JP2004288757A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element Download PDF

Info

Publication number
JP2004288757A
JP2004288757A JP2003076818A JP2003076818A JP2004288757A JP 2004288757 A JP2004288757 A JP 2004288757A JP 2003076818 A JP2003076818 A JP 2003076818A JP 2003076818 A JP2003076818 A JP 2003076818A JP 2004288757 A JP2004288757 A JP 2004288757A
Authority
JP
Japan
Prior art keywords
light emitting
nitride semiconductor
layer
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076818A
Other languages
Japanese (ja)
Inventor
Tomohiko Shibata
智彦 柴田
Mitsuhiro Tanaka
光浩 田中
Akihiro Wakahara
昭浩 若原
Akira Yoshida
明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003076818A priority Critical patent/JP2004288757A/en
Publication of JP2004288757A publication Critical patent/JP2004288757A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting element which is improved in luminous efficiency. <P>SOLUTION: The semiconductor light emitting element 10 is equipped with a substrate 1, an underlying layer 2 made of first nitride semiconductor epitaxially grown on the substrate 1, and a light emitting layer 5 made of second nitride semiconductor provided on the underlying layer 2. In the first nitride semiconductor, the Al content amount is 50 atom% or more against the sum of III element contents, a dislocation density is 10<SP>11</SP>/cm<SP>2</SP>or below, and the half band width of an X-ray locking curve on a (002) plane is 200 sec or below. The second nitride semiconductor contains one or more elements selected from a group composed of rare earth elements and transition metal elements as additive elements. The light emitting layer is thermally treated at a temperature above 1,300°C. In the second nitride semiconductor, an Al content amount is 20 atom% or more against the sum of III element contents. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、半導体発光素子に関するものである。
【0002】
【従来の技術】近年、様々な色の発光ダイオード(LED)の需要が増大している。LEDは消費電力が少なく、寿命も長いため、これまでのような単なる表示用のLEDとしてだけではなく、消費電力の低減、エネルギー消費削減に伴うCO削減の観点から、照明用としてその需要増加が期待されている。
【0003】LEDとしては、これまで、GaAs系、AlGaAs系、GaP系、GaAsP系、InGaAlP系などで、赤色から黄緑色までのLEDが実用化され、特に表示用として様々な用途に用いられてきた。近年、GaN系において青色、緑色のLEDが実現されたことから、LEDでほぼ全色がでそろい、全ての色で表示ができるようになった他、フルカラーディスプレイも実現できるようになった。特に三原色でより高効率のLEDが、低エネルギーで環境問題が解決できる照明用として、全世界で渇望されている。
【0004】このような状況に鑑み、紫外LEDを作製して、この紫外線により三原色の蛍光体を発光させて白色LEDを得る試みがなされている。しかし、この方法の原理は蛍光灯と基本的には同じであり、蛍光灯における水銀放電による紫外発光を紫外LEDに置き換えるものである。このため、三原色の蛍光体を別途必要とする点から、コスト的なデメリットがある。
【0005】本出願人は、特許文献1において、LEDとして好適に使用可能な半導体発光素子を提案した。この素子においては、下地層を、X線ロッキングカーブの半値幅が90sec以下の高品質結晶のAl含有窒化物半導体によって形成し、その上にAlGaN系窒化物半導体からなる発光層を形成している。
【特許文献1】
特開2002−261324号公報
【0006】
【発明が解決しようとする課題】本発明者はこの半導体発光素子を更に検討し、その発光効率を向上させるための研究を行ってきた。なぜなら、発光効率の向上が、本半導体発光素子の実用化の上で最も重要だからである。
【0007】本発明の課題は、基板、基板上にエピタキシャル成長した窒化物半導体からなる下地層、およびこの下地層上に設けられた窒化物半導体からなる発光層を備えている半導体発光素子において、素子の発光効率を向上させることである。
【0008】
【課題を解決するための手段】本発明は、基板、基板上にエピタキシャル成長した第一の窒化物半導体からなる下地層、および下地層上に設けられた第二の窒化物半導体からなる発光層を備えている半導体発光素子であって、
前記第一の窒化物半導体においてIII属元素の含有量の合計に対するAl含有量が50原子%以上であり、転移密度が1011/cm以下であり、(002)面におけるX線ロッキングカーブの半値幅が200sec以下であり、第二の窒化物半導体が、希土類元素および遷移金属元素からなる群より選ばれた一種以上の元素を添加元素として含んでおり、発光層が1300℃以上の温度で熱処理されており、第二の窒化物半導体において、III属元素の含有量の合計に対するAl含有量が20原子%以上であることを特徴とする。
【0009】本発明者は、発光層中に希土類元素や遷移金属元素を発光元素として添加した場合に、第二の窒化物半導体において、III属元素の含有量の合計に対するAl含有量を20原子%以上とし、発光層を1300℃以上の温度で熱処理(ないしアニール処理)することを想到した。この結果、素子の発光効率が著しく向上することを見いだし、本発明に到達した。
【0010】素子の発光効率を向上させるという観点からは、発光層の熱処理時の最高温度は、1350℃以上とすることが更に好ましく,1400℃以上とすることが一層好ましく、1450℃以上とすることが最も好ましい。また、同様の観点から、発光層の熱処理時の最高温度を1550℃以下とすることが更に好ましい。
【0011】また、発光層の熱処理に際して、最高温度での保持時間は、発光効率向上の観点からは、1秒以上であることが好ましい。また、結晶性劣化という観点からは、 最高温度での保持時間は5分以下であることが好ましい。
【0012】素子の発光効率を一層向上させるという観点からは、発光層におけるIII属元素の含有量の合計に対するAl含有量を30原子%以上とすることが好ましく、40原子%以上とすることが更に好ましい。
【0013】
【発明の実施の形態】図1は、本発明の半導体発光素子の一例を模式的に示す断面図である。なお、素子10は、基板1、基板1上に形成された下地層2、下地層2上に形成された窒化物半導体からなる導電層3、窒化物半導体からなるクラッド層4、発光層5、窒化物半導体からなるクラッド層6、窒化物半導体からなる導電層7を備えている。導電層3の一部はクラッド層4によって被覆されずに露出している。導電層3の露出面にn−電極8が形成されている。導電層7上にはp−電極9が形成されている。
【0014】基板は、サファイア単結晶、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgAl単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶などのIV族あるいはIV−IV単結晶、GaAs単結晶、AlN単結晶、GaN単結晶、及びAlGaN単結晶などのIII −V族単結晶、ZrBなどのホウ化物単結晶などの、公知の基板材料から構成することができる。
【0015】さらに、上述した単結晶基板上に、ZnO単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶などのIV族あるいはIV−IV族単結晶、GaAs単結晶、InP単結晶などのIII −V族単結晶、あるいはこれらの混晶からなるエピタキシャル成長膜を具えるエピタキシャル基板を用いることもできる。
【0016】半導体発光素子を構成する各層は、有機金属気相成長法(MOCVD法)、Hydride Vapor Phase Epitaxy法 (HVPE法)などのCVD成長方法や分子線エピタキシー法(MBE法)といった各種薄膜形成技術にしたがって製造することができる。
【0017】発光層に添加される希土類元素や遷移金属元素は、外部からエネルギーを得て励起されると、これら元素に固有の波長を有する光を発する。したがって、このような希土類元素及び/又は遷移金属元素を添加元素として発光層中に含有させることによって、添加元素は発光層からの発光によって励起され、固有の波長の光を発する。
【0018】したがって、発光層中に添加する添加元素の種類を必要に応じて希土類元素及び遷移金属元素から適宜に選択し、この添加元素からの発光を利用することにより、任意の色度の光の生成を簡易に行うことができる。また、添加元素を2種類以上併用することができる。
【0019】こうした添加元素としては以下が特に好ましい。
Tm、Er、Cr、Eu、Pr。
【0020】半導体発光素子の各層を構成する窒化物半導体は、Al、GaおよびInからなる群より選ばれた一種以上の元素を含んでおり、二種類以上を含んでいてもよい。各層には、Mg、Be、Zn、Si、P、As、OおよびBからなる群より選ばれた一種以上の元素を含有させることもできる。また、成膜条件、原料、及び反応管材質に含まれる微量不純物や不可避的不純物が含有されていてよい。
【0021】下地層2は、Alを50原子%以上含み、転移密度が1011/cm以下であり、(002)面におけるX線ロッキングカーブの半値幅が200秒以下である。このような結晶品質の良い下地層2上に発光層5を形成することが、素子の発光効率を向上させるための前提条件である。
【0022】素子の発光効率を向上させるという観点からは、転移密度が5×1010/cm以下さらには1×1010/cm以下であることが更に好ましい。(002)面におけるX線ロッキングカーブの半値幅が100秒以下であることが更に好ましい。
【0023】下地層2を構成する窒化物半導体においては、III属元素の含有量の合計に対するAl含有量が50原子%以上である。III属元素の含有量の合計に対するAl含有量は80原子%であることが更に好ましく、窒化物半導体がAlNであることが最も好ましい。Al以外にはInやGaを含有していてよい。
【0024】前記半値幅および転移密度を有する下地層を得るには、所定の原料供給ガスを用い、MOCVD法によって、好ましくは1100℃以上、さらに好ましくは1150℃以上に加熱する。
【0025】また、下地層の形成温度の上限は特に限定されないが、好ましくは1250℃である。これによって、下地層を構成する窒化物半導体の材料組成などに依存した表面の荒れ、さらには下地層内における組成成分の拡散を効果的に抑制することができる。なお、この「形成温度」とは、ヒーターを制御する温度ではなく、下地膜を形成する際の基板温度を意味する。
【0026】下地層2の厚さは0.5μm以上であることが好ましく、1μm〜3μmであることが更に好ましい。下地層上に形成する導電層、クラッド層及び発光層の結晶性を向上させるには、下地層を厚く形成することが好ましい。しかしながら、下地層が厚くなり過ぎると、クラックが発生したり剥離が生じたりする場合がある。
【0027】また、発光層5を構成する窒化物半導体は、特に好ましくはi−AlGaNである。発光層には前記添加元素が添加されている。添加元素の含有量は特に限定されない。しかし、添加元素の含有量を0.01原子%以上とすることによって、素子の発光効率を向上させることができる。この観点からは、添加元素の含有量を0.1原子%以上とすることが更に好ましい。また、発光層を構成する窒化物半導体の結晶性を向上させるという観点からは、添加元素の含有量を7原子%以下とすることが好ましく、3原子%以下とすることが更に好ましい。
【0028】下地層と基板との間には緩衝層を設けることができる。この緩衝層はAlを含み、Al含有量が基板側から下地層側に向かって連続的又はステップ状に増大していることが好ましい。
【0029】
【実施例】(実施例1)
2インチ径の厚さ630μmのサファイア基板をアセトン及びイソプロピルアルコールで超音波洗浄し、水洗乾燥した後、有機金属気相成長(MOCVD)装置の中に設置した。MOCVD装置には、ガス系としてNH、TMA、TMG、CpMg、SiHの各ガス系が取り付けてある。装置内圧力を50mBarに設定し、Hを流速1m/secで流しながら、基板1の温度を1200℃まで昇温した。その後、NHガスを水素キャリアガスとともに5分間流し、基板の主面を窒化させた。なお、ESCAによる分析の結果、この表面窒化処理によって、基板1の主面には窒化層が形成されており、主面から深さ1nmにおける窒素含有量が7原子%であることが判明した。
【0030】次いで、TMA及びNHを合計して流速5m/secで流して、下地層2としてのAlN層を厚さ1μmまでエピタキシャル成長させた。このAlN層2の転位密度は2×1010/cmであり、(002)面におけるX線回折ロッキングカーブの半値幅は60秒であり、良質のAlN層であることがわかった。さらに、表面平坦性を確認したところ、5μm範囲におけるRaが1.5オングストロームであり、極めて平坦な表面を有することが判明した。
【0031】次いで、圧力を100mBarに設定し、基板を1150℃まで昇温し、TMA、TMG、NH、SiH及びキャリアガスとしてのH、Nを合計して流速5m/secで流して、n−Al0.45Ga0.65N層3、4を厚さ2μmにエピタキシャル成長させた。このn−Al0.45Ga0.65N層3、4の転位密度は1×10/cmであり、(002)面におけるX線ロッキングカーブの半値幅は100秒であった。
【0032】ここで、いったん基板をMOCVD 装置から取り出し、Euを1%含むAl0.4Ga0.6Nターゲットを設置したスパッタ装置を用いて、Euを1%含むAl0.4Ga0.6N層(発光層5)を10nm堆積した。その後、アニール装置に設置し、1500℃、乾燥空気中での1分間アニール処理を加え、希土類元素の活性化を行った。
【0033】次いで、基板をMOCVD 装置に設置し、圧力を100mBarに設定し、基板を1000℃まで昇温し、TMA、TMG、NH、Cp2 Mg及びキャリアガスとしてのH、Nを合計して流速5m/secで流して、p−Al0.45Ga0.65N層6を厚さ5nmさらにはp−Al0.05Ga0.95N層7を0.2μm エピタキシャル成長させた。最終的にp型層活性化のため、750℃で窒素雰囲気下で5分間アニール処理を行った。
【0034】成長終了後、上記のようにして形成した多層膜の一部を、n型導電層3、4のAlGaN層が露出するまで除去し、この露出した部分の表面上にAl/Tiからなるn−電極8を形成した。また、導電層6、7としてのp−GaN層上にAu/Niからなるp−電極9を形成した。
【0035】次いで、p−電極9及びn−電極8間に電圧5V を印加し、電流20mAを流したところ、高効率の赤色発光を確認した。すなわち、本発明の半導体発光素子が実用的な赤色発光の素子として動作できることが確かめられた。
【0036】(比較例1)
実施例1と同様にして半導体発光素子を製造した。ただし、希土類活性化のための発光層のアニール処理の条件を、1200℃で5分間に変更した。この結果、赤色発光は確認されたものの、発光輝度は、実施例1の1/10以下しか確保できなかった。
【0037】(比較例2)
実施例1と同様にして半導体発光素子を製造した。ただし、n型層3、4の組成をAl0.2Ga0.8Nに変更した。発光層5の組成を、Euを1%含むAl0.15Ga0.85Nに変更した。p 型層6、7の組成を、Al0.2Ga0.8NとAl0.05Ga0.95Nにそれぞれ変更した。この結果、赤色発光は確認されたものの、発光輝度は、実施例1の1/10以下しか確保できなかった。
【0038】(比較例3)
基板の前処理を、実施例1と同様に行った後、基板をMOCVD装置内に設置し、圧力を200mBarに設定し、H2 を流速1m/secで流しながら、基板を550℃まで昇温した。その後、TMG及びNH3 を合計して流速5m/secで流して、バッファ層としてのGaN層を厚さ20nmまで成長した。次いで、基板を1080℃まで昇温し、TMG、NH、及びキャリアガスとしてのH、Nを合計して流速1m/secで流して、下地層2としてのGaN層を厚さ3μmにエピタキシャル成長させた。このGaN層の転位密度は1×10/cmであり、(002)面におけるX線ロッキングカーブの半値幅は250秒であった。
【0039】次いで、圧力を100mBarに設定し、基板を1150℃まで昇温し、TMA、TMG、NH、SiH及びキャリアガスとしてのH、Nを合計して流速5m/secで流して、n−Al0.45Ga0.65N層3、4を厚さ2μmにエピタキシャル成長させた。このn−Al0.45Ga0.65N層3、4の転位密度は1×1010/cmであり、(002)面におけるX線ロッキングカーブの半値幅は350秒であった。
【0040】以後、実施例1と同じく、基板をいったんMOCVD 装置から取り出し、Euを1%含むAl0.4Ga0.6Nターゲットを設置したスパッタ装置を用いて、発光層5として、Euを1%含むAl0.4Ga0.6Nを10nm堆積した。その後、アニール装置に設置し、1500℃、乾燥空気中での1分のアニール処理を加え、希土類元素の活性化を行ったが、下地層であるGaNが分解してしまい、成長したAlGaN層の剥離が散見され、デバイス構造を歩留まり良く作製することができなかった。
【0041】(熱処理条件変更実験)
実施例1と同様にして半導体発光素子を製造した。ただし、希土類活性化のための発光層のアニール処理時間を1分間とした。また、アニール処理時の最高温度を、図2に示すように種々変更した(1000、1100、1200、1300、1400、1500、1600℃)。結果、1300℃以上の処理温度で発光強度が著しく向上した。
【0042】(Al組成変更実験)
実施例1と同様にして半導体発光素子を製造した。この際、図3に示すように、発光層5のAl組成を0,10,20,40,100%と変化させた。なお、n型層3,4及びp型層6のAl組成は、(発光層の組成―5)%の値に変更している。希土類活性化のための発光層のアニール処理時間を1500℃1分間と固定した。カソードルミネッセンス測定を行い、発光層からの発光特性を評価した結果、Al組成20%以上で発光強度が著しく向上した。
【0043】以上、具体例を挙げながら、本発明を発明の実施の形態に即して詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
【0044】例えば、発光層の形成方法としては、スパッタを例示したが、CVD法でEuを含有する原料を同時に流すことにより作製しても良いし、イオン注入を用いてEuを打ち込むことも可能である。また、発光層にInを適度に混合させることも可能である。
【0045】また、図1に示す素子において、クラッド層4に導電層としての機能を付与せしめ、導電層3を省略することもできる。同様に、クラッド層6に導電層としての機能を付与せしめ、導電層7を省略することもできる。
【0046】図1に示す半導体発光素子においては、発光層5を中心として下側の層をn型とし、上側の層をp型としているが、両者を逆転させて形成することもできる。
【0047】さらに、上記実施例では、AlN下地層2上に導電層3としてのAlGaN層を直接的に形成した。しかし、これらの間にバッファ層又はひずみ超格子などの多層膜構造を形成することもできる。
【0048】
【発明の効果】以上説明したように、本発明によれば、基板、基板上にエピタキシャル成長した窒化物半導体からなる下地層、およびこの下地層上に設けられた窒化物半導体からなる発光層を備えている半導体発光素子において、素子の発光効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る半導体発光素子10を示す模式図である。
【図2】発光層の熱処理温度と素子の発光強度との関係を示すグラフである。
【図3】Al組成変化と素子の発光強度との関係を示すグラフである。
【符号の説明】1 基板 2 下地層 3、7 導電層 4、6 クラッド層 5 発光層 10 半導体発光素子
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device.
[0002]
2. Description of the Related Art In recent years, demands for light-emitting diodes (LEDs) of various colors have been increasing. LED consumes less power, since longer life, so far not only as LED for mere display, such as, reduction of power consumption, in terms of CO 2 reduction due to energy consumption reduction, the increased demand for lighting Is expected.
As LEDs, GaAs, AlGaAs, GaP, GaAsP, InGaAlP, etc. LEDs from red to yellow-green have been put to practical use, and they have been used in various applications especially for display. Was. In recent years, blue and green LEDs have been realized in a GaN-based system, so that almost all colors can be arranged and displayed in all colors, and a full-color display can be realized. In particular, LEDs with higher efficiencies of the three primary colors are being craved all over the world as lighting devices that can solve environmental problems with low energy.
[0004] In view of such circumstances, attempts have been made to produce an ultraviolet LED and cause the phosphors of the three primary colors to emit light with the ultraviolet rays to obtain a white LED. However, the principle of this method is basically the same as that of a fluorescent lamp, in which ultraviolet light emitted by mercury discharge in a fluorescent lamp is replaced with an ultraviolet LED. Therefore, there is a disadvantage in terms of cost since phosphors of three primary colors are separately required.
[0005] The present applicant has proposed a semiconductor light emitting device which can be suitably used as an LED in Patent Document 1. In this device, the underlying layer is formed of a high-quality crystal Al-containing nitride semiconductor having a half width of an X-ray rocking curve of 90 sec or less, and a light emitting layer made of an AlGaN-based nitride semiconductor is formed thereon. .
[Patent Document 1]
JP-A-2002-261324
The present inventor has further studied this semiconductor light emitting device and has conducted research for improving the luminous efficiency thereof. This is because the improvement of the luminous efficiency is the most important for practical use of the present semiconductor light emitting device.
An object of the present invention is to provide a semiconductor light emitting device including a substrate, an underlayer made of a nitride semiconductor epitaxially grown on the substrate, and a light emitting layer made of the nitride semiconductor provided on the underlayer. Is to improve the luminous efficiency.
[0008]
SUMMARY OF THE INVENTION The present invention provides a substrate, an underlayer made of a first nitride semiconductor epitaxially grown on the substrate, and a light emitting layer made of a second nitride semiconductor provided on the underlayer. A semiconductor light emitting device comprising:
The first nitride semiconductor has an Al content of 50 atomic% or more based on the total content of the group III elements, a transition density of 10 11 / cm 2 or less, and an X-ray rocking curve of a (002) plane. The half-width is 200 sec or less, the second nitride semiconductor contains at least one element selected from the group consisting of rare earth elements and transition metal elements as an additional element, and the light-emitting layer has a temperature of 1300 ° C or higher. The heat treatment is performed, and in the second nitride semiconductor, the Al content is equal to or greater than 20 atom% with respect to the total content of the group III elements.
The present inventor has proposed that when a rare earth element or a transition metal element is added as a light emitting element to a light emitting layer, the second nitride semiconductor may have an Al content of 20 atoms with respect to the total content of Group III elements. % Or more, and the heat treatment (or annealing treatment) of the light emitting layer at a temperature of 1300 ° C. or more has been considered. As a result, the inventors have found that the luminous efficiency of the device is significantly improved, and have reached the present invention.
From the viewpoint of improving the luminous efficiency of the device, the maximum temperature during the heat treatment of the light emitting layer is more preferably 1350 ° C. or higher, more preferably 1400 ° C. or higher, and more preferably 1450 ° C. or higher. Is most preferred. In addition, from the same viewpoint, it is more preferable that the maximum temperature during the heat treatment of the light emitting layer be 1550 ° C. or less.
In the heat treatment of the light emitting layer, the holding time at the highest temperature is preferably 1 second or more from the viewpoint of improving the luminous efficiency. From the viewpoint of crystallinity deterioration, the holding time at the highest temperature is preferably 5 minutes or less.
From the viewpoint of further improving the luminous efficiency of the device, the Al content relative to the total content of the group III elements in the light emitting layer is preferably at least 30 atomic%, more preferably at least 40 atomic%. More preferred.
[0013]
FIG. 1 is a sectional view schematically showing one example of a semiconductor light emitting device of the present invention. The element 10 includes a substrate 1, an underlayer 2 formed on the substrate 1, a conductive layer 3 made of a nitride semiconductor formed on the underlayer 2, a cladding layer 4 made of a nitride semiconductor, a light emitting layer 5, A cladding layer 6 made of a nitride semiconductor and a conductive layer 7 made of a nitride semiconductor are provided. A part of the conductive layer 3 is exposed without being covered by the cladding layer 4. An n-electrode 8 is formed on an exposed surface of conductive layer 3. A p-electrode 9 is formed on conductive layer 7.
The substrate is made of an oxide single crystal such as sapphire single crystal, ZnO single crystal, LiAlO 2 single crystal, LiGaO 2 single crystal, MgAl 2 O 4 single crystal, MgO single crystal, etc., a Si single crystal, a SiC single crystal or the like. group IV or IV-IV monocrystalline, GaAs single crystal, AlN single crystal, GaN single crystal, and III -V group single crystal such as AlGaN single crystal, such as boride single crystal such as ZrB 2, a known substrate materials Can be configured.
Further, on the above-mentioned single crystal substrate, a single crystal of oxides such as ZnO single crystal and MgO, a single crystal of Group IV or IV-IV such as a single crystal of Si, a single crystal of SiC, a single crystal of GaAs, It is also possible to use an epitaxial substrate provided with an epitaxially grown film made of a group III-V single crystal such as an InP single crystal or a mixed crystal thereof.
Each layer constituting the semiconductor light emitting device is formed by various thin film formation methods such as a metal organic chemical vapor deposition method (MOCVD method), a CVD method such as a hydride vapor phase epitaxy method (HVPE method), and a molecular beam epitaxy method (MBE method). It can be manufactured according to technology.
The rare earth element and the transition metal element added to the light emitting layer emit light having a wavelength specific to these elements when excited by obtaining energy from the outside. Therefore, by including such a rare earth element and / or transition metal element as an additional element in the light emitting layer, the additional element is excited by light emission from the light emitting layer, and emits light having a specific wavelength.
Therefore, the kind of the additive element to be added to the light emitting layer is appropriately selected from the rare earth element and the transition metal element as needed, and the light emission of an arbitrary chromaticity is obtained by utilizing the light emission from this additive element. Can be easily generated. Further, two or more kinds of additive elements can be used in combination.
The following are particularly preferred as such additional elements.
Tm, Er, Cr, Eu, Pr.
The nitride semiconductor constituting each layer of the semiconductor light emitting device contains one or more elements selected from the group consisting of Al, Ga and In, and may contain two or more kinds. Each layer may contain one or more elements selected from the group consisting of Mg, Be, Zn, Si, P, As, O and B. Further, trace impurities or unavoidable impurities contained in the film forming conditions, the raw materials, and the material of the reaction tube may be contained.
The underlayer 2 contains 50 atomic% or more of Al, has a transition density of 10 11 / cm 2 or less, and has a half value width of the X-ray rocking curve on the (002) plane of 200 seconds or less. Forming the light emitting layer 5 on the underlayer 2 having such a good crystal quality is a prerequisite for improving the luminous efficiency of the device.
From the viewpoint of improving the luminous efficiency of the device, the transition density is preferably 5 × 10 10 / cm 2 or less, more preferably 1 × 10 10 / cm 2 or less. More preferably, the half width of the X-ray rocking curve on the (002) plane is 100 seconds or less.
In the nitride semiconductor constituting the underlayer 2, the Al content relative to the total content of the group III elements is at least 50 atomic%. The Al content with respect to the total content of the group III elements is more preferably 80 atomic%, and the nitride semiconductor is most preferably AlN. In addition to Al, In or Ga may be contained.
In order to obtain an underlayer having the above-mentioned half width and transition density, the substrate is heated to preferably 1100 ° C. or higher, more preferably 1150 ° C. or higher by MOCVD using a predetermined raw material supply gas.
The upper limit of the formation temperature of the underlayer is not particularly limited, but is preferably 1250 ° C. As a result, it is possible to effectively suppress surface roughness depending on the material composition of the nitride semiconductor constituting the underlayer, and further, diffusion of a composition component in the underlayer. Note that the “forming temperature” does not mean a temperature for controlling the heater, but means a substrate temperature when the base film is formed.
The thickness of the underlayer 2 is preferably 0.5 μm or more, more preferably 1 μm to 3 μm. In order to improve the crystallinity of the conductive layer, the cladding layer, and the light-emitting layer formed on the base layer, it is preferable that the base layer be formed thick. However, if the underlayer is too thick, cracks or peeling may occur.
The nitride semiconductor constituting the light emitting layer 5 is particularly preferably i-AlGaN. The above-mentioned additional element is added to the light emitting layer. The content of the additional element is not particularly limited. However, by setting the content of the additional element to 0.01 atomic% or more, the luminous efficiency of the device can be improved. On the viewpoint, the content of the additional element may more preferably be 0.1 atomic% or more. In addition, from the viewpoint of improving the crystallinity of the nitride semiconductor forming the light emitting layer, the content of the additional element is preferably set to 7 atomic% or less, more preferably 3 atomic% or less.
A buffer layer can be provided between the underlayer and the substrate. It is preferable that the buffer layer contains Al, and the Al content increases continuously or stepwise from the substrate side toward the base layer side.
[0029]
Example (Example 1)
A 2-inch diameter 630 μm thick sapphire substrate was ultrasonically cleaned with acetone and isopropyl alcohol, washed with water and dried, and then placed in a metal organic chemical vapor deposition (MOCVD) apparatus. Each gas system of NH 3 , TMA, TMG, Cp 2 Mg, and SiH 4 is attached to the MOCVD apparatus as a gas system. The pressure in the apparatus was set to 50 mBar, and the temperature of the substrate 1 was increased to 1200 ° C. while flowing H 2 at a flow rate of 1 m / sec. Thereafter, NH 3 gas was flowed together with the hydrogen carrier gas for 5 minutes to nitride the main surface of the substrate. As a result of the analysis by ESCA, it was found that a nitrided layer was formed on the main surface of the substrate 1 by this surface nitriding treatment, and the nitrogen content at a depth of 1 nm from the main surface was 7 atomic%.
Next, TMA and NH 3 were combined and flowed at a flow rate of 5 m / sec to epitaxially grow the AlN layer as the underlayer 2 to a thickness of 1 μm. The dislocation density of this AlN layer 2 was 2 × 10 10 / cm 2 , and the half-width of the X-ray diffraction rocking curve on the (002) plane was 60 seconds, indicating that the AlN layer was a good quality AlN layer. Further, when the surface flatness was confirmed, it was found that Ra in the range of 5 μm was 1.5 angstroms, and that the surface had an extremely flat surface.
Next, the pressure was set to 100 mBar, the temperature of the substrate was raised to 1150 ° C., and TMA, TMG, NH 3 , SiH 4 and H 2 and N 2 as carrier gases were flowed at a flow rate of 5 m / sec. Then, n-Al 0.45 Ga 0.65 N layers 3 and 4 were epitaxially grown to a thickness of 2 μm. The dislocation density of the n-Al 0.45 Ga 0.65 N layers 3 and 4 was 1 × 10 9 / cm 2 , and the half-width of the X-ray rocking curve on the (002) plane was 100 seconds.
[0032] Here, once the substrate is removed from the MOCVD apparatus, using the sputtering apparatus were placed Al 0.4 Ga 0.6 N target containing 1% Eu, Al 0.4 Ga 0 containing 1% Eu. 6 N layer (light-emitting layer 5) was 10nm deposited. Thereafter, the apparatus was set in an annealing apparatus, and an annealing treatment was performed for 1 minute at 1500 ° C. in dry air to activate the rare earth element.
Then, the substrate was set in a MOCVD apparatus, the pressure was set to 100 mBar, the temperature of the substrate was raised to 1000 ° C., and TMA, TMG, NH 3 , Cp 2 Mg, and H 2 and N 2 as carrier gases were added in total. At a flow rate of 5 m / sec, the p-Al 0.45 Ga 0.65 N layer 6 was epitaxially grown to a thickness of 5 nm and the p-Al 0.05 Ga 0.95 N layer 7 to a thickness of 0.2 μm. Finally, annealing was performed at 750 ° C. for 5 minutes in a nitrogen atmosphere to activate the p-type layer.
After the growth is completed, a part of the multilayer film formed as described above is removed until the AlGaN layers of the n-type conductive layers 3 and 4 are exposed. N-electrode 8 was formed. A p-electrode 9 made of Au / Ni was formed on p-GaN layers as the conductive layers 6 and 7.
Next, when a voltage of 5 V was applied between the p-electrode 9 and the n-electrode 8 and a current of 20 mA was passed, highly efficient red light emission was confirmed. That is, it was confirmed that the semiconductor light emitting device of the present invention can operate as a practical red light emitting device.
(Comparative Example 1)
A semiconductor light emitting device was manufactured in the same manner as in Example 1. However, the condition of the annealing treatment of the light emitting layer for activating the rare earth was changed to 1200 ° C. for 5 minutes. As a result, although red light emission was confirmed, the light emission luminance could be secured only 1/10 or less of Example 1.
(Comparative Example 2)
A semiconductor light emitting device was manufactured in the same manner as in Example 1. However, the compositions of the n-type layers 3 and 4 were changed to Al 0.2 Ga 0.8 N. The composition of the light emitting layer 5 was changed to Al 0.15 Ga 0.85 N containing 1% Eu. The compositions of the p-type layers 6 and 7 were changed to Al 0.2 Ga 0.8 N and Al 0.05 Ga 0.95 N, respectively. As a result, although red light emission was confirmed, the light emission luminance could be secured only 1/10 or less of Example 1.
(Comparative Example 3)
After performing the pretreatment of the substrate in the same manner as in Example 1, the substrate was placed in an MOCVD apparatus, the pressure was set to 200 mBar, and the temperature of the substrate was raised to 550 ° C. while flowing H 2 at a flow rate of 1 m / sec. . Thereafter, TMG and NH3 were combined and flowed at a flow rate of 5 m / sec to grow a GaN layer as a buffer layer to a thickness of 20 nm. Next, the temperature of the substrate was raised to 1080 ° C., and TMG, NH 3 , and H 2 and N 2 as carrier gases were combined and flowed at a flow rate of 1 m / sec, and the GaN layer as the underlayer 2 was formed to a thickness of 3 μm. It was epitaxially grown. The dislocation density of this GaN layer was 1 × 10 9 / cm 2 , and the half-width of the X-ray rocking curve on the (002) plane was 250 seconds.
Next, the pressure was set to 100 mBar, the temperature of the substrate was raised to 1150 ° C., and TMA, TMG, NH 3 , SiH 4 and H 2 and N 2 as carrier gases were flowed at a flow rate of 5 m / sec. Then, n-Al 0.45 Ga 0.65 N layers 3 and 4 were epitaxially grown to a thickness of 2 μm. The dislocation density of the n-Al 0.45 Ga 0.65 N layers 3 and 4 was 1 × 10 10 / cm 2 , and the half-width of the X-ray rocking curve on the (002) plane was 350 seconds.
Thereafter, in the same manner as in Example 1, the substrate was once taken out of the MOCVD apparatus, and Eu was used as the light emitting layer 5 using a sputtering apparatus in which an Al 0.4 Ga 0.6 N target containing 1% of Eu was installed. Al 0.4 Ga 0.6 N containing 1% was deposited to a thickness of 10 nm. After that, it was set in an annealing apparatus, and an annealing treatment was performed at 1500 ° C. for 1 minute in dry air to activate the rare earth element. However, the underlying layer GaN was decomposed, and the grown AlGaN layer was removed. Peeling was observed occasionally, and the device structure could not be manufactured with high yield.
(Experiment for Changing Heat Treatment Conditions)
A semiconductor light emitting device was manufactured in the same manner as in Example 1. However, the annealing time of the light emitting layer for activating rare earth was set to 1 minute. Further, the maximum temperature during the annealing process was variously changed as shown in FIG. 2 (1000, 1100, 1200, 1300, 1400, 1500, 1600 ° C.). As a result, the emission intensity was significantly improved at a processing temperature of 1300 ° C. or higher.
(Experiment for Changing Al Composition)
A semiconductor light emitting device was manufactured in the same manner as in Example 1. At this time, as shown in FIG. 3, the Al composition of the light emitting layer 5 was changed to 0, 10, 20, 40, and 100%. Note that the Al compositions of the n-type layers 3 and 4 and the p-type layer 6 are changed to a value of (composition of light emitting layer−5)%. The annealing time of the light emitting layer for rare earth activation was fixed at 1500 ° C. for 1 minute. As a result of performing a cathodoluminescence measurement and evaluating the light-emitting characteristics from the light-emitting layer, the light-emitting intensity was significantly improved when the Al composition was 20% or more.
Although the present invention has been described in detail with reference to the embodiments of the present invention by giving specific examples, the present invention is not limited to the above contents and does not depart from the scope of the present invention. All modifications and changes are possible as far as possible.
For example, as a method of forming the light emitting layer, sputtering is exemplified. However, the light emitting layer may be formed by simultaneously flowing a material containing Eu by a CVD method, or Eu may be implanted by ion implantation. It is. In addition, it is also possible to appropriately mix In with the light emitting layer.
Further, in the device shown in FIG. 1, the function as a conductive layer can be given to the cladding layer 4 and the conductive layer 3 can be omitted. Similarly, the function as a conductive layer may be given to the cladding layer 6 and the conductive layer 7 may be omitted.
In the semiconductor light emitting device shown in FIG. 1, the lower layer around the light emitting layer 5 is made n-type and the upper layer is made p-type. However, they can be formed by reversing both layers.
Further, in the above embodiment, the AlGaN layer as the conductive layer 3 was directly formed on the AlN underlayer 2. However, a multilayer structure such as a buffer layer or a strained superlattice can be formed between them.
[0048]
As described above, according to the present invention, there are provided a substrate, an underlayer made of a nitride semiconductor epitaxially grown on the substrate, and a light emitting layer made of the nitride semiconductor provided on the underlayer. In such a semiconductor light emitting device, the luminous efficiency of the device can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a semiconductor light emitting device 10 according to the present invention.
FIG. 2 is a graph showing a relationship between a heat treatment temperature of a light emitting layer and a light emission intensity of a device.
FIG. 3 is a graph showing a relationship between a change in Al composition and a light emission intensity of the device.
[Description of Signs] 1 Substrate 2 Underlayer 3, 7 Conductive layer 4, 6 Cladding layer 5 Light emitting layer 10 Semiconductor light emitting element

Claims (5)

基板、前記基板上にエピタキシャル成長した第一の窒化物半導体からなる下地層、およびこの下地層上に設けられた第二の窒化物半導体からなる発光層を備えている半導体発光素子であって、
前記第一の窒化物半導体においてIII属元素の含有量の合計に対するAl含有量が50原子%以上であり、転移密度が1011/cm以下であり、(002)面におけるX線ロッキングカーブの半値幅が200秒以下であり、前記第二の窒化物半導体が、希土類元素および遷移金属元素からなる群より選ばれた一種以上の元素を添加元素として含んでおり、前記発光層が1300℃以上の温度で熱処理されており、前記第二の窒化物半導体において、III属元素の含有量の合計に対するAl含有量が20原子%以上であることを特徴とする、半導体発光素子。
A semiconductor light emitting device comprising a substrate, an underlayer made of a first nitride semiconductor epitaxially grown on the substrate, and a light emitting layer made of a second nitride semiconductor provided on the underlayer,
The first nitride semiconductor has an Al content of 50 atomic% or more based on the total content of the group III elements, a transition density of 10 11 / cm 2 or less, and an X-ray rocking curve of a (002) plane. The half width is 200 seconds or less, the second nitride semiconductor contains at least one element selected from the group consisting of rare earth elements and transition metal elements as an additional element, and the light-emitting layer has a temperature of 1300 ° C. or more. Wherein the Al content in the second nitride semiconductor is at least 20 atomic% based on the total content of the group III elements.
前記発光層における前記添加元素の含有量が0.01〜7原子%であることを特徴とする、請求項1記載の半導体発光素子。2. The semiconductor light emitting device according to claim 1, wherein the content of the additional element in the light emitting layer is 0.01 to 7 atomic%. 前記第一の窒化物半導体において、III属元素の含有量の合計に対するAl含有量が80原子%以上であることを特徴とする、請求項1または2記載の半導体発光素子。3. The semiconductor light emitting device according to claim 1, wherein the first nitride semiconductor has an Al content of 80 atomic% or more based on the total content of the group III elements. 4. 前記第一の窒化物半導体が窒化アルミニウムであることを特徴とする、請求項3記載の半導体発光素子。The semiconductor light emitting device according to claim 3, wherein the first nitride semiconductor is aluminum nitride. 前記第一の窒化物半導体が、有機金属気相成長法によって1100℃以上の成膜温度で形成されたことを特徴とする、請求項1〜4のいずれか一つの請求項に記載の半導体発光素子。5. The semiconductor light emitting device according to claim 1, wherein the first nitride semiconductor is formed at a deposition temperature of 1100 ° C. or higher by a metal organic chemical vapor deposition method. 6. element.
JP2003076818A 2003-03-20 2003-03-20 Semiconductor light emitting element Pending JP2004288757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076818A JP2004288757A (en) 2003-03-20 2003-03-20 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076818A JP2004288757A (en) 2003-03-20 2003-03-20 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2004288757A true JP2004288757A (en) 2004-10-14

Family

ID=33291740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076818A Pending JP2004288757A (en) 2003-03-20 2003-03-20 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2004288757A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266559A (en) * 2006-03-02 2007-10-11 Ngk Insulators Ltd METHOD OF FORMING AlN-BASED GROUP III NITRIDE CRYSTAL, AND AlN-BASED GROUP III NITRIDE THICK FILM
JP2009135197A (en) * 2007-11-29 2009-06-18 Showa Denko Kk Manufacturing methods of group iii nitride semiconductor and group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element and lamp
WO2010128643A1 (en) * 2009-05-07 2010-11-11 国立大学法人大阪大学 Red light-emitting semiconductor element and method for manufacturing red light-emitting semiconductor element
JP2012199502A (en) * 2011-03-07 2012-10-18 Toyohashi Univ Of Technology Nitride semiconductor, manufacturing method of the same, nitride semiconductor light-emitting element and manufacturing method of the same
JP2013120847A (en) * 2011-12-07 2013-06-17 Osaka Univ Red light-emitting semiconductor device and method for manufacturing the same
JP5471440B2 (en) * 2007-05-02 2014-04-16 豊田合成株式会社 Group III nitride semiconductor light emitting device manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266559A (en) * 2006-03-02 2007-10-11 Ngk Insulators Ltd METHOD OF FORMING AlN-BASED GROUP III NITRIDE CRYSTAL, AND AlN-BASED GROUP III NITRIDE THICK FILM
JP5471440B2 (en) * 2007-05-02 2014-04-16 豊田合成株式会社 Group III nitride semiconductor light emitting device manufacturing method
JP2009135197A (en) * 2007-11-29 2009-06-18 Showa Denko Kk Manufacturing methods of group iii nitride semiconductor and group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element and lamp
US8765507B2 (en) 2007-11-29 2014-07-01 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride semiconductor, method for manufacturing group III nitride semiconductor light-emitting device, group III nitride semiconductor light-emitting device, and lamp
WO2010128643A1 (en) * 2009-05-07 2010-11-11 国立大学法人大阪大学 Red light-emitting semiconductor element and method for manufacturing red light-emitting semiconductor element
US8409897B2 (en) 2009-05-07 2013-04-02 Osaka University Production method of red light emitting semiconductor device
JP2012199502A (en) * 2011-03-07 2012-10-18 Toyohashi Univ Of Technology Nitride semiconductor, manufacturing method of the same, nitride semiconductor light-emitting element and manufacturing method of the same
JP2013120847A (en) * 2011-12-07 2013-06-17 Osaka Univ Red light-emitting semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
USRE40485E1 (en) Semiconductor light-emitting element
US7964887B2 (en) Light emitting device
US8309982B2 (en) Group-III nitride semiconductor light-emitting device, method for manufacturing the same, and lamp
TWI270217B (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
US6534795B2 (en) Semiconductor light-emitting element
JP2009526379A (en) Method for growing gallium nitride based semiconductor heterostructure
EP1335435A2 (en) Semiconductor Light-Emitting Devices
JP2009046368A (en) Sphalerite type nitride semiconductor self-supporting substrate, manufacturing method of sphalerite type nitride semiconductor self-supporting substrate and light-emitting device using sphalerite type nitride semiconductor self-supporting substrate
JP2002252177A (en) Semiconductor element
JP2015177025A (en) optical semiconductor element
JP3888668B2 (en) Semiconductor light emitting device
US8278129B2 (en) Manufacturing method of nitride semi-conductor layer, and a nitride semi-conductor light emitting device with its manufacturing method
JPH11112030A (en) Production of iii-v compound semiconductor
JP2004288757A (en) Semiconductor light emitting element
JP3819713B2 (en) Semiconductor light emitting device
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
JP4458870B2 (en) Fluorescent light emitting device, fluorescent light emitting element, and phosphor
JP4503316B2 (en) Multicolor light emission method
JPH07249821A (en) Semiconductor light-emitting element
JP2004083359A (en) Epitaxial substrate and semiconductor laminated structure
JP4351600B2 (en) Semiconductor light emitting device
JP4107889B2 (en) Manufacturing method of semiconductor device
JP2006210962A (en) Gallium-nitride-based compound semiconductor light-emitting device
JP2008222760A (en) Semiconductor fluorescent substance
JP2009176759A (en) Gallium nitride compound semiconductor, light-emitting element, illuminating device, and method for producing gallium nitride compound semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090622