JP2004291106A - Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance under heavy cutting condition - Google Patents

Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance under heavy cutting condition Download PDF

Info

Publication number
JP2004291106A
JP2004291106A JP2003084054A JP2003084054A JP2004291106A JP 2004291106 A JP2004291106 A JP 2004291106A JP 2003084054 A JP2003084054 A JP 2003084054A JP 2003084054 A JP2003084054 A JP 2003084054A JP 2004291106 A JP2004291106 A JP 2004291106A
Authority
JP
Japan
Prior art keywords
highest
point
content
content point
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084054A
Other languages
Japanese (ja)
Other versions
JP4333177B2 (en
Inventor
Kazuki Okada
一樹 岡田
Shinsuke Sakamoto
信介 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003084054A priority Critical patent/JP4333177B2/en
Publication of JP2004291106A publication Critical patent/JP2004291106A/en
Application granted granted Critical
Publication of JP4333177B2 publication Critical patent/JP4333177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer exhibiting excellent chipping resistance under heavy cutting conditions. <P>SOLUTION: The cutting tool has a dual-phase structural hard coating layer having Co dispersed in a Ti and Al composite nitride matrix, with a mean thickness of 1-15 μm, the layer being coated on a substrate surface by physical vapor deposition. The layer has a component content distribution structure such that the highest Ti/Al content points alternately appears repeatedly in the matrix containing the Ti/Al composite nitrides in a layer thickness direction, that the highest Co ratio dispersion point appears at the highest Ti content point, that Co is not present at the highest Al content point, and that Ti/Al contents and a Co dispersion ratio continuously change between the two highest content points. The highest Ti content point satisfies the composition formula, (Ti<SB>1-X</SB>Al<SB>X</SB>)N (X is 0.05-0.35 by atomic ratio), and the Co dispersion ratio at the highest Co dispersion point 1-10 atomic percent. The highest Al content point satisfies the composition formula, (Al<SB>1-Y</SB>Ti<SB>Y</SB>)N, (Y is 0.35-0.60 by atomic ratio), and an interval between the adjacent highest Ti/Al content points is 0.01-0.1 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度と高靭性を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに切刃が断続切削加工形態をとる面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、組成式:(Al1−Y Ti)N(ただし、原子比で、Yは0.35〜0.60を示す)を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている(例えば参考文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と、所定組成を有するAl−Ti合金ターゲットがセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬合金基体の表面に、上記(Al,Ti)N層からなる硬質被覆層を蒸着することにより製造されることも知られている(例えば参考文献1参照)。
【0005】
【参考文献1】
特許第2644710号
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高切り込みや高送りなどの重切削条件で行なわれる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、切削加工を高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の強度および靭性不足が原因でチッピング(微小割れ)が発生し易くなり、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆超硬工具を構成する(Al,Ti)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、および強度を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金ターゲットを設け、他方側に前記Al−Ti合金ターゲットと対向配置した状態で、いずれもカソード電極(蒸発源)として相対的にTi含有量が高い(Al含有量が低い)Ti−Al合金ターゲットと金属Coターゲットを並設したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に中心軸から半径方向に所定位置離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記Al−Ti合金ターゲットおよび前記Ti−Al合金ターゲットからAlおよびTi成分、さらに前記金属CoターゲットからCo成分をそれぞれ雰囲気中にイオン化放出すると、AlおよびTi成分は反応雰囲気の窒素と反応して窒化物を形成するが、Coは雰囲気窒素とは反応しないままの状態を保持するので、前記超硬基体の表面には、TiとAlの複合窒化物の素地にCoが分散分布してなる2相組織[以下、(Ti,Al)N−Coで示す]層が形成されるようになり、この結果の(Ti,Al)N−Co層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金ターゲットのカソード電極(蒸発源)に最も接近した時点で層中の素地にAl最高含有点が形成され、この場合Coは存在せず、また前記超硬基体が上記の他方側の相対的にTi含有量が高い(Al含有量が低い)Ti−Al合金ターゲットおよび金属Coターゲットのカソード電極に最も接近した時点で、層中の素地にはTi最高含有点が形成されると共に、前記素地のTi最高含有点にはCo最高割合分散点が存在するようになり、上記回転テーブルの回転によって層中の素地には層厚方向にそって前記Al最高含有点とTi最高含有点、さらに前記Al最高含有点のCo不存在点と前記Ti最高含有点のCo最高割合分散点が所定間隔をもって交互に繰り返し現れると共に、前記素地のTi最高含有点およびCo最高割合分散点から前記素地のAl最高含有点およびCo不存在点、前記素地のAl最高含有点およびCo不存在点から前記素地のTi最高含有点およびCo最高割合分散点へTiおよびAl含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造をもつようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Al)N−Co層において、対向配置の一方側のカソード電極(蒸発源)であるAl−Ti合金ターゲットにおけるTi含有量を上記の従来Al−Ti合金ターゲットのTi含有量に相当するものとし、かつ同他方側のカソード電極(蒸発源)であるTi−Al合金ターゲットにおけるAl含有量を上記の従来Al−Ti合金ターゲットのAl含有量に比して相対的に低いものとし、かつ上記の通り前記金属Coターゲットを前記Ti−Al合金ターゲットに併設すると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記素地のTi最高含有点が、組成式:(Ti1−X Al)N(ただし、原子比で、Xは0.05〜0.35を示す)、
を満足し、さらに前記素地のTi最高含有点におけるはCo最高割合分散点のCoの分散割合を、素地との合量に占める割合で1〜10原子%とし、
上記素地のAl最高含有点が、組成式:(Al1−Y Ti)N(ただし、原子比で、Yは0.35〜0.60を示す)、
を満足し、
かつ隣り合う上記素地のTi最高含有点とAl最高含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記素地のAl最高含有点部分では、Coが存在しないことと相俟って、上記の従来(Al,Ti)N層と同等のAl含有量となることから、前記従来(Al,Ti)N層と同等のすぐれた高温硬さと耐熱性(高温特性)を示し、一方上記の素地のTi最高含有点部分では、前記Al最高含有点部分に比してAl含有量が低く、Ti含有量が高く、かつCoの分散割合が最も高くなることと相俟って、一段と高い強度と靭性が確保され、かつこれら素地のAl最高含有点とTi最高含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温特性を保持した状態で一段と高い強度と靭性を具備するようになり、したがって、硬質被覆層がかかる構成の(Al,Ti)N−Co層からなる被覆超硬工具は、各種の鋼や鋳鉄などの切削加工を、特に高い機械的衝撃を伴うので高強度と高靭性が要求される、高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Ti,Al)N−Co層からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着してなる被覆超硬工具にして、
上記硬質被覆層が、層厚方向にそって、素地にAl最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、さらに前記Ti最高含有点にはCo最高割合分散点が存在し、一方前記Al最高含有点にはCoが存在せず、かつ前記素地のTi最高含有点およびCo最高割合分散点から前記素地のAl最高含有点およびCo不存在点、前記Al最高含有点およびCo不存在点から前記Ti最高含有点およびCo最高割合分散点へTiおよびAlの含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造を有し、
上記素地のTi最高含有点が、組成式:(Ti1−X Al)N(ただし、原子比で、Xは0.05〜0.35を示す)、
を満足し、さらに前記素地のTi最高含有点におけるCo最高割合分散点のCoの分散割合が、素地との合量に占める割合で1〜10原子%であり、
上記素地のAl最高含有点が、組成式:(Al1−Y Ti)N(ただし、原子比で、Yは0.35〜0.60を示す)、
を満足し、
かつ隣り合う上記の素地のTi最高含有点とAl最高含有点の間隔が、0.01〜0.1μmである、
重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)素地のAl最高含有点の組成
Al最高含有点の(Al,Ti)NにおけるAl成分は、高温硬さおよび耐熱性(高温特性)を向上させ、同Ti成分は強度を向上させる目的で含有するものであり、したがってTi成分の含有割合が高くなればなるほど強度は向上したものになるが、Tiの割合を示すY値がAlとの合量に占める割合(原子比)で0.35未満では、高強度および高靭性を有するCo分散分布のTi最高含有点が隣接して存在しても層自体の強度および靭性の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同Y値が同0.60を越えると、前記高温特性に所望の向上効果が得られないことから、Al最高含有点でのTiの割合を示すY値を0.35〜0.60と定めた。
【0011】
(b)素地のTi最高含有点の組成
上記の通り素地のAl最高含有点は高温特性のすぐれたものであるが、反面強度および靭性の劣るものであるため、このAl最高含有点の強度および靭性不足を補う目的で、Ti含有割合が高く、これによって高強度および高靭性を有するようになるTi最高含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合を示すX値がTiとの合量に占める割合(原子比)で0.35を越えると、所望のすぐれた強度および靭性を確保することができず、切刃部におけるチッピング発生の原因となり、一方同X値が0.05未満になると、相対的にTiの割合が多くなり過ぎて、Ti最高含有点に所望の高温特性を具備せしめることができなくなり、摩耗進行が急激に促進されるようになることから、素地のTi最高含有点でのAlの割合を示すX値を0.05〜0.35と定めた。
【0012】
(c)素地のTi最高含有点におけるCoの分散割合
さらに、高い機械的衝撃を伴う高切り込みや高送りなどの重切削加工条件では、硬質被覆層により一段と高い強度および靭性が要求されることから、素地のTi最高含有点とCo最高割合分散点を共存させることにより、靭性の一段の向上を図ったものであり、したがって、Coの分散割合が素地の(Ti,Al)Nとの合量に占める割合で1原子%未満では所望の靭性向上効果が得られず、一方、同分散割合が同10原子%を超えると、硬質被覆層全体の高温特性が急激に低下し、摩耗進行が著しく促進されるようになることから、その分布割合を1〜10原子%と定めた。
【0013】
(d)素地のTi最高含有点(Co最高割合分散点)とAl最高含有点(Co不存在点)間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望の高強度および高靭性、さらに高温特性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちTi最高含有点であれば高温特性不足、Al最高含有点であれば強度および靭性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0014】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0015】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。
【0016】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0017】
ついで、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、中心軸から半径方向に所定位置離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもった素地のTi最高含有点およびCo最高割合分散点形成用Ti−Al合金ターゲットおよび金属Coターゲット、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点およびCo不存在点形成用Al−Ti合金ターゲットを前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiターゲットも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、カソード電極の前記金属Tiターゲットとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、前記Ti−Al合金ターゲットおよびAl−Ti合金ターゲットのカソード電極とアノード電極との間には150Aの電流、そして前記金属Coターゲットとアノード電極との間にはCo最高割合分散点のCo割合に応じて50〜80Aの範囲内の所定の電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成の素地のTi最高含有点およびCo最高割合分散点と素地のAl最高含有点およびCo不存在点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記素地のTi最高含有点およびCo最高割合分散点から前記素地のAl最高含有点およびCo不存在点、前記Al最高含有点およびCo不存在点から前記Ti最高含有点およびCo最高割合分散点へTiおよびAlの含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったAl−Ti合金ターゲットを装着し、さらにボンバート洗浄用金属Tiターゲットも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、カソード電極の前記金属Tiターゲットとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、超硬基体に−100Vの直流バイアス電圧を印加し、前記カソード電極のAl−Ti合金ターゲットとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0019】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM439の丸棒、
切削速度:180m/min.、
切り込み:4mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(通常の切り込み量は1.5mm)での合金鋼の乾式連続高切り込み切削加工試験、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:1.5mm、
送り:0.6mm/rev.、
切削時間:10分、
の条件(通常の送り量は0.2mm/rev.)での合金鋼の乾式断続高送り切削加工試験、さらに、
被削材:JIS・FC300の丸棒、
切削速度:200m/min.、
切り込み:4mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(通常の切り込み量は1.5mm)での鋳鉄の乾式連続高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表3〜6に示した。
【0020】
【表1】

Figure 2004291106
【0021】
【表2】
Figure 2004291106
【0022】
【表3】
Figure 2004291106
【0023】
【表4】
Figure 2004291106
【0024】
【表5】
Figure 2004291106
【0025】
【表6】
Figure 2004291106
【0026】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法を有し、かついずれもねじれ角:30度の4枚刃スクエア形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0027】
ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成の素地のTi最高含有点およびCo最高割合分散点と素地のAl最高含有点およびCo不存在点とが交互に同じく表8に示される目標間隔で繰り返し存在し、かつ前記素地のTi最高含有点およびCo最高割合分散点から前記素地のAl最高含有点およびCo不存在点、前記Al最高含有点およびCo不存在点から前記Ti最高含有点およびCo最高割合分散点へTiおよびAlの含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0028】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0029】
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:60m/min.、
軸方向切り込み:10mm、
径方向切り込み:3mm、
テーブル送り:640mm/分、
の条件(通常の軸方向切り込み量は6mm、径方向切り込み量は1mm)での工具鋼の乾式高切り込み側面切削加工試験、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:100m/min.、
軸方向切り込み:15mm、
径方向切り込み:2mm、
テーブル送り:1200mm/分、
の条件(通常のテーブル送りは400mm/分)での合金鋼の乾式高送り側面切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:50m/min.、
軸方向切り込み:30mm、
径方向切り込み:8mm、
テーブル送り:160mm/分、
の条件(通常の軸方向切り込み量は20mm、径方向切り込み量は4mm)でのステンレス鋼の湿式高切り込み側面切削加工試験(水溶性切削油使用)をそれぞれ行い、いずれの側面切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表8、9にそれぞれ示した。
【0030】
【表7】
Figure 2004291106
【0031】
【表8】
Figure 2004291106
【0032】
【表9】
Figure 2004291106
【0033】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法を有し、かついずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0034】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成の素地のTi最高含有点およびCo最高割合分散点と素地のAl最高含有点およびCo不存在点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記素地のTi最高含有点およびCo最高割合分散点から前記素地のAl最高含有点およびCo不存在点、前記Al最高含有点およびCo不存在点から前記Ti最高含有点およびCo最高割合分散点へTiおよびAlの含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0035】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0036】
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:40m/min.、
送り:0.2mm/rev、
穴深さ:10mm
の条件(通常の送り量は0.08mm/rev、)での工具鋼の湿式高送り穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:70m/min.、
送り:0.4mm/rev、
穴深さ:20mm
の条件(通常の送り量は0.16mm/rev、)での合金鋼の湿式高送り穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD700の板材、
切削速度:70m/min.、
送り:0.6mm/rev、
穴深さ:40mm
の条件(通常の送り量は0.24mm/rev、)でのダクタイル鋳鉄の湿式高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0037】
【表10】
Figure 2004291106
【0038】
【表11】
Figure 2004291106
【0039】
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8を構成する硬質被覆層における素地のTi最高含有点(Co最高割合分散点)と素地のAl最高含有点(Co不存在点)の組成、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の硬質被覆層について、厚さ方向に沿ってTiおよびAlの含有量、さらにCo分散割合をオージェ分光分析装置を用いて測定したところ、本発明被覆超硬工具の硬質被覆層では、素地にTi最高含有点とAl最高含有点、さらにCo最高割合分散点とCo不存在点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Ti最高含有点およびCo最高割合分散点から前記Al最高含有点およびCo不存在点、前記Al最高含有点およびCo不存在点から前記Ti最高含有点およびCo最高割合分散点へTiおよびAlの含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造を有することが確認され、また硬質被覆層の全体平均層厚も目標全体層厚と実質的に同じ値を示した。一方前記従来被覆超硬工具の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標全体層厚と実質的に同じ全体平均層厚を示すことが確認された。
【0040】
【発明の効果】
表3〜11に示される結果から、硬質被覆層が層厚方向に、一段と高い強度と靭性を有する素地のTi最高含有点およびCo最高割合分散点と、すぐれた高温硬さと耐熱性を有する素地のAl最高含有点およびCo不存在点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Ti最高含有点およびCo最高割合分散点から前記Al最高含有点およびCo不存在点、前記Al最高含有点およびCo不存在点から前記Ti最高含有点およびCo最高割合分散点へTiおよびAlの含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造を有する本発明被覆超硬工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる従来被覆超硬工具においては、前記硬質被覆層がすぐれた高温硬さと耐熱性を有するものの、強度および靭性に劣るものであるために、重切削条件での加工では切刃部にチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer having high strength and high toughness, and excellent in high-temperature hardness and heat resistance. Therefore, cutting of various steels and cast irons can be performed particularly at high cutting and high cutting with high mechanical impact. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as coated cemented carbide tool) in which a hard coating layer exhibits excellent chipping resistance when performed under heavy cutting conditions such as feed.
[0002]
[Prior art]
In general, coated carbide tools are used for throw-away inserts, drilling, etc., which are removably attached to the tip of a cutting tool for turning or planing of various materials such as steel and cast iron. Drills and miniature drills, as well as solid-type end mills used for face milling, grooving, shoulder processing, etc., in which the cutting edge takes an intermittent cutting form, and the solid-type by detachably attaching the throw-away tip There is known a throw-away end mill tool for performing a cutting process in the same manner as the end mill.
[0003]
Further, as a coated cemented carbide tool, a substrate made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter, referred to as TiCN) -based cermet (hereinafter, collectively referred to as a cemented carbide substrate) ) On the surface of the composition formula: (Al 1-Y Ti Y A) a hard coating layer composed of a composite nitride of Al and Ti [hereinafter, referred to as (Al, Ti) N] that satisfies N (where Y represents 0.35 to 0.60 in atomic ratio). A coated carbide tool formed by physical vapor deposition with an average layer thickness of 1 to 15 μm has been proposed, and is used for continuous cutting and intermittent cutting of various steels and cast irons (for example, see Reference Document 1).
[0004]
Furthermore, the above-mentioned coated carbide tool is charged with the above-mentioned carbide substrate in an arc ion plating apparatus, which is a kind of physical vapor deposition apparatus shown schematically in FIG. 2, for example, and the inside of the apparatus is heated by a heater. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which an Al-Ti alloy target having a predetermined composition is set, for example, under a condition of a current of 90 A while being heated to a temperature of 500 ° C. At the same time, a nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the surface of the cemented carbide substrate is applied to the cemented carbide substrate under the condition that a bias voltage of, for example, -100 V is applied. In addition, it is also known that it is manufactured by evaporating a hard coating layer composed of the above (Al, Ti) N layer (for example, see Reference Document 1).
[0005]
[Reference 1]
Japanese Patent No. 2644710
[0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved.On the other hand, there is a strong demand for labor saving, energy saving, and lower cost for cutting, and with this, cutting has been performed under heavy cutting conditions such as high cutting depth and high feed. Although there is no problem in the conventional coated carbide tool described above when using it under normal cutting conditions, there is no problem with cutting, but high cutting depth and high feed with high mechanical impact Under the heavy cutting conditions described above, chipping (micro cracking) is likely to occur particularly due to insufficient strength and toughness of the hard coating layer, and the service life is relatively short.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool in which the hard coating layer exhibits excellent chipping resistance especially under heavy cutting conditions. As a result of conducting research, focusing on the constituent hard coating layer,
(A) The (Al, Ti) N layer constituting the conventional coated carbide tool formed by using the arc ion plating apparatus shown in FIG. 2 has a substantially uniform composition throughout the entire layer thickness. And therefore has a uniform high-temperature hardness, heat resistance, and strength. For example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. That is, a rotary table for mounting a carbide substrate is provided at the center of the apparatus, and Al-Ti having a relatively high Al content (low Ti content) is provided as a cathode electrode (evaporation source) on one side of the rotary table. In the state where an alloy target is provided and disposed on the other side facing the Al-Ti alloy target, a Ti-Al alloy target having a relatively high Ti content (low Al content) is used as a cathode electrode (evaporation source). Using an arc ion plating apparatus in which a get and a metal Co target are juxtaposed, a plurality of carbide substrates are formed in a ring shape on the turntable of the apparatus along a peripheral portion at a position radially away from a central axis at a predetermined position. In this state, the rotating table is rotated while the atmosphere in the apparatus is set to a nitrogen atmosphere, and the carbide substrate itself is also rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. An arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Al-Ti alloy target and the Ti-Al alloy target, and Al and Ti components, and Co component from the metal Co target, respectively. When ionized and released into the atmosphere, the Al and Ti components react with nitrogen in the reaction atmosphere to form nitrides. Since a state in which it does not react with ambient nitrogen is maintained, a two-phase structure in which Co is dispersed and distributed on a base of a composite nitride of Ti and Al [hereinafter, (Ti, Al ) N-Co] layer is formed, and in the resulting (Ti, Al) N-Co layer, the super-hard substrate arranged in a ring shape on the turntable has the above-mentioned one side. At the point of closest approach to the cathode electrode (evaporation source) of an Al—Ti alloy target having a relatively high Al content (low Ti content), the highest Al content point is formed on the substrate in the layer. Does not exist, and when the cemented carbide substrate comes closest to the cathode electrode of the Ti-Al alloy target and the metal Co target having the relatively high Ti content (low Al content) on the other side, The base material in the layer contains the highest Ti A point is formed, and a Co highest dispersion point is present at the Ti highest content point of the base material. By rotating the rotary table, the Al highest content point is formed on the base material in the layer along the layer thickness direction. The point and the highest Ti content point, and further, the Co-free point of the Al highest content point and the Co highest ratio dispersion point of the highest Ti content point alternately appear at predetermined intervals, and the Ti highest content point and the Co highest point of the base material. From the proportion dispersion point to the Al highest content point and Co absent point of the base, from the Al highest content point and Co absent point of the base to the Ti highest content point and Co highest percentage dispersion point of the base, Ti and Al content, In addition, it has a component concentration distribution structure in which the Co dispersion ratio changes continuously.
[0008]
(B) In the (Ti, Al) N-Co layer having the repeated and continuously changing component concentration distribution structure of (a), the Ti content in the Al-Ti alloy target which is the cathode electrode (evaporation source) on one side of the opposed arrangement. Is equivalent to the Ti content of the above-mentioned conventional Al-Ti alloy target, and the Al content of the Ti-Al alloy target, which is the cathode electrode (evaporation source) on the other side, is changed to the above-mentioned conventional Al-Ti alloy target. And the metal Co target is provided in parallel with the Ti-Al alloy target as described above, and the rotation speed of the turntable on which the carbide substrate is mounted is controlled. do it,
The highest Ti content point of the above-mentioned base is determined by the composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X shows 0.05-0.35),
At the highest Ti content point of the base material, the Co dispersion ratio at the Co highest percentage dispersion point is 1 to 10 atomic% in the total amount with the base material,
The highest content point of Al in the above-described base is determined by the composition formula: (Al 1-Y Ti Y ) N (however, in atomic ratio, Y shows 0.35-0.60),
Satisfied,
And when the interval in the thickness direction between the Ti maximum content point and the Al maximum content point of the adjacent base material is 0.01 to 0.1 μm,
In the Al highest content point portion of the substrate, the Al content is equivalent to that of the conventional (Al, Ti) N layer, in combination with the absence of Co. It shows excellent high-temperature hardness and heat resistance (high-temperature properties) equivalent to those of the layer, while the Ti highest content portion of the above-described base has a lower Al content and a lower Ti content than the aforementioned Al highest content portion. Higher strength and toughness are ensured in combination with the highest and the highest Co dispersion ratio, and the interval between the highest Al content point and the highest Ti content point of these materials is extremely small. A coated carbide tool comprising an (Al, Ti) N-Co layer having a hard coating layer having higher strength and toughness while maintaining excellent high temperature properties as a whole, , Various steel and cast iron The hard coating layer has excellent chipping resistance even when the cutting process is performed under heavy cutting conditions such as high cutting and high feed, which requires high strength and high toughness due to high mechanical impact. To demonstrate.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results, and a hard coating layer composed of a (Ti, Al) N—Co layer is formed on the surface of a super-hard substrate at a total average layer thickness of 1 to 15 μm. A coated carbide tool made by evaporation,
The hard coating layer has an Al maximum content point and a Ti maximum content point alternately and repeatedly present at predetermined intervals in the substrate along the layer thickness direction, and further has a Co maximum ratio dispersion point at the Ti maximum content point. Is present, while Co is not present at the Al maximum content point, and from the Ti maximum content point and Co maximum ratio dispersion point of the substrate, the Al maximum content point and the Co absent point of the substrate, and the Al maximum content Having a component concentration distribution structure in which the Ti and Al contents from the point and the Co non-existing point to the Ti highest content point and the Co highest ratio dispersion point, and further the Co dispersion ratio continuously change,
The highest Ti content point of the above-mentioned base is determined by the composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X shows 0.05-0.35),
Is satisfied, and the Co dispersion ratio of the Co highest dispersion point at the highest Ti content point of the base is 1 to 10 atomic% in the total amount with the base,
The highest content point of Al in the above-described base is determined by the composition formula: (Al 1-Y Ti Y ) N (however, in atomic ratio, Y shows 0.35-0.60),
Satisfied,
And the interval between the Ti highest content point and the Al highest content point of the adjacent base is 0.01 to 0.1 μm;
The present invention is characterized by a coated carbide tool in which a hard coating layer exhibits excellent chipping resistance under heavy cutting conditions.
[0010]
Next, the reason why the configuration of the hard coating layer constituting the coated carbide tool of the present invention is limited as described above will be described.
(A) Composition of the highest Al content point of the base
The Al component in (Al, Ti) N having the highest Al content improves the high-temperature hardness and heat resistance (high-temperature properties), and the Ti component is included for the purpose of improving the strength. The higher the content ratio, the higher the strength. However, when the Y value indicating the ratio of Ti is less than 0.35 in the ratio (atomic ratio) to the total amount with Al, high strength and high toughness are obtained. Even if the highest Ti content points in the Co dispersion distribution are adjacent to each other, a decrease in the strength and toughness of the layer itself is inevitable. As a result, chipping and the like are likely to occur, while the Y value exceeds 0.60. And the desired improvement effect on the high-temperature characteristics cannot be obtained, the Y value indicating the proportion of Ti at the Al maximum content point was determined to be 0.35 to 0.60.
[0011]
(B) Composition of the highest Ti content point of the base
As described above, the Al maximum content point of the base material is excellent in high-temperature properties, but is inferior in strength and toughness. For the purpose of compensating for the insufficient strength and toughness of the Al maximum content point, the Ti content ratio is reduced. The Ti content points, which are high and thereby have high strength and high toughness, are alternately interposed in the thickness direction. Therefore, the X value indicating the Al ratio is a ratio (atomic When the ratio X exceeds 0.35, desired excellent strength and toughness cannot be secured, which causes chipping at the cutting edge portion. If the proportion of Ti becomes too large, it becomes impossible to provide a desired high-temperature characteristic at the highest Ti content point, and the progress of abrasion is rapidly accelerated. The X value indicating the ratio of defined as 0.05 to 0.35.
[0012]
(C) Dispersion ratio of Co at the highest Ti content point of the base
Furthermore, under heavy cutting conditions such as high cutting and high feed with high mechanical impact, the hard coating layer requires higher strength and toughness. By coexisting, the toughness is further improved. Therefore, if the dispersion ratio of Co is less than 1 atomic% in the total amount of the base and (Ti, Al) N, the desired effect of improving toughness is obtained. On the other hand, when the dispersion ratio exceeds 10 atomic%, the high-temperature characteristics of the entire hard coating layer rapidly decrease, and the progress of wear is remarkably accelerated. -10 atomic%.
[0013]
(D) Interval between the highest Ti content point (Co highest percentage dispersion point) and the highest Al content point (Co absent point)
If the interval is less than 0.01 μm, it is difficult to clearly define each point with the above composition, and as a result, it is not possible to secure desired high strength and high toughness, and further high temperature properties to the layer, If the spacing exceeds 0.1 μm, the disadvantages of each point, that is, insufficient high-temperature properties at the highest Ti content point, and insufficient strength and toughness at the highest Al content point locally appear in the layer. In this case, chipping easily occurs on the cutting edge and wear progress is promoted, so the interval is set to 0.01 to 0.1 μm.
[0014]
(D) Overall average layer thickness of the hard coating layer
If the layer thickness is less than 1 μm, desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur, so the average layer thickness is 1 to 15 μm. I decided.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cemented carbide tool of the present invention will be specifically described with reference to examples.
(Example 1)
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 A powder and a Co powder were prepared, and these raw material powders were blended in the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is sintered in a vacuum of 6 Pa under the condition that the temperature is maintained at 1400 ° C. for 1 hour. After the sintering, the cutting edge is subjected to a honing process of R: 0.03, and a chip shape conforming to ISO standard CNMG120408 The cemented carbide substrates A1 to A10 made of a WC-based cemented carbide having the above formula were formed.
[0016]
Further, as raw material powders, TiCN (TiC / TiN = 50/50 by weight ratio) powder having an average particle diameter of 0.5 to 2 μm, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, and dried. Then, the green compact is press-molded at a pressure of 100 MPa, and the green compact is sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, R is applied to the cutting edge portion. : Carbide substrates B1 to B6 made of TiCN-based cermet having a chip shape of ISO standard CNMG120408 by performing honing processing of 0.03.
[0017]
Next, each of the above-mentioned super-hard substrates A1 to A10 and B1 to B6 was ultrasonically cleaned in acetone and dried, and then placed on a rotary table in an arc ion plating apparatus shown in FIG. Attached along the outer periphery at a position radially away from, and used as a cathode electrode (evaporation source) on one side for forming a Ti maximum content point and a Co maximum ratio dispersion point of a substrate having various component compositions. A Ti—Al alloy target and a metal Co target, and an Al—Ti alloy target for forming an Al maximum content point and a Co non-existence point having various component compositions as a cathode electrode (evaporation source) on the other side sandwich the rotary table. At the same time, a metal Ti target for bombarding was mounted, and the heater was first evacuated to maintain a vacuum of 0.5 Pa or less. After heating the inside of the apparatus to 500 ° C., a DC bias voltage of −1000 V is applied to the superhard substrate rotating while rotating on the rotary table, and 100 A is applied between the metal Ti target of the cathode electrode and the anode electrode. To generate an arc discharge, thereby cleaning the surface of the cemented carbide substrate with Ti bombardment, then introducing nitrogen gas as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and rotating on the rotary table. A DC bias voltage of -100 V is applied to the rotating super-hard substrate, and a current of 150 A is applied between the cathode electrode and the anode electrode of the Ti-Al alloy target and the Al-Ti alloy target. A predetermined current within the range of 50 to 80 A depending on the Co ratio at the Co highest ratio dispersion point between the anode electrode. To generate an arc discharge, and thereby, on the surface of the cemented carbide substrate, along the layer thickness direction, the Ti maximum content point and the Co maximum ratio dispersion point of the target composition having the target composition shown in Tables 3 and 4, and the Al maximum of the substrate. The content point and the Co non-existence point are alternately and repeatedly present at the target intervals also shown in Tables 3 and 4, and the Al maximum content point and Co The component concentration distribution structure in which the content of Ti and Al, and further the dispersion ratio of Co, continuously changes from the absent point, the Al maximum content point and the Co non-existence point to the Ti maximum content point and the Co maximum ratio dispersion point, By depositing a hard coating layer having a target total layer thickness also shown in Tables 3 and 4, the surface coated cemented carbide alloy throw-away tip (hereinafter, referred to as the coated cemented carbide tool of the present invention) Inventive coated carbide tips) 1 to 16 were manufactured respectively.
[0018]
For the purpose of comparison, these super-hard substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone, dried, and charged into a usual arc ion plating apparatus shown in FIG. An Al-Ti alloy target having various component compositions is mounted as a cathode electrode (evaporation source), and a metal Ti target for bombardment cleaning is further mounted. First, the inside of the apparatus is evacuated to a vacuum of 0.5 Pa or less. After the inside of the apparatus was heated to 500 ° C. with the heater while holding, a DC bias voltage of −1000 V was applied to the carbide substrate, and a current of 100 A was passed between the metal Ti target of the cathode electrode and the anode electrode. Arc discharge was generated, and the surface of the cemented carbide substrate was cleaned by Ti bombardment. Then, nitrogen gas was introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 2 Pa. At the same time, a direct current bias voltage of -100 V is applied to the super hard substrate, and a current of 100 A is caused to flow between the Al-Ti alloy target of the cathode electrode and the anode electrode to generate an arc discharge. Each of the hard substrates A1 to A10 and B1 to B6 has a target composition and a target layer thickness shown in Tables 5 and 6 and has substantially no composition change along the layer thickness direction (Al, Ti ) By depositing a hard coating layer consisting of an N layer, throw-away tips made of conventional surface-coated cemented carbide (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated cemented carbide tools were produced, respectively.
[0019]
Next, with respect to the above-mentioned coated carbide tips 1 to 16 of the present invention and conventional coated carbide tips 1 to 16, in a state where they were screwed to the tip of a tool steel tool with a fixing jig,
Work material: JIS SNCM439 round bar,
Cutting speed: 180 m / min. ,
Cut: 4mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-cut cutting test of alloy steel under the conditions (normal cut depth is 1.5 mm),
Work material: JIS SCM440 4 rods with longitudinal grooves at regular intervals in the longitudinal direction,
Cutting speed: 200 m / min. ,
Cut: 1.5 mm,
Feed: 0.6 mm / rev. ,
Cutting time: 10 minutes,
(Normal feed rate is 0.2 mm / rev.), Dry intermittent high feed cutting test of alloy steel,
Work material: JIS FC300 round bar,
Cutting speed: 200 m / min. ,
Cut: 4mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
(A normal cutting depth is 1.5 mm), a dry continuous high-cut cutting test of cast iron was performed, and the flank wear width of the cutting edge was measured in each cutting test. The measurement results are shown in Tables 3 to 6.
[0020]
[Table 1]
Figure 2004291106
[0021]
[Table 2]
Figure 2004291106
[0022]
[Table 3]
Figure 2004291106
[0023]
[Table 4]
Figure 2004291106
[0024]
[Table 5]
Figure 2004291106
[0025]
[Table 6]
Figure 2004291106
[0026]
(Example 2)
As raw material powder, medium coarse WC powder having an average particle size of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, and ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 Powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder were prepared, and these raw powders were respectively blended into the composition shown in Table 7. Further, a wax is added thereto, and the mixture is ball-milled in acetone for 24 hours in acetone, dried under reduced pressure, and press-molded into various compacts having a predetermined shape at a pressure of 100 MPa, and these compacts are placed in a vacuum atmosphere of 6 Pa. The temperature was raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a temperature rising rate of 7 ° C./min, held at this temperature for 1 hour, and then sintered under furnace cooling conditions to have diameters of 8 mm, 13 mm, and Three types of round bar sintered bodies for forming a carbide substrate having a diameter of 26 mm were formed, and the three types of round bar sintered bodies were further subjected to grinding processing in a combination shown in Table 7 to obtain a diameter of a cutting edge portion. X Lengths of 6 mm x 13 mm, 10 mm x 22 mm, and Has dimensions of 20 mm × 45 mm, and both twist angle: 30 degrees carbide substrate having a 4 flute square shape (end mills) C-1 through C-8 were prepared, respectively.
[0027]
Then, these super-hard substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone, dried, and charged into an arc ion plating apparatus also shown in FIG. Under the same conditions as in Example 1, along with the layer thickness direction, the Ti maximum content point and the Co maximum proportion dispersion point of the target composition shown in Table 8 and the Al maximum content point and the Co non-existence point of the substrate alternately. Also present at the target intervals also shown in Table 8, and based on the Ti highest content point and the Co highest ratio dispersion point of the base, the Al highest content point and the Co non-existence point of the base, the Al highest content point and the absence of Co. From the point to the Ti highest content point and the Co highest ratio dispersion point, have a component concentration distribution structure in which the content of Ti and Al and further the dispersion ratio of Co change continuously. By depositing a hard coating layer having a thickness, the present invention surface-coated cemented carbide end mill of the present invention coated cemented carbide (hereinafter, the present invention refers to the coating end mills) 1-8 were prepared, respectively.
[0028]
For the purpose of comparison, the above-mentioned ultra-hard substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then a normal arc ion plating apparatus also shown in FIG. (Al, Ti) N having the target composition and target layer thickness shown in Table 9 and having substantially no composition change along the layer thickness direction under the same conditions as in Example 1 above. By depositing a hard coating layer composed of layers, end mills made of conventional surface-coated cemented carbide (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional coated cemented carbide tools were manufactured, respectively.
[0029]
Next, among the coated carbide end mills 1 to 8 of the present invention and the conventional coated carbide end mills 1 to 8, of the coated carbide end mills 1 to 3 and the coated carbide end mills 1 to 3 of the present invention,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, JIS SKD61 plate,
Cutting speed: 60 m / min. ,
Axial cut: 10 mm
Radial cut: 3mm,
Table feed: 640 mm / min,
(Normal axial depth of cut is 6 mm, radial depth of cut is 1 mm), dry high-cut side cutting test of tool steel, coated carbide end mills 4 to 6 of the present invention and conventional coated carbide end mills 4 to 6 about,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS SCM440 plate,
Cutting speed: 100 m / min. ,
Axial cut: 15 mm
Radial cut: 2mm,
Table feed: 1200 mm / min,
(Normal table feed is 400 mm / min), dry high-feed side cutting test of alloy steel, coated carbide end mills 7, 8 of the present invention and conventional coated carbide end mills 7, 8
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, JIS SUS304 plate,
Cutting speed: 50 m / min. ,
Axial cut: 30 mm
Radial cut: 8mm
Table feed: 160 mm / min,
(Normal axial depth of cut is 20 mm, radial depth of cut is 4 mm), a wet high-cut side cutting test (using water-soluble cutting oil) of stainless steel is performed. The cutting length was measured until the flank wear width of the outer peripheral blade of the blade portion reached 0.1 mm, which is a standard for the service life. The measurement results are shown in Tables 8 and 9, respectively.
[0030]
[Table 7]
Figure 2004291106
[0031]
[Table 8]
Figure 2004291106
[0032]
[Table 9]
Figure 2004291106
[0033]
(Example 3)
The diameters produced in Example 2 were 8 mm (for forming the super-hard substrates C-1 to C-3), 13 mm (for forming the super-hard substrates C-4 to C-6), and 26 mm (for the super-hard substrates C-). 7, for forming C-8), the diameter x length of the groove forming portion was 4 mm x 13 mm (by grinding) from the three types of round rod sintered bodies by grinding. Carbide substrates D-1 to D-3), 8 mm x 22 mm (carbide substrates D-4 to D-6), and 16 mm x 45 mm (carbide substrates D-7, D-8), Carbide substrates (drills) D-1 to D-8 each having a two-blade shape with a twist angle of 30 degrees were manufactured.
[0034]
Next, the cutting blades of the super hard substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and then the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, along the layer thickness direction, the Ti maximum content point and Co maximum dispersion point of the target composition having the target composition shown in Table 10 and the Al maximum content point and Co Non-existent points are alternately and repeatedly present at the target intervals also shown in Table 10, and from the Ti maximum content point and the Co maximum proportion dispersion point of the base, the Al maximum content point and the Co non-existence point of the base, the Al A component concentration distribution structure in which the content of Ti and Al and the dispersion ratio of Co continuously change from the highest content point and the Co non-existence point to the highest Ti content point and the highest Co distribution point; By depositing a hard coating layer having the target total layer thickness shown in Table 10, a drill made of the surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention (hereinafter referred to as the coated carbide drill of the present invention) 1 To 8 were each manufactured.
[0035]
Also, for comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and are also shown in FIG. It was charged into a normal arc ion plating apparatus, and had the target composition and the target layer thickness shown in Table 11 under the same conditions as in Example 1 above, and the composition change substantially along the layer thickness direction. By depositing a hard coating layer consisting of a non-coated (Al, Ti) N layer, conventional surface-coated carbide alloy drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated carbide tools are respectively provided. Manufactured.
[0036]
Next, of the coated carbide drills 1 to 8 of the present invention and the coated carbide drills 1 to 8 of the related art, the coated carbide drills 1 to 3 of the present invention and the covered carbide drills 1 to 3 of the present invention are:
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, JIS SKD61 plate,
Cutting speed: 40 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 10mm
(The normal feed amount is 0.08 mm / rev), the wet-type high feed drilling cutting test of tool steel, the coated carbide drills 4 to 6 of the present invention and the conventionally coated carbide drills 4 to 6 are:
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS SCM440 plate,
Cutting speed: 70 m / min. ,
Feed: 0.4 mm / rev,
Hole depth: 20mm
(Normal feed rate is 0.16 mm / rev), wet high feed drilling test of alloy steel, coated carbide drills 7, 8 of the present invention and conventional coated carbide drills 7, 8
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS FCD700 plate,
Cutting speed: 70 m / min. ,
Feed: 0.6 mm / rev,
Hole depth: 40mm
(A normal feed rate of 0.24 mm / rev), a wet high-feed drilling cutting test of ductile cast iron was performed, and in any wet drilling cutting test (using water-soluble cutting oil), the tip cutting edge was used. The number of holes drilled until the flank wear width of the surface reached 0.3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0037]
[Table 10]
Figure 2004291106
[0038]
[Table 11]
Figure 2004291106
[0039]
The resulting coated carbide tips 1 to 16, the coated carbide end mills 1 to 8 as the resulting coated carbide tools of the present invention, and the hard coating layers constituting the coated carbide drills 1 to 8 of the present invention. Composition of Ti maximum content point (Co highest proportion dispersion point) of base material and Al maximum content point (Co absent point) of base material, and conventionally coated carbide tips 1 to 16 as conventional coated carbide tools, conventionally coated carbide For the hard coating layers of the end mills 1 to 8 and the conventional coated carbide drills 1 to 8, the Ti and Al contents and the Co dispersion ratio along the thickness direction were measured using an Auger spectrometer. In the hard coating layer of the invention coated cemented carbide tool, the Ti maximum content point and the Al maximum content point, the Co maximum ratio dispersion point and the Co non-existence point alternately with the substantially same composition and interval as the target value, respectively. Reeling And the Al highest content point and the Co non-existence point from the Ti highest content point and the Co highest proportion dispersion point, and the Ti highest content point and the Co highest proportion dispersion point from the Al highest content point and the Co non-existence point. It has been confirmed that the composition has a component concentration distribution structure in which the contents of Ti and Al and the dispersion ratio of Co continuously change, and the overall average layer thickness of the hard coating layer is substantially the same as the target overall layer thickness. showed that. On the other hand, in the hard coating layer of the conventional coated carbide tool, no composition change is observed along the thickness direction, and the composition has substantially the same composition as the target composition and substantially the same overall average layer thickness as the target overall layer thickness. It was confirmed that.
[0040]
【The invention's effect】
From the results shown in Tables 3 to 11, the hard coating layer has, in the layer thickness direction, the Ti highest content point and the Co highest proportion dispersion point of the base having higher strength and toughness, and the base having excellent high-temperature hardness and heat resistance. The Al maximum content point and the Co non-existence point are alternately and repeatedly present at predetermined intervals, and from the Ti maximum content point and the Co maximum ratio dispersion point, the Al maximum content point and the Co non-existence point; The coated cemented carbide tool of the present invention having a component concentration distribution structure in which the Ti and Al contents and the Co dispersion ratio continuously change from the content point and the Co non-existence point to the Ti maximum content point and the Co maximum dispersion point. Has a hard coating layer with excellent hard coating layer even when cutting various steels and cast irons under heavy cutting conditions such as high cutting and high feed with high mechanical impact. In contrast to conventional coatings, the hard coating layer is composed of an (Al, Ti) N layer having substantially no composition change along the layer thickness direction, while exhibiting excellent wear resistance over a long period of time. In hard tools, the hard coating layer has excellent high-temperature hardness and heat resistance, but has poor strength and toughness. It is clear that the service life can be reached in a relatively short time.
As described above, the coated carbide tool of the present invention can be used not only for cutting under normal conditions, but also for cutting various kinds of steel and cast iron, etc., with high cutting and high feed accompanied by high mechanical impact. Even under heavy cutting conditions, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time. It can be satisfied enough.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a conventional arc ion plating apparatus used for forming a hard coating layer constituting a conventional coated carbide tool.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、TiとAlの複合窒化物の素地にCoが分散分布してなる2相組織層からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具にして、
上記硬質被覆層が、層厚方向にそって、TiとAlの複合窒化物からなる素地にTi最高含有点とAl最高含有点とが所定間隔をおいて交互に繰り返し存在し、さらに前記素地のTi最高含有点にはCo最高割合分散点が存在し、一方前記素地のAl最高含有点にはCoが存在せず、かつ前記素地のTi最高含有点およびCo最高割合分散点から前記素地のAl最高含有点およびCo不存在点、前記素地のAl最高含有点およびCo不存在点から前記素地のTi最高含有点およびCo最高割合分散点へTiおよびAlの含有量、さらにCoの分散割合が連続的に変化する成分濃度分布構造を有し、
上記素地のTi最高含有点が、組成式:(Ti1−X Al)N(ただし、原子比で、Xは0.05〜0.35を示す)、
を満足し、さらに前記素地のTi最高含有点におけるCo最高割合分散点のCoの分散割合が、素地との合量に占める割合で1〜10原子%であり、
上記素地のAl最高含有点が、組成式:(Al1−Y Ti)N(ただし、原子比で、Yは0.35〜0.60を示す)、
を満足し、
かつ隣り合う上記素地のTi最高含有点とAl最高含有点の間隔が、0.01〜0.1μmであること、
を特徴とする重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate, a hard coating layer consisting of a two-phase structure layer in which Co is dispersed and distributed on a base of a composite nitride of Ti and Al has a total thickness of 1 to 15 μm. A surface-coated cemented carbide cutting tool made by physical vapor deposition with an average layer thickness,
The hard coating layer, along the layer thickness direction, a Ti maximum content point and an Al maximum content point are alternately and repeatedly present at a predetermined interval on a substrate made of a composite nitride of Ti and Al. At the highest Ti content point, there is a Co highest percentage dispersion point, while at the highest Al content point of the base, no Co is present, and based on the highest Ti content point and highest Co point distribution point of the base, Al The content of Ti and Al and the dispersion ratio of Co are continuous from the highest content point and Co-free point, the highest Al content point and Co-free point of the base to the highest Ti content point and Co highest dispersion point of the base. Having a component concentration distribution structure that changes
The highest Ti content point of the above-mentioned base material is represented by a composition formula: (Ti 1-X Al X ) N (however, X indicates 0.05 to 0.35 in atomic ratio)
Is satisfied, and the Co dispersion ratio of the Co highest dispersion point at the highest Ti content point of the base is 1 to 10 atomic% in the total amount with the base,
The highest content point of Al in the base material is represented by a composition formula: (Al 1−Y Ti Y ) N (however, in the atomic ratio, Y represents 0.35 to 0.60),
Satisfied,
And the interval between the highest Ti content point and the highest Al content point of the adjacent base material is 0.01 to 0.1 μm;
A cutting tool made of a surface-coated cemented carbide with a hard coating layer that exhibits excellent chipping resistance under heavy cutting conditions.
JP2003084054A 2003-03-26 2003-03-26 Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions. Expired - Fee Related JP4333177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084054A JP4333177B2 (en) 2003-03-26 2003-03-26 Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084054A JP4333177B2 (en) 2003-03-26 2003-03-26 Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.

Publications (2)

Publication Number Publication Date
JP2004291106A true JP2004291106A (en) 2004-10-21
JP4333177B2 JP4333177B2 (en) 2009-09-16

Family

ID=33399306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084054A Expired - Fee Related JP4333177B2 (en) 2003-03-26 2003-03-26 Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.

Country Status (1)

Country Link
JP (1) JP4333177B2 (en)

Also Published As

Publication number Publication date
JP4333177B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP2003340608A (en) Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent abrasion resistance in high speed heavy cutting condition
JP2003326403A (en) Cutting tool made of surface coated cemented carbide providing excellent wear resistance by hard layer in high speed heavy cutting
JP2004338058A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2004042170A (en) Surface-coated cemented carbide cutting tool having hard coating layer for exhibiting superior chipping resistance under high speed double cutting condition
JP2004338008A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2003334704A (en) Surface-coated hard metal cutting tool having hard coated layer of excellent abrasion resistance in high- speed cutting processing
JP2004074378A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP2004074379A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition
JP2004223619A (en) Surface coated cemented carbide-made cutting tool exhibiting excellent wear resistance of hard coating layer under high speed heavy cutting
JP2003300103A (en) Cutting tool made of coated cemented carbide in which hard coating layer exhibits excellent abrasion resistant property at high speed deep cutting condition
JP2004322279A (en) Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance under high speed double cutting condition
JP4333177B2 (en) Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.
JP4320706B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2004009162A (en) Cutting tool made of surface coated cemented carbide exerting excellent wear resistance of hard coat layer in high speed cutting
JP2003300104A (en) Cutting tool made of coated cemented carbide in which hard coated layer exhibits excellent chipping-resistant property at deep cutting processing
JP2004050309A (en) Surface covered cemented carbide cutting tool having hard covering layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition
JP2004230498A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2003275906A (en) Surface coat cemented carbide made cutting tool with hard coat layer displaying excellent chipping resistance in heavy cutting work condition
JP2004249397A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance under high-speed heavy cutting condition
JP2004314188A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting excellent chipping resistance under heavy cutting processing conditions
JP2004025335A (en) Surface-coated cemented carbide cutting tool with hard coat layer exhibiting excellent wear resistance under high-speed double cutting condition
JP2004025339A (en) Surface-coated cemented carbide cutting tool with hard coat layer exhibiting excellent wear resistance in high-speed cutting work
JP2004330325A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent chipping resistance in heavy cutting condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees