働できる個人利用向けロボットを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、この発明によれば、前記ロボット内蔵の充放電可能な2次バッテリ電池と共に、前記2次電池に対して充電が可能な燃料電池、および充電回路をロボット本体内に補助バッテリとして有し、前記燃料電池に対する充電指令ON状態では、前記2次電池に対して過充電検知信号が作用するまで、随時、前記燃料電池から前記2次電池に充電が行われ、さらには前記燃料電池には燃料となるメタノール等のタンク内容量を検出する手段を有し、容量が少なくなれば、それを通知すると共に燃料を適宜、補充することで燃料電池の発電作用が保たれて前記2次電池への充電が維持できるように構成して、2次電池と燃料電池を併用可能とした手段を有する。
【0007】
また、この発明によれば、前記2次バッテリ電池において、その出力電圧値やバッテリ温度などバッテリ状態検出手段を有し、バッテリ残量に相当する検出した出力電圧値が一定レベル以下に下がると働く過放電検知信号が作用すれば、前記燃料電池に対する充電指令OFF状態であっても自動的に前記燃料電池から前記2次電池側に、過充電検知信号が作用するまで充電が行われるよう充電回路を含めて2次電池と燃料電池を併用する手段を有する。
【0008】
また、この発明によれば、前記個人利用向けロボットおいて、移動動作や人へのサービス提供機能などロボット実働稼働状態にあるか、あるいは必要最小限のコントローラのみ働かせた待機スリープ状態にあるかを監視する手段を有し、稼働状態から待機スリープ状態に移って一定時間以上たつと前記燃料電池から前記2次電池側へ過充電検知信号が作用するまで充電が自動的に行われるように充電回路を含めて2次電池と燃料電池を併用するよう構成した手段を有する。
【0009】
さらに、この発明によれば、前記個人利用向けロボットおいて、内蔵した充放電可能な2次バッテリ電池に対して、バッテリ容量減少時や、あるいは稼働待機時には、前記2次電池への充電が可能な充電ステーションに自律的に戻るか、人が戻してやることで、接続プラグを介し接続することで充電が行えるよう充電回路を含めて構成すると共に、一方で、前記2次電池へ充電用としてモジュール的に前記接続プラグを利用して燃料電池をロボットに装着することで、その装着を検出する検知部からの信号により、前記燃料電池装着時には前記充電ステーションを利用しなくても、前記燃料電池から前記2次電池に過充電検知信号が作用するまで充電が自動的に行われるよう構成した充電回路をロボット本体内に有して、充電ステーションと燃料電池との併用を可能にする手段を有する。
【0010】
【発明の実施の形態】
以下、本発明に係るバッテリ搭載ロボットにおける実施の形態を、図面を参照して説明する。
【0011】
図1は、本発明に係るバッテリ搭載ロボットの本体外観イメージ図の一例である。本ロボットの基本構成は、頭部にカメラ1、スピーカー2、マイク3を装備した雲台4を持ち、胴体部にアーム5やディスプレイ6、通信装置12を装備し、その内部に制御装置7、駆動用主電源の2次バッテリ電池8、および補助バッテリとして燃料電池9を搭載したロボット本体10、および本体下部に設けられた移動機構11を備えた形態となっている。
【0012】
図2は、本発明に係るバッテリ搭載ロボット本体内部の制御装置7、バッテリ電池8、9の全体構成を示すブロック図である。同図において、制御装置7は、ロボット全体を管理・運動制御を行うCPUボードからなる演算処理装置13、スピーカ2、マイク3はじめ、装備した機構部からのセンサ入出力を行うインタフェースボード14、搭載したアーム5及び移動機構11を駆動させるサーボモータ16およびそのモータドライバ15、さらに電源管理用マイコンボード17から構成される。この制御装置7に所定の電圧を供給する主電源として、充放電が可能な2次バッテリ電池8がDC−DCコンバータを介し利用される。2次バッテリ電池8には、例えば、モータ駆動など高出力にも対応出来るリチウムイオン電池が用いられ、過充電や過放電に対処した保護回路およびその出力電圧値やバッテリ温度など状態監視回路21が設けられて、状態監視信号25が制御装置内の電源管理用マイコン17で制御される。この2次電池8に対し、補助バッテリとして燃料電池9が充電制御回路19を介して接続される。燃料電池9には、例えば、高濃度メタノールを燃料電池の濃度として最適な3〜6%に希釈して循環させるシステムを組み込み小形化した、メタノール型燃料電池が用いられ、燃料であるメタノールを注入する容量検出通知機能を持ったタンク22、この燃料を利用して化学反応で発電作用を行わせる発電装置部24、およびその状態を監視制御する回路部23から構成され、電源管理用マイコン17で発電動作の制御や状態監視27が行われる。
【0013】
ロボットでは、移動動作やCPUへの負荷が多くかかる作業を行う場合に、大電流が必要となるが、小さな電流しか必要としない時間も多くある。大電流がかかると燃料電池9の電圧レベルが低下する性質を使うことで、大電流必要時はメインの2次バッテリ電池8が使用され、燃料電池9は常に2次バッテリ側に瞬時の電気容量は少なくても充電制御回路19を介して充電供給し続けて、メインの2次バッテリ容量の消費を補うことで併用が可能となる。これにより、充電動作制御信号26により充電指令ON状態では、2次バッテリ電池8に対して過充電検知信号25が作用するまで、随時、燃料電池から2次電池に充電が行われる。充電制御回路19は、定電流定電圧充電が行えるよう回路構成されており、場合によっては昇圧回路20も含んでいる。
【0014】
図3は、2次バッテリ電池8に燃料電池9から充電制御回路9を介して充電動作を行わせる処理手順の一例を示したものである。同図において、2次電池はバッテリ容量監視が行われており、バッテリ残量に相当する出力電圧値が設定レベル以下になれば、過放電検知信号25が働き、充電動作制御信号が作用して充電指令OFF状態にあっても燃料電池9から充電動作が開始されて、2次電池側の過充電検知信号25が働くまで充電が行われる。この際に、燃料電池側では燃料の残量チェックが行われ、少なくなると補充通知信号が働く。
【0015】
図4はこの発明に係る、バッテリ搭載ロボットの稼働状態に対応して充電動作を行わせる処理手順の一例を示したフローチャートである。ロボットが移動動作中や人へサービス提供中など実働稼働状態にあるか、あるいは必要最小限に特定のセンサのみを働かせるなどの待機スリープ状態にあるかが検知出来るよう制御装置7内でプログラム構成されており、実稼働状態から待機スリープ状態に移行して一定設定時間以上たてば、燃料電池9から2次バッテリ電池8側へ充電動作制御信号が作用して充電指令OFF状態にあっても充電動作が開始されて、2次電池側の過充電検知信号25が働くまで充電が行われる。この際にも、燃料電池側では燃料の残量チェックが行われ、少なくなると補充通知信号が働く。
【0016】
図5はこの発明に係る、第2の形態によるバッテリ搭載ロボットの制御装置、およびバッテリの全体構成を示すブロック図である。同図において、2次バッテリ電池8に対して、バッテリ容量減少時や稼働待機時に、2次電池への充電が可能な充電ステーション32が用意されており、この充電ステーション利用可能環境化では、ロボットが充電ステーション32に自律的に戻れるようプログラム制御されるか、あるいは、人が戻してセットしてやることで、接続プラグ30を介して2次バッテリ電池8に充電が行えるよう充電制御回路19’が構成される。さらに、充電ステーション32の代わりに接続プラグ30を利用してモジュール的に取付け可能な燃料電池9をロボットに装着すると、その装着を検出する検知部31が働いて電源管理用マイコン17からの制御で、充電制御回路19’内で切り替えが行われ、燃料電池9側から2次バッテリ電池への充電が可能となる。このように、2次電池に対して必要に応じて充電ステーション32と燃料電池9の併用が出来るよう構成される。
【0017】
例えば、本発明に使用するメタノール型燃料電池の仕様の一例として、平均12W、最大20Wの出力で、燃料タンク容量100mlとすると、タンクに満充填した高濃度メタノールで約10時間の動作が可能となる。この場合に、家庭内でロボットを1日3時間巡回監視など実稼働で使用したとして、作業時平均40W、待ち受け待機時には数Wとすると、180WH/日(1260WH/週)程度の電源容量が必要になるが、トータルで1000mlの高濃度メタノールを用意すれば、1週間ロボットを使用できることとなる。
【0018】
【発明の効果】
以上説明したように、この発明のバッテリ搭載ロボットによれば、搭載する2次バッテリ電池が消耗しても、わざわざ充電するために充電ステーションに戻る必要もなく、充電ステーションが不要になるとともに、充電時間にロボットが使用できないといった問題も軽減され、長時間の無充電稼働できる個人利用向けロボットを提供することができる。また、ロボット搭載の機能を利用するためロボットを屋外に持ち出した場合や、停電時や何かの災害が発生して一般家庭内のコンセントから電気が使用できないときにも、充電ステーションの必要が無く長時間の利用が可能となる。
【図面の簡単な説明】
【図1】この発明に係る、バッテリ搭載ロボットの本体外観イメージ図。
【図2】この発明に係る、バッテリ搭載ロボットの制御装置、およびバッテリの全体構成を示すブロック図。
【図3】この発明に係る、バッテリ搭載ロボットの充電動作の処理手順の一例を示すフローチャート図。
【図4】この発明に係る、バッテリ搭載ロボットの稼働状態に対応した充電動作を示すフローチャート図。
【図5】この発明に係る、第2の形態によるバッテリ搭載ロボットの制御装置、およびバッテリの全体構成を示すブロック図。
【符号の説明】
1・・・カメラ
2・・・スピーカー
3・・・マイク
4・・・雲台
5・・・アーム
6・・・ディスプレイ
7・・・制御装置
8・・・2次バッテリ電池
9・・・燃料電池
10・・・ロボット本体
11・・・移動機構
12・・・通信装置
13・・・演算処理装置
14・・・センサ用インタフェースボード
15・・・モータドライバ
16・・・サーボモータ
17・・・電源管理用マイコンボード
18・・・DC−DCコンバータ
19、19’・・・充電制御回路
20・・・昇圧回路
21・・・保護回路・状態監視回路
22・・・燃料タンク
23・・・状態監視回路
24・・・発電装置
26・・・充電動作制御信号
27・・・発電動作制御・状態モニタ信号
30・・・接続プラグ
31・・・装着検知部
32・・・充電ステーション
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a robot for personal use having a function of providing various services to a general user at home or in a public facility, and particularly to a charging unit for a secondary battery built in the robot.
[0002]
[Prior art]
In recent years, robots have come into general public facilities such as offices and hospitals, and even homes for personal use. As a representative of a robot that has entered a general household, a pet robot AIBO (http://www.jp.aibo.com/) that simulates a pet developed by Sony Corporation, as well as an electronic mail and a home personal computer as well. A robot (for example, PaPeRo (http://www.incx.nec.co.jp/robot/) of NEC Corporation) having a function of searching for Internet information, operating a remote control of home electric appliances, or a home Various mobile robots with a patrol monitoring function have been developed and announced. In this case, as a power source for driving these robots, a rechargeable secondary battery which is generally chargeable and dischargeable is generally used in many cases. When the battery is returned to the charging station for the purpose of charging the secondary battery by some method or set by a person, the battery is mounted on the charging station via a connection plug to perform charging.
[0003]
[Patent Document 1]
JP 2001-125641 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-325707
[Problems to be solved by the invention]
However, in this case, even when the robot is working according to the instruction given by the user, the work cannot be continued if the capacity of the mounted secondary battery is exhausted, and the robot is dedicated to charging the mounted secondary battery. It was necessary to return to the charging station by some method, dock it, and charge it. Alternatively, during the standby time during which no work or the like is performed, it is necessary to always return to the charging station to fill the capacity of the mounted battery in preparation for the next operation. This means that even if the program is instructed to patrol the room at regular intervals, it will always return to the charging station and charge the battery once.
During that time, monitoring was not possible and it was not good from the viewpoint of operating efficiency, which was inconvenient.
[0005]
In addition, if the robot is taken out of the room to use the functions built into the robot, it is necessary to bring the charging station with the robot.In some cases, it is fully assumed that the charging station cannot be used outdoors. However, the use of the robot is inconvenient, for example, the robot cannot be used or a secondary battery for replacement is separately prepared. This is true even in the event of a power outage or when a disaster occurs that makes it impossible to use electricity from outlets in ordinary households.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to eliminate the need to return to the charging station to recharge even if the mounted secondary battery battery is exhausted. It is therefore an object of the present invention to provide a robot for personal use that can be operated for a long time without charging while eliminating the need for a robot and reducing the problem that the robot cannot be used during charging.
[0006]
[Means for Solving the Problems]
To achieve the above object, according to the present invention, a chargeable / dischargeable secondary battery battery built in the robot, a fuel cell capable of charging the secondary battery, and a charging circuit are provided in the robot body. In a state where the charge command for the fuel cell is ON, the fuel cell is charged from the fuel cell to the secondary battery as needed until an overcharge detection signal acts on the secondary battery. The fuel cell has a means for detecting the capacity of the fuel tank such as methanol.If the capacity is low, the fuel cell is notified and the fuel is appropriately refilled to maintain the power generation action of the fuel cell. Means are provided so that charging of the secondary battery can be maintained, and the secondary battery and the fuel cell can be used together.
[0007]
Further, according to the present invention, the secondary battery cell has a battery state detecting means such as the output voltage value and the battery temperature, and operates when the detected output voltage value corresponding to the remaining battery level falls below a certain level. When the overdischarge detection signal is activated, the charging circuit is configured to automatically perform charging from the fuel cell to the secondary battery until the overcharge detection signal is activated even when the charge command for the fuel cell is OFF. And means for using a secondary battery and a fuel cell together.
[0008]
Further, according to the present invention, in the personal use robot, it is determined whether the robot is in a working state, such as a moving operation or a service providing function for a person, or in a standby sleep state in which only a minimum necessary controller is operated. A charging circuit having monitoring means, and when a predetermined time or more has passed from the operation state to the standby sleep state, charging is automatically performed until an overcharge detection signal is applied from the fuel cell to the secondary battery side. And a means configured to use a secondary battery and a fuel cell together.
[0009]
Further, according to the present invention, in the robot for personal use, the built-in chargeable / dischargeable secondary battery battery can be charged when the battery capacity is reduced or during standby. A self-returning or self-returning charging station is configured to include a charging circuit so that charging can be performed by connecting via a connection plug, and on the other hand, a module for charging the secondary battery By mounting the fuel cell on the robot using the connection plug, the signal from the detection unit that detects the mounting allows the fuel cell to be mounted without using the charging station when the fuel cell is mounted. A charging circuit configured in the robot body so that charging is automatically performed until an overcharge detection signal is applied to the secondary battery; Comprising means for enabling use with charge the battery.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a battery-mounted robot according to the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is an example of an external appearance image diagram of a main body of a battery-mounted robot according to the present invention. The basic configuration of this robot has a camera platform 4 equipped with a camera 1, a speaker 2, and a microphone 3 on its head, an arm 5, a display 6, and a communication device 12 on its body, and a control device 7, It has a secondary battery cell 8 as a driving main power source, a robot body 10 equipped with a fuel cell 9 as an auxiliary battery, and a moving mechanism 11 provided at a lower part of the body.
[0012]
FIG. 2 is a block diagram showing the overall configuration of the control device 7 and battery cells 8 and 9 inside the battery-equipped robot body according to the present invention. In the figure, a control device 7 includes an arithmetic processing device 13 composed of a CPU board for managing and controlling the motion of the entire robot, a speaker 2, a microphone 3, and an interface board 14 for inputting and outputting sensors from the equipped mechanical units. And a motor driver 15 for driving the arm 5 and the moving mechanism 11, and a power management microcomputer board 17. As a main power supply for supplying a predetermined voltage to the control device 7, a chargeable / dischargeable secondary battery 8 is used via a DC-DC converter. As the secondary battery 8, for example, a lithium ion battery that can cope with high output such as motor driving is used, and a protection circuit for overcharge and overdischarge and a state monitoring circuit 21 for its output voltage value and battery temperature are included. The state monitoring signal 25 is provided and is controlled by the power management microcomputer 17 in the control device. A fuel cell 9 is connected to the secondary battery 8 as an auxiliary battery via a charge control circuit 19. As the fuel cell 9, for example, a small-sized methanol-type fuel cell incorporating a system for diluting high-concentration methanol to an optimum concentration of 3 to 6% as a fuel cell and circulating the same is used. The power supply management microcomputer 17 includes a tank 22 having a capacity detection notification function to perform power generation, a power generation unit 24 for performing power generation by a chemical reaction using the fuel, and a circuit unit 23 for monitoring and controlling the state. Control of the power generation operation and state monitoring 27 are performed.
[0013]
In a robot, a large current is required when performing a moving operation or a task that places a large load on the CPU, but there are many times when only a small current is required. By using the property that the voltage level of the fuel cell 9 decreases when a large current is applied, the main secondary battery cell 8 is used when a large current is required, and the fuel cell 9 always has the instantaneous electric capacity on the secondary battery side. At least, the charge can be continuously supplied through the charge control circuit 19 to compensate for the consumption of the capacity of the main secondary battery. Thus, when the charge command is ON by the charge operation control signal 26, the fuel cell charges the secondary battery as needed until the overcharge detection signal 25 acts on the secondary battery battery 8. The charge control circuit 19 is configured to perform constant current and constant voltage charging, and may include a booster circuit 20 in some cases.
[0014]
FIG. 3 shows an example of a processing procedure for causing the secondary battery cell 8 to perform a charging operation from the fuel cell 9 via the charging control circuit 9. In the figure, the battery capacity of the secondary battery is monitored, and when the output voltage value corresponding to the remaining battery level falls below a set level, the overdischarge detection signal 25 operates and the charging operation control signal operates. Even in the charge command OFF state, the charging operation is started from the fuel cell 9 and the charging is performed until the overcharge detection signal 25 on the secondary battery operates. At this time, the fuel cell side checks the remaining amount of fuel, and when it becomes low, a replenishment notification signal operates.
[0015]
FIG. 4 is a flowchart illustrating an example of a processing procedure for performing a charging operation according to the operating state of the battery-equipped robot according to the present invention. The program is configured in the control device 7 so that it can be detected whether the robot is in an actual operation state such as moving or providing a service to a person or in a standby sleep state in which only a specific sensor is operated to a minimum. When a certain set time or more elapses after a transition from the actual operation state to the standby sleep state, the charge operation control signal is applied from the fuel cell 9 to the secondary battery cell 8 to charge even if the charge command is OFF. The operation is started and charging is performed until the overcharge detection signal 25 of the secondary battery operates. Also at this time, the fuel cell side checks the remaining amount of fuel, and when it becomes low, a refill notification signal is activated.
[0016]
FIG. 5 is a block diagram showing the overall configuration of a battery-mounted robot control device and a battery according to a second embodiment of the present invention. In the figure, a charging station 32 is provided for the secondary battery 8 so that the secondary battery can be charged when the battery capacity is reduced or when the battery is in an operation standby state. The charging control circuit 19 'is configured so that the secondary battery 8 can be charged via the connection plug 30 by being program-controlled so that the secondary battery can return to the charging station 32 autonomously or by being set back by a person. Is done. Furthermore, when the fuel cell 9 that can be modularly mounted is mounted on the robot by using the connection plug 30 instead of the charging station 32, the detection unit 31 that detects the mounting is operated, and the control by the power management microcomputer 17 is performed. The switching is performed in the charge control circuit 19 ', and the secondary battery cell can be charged from the fuel cell 9 side. In this manner, the charging station 32 and the fuel cell 9 can be used together as needed for the secondary battery.
[0017]
For example, as an example of the specifications of the methanol fuel cell used in the present invention, assuming an average output of 12 W and a maximum output of 20 W and a fuel tank capacity of 100 ml, it is possible to operate for about 10 hours with a high-concentration methanol fully filled in the tank. Become. In this case, assuming that the robot is used in the home for actual operation such as patrol monitoring for 3 hours a day, if the average is 40 W during work and several W during standby, a power supply capacity of about 180 WH / day (1260 WH / week) is required. However, if a total of 1000 ml of high-concentration methanol is prepared, the robot can be used for one week.
[0018]
【The invention's effect】
As described above, according to the battery-equipped robot of the present invention, even if the secondary battery battery mounted is exhausted, there is no need to return to the charging station for charging, and the charging station is not required. The problem that the robot cannot be used in a short time can be reduced, and a robot for personal use that can be operated for a long time without charging can be provided. In addition, there is no need for a charging station when the robot is taken outside to use the functions installed on the robot, or when a power outage or some other disaster occurs and electricity cannot be used from the outlet in ordinary households. Long-term use becomes possible.
[Brief description of the drawings]
FIG. 1 is an external appearance image diagram of a battery-mounted robot according to the present invention.
FIG. 2 is a block diagram showing the overall configuration of the control device of the battery-mounted robot and the battery according to the present invention.
FIG. 3 is a flowchart illustrating an example of a processing procedure of a charging operation of the battery-equipped robot according to the present invention.
FIG. 4 is a flowchart showing a charging operation corresponding to the operating state of the battery-equipped robot according to the present invention.
FIG. 5 is a block diagram showing the overall configuration of a battery-mounted robot control device and a battery according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Camera 2 ... Speaker 3 ... Microphone 4 ... Head 5 ... Arm 6 ... Display 7 ... Control device 8 ... Secondary battery 9 ... Fuel Battery 10 Robot main body 11 Moving mechanism 12 Communication device 13 Processing unit 14 Sensor interface board 15 Motor driver 16 Servo motor 17 Power management microcomputer board 18 DC-DC converters 19 and 19 'Charge control circuit 20 Boost circuit 21 Protection circuit / state monitoring circuit 22 Fuel tank 23 State Monitoring circuit 24 Power generation device 26 Charging operation control signal 27 Power generation operation control / status monitor signal 30 Connection plug 31 Mounting detector 32 Charging station

Claims (4)

内蔵するアクチュエータ及びロボットコントローラの駆動用電源となる充放電可能な2次電池と、この2次電池への充電が可能で液体燃料が収納されたタンクを有する燃料電池と、この燃料電池から前記2次電池への充電を行う充電回路とを有し、前記燃料電池に対する充電指令ON状態では、前記2次電池に対して過充電検知信号が作用するまで、随時、前記燃料電池から前記2次電池に充電が行われ、且つ前記タンク内の前記液体燃料の容量を検出する手段を有し、前記容量が少なくなれば、それを通知すると共に、前記液体燃料を適宜、補充・追加することで前記燃料電池の発電作用が保持されて前記2次電池への充電が維持できるように構成した事を特徴とするバッテリ搭載ロボット。A chargeable / dischargeable secondary battery serving as a power supply for driving a built-in actuator and a robot controller; a fuel cell having a tank capable of charging the secondary battery and containing a liquid fuel; And a charging circuit for charging the secondary battery. When the charge command for the fuel cell is in an ON state, the fuel cell is connected to the secondary battery at any time until an overcharge detection signal is applied to the secondary battery. Is charged, and has a means for detecting the capacity of the liquid fuel in the tank, and when the capacity is low, notifies it and, if necessary, replenishes / adds the liquid fuel. A battery-equipped robot characterized in that the power generation operation of the fuel cell is maintained so that the charging of the secondary battery can be maintained. 前記2次電池が、少なくともその出力電圧値及び/又はバッテリ温度を検出する手段を有し、バッテリ残量に相当する検出した前記出力電圧値が所定レベル以下に下がると動作する過放電検知信号が作用した場合、前記燃料電池に対する充電指令OFF状態であっても前記燃料電池から前記2次電池に、過充電検知信号が作用するまで充電が行われる様に前記充電回路が動作することを特徴とする請求項1に記載のバッテリ搭載ロボット。The secondary battery has at least means for detecting its output voltage value and / or battery temperature, and an overdischarge detection signal that operates when the detected output voltage value corresponding to the remaining battery level falls below a predetermined level. When activated, the charging circuit operates such that charging is performed from the fuel cell to the secondary battery until an overcharge detection signal is activated, even when the charge command to the fuel cell is OFF. The battery-equipped robot according to claim 1. 前記バッテリ搭載ロボットは、個人利用向けロボットであり、移動動作や人へのサービス提供機能などロボット実働稼働状態にあるか、あるいは必要最小限のコントローラのみ働かせた待機スリープ状態にあるかを監視する手段を有し、稼働状態から待機スリープ状態に移って一定時間以上たつと前記燃料電池から前記2次電池側へ過充電検知信号が作用するまで充電が自動的に行われるように充電回路を含めて2次電池と燃料電池を併用するよう構成したことを特徴とする、請求項1に記載のバッテリ搭載ロボット。The battery-equipped robot is a robot for personal use, and is a means for monitoring whether the robot is in a working state such as a moving operation or a service providing function for a person or in a standby sleep state in which only a minimum necessary controller is operated. Including a charging circuit so that when a certain period of time or more elapses from the operating state to the standby sleep state, charging is automatically performed from the fuel cell to the secondary battery side until an overcharge detection signal is applied. The battery-equipped robot according to claim 1, wherein the secondary battery and the fuel cell are used in combination. 前記個人利用向けロボットおいて、内蔵した充放電可能な2次バッテリ電池に対して、バッテリ容量減少時や、あるいは稼働待機時には、前記2次電池への充電が可能な充電ステーションに自律的に戻るか、人が戻してやることで、接続プラグを介し接続することで充電が行えるよう充電回路を含めて構成すると共に、一方で、前記2次電池へ充電用としてモジュール的に前記接続プラグを利用して燃料電池をロボットに装着することで、その装着を検出する検知部からの信号により、前記燃料電池装着時には前記充電ステーションを利用しなくても、前記燃料電池から前記2次電池に過充電検知信号が作用するまで充電が自動的に行われるよう構成した充電回路をロボット本体内に有して、充電ステーションと燃料電池の併用を可能にしたことを特徴とする請求項1に記載のバッテリ搭載ロボット。In the robot for personal use, the built-in chargeable / dischargeable secondary battery is autonomously returned to a charging station capable of charging the secondary battery when the battery capacity is reduced or during standby. Or, a person can be returned and a charging circuit can be included so that charging can be performed by connecting through a connection plug. On the other hand, the connection plug is modularly used for charging the secondary battery. By mounting the fuel cell on the robot, a signal from a detection unit that detects the mounting detects an overcharge from the fuel cell to the secondary battery without using the charging station when the fuel cell is mounted. A charging circuit configured so that charging is automatically performed until a signal is applied is provided in the robot body, enabling the charging station and fuel cell to be used together. Battery mounting robot according to claim 1, wherein the door.
JP2003086802A 2003-03-27 2003-03-27 Battery mounted robot Pending JP2004291154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086802A JP2004291154A (en) 2003-03-27 2003-03-27 Battery mounted robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086802A JP2004291154A (en) 2003-03-27 2003-03-27 Battery mounted robot

Publications (1)

Publication Number Publication Date
JP2004291154A true JP2004291154A (en) 2004-10-21

Family

ID=33401330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086802A Pending JP2004291154A (en) 2003-03-27 2003-03-27 Battery mounted robot

Country Status (1)

Country Link
JP (1) JP2004291154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135142A (en) * 2005-06-24 2006-12-29 삼성에스디아이 주식회사 Fuel cell system and driving method thereof
KR100820316B1 (en) * 2006-11-03 2008-04-07 송기무 Baby care robot
US8236459B2 (en) 2008-02-15 2012-08-07 Korea Institute Of Science And Technology Hybrid type power supplying apparatus
US11787043B2 (en) 2020-01-31 2023-10-17 Seiko Epson Corporation Robot, vehicle for mounting robot, and mobile robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135142A (en) * 2005-06-24 2006-12-29 삼성에스디아이 주식회사 Fuel cell system and driving method thereof
KR100820316B1 (en) * 2006-11-03 2008-04-07 송기무 Baby care robot
US8236459B2 (en) 2008-02-15 2012-08-07 Korea Institute Of Science And Technology Hybrid type power supplying apparatus
US11787043B2 (en) 2020-01-31 2023-10-17 Seiko Epson Corporation Robot, vehicle for mounting robot, and mobile robot

Similar Documents

Publication Publication Date Title
CN100489735C (en) Electronic equipment, power source management control device for electronic equipment, and power source device
US7863775B2 (en) Power management and control in electronic equipment
US7728545B2 (en) Equipment with a built-in fuel cell
US20040061474A1 (en) Fuel cell with battery, electronic apparatus having fuel cell with battery, and method of utilizing same
JP2001313083A (en) False cell battery pack, cell battery pack, electronic device, and electronic device system
US20110127943A1 (en) Power supply device and charge-discharge control method
CN101171718A (en) Bidirectional battery charge controller
CN101902056A (en) Uninterruptable power supply and method for saving electricity of same
JP2007166818A (en) Power supply system and control method thereof
US20100013647A1 (en) Hybrid power system
JP2024056081A (en) Power converter, power conversion system and power conversion method
JP7157207B2 (en) POWER MANAGEMENT SYSTEM FOR MOBILE X-RAY DEVICE AND CONTROL METHOD THEREOF
CN100386710C (en) Electronic device, electronic device system and working model switching method
CN110521079B (en) Apparatus and method for preventing overdischarge of an energy storage device and re-operating an energy storage device
JP2004291154A (en) Battery mounted robot
JP4806927B2 (en) Power supply
TWI403069B (en) A hybrid power supply method for a power plant, and a secondary battery using the same
WO2005122360A1 (en) Portable power supply
JP2015080375A (en) Power conversion device
JP3337878B2 (en) Electrical equipment
KR101070629B1 (en) Power supply system of portable device and method of controlling the same
US20050280392A1 (en) Fuel cell power adapter for computer system
CN112918291B (en) Battery charging station and battery management method
JP2002345156A (en) Rechargeable battery or rechargeable battery pack
JPH0635575A (en) Power supply system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214