JP2004290752A - Method for filtering confluent sewage at high speed - Google Patents

Method for filtering confluent sewage at high speed Download PDF

Info

Publication number
JP2004290752A
JP2004290752A JP2003084126A JP2003084126A JP2004290752A JP 2004290752 A JP2004290752 A JP 2004290752A JP 2003084126 A JP2003084126 A JP 2003084126A JP 2003084126 A JP2003084126 A JP 2003084126A JP 2004290752 A JP2004290752 A JP 2004290752A
Authority
JP
Japan
Prior art keywords
filtration
tank
speed
filter medium
floating filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084126A
Other languages
Japanese (ja)
Inventor
Haruyoshi Miura
春好 三浦
Yoshihiko Nakayama
芳彦 中山
Atsushi Miyata
篤 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Metropolitan Government
Original Assignee
NGK Insulators Ltd
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Metropolitan Government filed Critical NGK Insulators Ltd
Priority to JP2003084126A priority Critical patent/JP2004290752A/en
Publication of JP2004290752A publication Critical patent/JP2004290752A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for filtering confluent sewage at a high speed, by which the majority of a filthy solid substance can be removed even when a large quantity od rainwater is flowed and a backwashing operation can be performed quickly. <P>SOLUTION: The confluent sewage is introduced into a plurality of upward stream type filtration tanks 1 the top surface of each of which is used as a common treated water tank 5 and filtered at a high filtration speed of 1,000-1,200 m/day by using a floating filter medium 4 which is packed in each of the tanks 1 and has 0.1-0.4 bulk density. When the medium 4 is clogged in any of the tanks 1, the supply of an original water to the tank 1 to be washed is stopped and the tank 1 to be washed is backwashed by making the treated water in the tank 5 flow downward into the tank 1 to be washed at the speed of 1.2-4.0 m/minute. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、汚水と雨水が下水として合流する合流式下水道に適用される合流下水の微生物浄化によらない高速ろ過方法に関するものである。
【0002】
【従来の技術】
【特許文献1】特開2001−219193号公報
【0003】特許文献1に示されるような下水と雨水との合流式下水道においては、晴天時と雨天時との流量が大幅に変化する。一般に合流式下水処理場では、雨天時における下水処理場への時間最大流入水量を設計水量Qの3倍の3Qに規制している。そのうちQについては晴天時と同様の通常処理を行なうことができるが、Qを超え3Qまでの分については処理場反応槽の通常の処理能力を超えるため、最初沈殿池をそのまま利用した簡易処理を行なっている。そしてさらに水量が増して3Qを超えた場合には、全く処理することなくそのまま河川等に放流しているのが実情である。
【0004】従って雨天時に合流下水の水量がQを超えて増加した場合には、ほとんどの汚濁物質がそのまま河川等に放流されることとなり、環境を汚染する結果となる。特に下水道の普及が早かった大都市では合流式下水道が採用されていることが多いため、ウオーターフロントの開発に伴いこの環境問題が顕在化しつつある。
【0005】このような問題に対処するため、現在、雨水の物理的な処理を行う高速ろ過装置が積極的に開発されつつある。しかしながら、現在研究段階で行われている雨水高速ろ過装置はろ材厚さを2m以上で、且つ下部にろ材流出防止スクリーンを必要とするものであり、あるいは処理効率を向上させるために凝集剤を投入する機構を具備した装置となっており、実用化に際しては、水深2.5〜4mの既設最初沈殿池等の土木設備を利用することが不可能で、土木構造物から新規に構築する必要があり、多大な費用を要する技術であった。また、ろ材層が閉塞した際の逆洗に長時間を要するため逆洗が追いつかず、大量の雨水が流入するとろ過層が閉塞してしまうという問題もあった。
【0006】また下部にろ材流出防止スクリーンを必要としないろ材を用いた浄化装置なども開発されているが、これはろ材に微生物を固定化させ生物浄化を行う目的で行われ、主として浄化槽などに適用される技術である。処理速度は生物反応である事を考慮して一般に100m/日以下であり、その技術を本請求項に示すような高速ろ過に用いた場合は、ろ材の圧縮強度が足らないため、ろ材が変形してしまうため、すぐに目詰まりして安定したろ過ができないという欠点があった。
【0007】
【発明が解決しようとする課題】本発明は上記した従来の問題点を解決して、雨天時にQを超える雨水が流入したり、更に3Qを超える大量の雨水が流入した場合にも、大部分の汚濁固形物質を除去することができ、既存の最初沈殿池や雨水貯留池を簡易に改造することにより安価に設置が可能であり、しかも逆洗操作を迅速に行なうことができる合流下水の物理的な高速ろ過方法を提供することである。
【0008】
【課題を解決するための手段】上記の課題を解決するためになされた本発明は、原水である合流下水を、上面を共通処理水槽とした複数の上向流式のろ過槽に導き、各ろ過槽の内部に充填された浮上ろ材により1000〜1200m/日のろ過速度で高速ろ過するとともに、浮上ろ材の閉塞が生じた際に、洗浄対象ろ過槽への原水の供給を停止したうえ、共通処理水槽内の処理水を洗浄対象ろ過槽に下向きに流す逆洗を、各ろ過槽に対して順次行なうことを特徴とするものである。なお逆洗速度を1.2〜4.0m/分とすることが好ましく、かさ密度が0.1〜0.4の浮上ろ材を使用することが好ましい。さらに、圧密を避けるために50%圧縮かたさが0.1MPa以上である浮上ろ材を使用することが好ましい。
【0009】本発明によれば、雨天時に下水処理場に流入する大量の合流下水を、複数の上向流式のろ過槽に導き、各ろ過槽の内部に充填された浮上ろ材により1000〜1200m/日のろ過速度で高速ろ過する。このためQを超える雨水が流入したり、更に3Qを超える大量の雨水が流入した場合にも、大部分の汚濁固形物質を除去することができる。また、既設の最初沈殿池や雨水貯留池の一部を区画して設置できるので、新たな土木設備の構築と設置スペースの確保を必要としない。さらに各ろ過槽に対する逆洗を、順次迅速に行なうことができる。
【0010】
【発明の実施の形態】以下に本発明の好ましい実施形態を説明する。
図1は本発明の合流下水の高速ろ過に用いる装置を示す断面図、図2はそのA−A断面図である。この装置は、合流式下水処理場に設けられていた従来の最初沈殿池または雨水貯留槽を改造することにより構築されている。この実施形態では、隔壁2により区画された3つのろ過槽1が設けられている。槽数は複数であればその数は任意である。
【0011】これらのろ過槽1は上向流式のろ過槽であり、図2に示されるように各槽ごとに垂直な原水流入部3を備えている。合流雨水はこれらの原水流入部3から槽下部に供給され、浮上ろ材4の充填層を通過する間にSSが捕捉され、処理水は上方に抜ける。図1に示すように各ろ過槽1の上面は共通処理水槽5となっており、処理水はその端部(図面上の右端部)から取り出され、河川等に放流される。なお、浮上ろ材4の流出を防止するために、浮上ろ材4の充填層の上面にはネット6が設けられている。
【0012】本発明で用いられる浮上ろ材4としては、かさ密度が0.1〜0.4の発泡高分子からなるものが好ましい。かさ密度が0.4を超えると、逆洗時に下方に流出するおそれがある。このような物性を持つ発泡高分子としては、発泡ポリプロピレン、発泡ポリスチレン、発泡ポリエチレン等を挙げることができる。また本発明で用いられる浮上ろ材4としては、サイズが4〜10mmの凹凸状または筒状のものが好ましい。ここで凹凸状とするのは、浄化用微生物の付着を目的とするものではなく、凹凸部分にて汚濁固形物質をひっかけたり、抑留させて除去しやすくすることが目的であり、立方体や球体のような単純形状ではなく、外表面に何らかの凹凸を備えた異形状を意味するものである。浮上ろ材4の充填層の厚さは、従来に比較して半分以下の1m程度とすることができる。
【0013】このような浮上ろ材4が充填されたろ過槽3は、ろ材の圧密がなく多量のSSを捕捉できる。そこで本発明では、1000〜1200m/日のろ過速度で高速ろ過を行なわせる。凝集剤を添加することなく1000m/日以上の高速ろ過を行なえる実設備は従来知られていない。このような高速ろ過を行なうことにより、大量の雨水が集中的に下水に流入した場合にも、その全量をSS除去率70%程度でろ過処理することができる。しかし1200m/日を越えるとSS除去率が低下するので好ましくない。
【0014】本発明ではこのような高速ろ過が可能であるため、大量の合流下水を高速処理することができる。しかしSSの捕捉量が増加するにつれて浮上ろ材4の層に閉塞が生じ、圧損が増加してろ過能力が低下するため、逆洗の必要が生じる。このとき本発明では、洗浄対象となるろ過槽1への原水の供給を停止したうえ、共通処理水槽5内の処理水を洗浄対象ろ過槽1に下向きに流して逆洗を行なう。
【0015】このように洗浄対象ろ過槽1への原水の供給を停止できるようにするため、各ろ過槽1の原水流入部3に原水を供給する原水供給口7に図2のようにスライドゲート8を取りつけ、開閉可能とすることが好ましい。またスライドゲート8の替わりに、開閉バルブを用いることもできる。
【0016】逆洗の手順は次のとおりである。
先ず図3に示すように、洗浄対象ろ過槽1への原水の供給を停止し、そのろ過槽1の底部に設けられた洗浄排水弁9を開く。すると共通処理水槽5内の処理水が浮上ろ材4の充填層を通過して下方に流下し、洗浄排水管10を経由して洗浄排水槽11に排出される。このとき、浮上ろ材4の充填層の逆洗が行なわれる。逆洗速度は1.2〜4.0m/分とする。逆洗速度がこれよりも遅いと逆洗効果が不十分となり、これより速いと逆洗水とともに浮上ろ材4が流出するおそれがある。
【0017】本発明において、洗浄対象ろ過槽1への原水の供給を停止したうえ逆洗を行なうのは、上記の逆洗速度を確保するためである。すなわち、原水の供給を継続したままでも洗浄排水弁9を開けば逆洗は可能であるが、原水の一部がそのまま洗浄排水管10を経由して洗浄排水槽11に排出されることとなるため、浮上ろ材4の充填層を通過する真の逆洗水量がその分だけ割愛され、逆洗速度の低下を招く。本発明のように洗浄対象ろ過槽1への原水の供給を停止したうえ逆洗を行なえば、そのようなおそれが無い。
【0018】
このような逆洗により、閉塞した浮上ろ材4の充填層は攪拌されて膨張し、浮上ろ材4からSSが分離される。かさ密度の小さい浮上ろ材4は逆洗のための下降流に抗して浮上するためほぼ元の位置に留まり、下部にネットを設けなくても流失するおそれはない。また分離したSSは逆洗水とともに槽下部に流下して洗浄排水管10から排出される。洗浄排水は洗浄排水槽11に設けられた排水ポンプ12により、汚水流入水路あるいは、従来の最初沈殿池に導かれて処理される。
【0019】なお、上記の逆洗は各ろ過槽1に対して順次行なわれるが、洗浄対象ろ過槽1以外のろ過槽1では高速ろ過処理が継続的に進行するため、共通処理槽5へは常に処理水が供給される。1槽の逆洗に要する時間は2分程度であり、従来の逆洗処理時間の1/10程度である。このため3Qを越える大量の合流下水が流入したときにも、高速ろ過処理を行ないながら逆洗を行なうことができる利点がある。
【0020】
【発明の効果】以上に説明したように、本発明の合流下水の高速ろ過方法によれば、雨天時にQを超える雨水が流入したり、更に3Qを超える大量の雨水が流入した場合にも、高速ろ過処理によって大部分の汚濁固形物質を除去することができ、従来のような環境汚染を防止することができる。また本発明の合流下水の高速ろ過方法によれば、ろ過を継続しながら各ろ過槽に対して逆洗操作を順次迅速に行なうことができる。しかも本発明では浮上ろ材の厚さを薄くできるうえ、広い面積も要しないので、既存の最初沈殿池や雨水貯留池を改造することにより安価に設置が可能である。
【図面の簡単な説明】
【図1】本発明の実施形態の雨水処理装置を示す断面図である。
【図2】図1のA−A断面図である。
【図3】逆洗状態を説明する断面図である。
【符号の説明】
1 ろ過槽、2 隔壁、3 原水流入部、4 浮上ろ材、5 共通処理水槽、6ネット、7 原水供給口、8 スライドゲート、9 洗浄排水弁、10 洗浄排水管、11 洗浄排水槽、12 排水ポンプ
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed filtration method that does not rely on microbial purification of combined sewage and is applied to a combined sewage system where sewage and rainwater are combined as sewage.
[0002]
[Prior art]
[Patent Document 1] Japanese Unexamined Patent Application Publication No. 2001-219193 [0003] In a combined sewer system of sewage and rainwater as disclosed in Patent Document 1, the flow rate between fine weather and rainy weather changes significantly. Generally, in a combined sewage treatment plant, the maximum amount of water flowing into the sewage treatment plant during rainy time is restricted to 3Q which is three times the design water amount Q. Of these, Q can be subjected to the same normal processing as in fine weather, but over Q to 3Q exceeds the normal processing capacity of the treatment plant reaction tank, so simple processing using the first sedimentation tank as it is I do. When the amount of water further increases and exceeds 3Q, the water is discharged to rivers and the like without any treatment.
[0004] Therefore, when the amount of combined sewage exceeds Q during rainy weather, most pollutants are discharged to rivers and the like as they are, resulting in environmental pollution. Especially in large cities where sewerage has spread very quickly, combined sewerage is often used, and this environmental problem is becoming more apparent with the development of the waterfront.
[0005] In order to deal with such a problem, a high-speed filtration device for physically treating rainwater is being actively developed. However, the high-speed rainwater filtration system currently under study requires a filter media thickness of 2 m or more and requires a filter media outflow prevention screen at the bottom, or a coagulant is added to improve the treatment efficiency. In practical use, it is impossible to use civil engineering facilities such as the existing first sedimentation basin with a water depth of 2.5 to 4 m, and it is necessary to construct a new civil engineering structure. It was a technology that required a lot of cost. In addition, there is also a problem that the backwashing takes a long time when the filter medium layer is clogged, so that the backwash cannot catch up, and the filter layer is clogged when a large amount of rainwater flows.
[0006] In addition, a purifying apparatus using a filter medium that does not require a filter medium outflow prevention screen at the lower portion has been developed, but this is performed for the purpose of immobilizing microorganisms on the filter medium to purify organisms, and is mainly used in a septic tank or the like. The technology applied. The processing speed is generally 100 m / day or less in consideration of the biological reaction, and when the technology is used for high-speed filtration as described in the present invention, the compression strength of the filter medium is insufficient, so that the filter medium is deformed. Therefore, there is a drawback that clogging is immediately caused and stable filtration cannot be performed.
[0007]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and is applicable to a case where rainwater exceeding Q flows in during rainy weather or a large amount of rainwater flowing further exceeding 3Q flows in rainy weather. Can be installed at a low cost by simply remodeling the existing primary sedimentation basin and rainwater storage basin, and can perform the backwashing operation quickly. To provide an efficient high-speed filtration method.
[0008]
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method in which combined sewage, which is raw water, is guided to a plurality of upward-flow-type filtration tanks each having an upper surface serving as a common treatment water tank. High-speed filtration is performed at a filtration speed of 1000 to 1200 m / day by the floating filter medium filled in the filter tank, and when the floating filter medium is blocked, supply of raw water to the filter tank to be cleaned is stopped and common The backwash in which the treated water in the treated water tank is flowed downward to the filtration tank to be washed is sequentially performed for each filtration tank. The backwashing speed is preferably set to 1.2 to 4.0 m / min, and it is preferable to use a floating filter medium having a bulk density of 0.1 to 0.4. Furthermore, in order to avoid consolidation, it is preferable to use a floating filter medium having a 50% compression hardness of 0.1 MPa or more.
According to the present invention, a large amount of combined sewage flowing into a sewage treatment plant in rainy weather is guided to a plurality of upward-flow type filtration tanks, and the floating filter material filled in each of the filtration tanks is used for 1000 to 1200 m. High speed filtration at a filtration rate of / day. Therefore, even when rainwater exceeding Q or a large amount of rainwater exceeding 3Q flows, most of the polluted solid substances can be removed. Also, since part of the existing initial sedimentation basin and rainwater storage basin can be divided and installed, it is not necessary to construct new civil engineering equipment and secure the installation space. Further, backwashing of each filtration tank can be performed quickly and sequentially.
[0010]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.
FIG. 1 is a sectional view showing an apparatus used for high-speed filtration of combined sewage of the present invention, and FIG. 2 is an A-A sectional view thereof. This device is constructed by modifying a conventional first sedimentation basin or rainwater storage tank provided in a combined sewage treatment plant. In this embodiment, three filtration tanks 1 partitioned by partition walls 2 are provided. If the number of tanks is plural, the number is arbitrary.
These filtration tanks 1 are upward-flow type filtration tanks, each having a vertical raw water inflow section 3 for each tank as shown in FIG. The combined rainwater is supplied to the lower part of the tank from the raw water inflow section 3, the SS is captured while passing through the packed bed of the floating filter medium 4, and the treated water flows upward. As shown in FIG. 1, the upper surface of each filtration tank 1 is a common treatment water tank 5, and the treated water is taken out from its end (the right end in the drawing) and discharged to a river or the like. In order to prevent the floating filter medium 4 from flowing out, a net 6 is provided on the upper surface of the packed layer of the floating filter medium 4.
The floating filter medium 4 used in the present invention is preferably made of a foamed polymer having a bulk density of 0.1 to 0.4. If the bulk density exceeds 0.4, it may flow downward during backwashing. Examples of the foamed polymer having such physical properties include foamed polypropylene, foamed polystyrene, foamed polyethylene, and the like. Further, as the floating filter medium 4 used in the present invention, an irregular or cylindrical one having a size of 4 to 10 mm is preferable. Here, the uneven shape is not intended to adhere the purifying microorganisms, but is intended to catch or detain the polluted solid substance at the uneven portion so that it can be easily removed. Instead of such a simple shape, it means a different shape having some irregularities on the outer surface. The thickness of the filling layer of the floating filter medium 4 can be reduced to about 1 m, which is half or less than that of the conventional case.
The filtration tank 3 filled with such a floating filter medium 4 can capture a large amount of SS without compaction of the filter medium. Therefore, in the present invention, high-speed filtration is performed at a filtration speed of 1000 to 1200 m / day. Actual equipment that can perform high-speed filtration of 1000 m / day or more without adding a flocculant has not been known. By performing such high-speed filtration, even when a large amount of rainwater intensively flows into the sewage, the entire amount can be filtered at an SS removal rate of about 70%. However, if it exceeds 1200 m / day, the SS removal rate decreases, which is not preferable.
In the present invention, since such high-speed filtration is possible, a large amount of combined sewage can be treated at high speed. However, as the amount of trapped SS increases, the layer of the floating filter medium 4 becomes clogged, the pressure loss increases, and the filtration capacity decreases, so that backwashing is required. At this time, in the present invention, the supply of raw water to the filtration tank 1 to be washed is stopped, and the treated water in the common treated water tank 5 is caused to flow downward to the filtration tank 1 to be washed to perform backwashing.
In order to stop the supply of the raw water to the filtration tank 1 to be cleaned in this way, a slide gate is provided at the raw water supply port 7 for supplying the raw water to the raw water inflow section 3 of each filtration tank 1 as shown in FIG. It is preferable to mount 8 so that it can be opened and closed. In addition, an opening / closing valve can be used instead of the slide gate 8.
The procedure for backwashing is as follows.
First, as shown in FIG. 3, the supply of raw water to the filtration tank 1 to be cleaned is stopped, and the cleaning drain valve 9 provided at the bottom of the filtration tank 1 is opened. Then, the treated water in the common treated water tank 5 flows downward through the packed bed of the floating medium 4, and is discharged to the cleaning drain tank 11 via the cleaning drain pipe 10. At this time, the packed bed of the floating filter medium 4 is backwashed. The backwash speed is set to 1.2 to 4.0 m / min. If the backwash speed is slower than this, the backwash effect becomes insufficient, and if it is faster than this, the floating filter medium 4 may flow out together with the backwash water.
In the present invention, the reason for stopping the supply of the raw water to the filtration tank 1 to be washed and performing the backwashing is to secure the above-mentioned backwashing speed. That is, backwashing is possible by opening the washing / draining valve 9 even while the supply of the raw water is continued, but a part of the raw water is discharged to the cleaning / drain tank 11 via the cleaning / drain pipe 10 as it is. Therefore, the amount of true backwash water that passes through the packed bed of the floating filter medium 4 is omitted by that amount, and the backwash speed is reduced. If the supply of the raw water to the filtration tank 1 to be cleaned is stopped and the backwashing is performed as in the present invention, such a fear does not occur.
[0018]
Due to such backwashing, the packed bed of the floating filter medium 4 that has been closed is agitated and expanded, and the SS is separated from the floating filter medium 4. The floating filter medium 4 having a low bulk density floats up against the downward flow for backwashing, so that it stays almost at the original position, and does not run off even if no net is provided below. The separated SS flows down to the lower part of the tank together with the backwash water and is discharged from the washing drainage pipe 10. The washing wastewater is guided to a sewage inflow channel or a conventional first sedimentation basin by a drainage pump 12 provided in a washing drainage tank 11 for treatment.
The above-mentioned backwashing is sequentially performed for each of the filtration tanks 1. However, in the filtration tanks 1 other than the filtration tank 1 to be washed, the high-speed filtration processing continuously proceeds. Processed water is always supplied. The time required for backwashing in one tank is about 2 minutes, which is about 1/10 of the conventional backwashing time. For this reason, even when a large amount of combined sewage exceeding 3Q flows, there is an advantage that backwashing can be performed while performing high-speed filtration.
[0020]
As described above, according to the high-speed filtration method for combined sewage of the present invention, even when rainwater exceeding Q flows in during rainy weather, or even when large amounts of rainwater exceeding 3Q flow, Most of the polluted solid substances can be removed by the high-speed filtration, and the conventional environmental pollution can be prevented. Further, according to the high-speed filtration method of combined sewage of the present invention, the backwash operation can be sequentially and rapidly performed on each filtration tank while the filtration is continued. Moreover, according to the present invention, since the thickness of the floating filter medium can be reduced and a large area is not required, it can be installed at a low cost by modifying an existing first sedimentation tank or rainwater storage tank.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a rainwater treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a cross-sectional view illustrating a backwash state.
[Explanation of symbols]
1 Filtration tank, 2 bulkhead, 3 Raw water inlet, 4 Floating filter material, 5 Common treatment water tank, 6 net, 7 Raw water supply port, 8 Slide gate, 9 Wash drain valve, 10 Wash drain pipe, 11 Wash drain tank, 12 Drain pump

Claims (4)

原水である合流下水を、上面を共通処理水槽とした複数の上向流式のろ過槽に導き、各ろ過槽の内部に充填された浮上ろ材により1000〜1200m/日のろ過速度で高速ろ過するとともに、浮上ろ材の閉塞が生じた際に、洗浄対象ろ過槽への原水の供給を停止したうえ、共通処理水槽内の処理水を洗浄対象ろ過槽に下向きに流す逆洗を、各ろ過槽に対して順次行なうことを特徴とする合流下水の高速ろ過方法。The combined sewage, which is raw water, is guided to a plurality of upward-flow-type filtration tanks each having an upper surface serving as a common treatment water tank, and is subjected to high-speed filtration at a filtration speed of 1000 to 1200 m / day by a floating filter material filled in each filtration tank. At the same time, when the clogging of the floating filter material occurs, the supply of raw water to the filtration tank to be cleaned is stopped, and backwashing in which the treated water in the common treatment water tank flows downward to the filtration tank to be washed is performed for each filtration tank. A high-speed filtration method for combined sewage, which is performed sequentially. 逆洗速度を1.2〜4.0m/分とした請求項1記載の合流下水の高速ろ過方法The method for high-speed filtration of combined sewage according to claim 1, wherein the backwashing speed is 1.2 to 4.0 m / min. かさ密度が0.1〜0.4の浮上ろ材を使用する請求項1記載の合流下水の高速ろ過方法The high-speed filtration method for combined sewage according to claim 1, wherein a floating filter medium having a bulk density of 0.1 to 0.4 is used. 50%圧縮かたさが0.1MPa以上である浮上ろ材を使用する請求項1記載の合流下水の高速ろ過方法The high-speed filtration method for combined sewage according to claim 1, wherein a floating filter medium having a 50% compression hardness of 0.1 MPa or more is used.
JP2003084126A 2003-03-26 2003-03-26 Method for filtering confluent sewage at high speed Pending JP2004290752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084126A JP2004290752A (en) 2003-03-26 2003-03-26 Method for filtering confluent sewage at high speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084126A JP2004290752A (en) 2003-03-26 2003-03-26 Method for filtering confluent sewage at high speed

Publications (1)

Publication Number Publication Date
JP2004290752A true JP2004290752A (en) 2004-10-21

Family

ID=33399355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084126A Pending JP2004290752A (en) 2003-03-26 2003-03-26 Method for filtering confluent sewage at high speed

Country Status (1)

Country Link
JP (1) JP2004290752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842880B1 (en) 2007-04-13 2008-07-02 (주) 디아이엔바이로 Filter-cartridge for storm water treatment and storm water treatment device
JP2009226332A (en) * 2008-03-24 2009-10-08 Metawater Co Ltd Method for (back)washing filtration equipment
JP2011245473A (en) * 2010-05-25 2011-12-08 Korea Inst Of Science & Technology Apparatus and method for treatment of rainfall runoff using non-powered backwashing system
WO2012105172A1 (en) * 2011-02-02 2012-08-09 メタウォーター株式会社 Filtration system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842880B1 (en) 2007-04-13 2008-07-02 (주) 디아이엔바이로 Filter-cartridge for storm water treatment and storm water treatment device
JP2009226332A (en) * 2008-03-24 2009-10-08 Metawater Co Ltd Method for (back)washing filtration equipment
JP2011245473A (en) * 2010-05-25 2011-12-08 Korea Inst Of Science & Technology Apparatus and method for treatment of rainfall runoff using non-powered backwashing system
WO2012105172A1 (en) * 2011-02-02 2012-08-09 メタウォーター株式会社 Filtration system
JP2012157842A (en) * 2011-02-02 2012-08-23 Metawater Co Ltd Filtration system
KR101451348B1 (en) 2011-02-02 2014-10-15 메타워터 가부시키가이샤 Filtration system
US10407317B2 (en) 2011-02-02 2019-09-10 Metawater Co., Ltd. Floating filter media filtration system with backwash

Similar Documents

Publication Publication Date Title
JPWO2002081050A1 (en) Rainwater treatment apparatus and combined backwash method in combined sewer system
KR101741449B1 (en) Apparatus for treating rainwater and overflow water of confluent water drainage
JP3865304B2 (en) Rainwater treatment equipment
KR101160567B1 (en) Rainwater filtering apparatus with fluidized media and purification system using it
KR101349613B1 (en) Low impact development based advanced sand filter
KR101562757B1 (en) Non-point sources pollutants removal facility
JP5368142B2 (en) Overflow water treatment system in combined sewers.
KR101736743B1 (en) Automatic backwashing system for non-point pollution abatement facilities with automatic backwash and stagnation water treatment
KR101334884B1 (en) An apparatus for decreasing non-point source pollutant
KR20160010952A (en) Non-point sources pollutants removal facility
JP3698678B2 (en) Fine sand slow filtration equipment
KR20170117280A (en) Purifying device of storm overflow chamber
JP4674188B2 (en) Primary treatment method for combined sewage
KR20140042529A (en) Water treatment apparatus for early rain contaminant and combined system of sewer cso
JPH0999203A (en) Treatment of rain water and/or waste water
JP2003136088A (en) Sewage treatment method and apparatus in confluent type sewerage
JP2695624B2 (en) How to clean floating filter media
JP2004290752A (en) Method for filtering confluent sewage at high speed
JP6599096B2 (en) Filtration basin cleaning method and water treatment apparatus
JP2007229658A (en) Filtration treatment method using fiber filter medium, and filtration apparatus therefor
JP2007069065A (en) Filter
KR100441620B1 (en) Waterways purification apparatus and method of an upper-direction flowing type of multi-layers structure filling up a gravel and seramic element
JP6830037B2 (en) Sewage treatment system
JP3439576B2 (en) River purification method and purification device
KR101644965B1 (en) Versatile ecological water storage and linked treatment system and method using fixed porous filtering media and fluidized media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612