JP2004289980A - High-temperature operation type secondary battery system with both load leveling function and uninterruptible power supply function - Google Patents

High-temperature operation type secondary battery system with both load leveling function and uninterruptible power supply function Download PDF

Info

Publication number
JP2004289980A
JP2004289980A JP2003082012A JP2003082012A JP2004289980A JP 2004289980 A JP2004289980 A JP 2004289980A JP 2003082012 A JP2003082012 A JP 2003082012A JP 2003082012 A JP2003082012 A JP 2003082012A JP 2004289980 A JP2004289980 A JP 2004289980A
Authority
JP
Japan
Prior art keywords
secondary battery
power supply
operation type
uninterruptible power
type secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082012A
Other languages
Japanese (ja)
Other versions
JP4008372B2 (en
Inventor
Hiroyuki Abe
浩幸 阿部
Takuo Itami
卓夫 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
NGK Insulators Ltd
Original Assignee
Toshiba Corp
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, NGK Insulators Ltd filed Critical Toshiba Corp
Priority to JP2003082012A priority Critical patent/JP4008372B2/en
Publication of JP2004289980A publication Critical patent/JP2004289980A/en
Application granted granted Critical
Publication of JP4008372B2 publication Critical patent/JP4008372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable secondary battery system which has both a load levelling function and an uninterruptible power supply function, is capable of detaching an interconnected system from a power grid when an interconnection protection relay is actuated according to an interconnection technology requirement guide line, and does not lose the uninterruptible power supply function even if the interconnection protection relay fails. <P>SOLUTION: A high-temperature operation type secondary battery system 10 that has both a load levelling function and an uninterruptible power supply function is provided. The high-temperature operation type secondary battery system 10 comprises a high-temperature operation type secondary battery 3 connected to a power grid 1, and an interconnection AC-DC converter 4 which is provided between the power grid 1 and the high-temperature operation type secondary battery 3 and charges/discharges the high-temperature operation type secondary battery 3 to the power grid 1. It also comprises an uninterruptible power supply device 11 of a full-time inverter power supply method which is provided between a power grid 7 and a load 2 and whose source of power supply is the high-temperature operation type secondary battery 3, and a DC chopper 5 which is provided between the high-temperature operation type secondary batter 3 and a DC circuit part of the uninterruptible power supply device 11 and converts a voltage of the high-temperature operation type secondary battery 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、負荷平準化機能及び無停電電源機能を併せ持ち、通常は負荷平準化機能を発揮するとともに、停電発生時には無停電電源機能を発揮し瞬低乃至停電を補償すべく負荷へ電力供給し得る高温作動型二次電池システムに関する。
【0002】
【従来の技術】多くの場合、工場は昼間に稼動し夜間は停止するか操業率を低下させる。又、通常、オフィスで人が働く時間も昼間である。従って、昼夜間の電力負荷の格差は大きくなる。更に、冷暖房なしに過ごし易い春秋に比べて、夏冬には猛暑乃至厳寒のため冷房や暖房の需要が増加することから、電力負荷は季節によっても格差を生じ得る。近年、これらの格差は益々拡大してきており、電力供給設備の稼働率を表す負荷率は年々低下してきている。一方で、産業競争力を向上させる目的等により電力コストを低減する要望は高まってきており、電力供給にかかる負荷平準化は大変重要な課題と考えられている。そして、その対策の1つとして、高効率で大容量な二次電池の開発が進められ、負荷状態によって充放電を行い電力供給設備からみた負荷変動を抑え得る電池電力貯蔵システムとして実用化されている。
【0003】又、現代社会では、高度に発達したコンピュータシステムと通信ネットワークを用いたオンラインシステムが広く浸透し、それらコンピュータシステムや通信ネットワークにより重要な生産設備等が制御・稼動されている。従って、供給電力に瞬低(電圧低下)や停電が生じれば、各種サービスや製品等に大きな損失を与えかねず、電力供給系の品質の安定は大変重要な課題である。そして、その対策として無停電電源装置の設置が有効であり、二次電池を電力供給源とする無停電電源装置がよく知られている。
【0004】上記したように、負荷平準化を実現するためにも供給電力の品質を安定させるためにも二次電池が有用である。そこで、従来より、同一の二次電池を電力貯蔵供給源として負荷平準化機能と無停電電源機能を併せ持つシステムの提案がなされている。例えば、株式会社NTTファシリティーズのパンフレット(NTTF3080A0109)[電力貯蔵システム]や日本碍子株式会社のパンフレット(2002年9月発行)「NAS電池電力貯蔵システム」、東京電力株式会社のリーフレット「UPS兼用(200kW級)NAS電池」によれば、常時インバータ方式の無停電電源装置において、負荷平準化機能と無停電電源機能を併せ持つシステム構成が明記されている。又、図3に構成が示される二次電池システムが知られている。
【0005】二次電池システム30は、主に二次電池13を電力供給源とする常時インバータ給電方式の無停電電源装置31を主構成要素とする。その無停電電源装置31は、直流電源に相当する交直変換器43と、直交変換器51(インバータ)とを必須の構成要素としてなり、高速切替スイッチ41と変圧器9、及び、電力系統6に接続された無瞬断バイパス回路47と保守バイパス回路48を有する装置である。
【0006】二次電池システム30では、常時は、高圧(例えば6.6kV)の電力系統1から供給される交流電力が、変圧器9で低圧(例えば210V)に降圧され、交直変換器43で直流電力に変換され、二次電池13を充電しながら直交変換器51に供給され、直交変換器51により再び交流電力に変換され、負荷2に供給される。あるいは、二次電池13が放電モードの場合は、電池出力の一部又は全部が負荷2に供給される。
【0007】そして、電力系統1が停電すると、二次電池13から直流電力が放電され、直交変換器51に供給されるので、直交変換器51から瞬断なく負荷2に交流電力が供給される。このようにして、二次電池システム30は、無停電電源機能を実現する。又、二次電池システム30は、交直変換器43を双方向変換可能とすることで、負荷平準化系統側に電力を流し込むことが可能となり、負荷平準化機能を大きく生かすことが出来る。
【0008】しかしながら、二次電池システム30では、系統連系技術要件ガイドライン(旧通商産業省/資源エネルギー庁平成10年改正)に基づき、何らかの原因により連系保護リレー44が動作したときは、一旦、系統連系システムである二次電池システムとして連系遮断器101を開放し、電力系統1から解列する必要がある。連系遮断器101が解列されると、二次電池13から放電を開始し、連系保護リレー44が復帰した後に、自動で再起動し元の状態に復帰することにより、原理的には負荷2に瞬低を生じることはない。しかし、連系保護リレー44が動作したときに電力系統から解列しなければならないために、万一、連系保護リレー44が故障した場合にはシステムを再起動させることが出来ず、無停電電源機能としての信頼性が損なわれる場合がある。これは、負荷2が特に重要な設備である場合には重大な問題になり得る。
【0009】
【発明が解決しようとする課題】本発明は、上記した問題を生じ得ない二次電池システムを提供することを課題とする。より具体的に本発明の目的とするところは、負荷平準化機能と無停電電源機能とを併せ持つとともに、系統連系技術要件ガイドラインに従い連系保護リレーが動作したときに電力系統から系統連系システムを解列可能であり、且つ、万一、連系保護リレーが故障した場合も無停電電源機能を喪失することのない、より信頼性の高い二次電池システムを提供することにある。従来の二次電池システムの構成について見直し検討がなされ、二次電池を共有しつつ、負荷平準化機能を発現する部分(負荷平準化機能部)と無停電電源機能を発現する部分(無停電電源機能部)との独立性を高めたシステム構成について研究が重ねられた結果、以下に示す手段により、上記目的が達成されることが見出された。
【0010】
【課題を解決するための手段】即ち、本発明によれば、負荷平準化機能と無停電電源機能とを併せ持つ二次電池システムであって、第1の電力系統に接続された高温作動型二次電池と、第1の電力系統と高温作動型二次電池との間に備わり第1の電力系統に対し高温作動型二次電池を充放電させる系統連系用交直変換器と、を有するとともに、第2の電力系統と負荷との間に備わり高温作動型二次電池を電力供給源とした常時インバータ給電方式の無停電電源装置と、高温作動型二次電池と無停電電源装置の直流回路部との間に備わり高温作動型二次電池の電圧を変換する直流チョッパと、を有することを特徴とする高温作動型二次電池システムが提供される。本発明は、第1の電力系統と第2の電力系統とが、分離しているとともに電圧が異なる場合に適用出来ることが好ましい。
【0011】又、本発明においては、高温作動型二次電池が系統連系用交直変換器を介し充放電動作を行い第1の電力系統に対する負荷平準化機能を発揮する第1の運転モードと、高温作動型二次電池が無停電電源装置に電力供給し負荷に対する無停電電源機能を発揮する第2の運転モードと、を切り替える運転切替手段を有することが好ましい。このとき、その運転切替手段として、無停電電源装置の直流回路電圧を検出する直流電圧計測器と、直流回路電圧が所定値以下に低下したことを検出する電圧低下判定器と、を有し、電圧低下判定器の判定結果に基づいて、系統連系用交直変換器を停止させるとともに、直流チョッパに二次電圧を一定制御させる手段を用いることが出来る。その直流チョッパは、常時は停止(ゲートブロック)し、電圧低下判定器の判定結果に基づいて瞬時に起動することが好ましい。又、電圧低下判定器の判定結果に基づく系統連系用交直変換器を停止させる信号は光ファイバで伝送されることが好ましい。ノイズの影響なく高速伝送が可能だからであり、瞬低等が発生した時に、系統連系用交直変換器を確実且つ瞬時に停止させることが出来るからである。
【0012】更に、本発明においては、無停電電源機能として必要な高温作動型二次電池の停電補償容量を設定可能であるとともに、負荷平準化機能を発揮しているときに、高温作動型二次電池の電池残存容量が停電補償容量に達したら、高温作動型二次電池の負荷平準化運転を停止させる電池残存容量管理手段を有することが好ましい。停電補償を確実に行うことが出来るからである。即ち、電池残存容量管理手段は、負荷平準化機能を発揮しているときは常に高温作動型二次電池が停電補償容量分の蓄えを有しておくようにする手段であり、電池残存容量が停電補償容量に達したらとは停電補償容量にまで減ったらの意味であり、高温作動型二次電池を停止させるとは通常少なくとも放電を止めることを意味する。上記電池残存容量は、高温作動型二次電池の充放電動作に基づく電気容量積算値(Ah)乃至電池電圧から推定した電池深度に基づく残存容量換算値により求めることが出来る。
【0013】本発明の高温作動型二次電池システムでは、各構成要素が多重並列化されてなることが好ましい。例えば、系統連系用交直変換器を除く構成要素を多重並列化すると、単一要素が故障しても無停電電源機能を維持出来る。本発明においては、全ての構成要素を比較的容易に多重並列化出来、求められる信頼性のグレードに応じてシステム設計することが可能であり、多方面に適用され得る。又、本発明においては、主構成要素である高温作動型二次電池はナトリウム−硫黄電池であることが好ましい。
【0014】
【発明の実施の形態】以下、本発明の実施の形態について説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。
【0015】本発明は、負荷平準化機能と無停電電源機能とを併せ持つ高温作動型二次電池システムである。高温作動型二次電池システムとは、高温作動型二次電池を電力貯蔵供給源とする二次電池システムをいう。負荷平準化機能とは、日間変動の大きい実負荷のボトムアップとピークカットにより電力供給側からみた負荷の変動を抑制する機能をいい、より具体的には例えば二次電池が低負荷時に電力系統から充電し高負荷時に電力系統へ放電することで実現される機能である。無停電電源機能とは、電力系統に瞬低や停電が生じた場合に負荷に対して無瞬断で電力を補償・供給する機能をいう。
【0016】本発明の高温作動型二次電池システムは、第1の電力系統に接続された高温作動型二次電池と、第1の電力系統と高温作動型二次電池との間に備わり第1の電力系統に対し高温作動型二次電池を充放電させる系統連系用交直変換器とを有し、且つ、第2の電力系統と負荷との間に備わり高温作動型二次電池を電力供給源とした常時インバータ給電方式の無停電電源装置と、高温作動型二次電池と無停電電源装置の直流回路部との間に備わり高温作動型二次電池の電圧を変換する直流チョッパと、を有するところに特徴がある。
【0017】高温作動型二次電池と系統連系用交直変換器とにより負荷平準化機能部を構成し、高温作動型二次電池を共有しつつ無停電電源装置と直流チョッパとによって無停電電源機能部を構成しているので、連系保護リレー動作時には、負荷平準化機能部(系統連系用交直変換器側)のみを解列させることにより、上記無停電電源機能部(無停電電源装置側)は独立して常時インバータ給電を継続させることが可能となる。尚、直流チョッパを双方向として電池充電も出来るようにしておけば、系統連系用交直変換器側のいかなる機器故障に際しても、完全な無停電電源装置としての機能を確保出来る。
【0018】尚、本明細書においては、電力系統とは主に商用電源の系統をいい、無停電電源装置というときには二次電池を除き一般にCVCF(定電圧定周波装置)とよばれる構成部分を指す。又、交流から直流へ変換する機器を交直変換器(コンバータ)、直流から交流へ変換する機器を直交変換器(インバータ)とよぶ。無停電電源装置の直流回路部とは、無停電電源装置内の交直変換器と直交変換器との間の電流が直流である回路部分をいい、無停電電源装置の直流回路電圧とは該部分の電圧をいう。
【0019】本発明においては、高温作動型二次電池の具体的な電池種別は限定されるものではない。例えば、ナトリウム−硫黄電池、ナトリウム−塩化金属電池等を採用することが出来る。望ましい高温作動型二次電池はナトリウム−硫黄電池である。ナトリウム−硫黄電池は、エネルギー密度が高くフル放電サイクル耐久性が高いので、負荷平準化機能と無停電電源機能とを併せ持つ二次電池システムの二次電池として好適である。
【0020】本発明は、上記第1の電力系統と第2の電力系統とが同系統・同電圧の場合にも、異なる場合にも適用可能である。通常、系統連系用システムは約500kW以上と比較的大容量となるため、第1の電力系統の電圧(系統連系電圧)として6.6kVとする場合が多い。一方、無停電電源装置は、標準的に内蔵されるバイパス回路の関係もあり、200V又は400Vで接続する場合が多く、更に、第1の電力系統と第2の電力系統とが同系統でない場合がある。
【0021】本発明の高温作動型二次電池システムは、上記第1の電力系統と第2の電力系統とが分離しているとともに電圧が異なる場合にも適用出来るので、系統連系用交直変換器と常時インバータ給電方式の無停電電源装置とを完全に分離し、無停電電源装置として十分な実績を有する既存製品を概ねそのままの形で活用出来、信頼性の高いシステム構築が可能となる。尚、電力系統とが分離しているとは、電圧の異同を問わず、一の電力系統が他の電力系統と分離して運用出来る構成となっている場合をいう。
【0022】本発明の高温作動型二次電池システムの好ましい態様では、高温作動型二次電池が系統連系用交直変換器を介し充放電動作を行い第1の電力系統に対する負荷平準化機能を発揮する第1の運転モードと、高温作動型二次電池が無停電電源装置に電力供給し負荷に対する無停電電源機能を発揮する第2の運転モードと、を切り替える運転切替手段を有するが、この運転切替手段の制御は、無停電電源機能を優先させるように行われることが望ましい。負荷平準化より無停電電源としての機能の方が重要であるからである。
【0023】上記運転切替手段は、少なくとも無停電電源装置の直流回路電圧を検出する直流電圧計測器と直流回路電圧が予め規定した所定値以下に低下したことを検出する電圧低下判定器とから構成し、電圧低下判定器の判定結果に基づいて、系統連系用交直変換器に負荷平準化運転停止指令を出し、速やかに直流チョッパを二次電圧一定制御運転させることで実現される。
【0024】又、系統連系用交直変換器と直流チョッパの動作干渉を防ぐため、及び、二次電池から無停電電源装置側への不要な微小放電を避けるため、直流チョッパを常時は停止(ゲートブロック)状態としておき、電圧低下判定器の判定結果に基づき、瞬時に起動させることが望ましい。例えば、起動時間を5msec以内とすれば、その間は、無停電電源装置の直流回路に標準的に設置される直流コンデンサで十分バックアップ出来るため、負荷側には瞬時も電圧低下を生じることがない。
【0025】以下、図面を参照して、具体的な実施形態について説明する。先ず、本発明に係る負荷平準化機能及び無停電電源機能を併せ持つ高温作動型二次電池システムの基本構成を、その実施態様の一例である図1に基づいて説明する。図1に示される高温作動型二次電池システム10は、ナトリウム−硫黄電池である高温作動型二次電池3を共有しつつ、例えば6.6kVの電力系統1に接続された系統連系システムである負荷平準化機能部17と、上記電力系統1に対する系統連系システムを構成しない無停電電源機能部18とからなる。
【0026】負荷平準化機能部17は、高温作動型二次電池3の他に、電力系統1との間に変圧器9及び系統連系用交直変換器4及び連系遮断器101を有する。
【0027】負荷平準化機能部17は、定常時は第1の運転モードで運転され、例えば電力消費量の多い昼間には、高温作動型二次電池3からの直流の出力を系統連系用交直変換器4により交流に変換し変圧器9で昇圧して電力系統1に供給する。又、例えば電力消費量の少ない夜間に、電力系統1からの交流電力を変圧器9で降圧し系統連系用交直変換器4により直流に変換して高温作動型二次電池3へ入力し充電する。このような運転により、負荷平準化機能部17は、電力系統1に接続された図示しない負荷の変動を吸収し平準化を図る。
【0028】本発明に係る高温作動型二次電池システム10においては、負荷平準化機能部17が第1の運転モードで運転する間は、電池残存容量管理手段によって、高温作動型二次電池3の電池残存容量が予め設定された停電補償容量に達したときを高温作動型二次電池3の放電終点としている。停電補償容量とは無停電電源機能として必要な高温作動型二次電池の容量である。第1の運転モードで運転しているときに、常に停電補償容量を保持しておくことにより、後述する第2の運転モードに切り替わったときに、停電補償を確実なものにすることが出来る。
【0029】電池残存容量管理手段は、例えば、図示しない制御装置に、停電補償容量を書き換え可能に記憶しておき、高温作動型二次電池3の電池残存容量と常時比較することで実現される。その電池残存容量は、例えば、図示しない制御装置において、高温作動型二次電池3の充電動作及び放電動作にかかる電気容量(Ah)を積算するか又は電池電圧から推定した深度から換算するか、の何れか若しくは両方を用いて、求めることが出来る。
【0030】無停電電源機能部18は、高温作動型二次電池3の他に、無停電電源装置11と、それらの間に設けられる直流チョッパ5とを有する。無停電電源装置11は、例えば210Vの電力系統7とそれに接続された負荷2との間に備わる。無停電電源装置11は、交直変換器14と直交変換器51を主構成要素とし、高速切替スイッチ41と変圧器19、及び、電力系統6に接続された無瞬断バイパス回路47と保守バイパス回路48を有する。尚、高温作動型二次電池3は共有されるため、負荷平準化機能部17と無停電電源機能部18の何れかの構成要素になるが、図1では、便宜上、高温作動型二次電池3を負荷平準化機能部17の構成要素として描いている。
【0031】無停電電源機能部18において、定常時(第1の運転モード時)は、電力系統7から負荷2へ、交直変換器14及び直交変換器51を通じ(常時インバータ給電方式で)電力供給が行われる。高温作動型二次電池3は、直流チョッパ5を介し、交直変換器14と直交変換器51の間の直流回路部で接続される。一般に、二次電池を電力供給源とした常時インバータ給電方式の無停電電源装置では、無停電電源装置側から二次電池へ直流電力を供給し充電を行うが、本発明に係る高温作動型二次電池システム10では、定常時には、直流チョッパ5はゲートブロック状態にされており、無停電電源装置11から高温作動型二次電池3へ直流電力が供給され充電が行なわれることも、又、高温作動型二次電池3から無停電電源装置11を介して負荷2へ電力供給が行われることもない。
【0032】本発明に係る高温作動型二次電池システム10では、無停電電源装置11の交直変換器14と直交変換器51との間の直流回路部の所定箇所である点Pに、直流回路電圧を常時測定する(図示しない)直流電圧計測器が設けられる。そして、その直流電圧計測器が測定した電圧値は、例えば図示しない制御装置へ送られ、制御装置内に設けられた電圧低下判定器によって、直流回路電圧が予め規定した所定値以下に低下したか否か常時判定される。電圧低下判定器により、直流回路電圧が所定値以下に低下したと判定されれば、瞬低乃至停電が生じたと判断され、第2の運転モードに切り替わり、瞬時に制御装置から光ファイバを通じて系統連系用交直変換器4へ負荷平準化運転停止指令信号が送られ、併せて、直流チョッパ5へ二次電圧一定制御運転指令信号が送られる。
【0033】系統連系用交直変換器4が負荷平準化運転を停止し、直流チョッパ5が二次電圧一定制御運転を開始すると、高温作動型二次電池3の電気エネルギーは、負荷平準化運転を停止していることにより電池の過負荷状態を生じることなく全て無停電電源装置11側へ供給されるため、負荷2側において瞬低は現れない。負荷2への電力供給源が、電力系統7による常時インバータ給電から高温作動型二次電池3へ切り替わる動作については概ね5msec以内と極短時間であるため、切り替わる間の電気容量は、既存製品の無停電電源装置11に標準装備される直流コンデンサで十分にバックアップされる。
【0034】本発明に係る高温作動型二次電池システム10では、連系保護リレー44が動作したときは、一旦、系統連系システムである負荷平準化機能部17が電力系統1から解列されるが、この場合でも、無停電電源機能部18は、負荷平準化機能部17とは独立して継続運転され得る。即ち、系統連系技術要件ガイドラインに準じた適正なシステムであるとともに、負荷2に僅かでも瞬低を生じさせることがなく、無停電電源機能としての信頼性が高いシステムである。尚、直流チョッパを双方向として電池充電も出来るようにしておけば、系統連系用交直変換器側のいかなる機器故障に際しても、完全な無停電電源装置としての機能を確保出来る。
【0035】次に、本発明に係る負荷平準化機能及び無停電電源機能を併せ持つ高温作動型二次電池システムの応用例を、図2に基づいて説明する。図2に示される高温作動型二次電池システム20は、並列冗長無停電電源機能付きNAS電池システムの例であって、図1に示される高温作動型二次電池システム10の無停電電源機能に係る主な構成要素を並列に二重化したものである。
【0036】高温作動型二次電池システム20は、ナトリウム−硫黄電池である高温作動型二次電池3を共有しつつ、例えば6.6kVの電力系統1に接続された系統連系システムである負荷平準化機能部27と、上記電力系統1に対する系統連系システムを構成しない無停電電源機能部28とからなる点は、高温作動型二次電池システム10に準じるシステムである。
【0037】負荷平準化機能部27は、電力系統1に変圧器9が接続され、その二次側に、系統連系用交直変換器4と高温作動型二次電池3とが並列に2系列設けられている。負荷平準化機能部27は負荷平準化機能部17に準じて運転される。通常、2系列の系統連系用交直変換器4及び高温作動型二次電池3は電力系統1に対し同時に充放電動作を行い、電力系統1に接続された図示しない負荷の日間変動を吸収し平準化を図る。
【0038】本発明に係る高温作動型二次電池システム20においては、負荷平準化機能部27が第1の運転モードで運転する間において、高温作動型二次電池3の電池残存容量は、各系列毎に停電補償容量が確保されるように管理され、何れの系列が、第2の運転モードに切り替わったときでも、停電補償は確実に行われる。
【0039】無停電電源機能部28は、負荷平準化機能部27と共有する2系列の高温作動型二次電池3の他に、無停電電源装置21において交直変換器14、直交変換器51及び変圧器19が並列に二重化されている。又、2系列の高温作動型二次電池3と、無停電電源装置21の各2系列の交直変換器14と直交変換器51の間の直流回路部との間に設けられる直流チョッパ5も、2系列設けられている。
【0040】無停電電源機能部28における、定常時(第1の運転モード時)の運転動作は、無停電電源機能部18に準じて行われ、通常、電力系統7から負荷2へ、2系列の交直変換器14及び直交変換器51を通じ常時同時に電力供給が行われる。又、2系列の直流チョッパ5はともにゲートブロック状態にされており、無停電電源装置21側から2系列の高温作動型二次電池3へ直流電力が供給され充電が行なわれることも、又、2系列の高温作動型二次電池3から無停電電源装置21を介して負荷2へ電力供給が行われることもない。
【0041】本発明に係る高温作動型二次電池システム20は、第1の運転モードから第2の運転モードに切り替わる手段については、高温作動型二次電池システム10に準じる。切替時に、負荷2側において瞬低は現れないのも同様である。更に、連系保護リレー44が動作し、負荷平準化機能部27が電力系統1から解列されたときに、無停電電源機能部28が独立して継続運転され得ることも同様であり、系統連系技術要件ガイドラインに準ずる適正なシステムであるとともに、負荷2に僅かでも瞬低を生じさせることがなく、無停電電源機能としての信頼性が高いシステムである。
【0042】加えて、本発明に係る高温作動型二次電池システム20は、無停電電源機能に係る主な構成要素が二重化されているので、一の構成要素が故障した場合にも、負荷平準化機能及び無停電電源機能を発揮し得るシステムとして維持され得る。従って、負荷2において瞬低乃至停電が生じる可能性は極低く、負荷2が僅かな停止も許されない最重要な生産設備等である場合に、好適である。
【0043】
【発明の効果】以上説明したように、本発明の高温作動型二次電池システムは、負荷平準化機能と無停電電源機能とを併せ持ち、系統連系技術要件ガイドラインに従い連系保護リレーが動作したときに電力系統から系統連系システムを解列しても、無停電電源機能部は独立して運転を継続出来、負荷に瞬低乃至停電を生じさせることがない。従って、本発明の高温作動型二次電池システムは、コンピュータシステムや通信ネットワークにより制御・稼動される重要な生産設備等への電源供給システムとして好適に用いられ得る。
【図面の簡単な説明】
【図1】本発明の高温作動型二次電池システムの一実施形態を示す構成図である。
【図2】本発明の高温作動型二次電池システムの他の実施形態を示す構成図である。
【図3】従来の二次電池システムの一例を示す構成図である。
【符号の説明】
1,6,7…電力系統、2…負荷、3…高温作動型二次電池、4…系統連系用交直変換器、5…直流チョッパ、9…変圧器、10,20…高温作動型二次電池システム、11,21,31…無停電電源装置、13…二次電池、14…交直変換器、17,27…負荷平準化機能部、18,28…無停電電源機能部、19…変圧器、30…二次電池システム、41…高速切替スイッチ、43…交直変換器、44…連系保護リレー、47…無瞬断バイパス回路、48…保守バイパス回路、51…直交変換器、101…連系遮断器。
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a load leveling function and an uninterruptible power supply function. The present invention relates to a high-temperature operated secondary battery system capable of supplying power to a load as much as possible.
[0002]
BACKGROUND OF THE INVENTION In many cases, factories operate during the day and shut down or reduce operating rates at night. In addition, people usually work in the office during the daytime. Therefore, the difference in power load between day and night increases. Furthermore, compared to spring and autumn, when it is easy to spend without cooling and heating, the demand for cooling and heating increases in summer and winter due to intense heat or severe cold, so that the power load may vary depending on the season. In recent years, these disparities have been increasing, and the load factor representing the operation rate of the power supply equipment has been decreasing year by year. On the other hand, there is an increasing demand for reducing electric power costs for the purpose of improving industrial competitiveness and the like, and it is considered that load leveling for electric power supply is a very important issue. As one of the countermeasures, the development of a high-efficiency and large-capacity secondary battery has been promoted, and the battery has been put into practical use as a battery power storage system capable of charging / discharging according to a load state and suppressing load fluctuations as viewed from a power supply facility. I have.
In modern society, highly developed computer systems and online systems using communication networks have become widespread, and important production facilities and the like are controlled and operated by these computer systems and communication networks. Therefore, if an instantaneous drop (voltage drop) or power outage occurs in the supplied power, various services and products may be greatly lost, and stabilizing the quality of the power supply system is a very important issue. As a countermeasure, it is effective to install an uninterruptible power supply, and an uninterruptible power supply using a secondary battery as a power supply is well known.
As described above, a secondary battery is useful for achieving load leveling and stabilizing the quality of supplied power. Therefore, conventionally, a system has been proposed which has both a load leveling function and an uninterruptible power supply function using the same secondary battery as a power storage and supply source. For example, a pamphlet of NTT Facilities Corporation (NTTF3080A0109) [power storage system], a pamphlet of Nippon Insulators Co., Ltd. (published in September 2002), “NAS battery power storage system”, a leaflet of Tokyo Electric Power Company, “UPS combined use (200 kW class) ) NAS battery "specifies a system configuration of a continuous inverter type uninterruptible power supply that has both a load leveling function and an uninterruptible power supply function. Further, a secondary battery system whose configuration is shown in FIG. 3 is known.
[0005] The secondary battery system 30 mainly includes an uninterruptible power supply 31 of an always-inverter power supply type using the secondary battery 13 as a power supply source. The uninterruptible power supply device 31 includes an AC / DC converter 43 corresponding to a DC power supply and an orthogonal converter 51 (inverter) as essential components, and is connected to the high-speed changeover switch 41, the transformer 9, and the power system 6. This is a device having a non-instantaneous interruption bypass circuit 47 and a maintenance bypass circuit 48 connected thereto.
[0006] In the secondary battery system 30, the AC power supplied from the high-voltage (for example, 6.6 kV) power system 1 is normally stepped down to a low voltage (for example, 210 V) by the transformer 9, and the AC-DC converter 43. The power is converted to DC power, supplied to the orthogonal transformer 51 while charging the secondary battery 13, converted to AC power again by the orthogonal converter 51, and supplied to the load 2. Alternatively, when the secondary battery 13 is in the discharge mode, part or all of the battery output is supplied to the load 2.
When the power system 1 is out of power, the DC power is discharged from the secondary battery 13 and supplied to the quadrature converter 51, so that the AC power is supplied from the quadrature converter 51 to the load 2 without an instantaneous interruption. . In this way, the secondary battery system 30 implements an uninterruptible power supply function. In addition, the secondary battery system 30 allows the AC / DC converter 43 to perform bidirectional conversion, so that power can be supplied to the load leveling system side, and the load leveling function can be greatly utilized.
However, in the secondary battery system 30, when the interconnection protection relay 44 is activated for some reason based on the grid interconnection technical requirement guideline (formerly revised by the Ministry of International Trade and Industry / the Agency for Natural Resources and Energy 1998), once In addition, it is necessary to open the interconnection breaker 101 as a secondary battery system, which is a system interconnection system, and disconnect it from the power system 1. When the interconnection breaker 101 is disconnected, the secondary battery 13 starts discharging, and after the interconnection protection relay 44 returns, it is automatically restarted and returned to the original state, and in principle, The load 2 does not have a sag. However, since the interconnection protection relay 44 must be disconnected from the power system when the interconnection protection relay 44 operates, the system cannot be restarted if the interconnection protection relay 44 fails, and The reliability as a power supply function may be impaired. This can be a serious problem if the load 2 is a particularly important piece of equipment.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary battery system which does not cause the above-mentioned problems. More specifically, it is an object of the present invention to have both a load leveling function and an uninterruptible power supply function, and to operate the grid connection system from the power grid when the grid protection relay operates according to the grid connection technical requirement guideline. And to provide a more reliable secondary battery system that does not lose the uninterruptible power supply function even if the interconnection protection relay fails. The configuration of the conventional secondary battery system was reviewed and examined, and the part that exhibited the load leveling function (load leveling function part) and the part that exhibited the uninterruptible power supply function (uninterruptible power supply) As a result of repeated research on a system configuration that has increased independence from the functional unit), it has been found that the above-described object can be achieved by the following means.
[0010]
That is, according to the present invention, there is provided a secondary battery system having both a load leveling function and an uninterruptible power supply function, wherein the high-temperature operation type secondary battery system is connected to a first power system. A secondary battery, and a system interconnection AC / DC converter provided between the first power system and the high-temperature operation type secondary battery for charging and discharging the high-temperature operation type secondary battery with respect to the first power system. A continuous inverter power supply type uninterruptible power supply provided between a second power system and a load and using a high-temperature operated secondary battery as a power supply source, and a DC circuit of the high-temperature operated secondary battery and the uninterruptible power supply And a DC chopper provided between the first and second units for converting the voltage of the high-temperature operation type secondary battery. The present invention is preferably applicable when the first power system and the second power system are separated and have different voltages.
Further, in the present invention, there is provided a first operation mode in which the high temperature operation type secondary battery performs a charge / discharge operation via the AC / DC converter for system interconnection and exhibits a load leveling function for the first power system. It is preferable to have an operation switching means for switching between a second operation mode in which the high-temperature operated secondary battery supplies power to the uninterruptible power supply and performs an uninterruptible power supply function for a load. At this time, as the operation switching means, a DC voltage measuring device that detects the DC circuit voltage of the uninterruptible power supply, and a voltage drop determiner that detects that the DC circuit voltage has dropped below a predetermined value, Based on the judgment result of the voltage drop judging device, the means for stopping the AC / DC converter for system interconnection and controlling the DC chopper to keep the secondary voltage constant can be used. It is preferable that the DC chopper is always stopped (gate block) and started instantaneously based on the determination result of the voltage drop determiner. Further, it is preferable that the signal for stopping the AC / DC converter for system interconnection based on the determination result of the voltage drop determiner is transmitted through an optical fiber. This is because high-speed transmission can be performed without the influence of noise, and when an instantaneous dip or the like occurs, the AC / DC converter for system interconnection can be stopped reliably and instantaneously.
Further, according to the present invention, it is possible to set a power failure compensation capacity of a high temperature operation type secondary battery required as an uninterruptible power supply function, and to perform a high temperature operation type secondary battery when a load leveling function is exhibited. It is preferable to have a battery remaining capacity management means for stopping the load leveling operation of the high temperature operated secondary battery when the battery remaining capacity of the secondary battery reaches the power failure compensation capacity. This is because power failure compensation can be reliably performed. That is, the battery remaining capacity management means is a means for ensuring that the high temperature operation type secondary battery always has storage for the power failure compensation capacity when the load leveling function is exhibited, and the battery remaining capacity is Reaching the power failure compensation capacity means that the capacity has been reduced to the power failure compensation capacity, and stopping the high temperature operation type secondary battery usually means at least stopping the discharge. The remaining battery capacity can be obtained from an integrated electric capacity value (Ah) based on the charge / discharge operation of the high-temperature operated secondary battery or a converted remaining capacity value based on the battery depth estimated from the battery voltage.
[0013] In the high-temperature operated secondary battery system of the present invention, it is preferable that each component is multiply parallelized. For example, when components other than the AC / DC converter for system interconnection are multiplex-parallelized, the uninterruptible power supply function can be maintained even if a single element fails. In the present invention, all the components can be multi-parallelized relatively easily, the system can be designed according to the required reliability grade, and the invention can be applied to various fields. In the present invention, it is preferable that the high-temperature operation type secondary battery as a main component is a sodium-sulfur battery.
[0014]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below. However, the present invention should not be construed as being limited to these embodiments, and knowledge of a person skilled in the art can be made without departing from the scope of the present invention. , Various changes, modifications, and improvements can be made.
The present invention is a high-temperature operated secondary battery system having both a load leveling function and an uninterruptible power supply function. The high temperature operation type secondary battery system refers to a secondary battery system using a high temperature operation type secondary battery as a power storage and supply source. The load leveling function refers to a function that suppresses the fluctuation of the load as viewed from the power supply side by bottoming up and peak cutting of the actual load with large daily fluctuations. This function is realized by charging the battery from the battery and discharging it to the power system when the load is high. The uninterruptible power supply function refers to a function of compensating and supplying power to a load without an instantaneous interruption when an instantaneous voltage drop or a power failure occurs in a power system.
A high-temperature operated secondary battery system according to the present invention includes a high-temperature operated secondary battery connected to a first power system, and a high-temperature operated secondary battery provided between the first power system and the high-temperature operated secondary battery. A power interconnection system for charging / discharging the high-temperature operation type secondary battery to / from the first power system, and providing the high-temperature operation type secondary battery between the second power system and the load. A continuous inverter power supply type uninterruptible power supply as a supply source, a DC chopper provided between the high-temperature operation type secondary battery and the DC circuit unit of the uninterruptible power supply to convert the voltage of the high-temperature operation type secondary battery, Is characterized by having
A load leveling function is constituted by the high-temperature operated secondary battery and the AC / DC converter for system interconnection, and the uninterruptible power supply is shared by the uninterruptible power supply and the DC chopper while sharing the high-temperature operated secondary battery. Since the function part is configured, only the load leveling function part (the grid-connected AC / DC converter side) is disconnected during the operation of the interconnection protection relay, so that the uninterruptible power supply function part (uninterruptible power supply Side) can independently continue the inverter power supply at all times. If the DC chopper is bidirectional so that the battery can be charged, the function as a complete uninterruptible power supply can be ensured in the event of any equipment failure on the side of the AC / DC converter for system interconnection.
In this specification, the power system mainly refers to a system of a commercial power supply, and an uninterruptible power supply means a component generally called a CVCF (constant voltage constant frequency device) except for a secondary battery. Point. A device that converts AC to DC is called an AC / DC converter, and a device that converts DC to AC is called a quadrature converter (inverter). The DC circuit part of the uninterruptible power supply means a circuit part in which the current between the AC / DC converter and the quadrature converter in the uninterruptible power supply is DC, and the DC circuit voltage of the uninterruptible power supply is this part. Voltage.
In the present invention, the specific battery type of the high-temperature operated secondary battery is not limited. For example, a sodium-sulfur battery, a sodium-metal chloride battery, or the like can be employed. A desirable high temperature operated secondary battery is a sodium-sulfur battery. Since the sodium-sulfur battery has a high energy density and a high full discharge cycle durability, it is suitable as a secondary battery of a secondary battery system having both a load leveling function and an uninterruptible power supply function.
The present invention is applicable to the case where the first power system and the second power system have the same system and the same voltage, and are different. Usually, since the system for system interconnection has a relatively large capacity of about 500 kW or more, the voltage of the first power system (system interconnection voltage) is often set to 6.6 kV. On the other hand, the uninterruptible power supply has a relation of a built-in bypass circuit as a standard, and is often connected at 200 V or 400 V, and further, when the first power system and the second power system are not the same system. There is.
The high-temperature operated secondary battery system of the present invention can be applied to a case where the first power system and the second power system are separated from each other and have different voltages. The power supply unit and the uninterruptible power supply with the constant inverter power supply system are completely separated, and existing products that have a sufficient track record as an uninterruptible power supply can be used in almost the same form, and a highly reliable system can be constructed. It should be noted that being separated from the power system means a case in which one power system is configured to be operated separately from the other power system regardless of the difference in voltage.
In a preferred embodiment of the high-temperature operation type secondary battery system of the present invention, the high-temperature operation type secondary battery performs a charge / discharge operation via a system interconnection AC / DC converter to perform a load leveling function for the first power system. There is an operation switching means for switching between a first operation mode to be exercised and a second operation mode in which the high-temperature operation type secondary battery supplies power to the uninterruptible power supply and performs an uninterruptible power supply function for a load. It is desirable that the control of the operation switching means is performed so as to give priority to the uninterruptible power supply function. This is because the function as an uninterruptible power supply is more important than load leveling.
The operation switching means comprises at least a DC voltage measuring device for detecting a DC circuit voltage of the uninterruptible power supply and a voltage drop determining device for detecting that the DC circuit voltage has dropped below a predetermined value. Then, based on the judgment result of the voltage drop judging device, a load leveling operation stop command is issued to the AC / DC converter for system interconnection, and the DC chopper is promptly operated to perform the secondary voltage constant control operation.
Further, in order to prevent operation interference between the AC / DC converter for system interconnection and the DC chopper and to avoid unnecessary minute discharge from the secondary battery to the uninterruptible power supply, the DC chopper is always stopped ( (Gate block) state, and it is desirable to start up instantaneously based on the determination result of the voltage drop determiner. For example, if the start-up time is set within 5 msec, a sufficient backup can be made by a DC capacitor that is provided as a standard in the DC circuit of the uninterruptible power supply, so that no voltage drop occurs instantaneously on the load side.
Hereinafter, specific embodiments will be described with reference to the drawings. First, a basic configuration of a high-temperature operated secondary battery system having both a load leveling function and an uninterruptible power supply function according to the present invention will be described with reference to FIG. The high-temperature operation type secondary battery system 10 shown in FIG. 1 is a system interconnection system connected to, for example, a 6.6 kV power system 1 while sharing a high-temperature operation type secondary battery 3 that is a sodium-sulfur battery. It comprises a certain load leveling function unit 17 and an uninterruptible power supply function unit 18 which does not constitute a system interconnection system for the power system 1.
The load leveling function unit 17 has a transformer 9, a grid connection AC / DC converter 4, and a connection breaker 101 between the power system 1 and the high-temperature operation type secondary battery 3.
The load leveling function unit 17 is operated in the first operation mode in a normal state. For example, during the daytime when power consumption is large, the DC output from the high temperature operation type secondary battery 3 is used for system interconnection. The power is converted into AC by the AC / DC converter 4, boosted by the transformer 9, and supplied to the power system 1. Also, for example, during the night when the power consumption is small, the AC power from the power system 1 is stepped down by the transformer 9, converted to DC by the grid connection AC / DC converter 4, input to the high temperature operation type secondary battery 3 and charged. I do. With such an operation, the load leveling function unit 17 absorbs fluctuations of a load (not shown) connected to the power system 1 to level the load.
In the high-temperature operation type secondary battery system 10 according to the present invention, while the load leveling function unit 17 operates in the first operation mode, the high-temperature operation type secondary battery 3 is operated by the battery remaining capacity managing means. When the remaining battery capacity reaches the preset power failure compensation capacity, the discharge end point of the high temperature operation type secondary battery 3 is determined. The power outage compensation capacity is the capacity of the high temperature operation type secondary battery required for the uninterruptible power supply function. By maintaining the power failure compensation capacity at all times during operation in the first operation mode, power failure compensation can be ensured when switching to the second operation mode described later.
The battery remaining capacity management means is realized, for example, by storing the power failure compensation capacity in a control device (not shown) in a rewritable manner, and constantly comparing it with the battery remaining capacity of the high-temperature operated secondary battery 3. . For example, the control unit (not shown) integrates the electric capacity (Ah) related to the charging operation and the discharging operation of the high temperature operation type secondary battery 3 or converts the remaining battery capacity from the depth estimated from the battery voltage. Can be obtained by using either or both of the above.
The uninterruptible power supply function unit 18 has an uninterruptible power supply 11 and a DC chopper 5 provided therebetween, in addition to the high-temperature operated secondary battery 3. The uninterruptible power supply 11 is provided, for example, between the 210 V power system 7 and the load 2 connected thereto. The uninterruptible power supply 11 has an AC / DC converter 14 and an orthogonal converter 51 as main components, a high-speed changeover switch 41, a transformer 19, and an instantaneous interruption bypass circuit 47 and a maintenance bypass circuit connected to the power system 6. 48. In addition, since the high temperature operation type secondary battery 3 is shared, it becomes one of the components of the load leveling function unit 17 and the uninterruptible power supply function unit 18. However, in FIG. 3 is drawn as a component of the load leveling function unit 17.
In the uninterruptible power supply function unit 18, during a steady state (in the first operation mode), power is supplied from the power system 7 to the load 2 through the AC / DC converter 14 and the quadrature converter 51 (in a constant inverter power supply system). Is performed. The high temperature operation type secondary battery 3 is connected via a DC chopper 5 in a DC circuit section between the AC / DC converter 14 and the orthogonal converter 51. In general, in an uninterruptible power supply of a constant inverter power supply system using a secondary battery as a power supply source, DC power is supplied from the uninterruptible power supply to the secondary battery to perform charging. In the secondary battery system 10, the DC chopper 5 is in a gate block state in a normal state, so that DC power is supplied from the uninterruptible power supply 11 to the high-temperature operation type rechargeable battery 3 to perform charging. Power is not supplied from the operation type secondary battery 3 to the load 2 via the uninterruptible power supply 11.
In the high-temperature operation type secondary battery system 10 according to the present invention, the DC circuit is located at a predetermined point P of the DC circuit section between the AC / DC converter 14 and the orthogonal converter 51 of the uninterruptible power supply 11. A DC voltage meter (not shown) that constantly measures the voltage is provided. Then, the voltage value measured by the DC voltage measuring device is sent to, for example, a control device (not shown), and a voltage drop determiner provided in the control device determines whether the DC circuit voltage has dropped to a predetermined value or less. It is always determined whether or not. If it is determined by the voltage drop determiner that the DC circuit voltage has dropped below a predetermined value, it is determined that an instantaneous voltage drop or a power failure has occurred, and the mode is switched to the second operation mode. A load leveling operation stop command signal is sent to the system AC / DC converter 4, and a secondary voltage constant control operation command signal is sent to the DC chopper 5.
When the grid interconnection AC / DC converter 4 stops the load leveling operation and the DC chopper 5 starts the secondary voltage constant control operation, the electric energy of the high temperature operation type secondary battery 3 is changed to the load leveling operation. Is stopped, the battery is all supplied to the uninterruptible power supply 11 without causing an overload state of the battery, and therefore, no voltage sag appears on the load 2 side. The operation in which the power supply source to the load 2 is switched from the regular inverter power supply by the power system 7 to the high-temperature operation type secondary battery 3 is very short time of about 5 msec or less. It is sufficiently backed up by a DC capacitor provided as standard equipment in the uninterruptible power supply 11.
In the high-temperature operation type secondary battery system 10 according to the present invention, when the interconnection protection relay 44 operates, the load leveling function unit 17, which is a system interconnection system, is once disconnected from the power system 1. However, even in this case, the uninterruptible power supply function unit 18 can be continuously operated independently of the load leveling function unit 17. In other words, the system is an appropriate system in accordance with the system interconnection technical requirement guideline, does not cause any instantaneous sag in the load 2, and has high reliability as an uninterruptible power supply function. If the DC chopper is bidirectional so that the battery can be charged, the function as a complete uninterruptible power supply can be ensured in the event of any equipment failure on the side of the AC / DC converter for system interconnection.
Next, an application example of a high-temperature operated secondary battery system having both a load leveling function and an uninterruptible power supply function according to the present invention will be described with reference to FIG. The high-temperature operation type secondary battery system 20 shown in FIG. 2 is an example of a NAS battery system with a parallel redundant uninterruptible power supply function, and is used for the uninterruptible power supply function of the high-temperature operation type secondary battery system 10 shown in FIG. Such main components are duplicated in parallel.
The high-temperature operation type secondary battery system 20 shares a high-temperature operation type secondary battery 3 which is a sodium-sulfur battery, and has a load, which is a system interconnection system connected to the 6.6 kV power system 1, for example. The point comprising the leveling function unit 27 and the uninterruptible power supply function unit 28 which does not constitute the system interconnection system for the power system 1 is a system according to the high-temperature operation type secondary battery system 10.
The load leveling function unit 27 includes a transformer 9 connected to the power system 1, and a system interconnection AC / DC converter 4 and a high-temperature operation type secondary battery 3 arranged in two lines on the secondary side thereof. Is provided. The load leveling function unit 27 is operated according to the load leveling function unit 17. Usually, the two-system AC / DC converter 4 for system interconnection and the high-temperature operated secondary battery 3 simultaneously perform charging / discharging operations on the power system 1 and absorb daily fluctuations of a load (not shown) connected to the power system 1. Aim for leveling.
In the high temperature operation type secondary battery system 20 according to the present invention, while the load leveling function unit 27 operates in the first operation mode, the remaining battery capacity of the high temperature operation type secondary battery 3 is as follows. The power outage compensation capacity is managed so as to be secured for each system, and the power outage compensation is reliably performed even when any of the systems is switched to the second operation mode.
The uninterruptible power supply function unit 28 includes an AC / DC converter 14, an orthogonal converter 51 and a quadrature converter 51 in the uninterruptible power supply 21, in addition to the two-system high-temperature operated secondary battery 3 shared with the load leveling function unit 27. Transformers 19 are duplicated in parallel. Also, the DC chopper 5 provided between the two series of high-temperature operated secondary batteries 3 and the DC circuit between the two series AC / DC converters 14 and the orthogonal transformers 51 of the uninterruptible power supply 21 is also provided. Two systems are provided.
The operation of the uninterruptible power supply function unit 28 in a steady state (during the first operation mode) is performed in accordance with the uninterruptible power supply function unit 18, and is usually performed in two series from the power system 7 to the load 2. The power is always supplied simultaneously through the AC / DC converter 14 and the orthogonal converter 51. Further, the two series DC choppers 5 are both in a gate block state, and DC power is supplied from the uninterruptible power supply 21 side to the two series high temperature operated secondary batteries 3 to perform charging. Power is not supplied from the two series of high-temperature operated secondary batteries 3 to the load 2 via the uninterruptible power supply 21.
The means for switching from the first operation mode to the second operation mode in the high-temperature operation type secondary battery system 20 according to the present invention conforms to the high-temperature operation type secondary battery system 10. It is also the same that no voltage sag appears on the load 2 side during switching. Further, when the interconnection protection relay 44 operates and the load leveling function unit 27 is disconnected from the power system 1, the uninterruptible power supply function unit 28 can be independently operated continuously. This is an appropriate system that conforms to the interconnecting technical requirements guideline, does not cause any slight voltage sag in the load 2, and has high reliability as an uninterruptible power supply function.
In addition, in the high temperature operation type secondary battery system 20 according to the present invention, the main components related to the uninterruptible power supply function are duplicated, so that even if one component fails, the load leveling is performed. It can be maintained as a system capable of exhibiting a power-saving function and an uninterruptable power supply function. Therefore, the possibility of an instantaneous voltage drop or power failure occurring in the load 2 is extremely low, and is suitable when the load 2 is the most important production equipment or the like in which even a slight stop is not allowed.
[0043]
As described above, the high-temperature operated secondary battery system of the present invention has both the load leveling function and the uninterruptible power supply function, and the interconnection protection relay operates according to the system interconnection technical requirement guideline. Even if the grid-connected system is disconnected from the power grid at times, the uninterruptible power supply function unit can continue to operate independently and does not cause an instantaneous voltage drop or a power failure in the load. Therefore, the high temperature operation type secondary battery system of the present invention can be suitably used as a power supply system for important production equipment controlled and operated by a computer system or a communication network.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of a high-temperature operated secondary battery system of the present invention.
FIG. 2 is a configuration diagram showing another embodiment of the high-temperature operated secondary battery system of the present invention.
FIG. 3 is a configuration diagram illustrating an example of a conventional secondary battery system.
[Explanation of symbols]
1, 6, 7 ... power system, 2 ... load, 3 ... high temperature operation type secondary battery, 4 ... system interconnection AC / DC converter, 5 ... DC chopper, 9 ... transformer, 10, 20 ... high temperature operation type 2 Secondary battery system, 11, 21, 31 ... uninterruptible power supply, 13 ... secondary battery, 14 ... AC / DC converter, 17, 27 ... load leveling function unit, 18, 28 ... uninterruptible power supply function unit, 19 ... transformer , 30 ... secondary battery system, 41 ... high-speed changeover switch, 43 ... AC / DC converter, 44 ... interconnection protection relay, 47 ... instantaneous interruption bypass circuit, 48 ... maintenance bypass circuit, 51 ... orthogonal converter, 101 ... Interconnected circuit breaker.

Claims (10)

負荷平準化機能と無停電電源機能とを併せ持つ二次電池システムであって、
第1の電力系統に接続された高温作動型二次電池と、前記第1の電力系統と前記高温作動型二次電池との間に備わり前記第1の電力系統に対し前記高温作動型二次電池を充放電させる系統連系用交直変換器と、を有するとともに、
第2の電力系統と負荷との間に備わり前記高温作動型二次電池を電力供給源とした常時インバータ給電方式の無停電電源装置と、前記高温作動型二次電池と前記無停電電源装置の直流回路部との間に備わり前記高温作動型二次電池の電圧を変換する直流チョッパと、を有することを特徴とする高温作動型二次電池システム。
A secondary battery system having both a load leveling function and an uninterruptible power supply function,
A high-temperature operated secondary battery connected to a first power system; and a high-temperature operated secondary battery provided between the first power system and the high-temperature operated secondary battery with respect to the first power system. A grid-connected AC / DC converter for charging and discharging the battery, and
A continuous inverter power supply type uninterruptible power supply provided between the second power system and the load and using the high temperature operation type secondary battery as a power supply source, and a high temperature operation type secondary battery and the uninterruptible power supply A high-temperature operated secondary battery system, comprising: a direct-current chopper provided between the direct-current circuit unit and a voltage of the high-temperature operated secondary battery.
前記第1の電力系統と前記第2の電力系統とが、分離しているとともに電圧が異なる請求項1に記載の高温作動型二次電池システム。The high temperature operation type secondary battery system according to claim 1, wherein the first power system and the second power system are separated and have different voltages. 前記高温作動型二次電池が前記系統連系用交直変換器を介し充放電動作を行い前記第1の電力系統に対する負荷平準化機能を発揮する第1の運転モードと、前記高温作動型二次電池が前記無停電電源装置に電力供給し前記負荷に対する無停電電源機能を発揮する第2の運転モードと、を切り替える運転切替手段を有する請求項1に記載の高温作動型二次電池システム。A first operation mode in which the high-temperature operated secondary battery performs a charge / discharge operation via the grid-connected AC / DC converter to exhibit a load leveling function for the first power system; 2. The high-temperature operated secondary battery system according to claim 1, further comprising an operation switching unit that switches between a second operation mode in which a battery supplies power to the uninterruptible power supply and performs an uninterruptible power supply function for the load. 3. 前記運転切替手段は、前記無停電電源装置の直流回路電圧を検出する直流電圧計測器と、前記直流回路電圧が所定値以下に低下したことを検出する電圧低下判定器と、を有し、前記電圧低下判定器の判定結果に基づいて、前記系統連系用交直変換器を停止させ得るとともに、前記直流チョッパに二次電圧を一定制御させ得る手段である請求項3に記載の高温作動型二次電池システム。The operation switching means has a DC voltage measuring device that detects a DC circuit voltage of the uninterruptible power supply, and a voltage drop determining device that detects that the DC circuit voltage has dropped to a predetermined value or less, 4. The high-temperature operating type secondary battery according to claim 3, wherein the means is capable of stopping the AC / DC converter for system interconnection based on the determination result of the voltage drop determiner, and controlling the DC chopper to constantly control a secondary voltage. Next battery system. 前記直流チョッパが、常時は停止(ゲートブロック)し、前記電圧低下判定器の判定結果に基づいて瞬時に起動し得る請求項4に記載の高温作動型二次電池システム。The high temperature operation type secondary battery system according to claim 4, wherein the DC chopper is normally stopped (gate block) and can be started instantaneously based on a determination result of the voltage drop determiner. 前記電圧低下判定器の判定結果に基づき前記系統連系用交直変換器を停止させる信号が、光ファイバで伝送される請求項4に記載の高温作動型二次電池システム。The high temperature operation type secondary battery system according to claim 4, wherein a signal for stopping the AC / DC converter for system interconnection based on a determination result of the voltage drop determination unit is transmitted via an optical fiber. 無停電電源機能として必要な高温作動型二次電池の停電補償容量を設定可能であるとともに、負荷平準化機能を発揮しているときに、前記高温作動型二次電池の電池残存容量が前記停電補償容量に達したら、前記高温作動型二次電池の負荷平準化運転を停止させる電池残存容量管理手段を有する請求項1に記載の高温作動型二次電池システム。The power failure compensation capacity of the high-temperature operated secondary battery required for the uninterruptible power supply function can be set, and when the load leveling function is being performed, the remaining battery capacity of the high-temperature operated secondary battery is reduced by the power failure. 2. The high-temperature operated secondary battery system according to claim 1, further comprising a battery remaining capacity management unit that stops the load leveling operation of the high-temperature operated secondary battery when the compensation capacity is reached. 3. 前記電池残存容量が、前記高温作動型二次電池の充放電動作に基づく電気容量積算値(Ah)乃至電池電圧から推定した深度に基づく残存容量換算値により求められる請求項7に記載の高温作動型二次電池システム。8. The high-temperature operation according to claim 7, wherein the remaining battery capacity is obtained from an integrated electric capacity value (Ah) based on a charge / discharge operation of the high-temperature operated secondary battery or a remaining capacity conversion value based on a depth estimated from a battery voltage. 9. Type secondary battery system. 各構成要素が多重並列化されてなる請求項1に記載の高温作動型二次電池システム。2. The high temperature operation type secondary battery system according to claim 1, wherein each component is multiply parallelized. 前記高温作動型二次電池が、ナトリウム−硫黄電池である請求項1〜9の何れか一項に記載の高温作動型二次電池システム。The high temperature operated secondary battery system according to any one of claims 1 to 9, wherein the high temperature operated secondary battery is a sodium-sulfur battery.
JP2003082012A 2003-03-25 2003-03-25 High temperature operation type secondary battery system with both load leveling function and uninterruptible power supply function Expired - Fee Related JP4008372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082012A JP4008372B2 (en) 2003-03-25 2003-03-25 High temperature operation type secondary battery system with both load leveling function and uninterruptible power supply function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082012A JP4008372B2 (en) 2003-03-25 2003-03-25 High temperature operation type secondary battery system with both load leveling function and uninterruptible power supply function

Publications (2)

Publication Number Publication Date
JP2004289980A true JP2004289980A (en) 2004-10-14
JP4008372B2 JP4008372B2 (en) 2007-11-14

Family

ID=33295408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082012A Expired - Fee Related JP4008372B2 (en) 2003-03-25 2003-03-25 High temperature operation type secondary battery system with both load leveling function and uninterruptible power supply function

Country Status (1)

Country Link
JP (1) JP4008372B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271778A (en) * 2007-03-20 2008-11-06 Belkin Internatl Inc On-demand uninterruptible power supply device
JP2009131101A (en) * 2007-11-27 2009-06-11 Canon Inc Electric power-supply apparatus and method for controlling over-discharge in the electric power supply apparatus
JP2009159730A (en) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd Dc power distribution system
JP2010142076A (en) * 2008-12-15 2010-06-24 Shimizu Corp Independent operation system utilizing generation power supply unit for energy storage and emergency
JP2015012705A (en) * 2013-06-28 2015-01-19 株式会社エヌエフ回路設計ブロック Power storage system and operation method therefor
JP2015211616A (en) * 2014-04-30 2015-11-24 株式会社Nttファシリティーズ Demand management device
WO2019009270A1 (en) * 2017-07-07 2019-01-10 パナソニックIpマネジメント株式会社 Storage battery unit
WO2019044774A1 (en) 2017-09-04 2019-03-07 日新電機株式会社 Power supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133516B (en) * 2019-02-27 2021-02-26 延边中谷领创电力科技有限公司 Battery charging and discharging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271778A (en) * 2007-03-20 2008-11-06 Belkin Internatl Inc On-demand uninterruptible power supply device
JP2009131101A (en) * 2007-11-27 2009-06-11 Canon Inc Electric power-supply apparatus and method for controlling over-discharge in the electric power supply apparatus
JP2009159730A (en) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd Dc power distribution system
JP2010142076A (en) * 2008-12-15 2010-06-24 Shimizu Corp Independent operation system utilizing generation power supply unit for energy storage and emergency
JP2015012705A (en) * 2013-06-28 2015-01-19 株式会社エヌエフ回路設計ブロック Power storage system and operation method therefor
JP2015211616A (en) * 2014-04-30 2015-11-24 株式会社Nttファシリティーズ Demand management device
WO2019009270A1 (en) * 2017-07-07 2019-01-10 パナソニックIpマネジメント株式会社 Storage battery unit
JP2019017199A (en) * 2017-07-07 2019-01-31 パナソニックIpマネジメント株式会社 Storage battery unit
WO2019044774A1 (en) 2017-09-04 2019-03-07 日新電機株式会社 Power supply system
TWI669877B (en) * 2017-09-04 2019-08-21 日商日新電機股份有限公司 Power system
US11196293B2 (en) 2017-09-04 2021-12-07 Nissin Electric Co., Ltd. Power supply system with uninterruptible power supply function and load leveling function

Also Published As

Publication number Publication date
JP4008372B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP2947372B2 (en) Multifunction power converting system
US10003200B2 (en) Decentralized module-based DC data center
CN100416972C (en) System for providing assured power to a critical load
US5939798A (en) Hybrid energy storage system
JP5437707B2 (en) Autonomous operation control system for important loads
US10298006B2 (en) Energy storage system and method of driving the same
CN102790418A (en) Modular UPS (Uninterruptible Power Supply) and multi-charger parallel logic control method
KR101793579B1 (en) Dc-ac common bus type hybrid power system
KR20190017246A (en) An energy storage system
JP2013070551A (en) Multiple output uninterruptible power supply device
JP4008372B2 (en) High temperature operation type secondary battery system with both load leveling function and uninterruptible power supply function
CN102856976A (en) Discontinuous power supply, battery management system and discontinuous power supply system
CN101710728A (en) Method and device for supplying power to chassis equipment of communication machine room
WO2020021925A1 (en) Power supply system
US11462936B2 (en) Power supply system with UPS, PCS and circuit diagnosis capabilities
JP2000102196A (en) Uninterruptible power supply
KR20140087930A (en) Battery energy storage system and controlling method using the same
CN104953699B (en) Micro-grid system seamless switching control method
JP2004023860A (en) Sodium-sulfur battery system for electric power storage with instantaneous drop countermeasure function
KR101856628B1 (en) Apparatus and Method for Emergency Controlling Energy Storage System
CN116388537A (en) Power supply system of server and data center
KR20220008793A (en) ESS, UPS conversion solar power generation system
KR20040086997A (en) Apparatus for storing battery power and method of hybrid operation using the apparatus
CN202798130U (en) Uninterruptible power supply and battery management system and uninterruptible power supply system
JP2010081751A (en) Power supply system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4008372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees