JP2004288775A - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP2004288775A
JP2004288775A JP2003077203A JP2003077203A JP2004288775A JP 2004288775 A JP2004288775 A JP 2004288775A JP 2003077203 A JP2003077203 A JP 2003077203A JP 2003077203 A JP2003077203 A JP 2003077203A JP 2004288775 A JP2004288775 A JP 2004288775A
Authority
JP
Japan
Prior art keywords
substrate
zones
heating
substrate arrangement
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077203A
Other languages
Japanese (ja)
Inventor
Kenji Ono
健治 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003077203A priority Critical patent/JP2004288775A/en
Publication of JP2004288775A publication Critical patent/JP2004288775A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing apparatus which improves uniformity within a substrate arranged global surface and can give desired temperature distribution into a substrate surface of a substrate arranged end portion by improving temperature uniformity within the substrate surface in the substrate arranged end portion. <P>SOLUTION: Two exoergic zones 7a and 7b are formed in a region exceeding substrate arrangement upward. Two exoergic zones 7c and 7d are formed in a region exceeding the substrate arrangement downward. Two exoergic zones 7e and 7f are formed in a region which faces the substrate arrangement. Cylindrical exoergic zones 7 which are mutually independent as an electric circuit are constituted. In each of the exoergic zones 7, energizing electric power is controlled independently every exoergic zone 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の基板を加熱可能な複数に分割された発熱ゾーンを有するヒータを具備する半導体製造装置に関するものである。
【0002】
【従来の技術】
従来の縦型半導体製造装置の炉体構造を図3に示す。
【0003】
この半導体製造装置は、複数枚の基板1がその平面部が水平となるような姿勢で、垂直方向に間隔をあけて積み重ねられるような基板配列を形成して基板載置台に載置されており、この基板載置台2ごと保温筒4上に載置されプロセスチューブ3内へ収容される。
【0004】
加熱源となるヒータ10は、下方に開放部を持つ筒型の断熱材5の内側壁に基板配列に対向するように抵抗発熱体で構成される発熱部を配し、抵抗発熱体に電力を供給することにより発熱する。その形状は、基板配列を図3中上下に超えた領域まで垂直方向に伸びる円筒形状を成している。また、発熱部は、基板配列を上方に超える領域に1つの発熱ゾーン6aを、基板配列を下方に超える領域に1つの発熱ゾーン6bを、基板配列に対向する領域に、2つの発熱ゾーン6c及び6dをそれぞれ有し、電気回路としてそれぞれ独立した円筒状の発熱ゾーン6を構成している。各発熱ゾーン6では、供給する電力を発熱ゾーン毎に独立して制御することが可能であり、これにより、基板配列に対して、主に基板配列の軸方向に所望の温度分布を与えることが可能である。特に、基板配列を上下に超えた発熱ゾーン6a及び6bにより、基板配列の軸方向の温度分布において、上端部と下端部の基板1に所望の温度分布を与えることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来のヒータ構造では、基板配列を上下方向に超える領域にはそれぞれ発熱ゾーン6a及び6bが1つずつ設けられているだけなので、基板配列への加熱は、もっぱら、基板配列の側壁面に対するものとなり、基板配列の上下面からの積極的な加熱が無い。このため、基板配列端部に配置された基板1の面内温度分布を調節し難いという課題がある。
【0006】
本発明は、上記のような従来の課題を解決するためのものであり、基板配列に対して、面内温度均一性がとり難い基板配列端部の基板面内の温度均一性を向上させることにより、基板配列全体の面内均一性を向上させ、且つ、基板配列端部の基板面内に所望の温度分布を与えることが可能な半導体製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、複数の基板が配列され載置される基板載置台と、基板載置台に載置された複数の基板を加熱可能な発熱ゾーンを有するヒータとを具備する半導体製造装置において、前記ヒータは、前記基板載置台に載置された基板配列を超える領域に、それぞれ独立に温度制御可能な複数の発熱ゾーンを有することを特徴とするものである。
【0008】
【発明の実施の形態】
以下に、本発明の実施の形態を図により説明する。
実施の形態1.
図1に本発明の実施の形態1の概略断面図を示す。
【0009】
この半導体製造装置は、複数枚の基板1がその平面部が水平となるような姿勢で、垂直方向に間隔をあけて積み重ねられるように基板配列を形成して基板載置台2に載置され、この基板載置台2が保温筒4上に載置され、プロセスチューブ3内へ収容される。
【0010】
反応炉には基板1を加熱する加熱源となるヒータ10が設けられており、ヒータ10は、抵抗発熱体に電力を供給することにより発熱する。ヒータ10は、下方に開放部を持つ茶筒型の断熱材5の内側壁に基板配列に対向するように抵抗発熱体で構成される発熱部が配設され、その形状は、基板配列を図1中上下に超えた領域まで垂直方向に伸びる円筒形状を成している。また、発熱部は、基板配列を上方に超える領域に2つの発熱ゾーン7a及び7bを、基板配列を下方に超える領域に2つの発熱ゾーン7c及び7dを、基板配列に対向する領域に、2つの発熱ゾーン7e及び7fをそれぞれ有し、電気回路としてそれぞれ独立した円筒状の発熱ゾーン7を構成している。各発熱ゾーン7では、供給する電力を発熱ゾーン7毎に独立して制御することが可能である。
【0011】
一般に、抵抗発熱体と基板1との伝熱形態について、抵抗発熱体が高温であるほど、輻射伝熱によるものが支配的であり、この輻射伝熱においては、抵抗発熱体と基板1との形態係数が、基板1の加熱具合に大きく影響する。ある発熱ゾーン7と基板1との形態係数は、発熱ゾーン7と基板1との位置関係に依存し、基板配列に近い発熱ゾーン7は、基板配列端部の基板1に対して、基板1面内の周縁部が大きく中心部に向かって小さくなるという形態係数の分布を与える。この基板配列端部の基板1面内の周縁部が中心部より形態係数が大きくなるという傾向は、発熱ゾーン7が基板配列から遠ざかるに従い、顕著ではなくなり、周縁部と中心部との差が小さくなる。すなわち、基板配列に近い発熱ゾーン7a及び7cによる加熱具合の影響は、基板配列端部の基板1面内の周縁部に指向性があり、基板配列より遠い発熱ゾーン7b及び7dによる加熱具合の影響では、この傾向が小さい。この現象を利用して、基板配列に近い発熱ゾーン7a及び7cと遠い発熱ゾーン7b及び7dによる加熱具合をこれらの出力によって調節することにより、基板配列端部の基板1面内の加熱具合を調節することが可能となる。
【0012】
以下、加熱具合の調節方法を説明する。
基板1の面内温度分布を、周縁部が低く、中心部が高い状態とする場合、基板配列に近い発熱ゾーン7a及び7cの出力を十分小さくし、基板配列から近い発熱ゾーン7a及び7c周辺の温度を低下させる。これにより、基板配列端部近傍の基板1の周縁部からヒータ10へ放熱する。また、基板配列から遠い発熱ゾーン7b及び7dの出力を大きくして、基板配列端部近傍の基板1の中心部付近を積極的に加熱する。これにより、基板配列端部の基板1面内の周縁部の熱の比率が他の部分に比較して小さくなるため、基板1の面内温度分布を、周縁部が低く、中心部が高い状態とすることが可能となる。
【0013】
また、基板1の面内温度分布を、周縁部が高く、中心部が低い状態とする場合、基板配列に近い発熱ゾーン7a及び7cの出力を大きくし、基板配列端部近傍の基板1の周縁部を積極的に加熱する。また、基板配列から遠い発熱ゾーン7b及び7dの出力を十分小さくして、基板配列端部近傍の基板1の中心部付近からヒータ10へ放熱させる。これにより、基板配列端部の基板1面内の周縁部の熱の比率が他の部分に比較して大きくなるため、基板1の面内温度分布を、周縁部が高く、中心部が低い状態とすることが可能となる。
【0014】
さらには、基板1の面内温度分布を比較的均一に近づける場合、基板配列に近い発熱ゾーン7a及び7cの出力の方が、基板配列から遠い発熱ゾーン7b及び7dの出力よりも適宜値小さくなるようにそれぞれ調節する。これにより、基板1の周縁部に熱が偏るのを軽減でき、基板1の面内温度分布を比較的均一に近づけることが可能となる。
【0015】
また、上記基板1の面内温度分布を決定する際に、基板配列と対向する領域の発熱ゾーン7e及び7fとの加熱具合の干渉も考慮することにより、所望の軸方向温度分布が得られる。
【0016】
なお、第1の実施の形態では基板配列を超えた領域に設ける発熱ゾーンを基板配列に近い発熱ゾーンと遠い発熱ゾーンという複数の発熱ゾーンに分けたが、これのような方法に限らず、基板配列に近い部分と遠い部分とで、形状、材質、配置分布等を異ならせることにより発熱温度を変化させるようにした抵抗発熱体を並設して、1つの発熱ゾーンとすることもできる。
【0017】
実施の形態2.
具体例として、図2に第2の実施の形態を示す。
図2(a)に示すように、高出力部R1と低出力部R2とを構成する2段の抵抗発熱体を上下方向に並列接続し、1つの発熱ゾーンとしたものであり、ゾーンの抵抗値は、発熱抵抗体の構造的要素(長さ、断面積)、材料特性(材料固有の抵抗率とその温度依存性)、電気的回路構成などにより決定される。
【0018】
本実施の形態では、高出力部R1と低出力部R2とは、同一材料、同一断面積の抵抗発熱体を用い、構造が異なるものとしている。すなわち、従来では、図2(c)のように、2つの出力部R1とR2とは同じ構造であるが、本実施の形態においては、図2(b)に示されるように、高出力部R1の方が低出力部R2よりも長さが短くなっており、この長さの違いから抵抗値も異なり、高出力部R1の方が低抵抗となっている。したがって、この発熱ゾーンに電源を供給すると、高出力部R1は高出力となり、低出力部R2は低出力となる。このため、高出力部R1は高温部に、低出力部R2は低温部になるので、基板配列から遠い部分が高温に近い部分が低温になり、基板1の面内温度分布に影響を与えることができる。
【0019】
但し、高出力部R1と低出力部R2とによる基板1の加熱具合は、発熱ゾーンのハード的な要素で予め決まっているため、基板配列端部近傍の基板1の面内温度分布もそれに従ったものになる。
【0020】
なお、前記第1の実施の形態においては、基板配列を超えた領域の発熱ゾーンを2つとしたが、2つ以上であればこれに限定されるものではない。
【0021】
また、前記第2の実施の形態においては、基板配列を超えた領域の発熱ゾーンに低温部と高温部の2つの温度領域を設けたが、2つ以上であればこれに限定されるものではない。
【0022】
さらには、前記第2の実施の形態において、低出力部R2及び高出力部R1の温度差を抵抗発熱体の長さにより決定したが、材質や、断面積など他の要素を変化させることにより決定してもよい。
【0023】
【発明の効果】
以上説明したように、本発明によれば、基板配列を超える領域に、それぞれ独立に温度制御可能な複数の発熱ゾーンを設けることにより、各ゾーンの温度を変化させることによって、基板配列端部の基板の面内温度分布を、全面ほぼ均一にしたり、周縁部が高く、中心部が低くなるようにしたり、また逆に、周縁部が低く、中心部が高くなるようにしたり等、所望の温度分布を得ることができる。
また、面内温度均一性がとりにくい基板配列端部の基板面内温度均一性を向上させることにより、基板配列全体の面内均一性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の炉体構造を示す概略図である。
【図2】(a)第2の実施の形態を示す概略図である。
(b)第2の実施の形態の抵抗発熱体の形状を示す図である。
(c)従来の抵抗発熱体の形状を示す図である。
【図3】従来技術の炉体構造を示す概略図である。
【符号の説明】
1 基板、2 基板載置台、5 断熱材、7 発熱ゾーン、7a、7c 近い発熱ゾーン(発熱ゾーン)、7b、7d 遠い発熱ゾーン(発熱ゾーン)、10ヒータ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor manufacturing apparatus provided with a heater having a plurality of divided heating zones capable of heating a plurality of substrates.
[0002]
[Prior art]
FIG. 3 shows a furnace structure of a conventional vertical semiconductor manufacturing apparatus.
[0003]
In this semiconductor manufacturing apparatus, a plurality of substrates 1 are mounted on a substrate mounting table in such a manner that a plurality of substrates 1 are stacked so as to be stacked at a vertical interval in a posture such that the plane portions thereof are horizontal. Then, the substrate mounting table 2 is mounted on the heat retaining cylinder 4 and accommodated in the process tube 3.
[0004]
The heater 10 serving as a heating source is provided with a heating section including a resistance heating element on the inner side wall of the cylindrical heat insulating material 5 having an open section below so as to face the substrate arrangement, and supplies electric power to the resistance heating element. It generates heat when supplied. Its shape is a cylindrical shape that extends vertically to a region that extends vertically above and below the substrate arrangement in FIG. In addition, the heat generating portion includes one heat generating zone 6a in a region exceeding the substrate arrangement, one heat generating zone 6b in a region exceeding the substrate arrangement downward, and two heat generating zones 6c and 6d, and each constitutes an independent cylindrical heat generating zone 6 as an electric circuit. In each heating zone 6, the power to be supplied can be controlled independently for each heating zone, whereby a desired temperature distribution can be given to the substrate arrangement mainly in the axial direction of the substrate arrangement. It is possible. In particular, the heat generation zones 6a and 6b vertically extending over the substrate arrangement can provide a desired temperature distribution to the substrate 1 at the upper end and the lower end in the temperature distribution in the axial direction of the substrate arrangement.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional heater structure, only one heat-generating zone 6a and 6b is provided in each of the regions vertically extending beyond the substrate arrangement. Therefore, heating to the substrate arrangement is exclusively performed on the side wall surface of the substrate arrangement. , And there is no active heating from the upper and lower surfaces of the substrate array. For this reason, there is a problem that it is difficult to adjust the in-plane temperature distribution of the substrate 1 arranged at the substrate arrangement end.
[0006]
An object of the present invention is to solve the conventional problems as described above, and to improve the temperature uniformity in the substrate surface at the end of the substrate arrangement where the in-plane temperature uniformity is difficult to obtain for the substrate arrangement. Accordingly, an object of the present invention is to provide a semiconductor manufacturing apparatus capable of improving the in-plane uniformity of the entire substrate arrangement and providing a desired temperature distribution in the substrate surface at the end of the substrate arrangement.
[0007]
[Means for Solving the Problems]
The present invention is directed to a semiconductor manufacturing apparatus including: a substrate mounting table on which a plurality of substrates are arranged and mounted; and a heater having a heating zone capable of heating the plurality of substrates mounted on the substrate mounting table. Is characterized by having a plurality of heating zones, each of which can be independently controlled in temperature, in a region beyond the substrate arrangement mounted on the substrate mounting table.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 shows a schematic sectional view of Embodiment 1 of the present invention.
[0009]
In this semiconductor manufacturing apparatus, a plurality of substrates 1 are mounted on a substrate mounting table 2 by forming a substrate array so that the plurality of substrates 1 are stacked vertically at intervals so that the plane portions thereof are horizontal, The substrate mounting table 2 is mounted on the heat retaining cylinder 4 and housed in the process tube 3.
[0010]
The reaction furnace is provided with a heater 10 serving as a heating source for heating the substrate 1, and the heater 10 generates heat by supplying electric power to the resistance heating element. The heater 10 is provided with a heat generating portion formed of a resistance heating element on the inner side wall of the tea caddy type heat insulating material 5 having an open portion below so as to face the substrate arrangement. It has a cylindrical shape that extends in the vertical direction up to the middle and upper and lower areas. In addition, the heat generating portion includes two heat generating zones 7a and 7b in a region above the substrate arrangement, two heat zones 7c and 7d in a region beyond the substrate arrangement, and two heat zones in a region facing the substrate arrangement. It has heat generating zones 7e and 7f, respectively, and forms independent cylindrical heat generating zones 7 as electric circuits. In each heating zone 7, the power to be supplied can be controlled independently for each heating zone 7.
[0011]
In general, as for the heat transfer form between the resistance heating element and the substrate 1, the higher the temperature of the resistance heating element, the more the radiation heat transfer is dominant. The view factor greatly affects the degree of heating of the substrate 1. The view factor between a certain heating zone 7 and the substrate 1 depends on the positional relationship between the heating zone 7 and the substrate 1. The distribution of the view factor is given such that the inner peripheral portion becomes larger toward the central portion. This tendency that the peripheral portion of the substrate arrangement end portion in the surface of the substrate 1 has a larger view factor than the central portion becomes less remarkable as the heating zone 7 moves away from the substrate arrangement, and the difference between the peripheral portion and the central portion becomes smaller. Become. In other words, the influence of the degree of heating by the heat generating zones 7a and 7c close to the substrate arrangement is due to the directivity at the edge of the substrate 1 at the end of the substrate arrangement and the influence of the degree of heating by the heat generating zones 7b and 7d far from the substrate arrangement. Then, this tendency is small. Utilizing this phenomenon, the heating conditions in the heating zones 7a and 7c near the substrate arrangement and the heating zones 7b and 7d far from the substrate arrangement are adjusted by these outputs, thereby adjusting the heating condition in the substrate 1 surface at the end of the substrate arrangement. It is possible to do.
[0012]
Hereinafter, a method of adjusting the heating condition will be described.
When the in-plane temperature distribution of the substrate 1 is such that the peripheral portion is low and the central portion is high, the outputs of the heating zones 7a and 7c close to the substrate arrangement are sufficiently small, and the heat generation zones 7a and 7c near the substrate arrangement are reduced. Decrease temperature. As a result, heat is radiated to the heater 10 from the peripheral edge of the substrate 1 near the substrate arrangement end. In addition, the outputs of the heat generating zones 7b and 7d far from the substrate arrangement are increased to actively heat the vicinity of the center of the substrate 1 near the end of the substrate arrangement. As a result, the ratio of heat at the edge of the substrate 1 at the end of the substrate arrangement in the plane of the substrate 1 becomes smaller than that of the other parts, so that the in-plane temperature distribution of the substrate 1 is reduced in the state where the periphery is low and the center is high. It becomes possible.
[0013]
When the in-plane temperature distribution of the substrate 1 is such that the peripheral portion is high and the central portion is low, the outputs of the heating zones 7a and 7c close to the substrate arrangement are increased, and the peripheral portion of the substrate 1 near the substrate arrangement end is increased. Heat the part actively. Further, the outputs of the heat generating zones 7b and 7d far from the substrate arrangement are made sufficiently small, and the heat is radiated to the heater 10 from near the center of the substrate 1 near the end of the substrate arrangement. As a result, the ratio of heat at the edge of the substrate 1 at the edge of the substrate arrangement in the plane of the substrate 1 is higher than in the other portions. It becomes possible.
[0014]
Further, when the in-plane temperature distribution of the substrate 1 is made relatively uniform, the outputs of the heating zones 7a and 7c closer to the substrate arrangement are appropriately smaller than the outputs of the heating zones 7b and 7d far from the substrate arrangement. Adjust each as follows. Thereby, it is possible to reduce the bias of the heat toward the peripheral portion of the substrate 1 and to make the in-plane temperature distribution of the substrate 1 relatively uniform.
[0015]
Further, when determining the in-plane temperature distribution of the substrate 1, a desired axial temperature distribution can be obtained by taking into consideration the interference of the heating condition with the heat generating zones 7e and 7f in the region facing the substrate arrangement.
[0016]
In the first embodiment, the heating zones provided in the region beyond the substrate arrangement are divided into a plurality of heating zones, ie, a heating zone close to the substrate arrangement and a heating zone far from the substrate arrangement. However, the present invention is not limited to such a method. It is also possible to form a single heating zone by arranging resistance heating elements in which the heating temperature is changed by changing the shape, material, arrangement distribution, and the like between a portion close to the array and a portion far from the array.
[0017]
Embodiment 2 FIG.
FIG. 2 shows a second embodiment as a specific example.
As shown in FIG. 2A, two stages of resistance heating elements constituting the high output section R1 and the low output section R2 are connected in parallel in the vertical direction to form one heating zone. The value is determined by the structural elements (length, cross-sectional area) of the heating resistor, material characteristics (specific resistivity of the material and its temperature dependency), electrical circuit configuration, and the like.
[0018]
In the present embodiment, the high-output portion R1 and the low-output portion R2 use the same material and the same cross-sectional area as the resistance heating elements, and have different structures. That is, conventionally, as shown in FIG. 2C, the two output units R1 and R2 have the same structure, but in the present embodiment, as shown in FIG. The length of R1 is shorter than that of the low output portion R2, and the resistance value is also different due to the difference in the length. The high output portion R1 has a lower resistance. Therefore, when power is supplied to this heat generating zone, the high output portion R1 has a high output, and the low output portion R2 has a low output. For this reason, since the high-output portion R1 is a high-temperature portion and the low-output portion R2 is a low-temperature portion, the portion far from the substrate arrangement has a low temperature near the high temperature, which affects the in-plane temperature distribution of the substrate 1. Can be.
[0019]
However, the degree of heating of the substrate 1 by the high-output portion R1 and the low-output portion R2 is determined in advance by a hardware element of the heat generation zone, and therefore, the in-plane temperature distribution of the substrate 1 near the end of the substrate arrangement follows the condition. It becomes something.
[0020]
In the first embodiment, two heat-generating zones are provided in a region beyond the substrate arrangement. However, the number of heat-generating zones is not limited to two as long as it is two or more.
[0021]
Further, in the second embodiment, two temperature regions of a low-temperature portion and a high-temperature portion are provided in the heat generation zone in a region beyond the substrate arrangement. Absent.
[0022]
Further, in the second embodiment, the temperature difference between the low-output portion R2 and the high-output portion R1 is determined by the length of the resistance heating element. However, by changing the material and other factors such as the cross-sectional area, You may decide.
[0023]
【The invention's effect】
As described above, according to the present invention, by providing a plurality of heating zones, each of which can be independently temperature-controlled, in a region beyond the substrate arrangement, the temperature of each zone is changed, so that the end of the substrate arrangement end is provided. The desired temperature, such as making the in-plane temperature distribution of the substrate almost uniform over the entire surface, making the peripheral portion high and the central portion low, and conversely making the peripheral portion low and the central portion high. A distribution can be obtained.
Further, by improving the in-plane temperature uniformity of the substrate arrangement end portion where the in-plane temperature uniformity is difficult to achieve, the in-plane uniformity of the entire substrate arrangement can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a furnace body structure according to a first embodiment of the present invention.
FIG. 2A is a schematic diagram showing a second embodiment.
(B) It is a figure showing the shape of the resistance heating element of a 2nd embodiment.
(C) is a diagram showing the shape of a conventional resistance heating element.
FIG. 3 is a schematic diagram showing a conventional furnace body structure.
[Explanation of symbols]
1 Substrate, 2 Substrate mounting table, 5 Insulation material, 7 Heating zone, 7a, 7c Near heating zone (heating zone), 7b, 7d Far heating zone (heating zone), 10 heaters.

Claims (1)

複数の基板が配列され載置される基板載置台と、基板載置台に載置された複数の基板を加熱可能な発熱ゾーンを有するヒータとを備える半導体製造装置において、
前記ヒータは、前記基板載置台に載置された基板配列領域を超える領域に、それぞれ独立に温度制御可能な複数の発熱ゾーンを有することを特徴とする半導体製造装置。
In a semiconductor manufacturing apparatus including a substrate mounting table on which a plurality of substrates are arranged and mounted, and a heater having a heating zone capable of heating the plurality of substrates mounted on the substrate mounting table,
The semiconductor manufacturing apparatus according to claim 1, wherein the heater has a plurality of heating zones, each of which can independently control a temperature, in a region exceeding a substrate arrangement region mounted on the substrate mounting table.
JP2003077203A 2003-03-20 2003-03-20 Semiconductor manufacturing apparatus Pending JP2004288775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077203A JP2004288775A (en) 2003-03-20 2003-03-20 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077203A JP2004288775A (en) 2003-03-20 2003-03-20 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2004288775A true JP2004288775A (en) 2004-10-14

Family

ID=33292015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077203A Pending JP2004288775A (en) 2003-03-20 2003-03-20 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2004288775A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172061A (en) * 2007-01-12 2008-07-24 Kokusai Electric Semiconductor Service Inc Temperature controlling system, substrate processor, and manufacturing method of semiconductor device
CN112086378A (en) * 2019-06-12 2020-12-15 株式会社国际电气 Heating unit, temperature control system, processing apparatus, and method for manufacturing semiconductor device
KR20200142462A (en) * 2019-06-12 2020-12-22 가부시키가이샤 코쿠사이 엘렉트릭 Heater, temperature control system, processing apparatus, and method of manufacturing semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329502A (en) * 1986-07-23 1988-02-08 Hitachi Ltd Processing equipment
JPH04134816A (en) * 1990-09-26 1992-05-08 Mitsubishi Materials Shilicon Corp Semiconductor manufacturing equipment
JPH05144746A (en) * 1991-11-20 1993-06-11 Nec Corp Low-pressure cvd apparatus
JPH1131662A (en) * 1997-07-10 1999-02-02 Rohm Co Ltd Heat treatment apparatus and manufacture of semiconductor device using it
JP2002043226A (en) * 2000-07-24 2002-02-08 Tokyo Electron Ltd Method and device for heat treatment
JP2004119510A (en) * 2002-09-24 2004-04-15 Tokyo Electron Ltd Heat treating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329502A (en) * 1986-07-23 1988-02-08 Hitachi Ltd Processing equipment
JPH04134816A (en) * 1990-09-26 1992-05-08 Mitsubishi Materials Shilicon Corp Semiconductor manufacturing equipment
JPH05144746A (en) * 1991-11-20 1993-06-11 Nec Corp Low-pressure cvd apparatus
JPH1131662A (en) * 1997-07-10 1999-02-02 Rohm Co Ltd Heat treatment apparatus and manufacture of semiconductor device using it
JP2002043226A (en) * 2000-07-24 2002-02-08 Tokyo Electron Ltd Method and device for heat treatment
JP2004119510A (en) * 2002-09-24 2004-04-15 Tokyo Electron Ltd Heat treating apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172061A (en) * 2007-01-12 2008-07-24 Kokusai Electric Semiconductor Service Inc Temperature controlling system, substrate processor, and manufacturing method of semiconductor device
CN112086378A (en) * 2019-06-12 2020-12-15 株式会社国际电气 Heating unit, temperature control system, processing apparatus, and method for manufacturing semiconductor device
KR20200142462A (en) * 2019-06-12 2020-12-22 가부시키가이샤 코쿠사이 엘렉트릭 Heater, temperature control system, processing apparatus, and method of manufacturing semiconductor device
JP2020205406A (en) * 2019-06-12 2020-12-24 株式会社Kokusai Electric Heating unit, temperature control system, processing device, and manufacturing method of semiconductor device
JP7101718B2 (en) 2019-06-12 2022-07-15 株式会社Kokusai Electric Manufacturing method for heating unit, temperature control system, processing equipment and semiconductor equipment
KR102472671B1 (en) * 2019-06-12 2022-12-01 가부시키가이샤 코쿠사이 엘렉트릭 Heater, temperature control system, processing apparatus, and method of manufacturing semiconductor device
CN112086378B (en) * 2019-06-12 2024-06-18 株式会社国际电气 Heating unit, temperature control system, processing apparatus, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP6364244B2 (en) Temperature controlled substrate support assembly
JP6709736B2 (en) Pixel temperature controlled substrate support assembly
CN102822948B (en) Region temperature-controllstructure structure
CN104471682B (en) Thermal plate with planar thermal zones for semiconductor processing
KR102648118B1 (en) wafer support
US8168926B2 (en) Heating device
TWI575640B (en) Heating plate with diode planar heater zones for semiconductor processing
US11382180B2 (en) Multi-zone pedestal heater having a routing layer
US7247817B2 (en) Ceramic heater having a resistance heater element
TW200527580A (en) Heating device
JP2010080909A (en) Heater, manufacturing apparatus for semiconductor device, and manufacturing method for semiconductor device
JP2002540610A (en) Combined heater with plate with jagged ceramic foil and gas assist
KR20130102577A (en) Substrate heating device
JP2004288775A (en) Semiconductor manufacturing apparatus
TW201617486A (en) Apparatus, method and system for controlling thickness of a crystalline sheet grown on a melt
KR101455789B1 (en) Heater for susceptor, and LCD manufacturing apparatus
CN101389178A (en) Substrate processing apparatus having electrode member
KR101318292B1 (en) Microheater, microheater array, method for manufacturing the same and electronic device using the same
JP2001196650A (en) Thermoelectric converting module
KR101164129B1 (en) Ceramics heat conduction support
KR101078170B1 (en) A micro heating apparatus
JP2000306917A (en) Substrate heater
JP2001267267A (en) Device for producing semiconductor
JPH0355874A (en) Semiconductor device
JP2023147159A (en) electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A521 Written amendment

Effective date: 20061023

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330