JP2004286728A - Aqueous composition, aqueous liquid and method for immobilizing physiologically active substance - Google Patents

Aqueous composition, aqueous liquid and method for immobilizing physiologically active substance Download PDF

Info

Publication number
JP2004286728A
JP2004286728A JP2003193383A JP2003193383A JP2004286728A JP 2004286728 A JP2004286728 A JP 2004286728A JP 2003193383 A JP2003193383 A JP 2003193383A JP 2003193383 A JP2003193383 A JP 2003193383A JP 2004286728 A JP2004286728 A JP 2004286728A
Authority
JP
Japan
Prior art keywords
active substance
physiologically active
aqueous composition
substrate
immobilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193383A
Other languages
Japanese (ja)
Inventor
Hideyuki Shimaoka
秀行 島岡
Kanehisa Yokoyama
兼久 横山
Hiroshi Sawai
博 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003193383A priority Critical patent/JP2004286728A/en
Publication of JP2004286728A publication Critical patent/JP2004286728A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous composition for enhancing immobilization efficiency when a physiologically active substance containing an amino group, especially oligonucleotide is immobilized on the surface of a solid-state substrate into which an aldehyde group is introduced, enhancing the reproducibility of a spot shape and a spot size and dissolving or dispersing the physiologically active substance. <P>SOLUTION: The aqueous composition is used in order to dissolve or disperse the physiologically active substance when a solution containing the physiologically activce substance is brought into contact with the solid-state substrate in order to immobilize the physiologically active substance on the solid-state substrate. The aqueous composition contains a surfactant and a water soluble polymer and the pH thereof is adjusted by a buffer salt. The aqueous composition is used not only to enhance the immobilization efficiency of DNA but also to stabilize the spot shape and the spot size when a DNA solution is applied to the substrate in a spotted state. Especially, the surface of the substrate is made hydrophobic and, even if the wetting properties with the substrate are low and the spot shape is unstable when a general aqueous composition is used, this aqueous composition is used to enable stable immobilization. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、核酸、タンパク質、糖鎖、糖タンパクなどの生理活性物質を固相基板上に固定する際に,生理活性物質を溶解または分散するために用いる水性組成物に関する。
【0002】
【従来の技術】
DNAなどの生理活性物質溶液を固相基板上に点着(スポット)して作製するバイオチップの使用が一般化する中、解析精度の高いバイオチップが求められている。バイオチップの解析精度は、スポットの形状・サイズの安定性、および、検出限界に左右される。スポットの形状・サイズにバラツキが多い場合、バイオチップから読み取ったシグナルを解析、数値化するさいに誤差を生じるため、正確な評価が不可能となる。また、検出限界が低い場合、検体(プローブDNA)量が少ない場合にシグナルの検出が不可能であったり、S/N比が低くなって正確な評価ができなくなる等の障害がある。検出限界の向上のためには、プローブDNA中にごく微量含まれる遺伝子配列等を正確に検知し、捕捉させる必要がある。そのためには、プローブDNAを捕捉するDNA(ターゲットDNA)を固相基板上に高密度に固定することが有効であり、効率の良い固定化手段が求められている。
【0003】
DNAの点着は通例、SSC(クエン酸―塩化ナトリウム標準緩衝液)、Tris−EDTA緩衝液、リン酸緩衝液などの緩衝液、生理的食塩水あるいは滅菌水などにDNAを溶解して行う。しかしながら、これらの溶液を用いた場合、基板と溶液との濡れ性、親和性が低い場合にはスポットの形状が乱れることがある。特に、基板が高分子物質からなる場合、時間の経過とともに表面の親水性官能基がバルク側へと反転し、基板表面が疎水化する場合がある。表面が疎水性であると、スポットする溶液が基板上に十分に残存せず、点着量が不足であったり、スポットの形状、サイズにばらつきが生じたりすることがある。
【0004】
スポットの形状・サイズの安定化の手段として、DNA溶液の粘度のコントロールが有効であるとされている(例えば、非特許文献1などを参照)。具体的には、DNA溶液に親水性ポリマーや、グリセリン、エチレングリコール、ジメチルスルホキシド等の不揮発性液体の添加が試みられ、スポットの形状の安定化に効果のあることが報告されている(特許文献1、特許文献2、特許文献3など)。しかしながら、上記のような手法では、ターゲットDNA固定化量の向上、すなわち、検出限界の向上は期待できない。さらに、基板の疎水性が高い場合、粘度のコントロールのみでは濡れ性の最適化が不可能な場合がある。
【0005】
ターゲットDNAの固相基板上への固定の方法には大別して、吸着による方法と共有結合を形成させる方法がある。吸着による方法は、ポリ―L―リジンやアミノシランで処理することで基板表面に正電荷を付与し、DNAのリン酸基との間に静電的な吸着を起こさせるものである。しかしながら、この方法では吸着したDNAの脱落が起こりやすいため、ハイブリダイズが効率的に起こらずDNAの検出が不可能であったり、検出強度にばらつきが生じたりする。
【0006】
そこで、DNAの固定には共有結合を形成させる方法が有効である。最も一般的な方法は、基板表面にアルデヒド基などの官能基を導入しておき、末端にアミノ基を導入したDNAを反応させる方法である。この反応は、中間体であるシッフ塩基の形成と、引き続いて起こる脱水反応による共有結合の形成である。このとき、アルデヒド基とアミノ基の反応性を高めることでDNAの固定化効率の向上が期待できる。
しかしながら、スポットの形状・サイズを安定に保ちつつ、アルデヒド基とアミノ基の反応性を高める手段はこれまでに無く、有効な解決法が求められている。
【0007】
【非特許文献1】「細胞工学別冊 DNAマイクロアレイと最新PCR法」秀潤社、2000年
【特許文献1】特開2001−128683号公報
【特許文献2】特開2001−186880号公報
【特許文献3】特許第3398366号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、アルデヒド基を導入した固相基板表面にアミノ基を含有する生理活性物質、特にオリゴヌクレオチドを固定する際、固定化効率を向上させ、かつ、スポット形状・サイズの再現性を向上させるため、該生理活性物質を溶解または分散させるための水性組成物を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、
(1)生理活性物質を固相基板上に固定化するために生理活性物質を含む溶液を固相基板上に接触させる際に、該生理活性物質を溶解または分散させるための水性組成物であって、界面活性剤および水溶性高分子を含み、かつ、緩衝塩によりpHが調整されていることを特徴とする水性組成物,
(2)pHが8〜12に調製されている(1)記載の水性組成物,
(3)水溶性高分子が平均分子量10000〜200000のポリビニルアルコールであり,その濃度が0.0001〜0.1重量%である(1)または(2)記載の水性組成物,
(4)界面活性剤がポリオキシエチレンソルビタンモノラウレートを含み,その濃度が0.0001〜0.1重量%である(1)〜(3)いずれか記載の水性組成物,
(5)粘度が0.1〜2mPa・sである(1)〜(4)いずれか記載の水性組成物,
(6)生理活性物質を(1)〜(5)いずれか記載の水性組成物で溶解又は分散したことを特徴とする水性液,
(7)生理活性物質がアミノ基を含有する(6)記載の水性液,
(8)生理活性物質がアミノ基を含有するポリヌクレオチドである(7)記載の水性液、
(9)生理活性物質を固相基板上に固定化する方法において、(1)〜(5)いずれか記載の水性組成物に該生理活性物質を溶解または分散させた水性液を固相基板上に接触させる工程を含むことを特徴とする生理活性物質の固定化方法,
(10)生理活性物質が核酸、タンパク質、糖鎖、糖タンパクのうち少なくとも一つを含む(9)記載の生理活性物質の固定化方法,
(11)生理活性物質が核酸である(9)記載の生理活性物質の固定化方法,
(12)生理活性物質が塩基数10〜200の核酸であり、その分子鎖にアミノ基が導入されている(11)記載の生理活性物質の固定化方法,
(13)固相基板が飽和環状ポリオレフィン樹脂製である(9)〜(12)いずれか記載の生理活性物質の固定化方法,
(14)固相基板表面と純水との接触角が60〜180度である(9)〜(13)いずれか記載の生理活性物質の固定化方法、
(15)固相基板の表面には予めアルデヒド基が導入されている(9)〜(14)いずれか記載の生理活性物質の固定化方法、
(16)生理活性物質がアミノ基を有し、生理活性物質の固相基板への固定化が,アルデヒド基とアミノ基の化学結合を介してなる(15)記載の生理活性物質の固定化方法、
である。
【0010】
【発明の実施の形態】
以下、本発明について詳細に説明する。
スポットの形状・サイズの安定化について記述する。バイオチップを作成する際には通例、SSC緩衝液、Tris−EDTA緩衝液、リン酸緩衝液などの緩衝液、あるいは蒸留水、生理的食塩水に生理活性物質を溶解して点着する。しかしながら、これらの溶液を用いた場合、基板と溶液の濡れ性、親和性が低い場合にはスポットの形状、サイズにバラツキの生じることがある。これを解決するためには、溶液に水溶性高分子などの添加物を加えて、基板と溶液の親和性の向上を図ることが有効である。さらに、水溶性高分子の添加量を変化させることにより、スポットした溶液の乾燥速度をコントロールすることが可能となる。スポットの乾燥速度が早すぎると、生理活性物質の固定化量にムラが発生する場合や、反応時間が不十分で固定化量が低くなる場合がある。
【0011】
本発明に用いる水溶性高分子としては、ポリビニルアルコール、ポリアクリル酸、ポリエチレングリコールに代表される合成高分子、セルロースおよびその誘導体、ゼラチン等に代表される天然高分子が挙げられるが、ポリビニルアルコールが特に好ましい。
水溶性高分子の添加量は、好ましくは0.0001〜10重量%、より好ましくは0.001〜1重量%であり、最も好ましくは0.001〜0.1重量%である。水溶性高分子の添加量が10重量%を超えると,粘度が高すぎて、溶液の取り扱い、スポット装置の洗浄などに支障を及ぼすため、好ましくない。逆に、0.0001重量%未満では、水溶性高分子の添加効果が現れないため,好ましくない。
【0012】
本発明の水性組成物において、溶液の取り扱い,スポット装置の洗浄などの操作に支障を及ぼさず,かつ,基板との親和性を向上させるために,最適の粘度範囲が存在する。すなわち,本発明の水性組成物の好ましい粘度は,0.1〜2mPa・sであり,より好ましくは0.5〜1.8mPa・sであり,さらに好ましくは0.8〜1.6mPa・sであり,最も好ましくは1〜1.2mPa・sである。
【0013】
水溶性高分子の平均分子量は、10000〜1000000が好ましく、10000〜500000がより好ましく、10000〜200000がさらに好ましく、50000〜150000が最も好ましい。
水溶性高分子以外の添加物には、グリセリン、エチレングリコール、ジメチルスルホキシド等があり、適宜用いることができる。
【0014】
以下、基板がプラスチック製の場合について記述する。高分子物質の表面近傍の分子鎖は自由度が比較的高く、外部の環境に応じて表面(界面)自由エネルギーを低下させる方向に表面性質が変化することがある。たとえば、高分子物質表面を水と接触させると、界面自由エネルギーを低下させようと、表面近傍の分子鎖中の親水性官能基は表面に向かって配向し、疎水鎖はバルク側に配向する傾向を示す。逆に、高分子表面が真空や空気に暴露された場合、表面自由エネルギーを低下させるため、親水性官能基はバルク側に潜り込み、表面は疎水化される傾向がある。
【0015】
基板の保存は通例、空気中あるいは減圧空気中あるいは真空中にて行われるため、上述のように基板表面は保存日数とともに疎水化する。このため、長期保存後の基板表面は基板作製時よりも疎水性となっており、安定なスポットが困難である場合が多い。これを解決するためには、スポットする溶液の界面張力を低下させることが有効である。すなわち、固定化すべき生理活性物質を含む溶液に界面活性剤を添加することにより、溶液と基板表面との濡れ性を高め、スポットの形状およびサイズを安定化する。
【0016】
本発明に用いる界面活性剤としては、一般的なものを用いることができ、アニオン性、カチオン性あるいはノニオン性であってもよいが、ノニオン性がより好ましい。また、界面活性剤は常温常圧で液状のものが好ましい。常温常圧で固体のものは、スポットが乾燥した際に凝集し、スポットが不均一となる場合がある。ノニオン性界面活性剤として、グリセリン脂肪酸エステル類、プロピレングリコール脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレンアルキルエーテル類、アルキルグリセリルエーテル類などを好適に用いることができるが、ポリオキシエチレンソルビタン脂肪酸エステル類がより好ましく、最も好ましくはポリオキシエチレンソルビタンモノラウレートである。
界面活性剤の添加量は0.00001〜10重量%が好ましく、0.0001〜1重量%がより好ましく、0.0001〜0.1重量%が最も好ましい。過剰量の界面活性剤の添加は生理活性物質の基板上への固定化を阻害することがあり、好ましくない。また、溶液と基板表面の濡れ性が高すぎてもスポット形状が安定しないため、適量の界面活性剤の添加が重要となる。逆に、界面活性剤添加量が過少であると、十分な濡れ性向上の効果が得られないため、好ましくない。
【0017】
固定化効率の向上について記述する。本発明にて用いるバイオチップ作成用の固相基板は、表面に化学的に活性なアルデヒド基を有するものであることが好ましい。固定化するDNAは、オリゴDNAであっても長鎖DNAであってもよく、分子鎖末端あるいは主鎖上にアルデヒド基と反応する官能基、特にアミノ基を有することが好ましい。基板の素材としてはプラスチックを用いることが好ましい。プラスチックは加工性、表面処理性に富むことから、バイオチップ用基板の材料として有用である。プラスチックとしては、自己蛍光が低く、耐熱性、耐薬品性に優れるものを用いることが好ましく、飽和環状ポリオレフィンなどを好適に利用可能である。
【0018】
基板への生理活性物質の固定化効率を向上させるためには、生理活性物質に含まれるアミノ基と、基板表面のアルデヒド基との反応性を高めることが有効である。アルデヒド基とアミノ基との反応は、中間体であるシッフ塩基の形成と、引き続いて起こる脱水反応による共有結合の形成である。この反応の最適pHは7以上であり、pHが高くなるほど反応性は大きくなる(Bioconjugate Techniques, Academic Press (1996)などを参照)。このため、スポットする生理活性物質溶液のpHを7以上に調整することにより固定化効率の向上が期待できる。溶液のpHとしては、好ましくは7以上、より好ましくは8〜12であり、9〜11が最も好ましい。pHおよび塩濃度の調整のために、各種塩類を適宜使用することができる。
【0019】
【実施例】
本発明を以下の実施例により具体的に説明する。
本発明を以下の実施例により具体的に説明する。
(DNA溶液の調整)
DNA溶液1; 5’末端にアミノ基を導入した鎖長24bpのオリゴDNAを0.2μg/μlの濃度で純水に溶解した。
DNA溶液2; ローダミン標識を施した鎖長24bpのオリゴDNA(溶液1のアミノ基導入オリゴDNAと相補的な配列を有するもの)を0.002μg/μlの濃度で所定の緩衝溶液に溶解した。
【0020】
(水性組成物の調整)
(実施例1)
0.2M炭酸水素ナトリウム水溶液と0.2M炭酸ナトリウム水溶液を1:9の配合で混合した。この溶液に、ポリビニルアルコール(平均重合度2000、ケン化度99.9%、和光純薬工業(株)製)を0.05重量%の濃度で溶解した。さらに、ポリオキシエチレンソルビタンモノラウレート(「TWEEN−20」、和光純薬工業(株)製)を0.005重量%の濃度で溶解した。この水性組成物の粘度を,JIS Z8803に記載の方法にしたがって測定したところ,1.1mPa・sであった。この水性組成物とDNA溶液1を等量混合し、DNAの最終濃度が0.1μg/μlである水性液を調整した。 水性液のpHは11であった。
【0021】
(比較例1)
0.2M炭酸水素ナトリウム水溶液と0.2M炭酸ナトリウム水溶液を1:9で混合した。この水性組成物とDNA溶液1を等量混合し、水性液を調整した。水性液のpHは11であった。
(比較例2)
純水にポリビニルアルコールを0.05重量%の濃度で溶解した。この水性組成物とDNA溶液1を等量混合し、水性液を調整した。水性液のpHは5であった。
(比較例3)
純水にポリオキシエチレンソルビタンモノラウレートを0.005重量%の濃度で溶解した。この水性組成物とDNA溶液1を等量混合し、水性液を調整した。水性液のpHは5であった。
(比較例4)
純水とDNA溶液1を等量混合し、水性液を調整した。水性液のpHは5であった。
(比較例5)
2倍濃度のSSC緩衝液(0.03Mクエン酸ナトリウム、0.3M塩化ナトリウム水溶液)とDNA溶液1を等量混合し、水性液を調整した。水性液のpHは7であった。
(比較例6)
市販のリン酸緩衝溶液(2倍濃度)とDNA溶液1を等量混合し、水性液を調整した。水性液のpHは7.4であった。
【0022】
(スポットおよびハイブリダイゼーション)
実施例1および比較例1〜6の方法で調整した水性液溶液を96穴プレートに分注し、マイクロピン式のマイクロアレイスポッターを用いて基板上に点着した。基板として、表面にアルデヒド基を導入したプラスチック製のものを用いた。基板はアルデヒド基導入処理後、30日経過したものを用いた。点着終了後、余分なアルデヒド基をブロッキングしたのち、基板表面とDNA溶液2を恒温で一定時間接触させることにより、固定化されたオリゴDNAとローダミン標識オリゴDNAをハイブリダイズさせた。洗浄ののち、マイクロアレイスキャナー「ScanArray Lite」(パッカードバイオチップテクノロジー社製)を用いてスポットの蛍光を検出した。スキャナーに付属の解析用ソフトウェア「QuantArray」を用いてスポットの蛍光量を数値化した結果を表1に示す。スキャンしたスポットの形状を示す画像を図1〜図7に示す。
【0023】
【表1】

Figure 2004286728
【0024】
【発明の効果】
本発明の水性組成物を用いることで、DNAの固定化効率の向上、および、DNA溶液を基板上に点着する際の形状・サイズの安定化が実現された。特に、基板表面が疎水化しており、一般的な水性組成物を用いた際に基板との濡れ性が低くスポット形状が安定しない場合においても、本発明の水性組成物の使用により安定した固定化が可能となった。
【図面の簡単な説明】
【図1】実施例1のスポットの形状を示す画像
【図2】比較例1のスポットの形状を示す画像
【図3】比較例2のスポットの形状を示す画像
【図4】比較例3のスポットの形状を示す画像
【図5】比較例4のスポットの形状を示す画像
【図6】比較例5のスポットの形状を示す画像
【図7】比較例6のスポットの形状を示す画像[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aqueous composition used for dissolving or dispersing a physiologically active substance when immobilizing the physiologically active substance such as a nucleic acid, a protein, a sugar chain, or a glycoprotein on a solid substrate.
[0002]
[Prior art]
With the general use of biochips prepared by spotting (potting) a solution of a physiologically active substance such as DNA on a solid-phase substrate, biochips with high analysis accuracy are required. The analysis accuracy of the biochip depends on the stability of the shape and size of the spot and the detection limit. If the shape and size of the spot vary widely, an error occurs when analyzing and digitizing the signal read from the biochip, so that accurate evaluation becomes impossible. In addition, when the detection limit is low, when the amount of the sample (probe DNA) is small, detection of a signal is impossible, and the S / N ratio is low, so that accurate evaluation cannot be performed. In order to improve the detection limit, it is necessary to accurately detect and capture a gene sequence or the like contained in a very small amount in the probe DNA. For this purpose, it is effective to immobilize DNA (target DNA) for capturing probe DNA at a high density on a solid-phase substrate, and efficient immobilization means is required.
[0003]
Usually, DNA is spotted by dissolving the DNA in a buffer such as SSC (citrate-sodium chloride standard buffer), Tris-EDTA buffer, phosphate buffer, or the like, physiological saline or sterilized water. However, when these solutions are used, when the wettability and affinity between the substrate and the solution are low, the spot shape may be disturbed. In particular, when the substrate is made of a polymer substance, the hydrophilic functional groups on the surface may be inverted to the bulk side with the passage of time, and the substrate surface may become hydrophobic. If the surface is hydrophobic, the solution to be spotted does not sufficiently remain on the substrate, and the spotted amount may be insufficient, or the shape and size of the spot may vary.
[0004]
It is considered that control of the viscosity of the DNA solution is effective as a means for stabilizing the shape and size of the spot (for example, see Non-Patent Document 1). Specifically, addition of a hydrophilic polymer or a non-volatile liquid such as glycerin, ethylene glycol, or dimethyl sulfoxide to a DNA solution has been attempted, and it has been reported that the solution is effective in stabilizing the spot shape (Patent Document 1, Patent Document 2, Patent Document 3, etc.). However, with the above-described method, an improvement in the amount of target DNA immobilized, that is, an improvement in the detection limit cannot be expected. Furthermore, when the hydrophobicity of the substrate is high, it may not be possible to optimize the wettability only by controlling the viscosity.
[0005]
The method of immobilizing the target DNA on the solid phase substrate is roughly classified into a method by adsorption and a method of forming a covalent bond. In the method by adsorption, a positive charge is imparted to the substrate surface by treating with poly-L-lysine or aminosilane, and electrostatic adsorption is caused between the substrate and the phosphate group of DNA. However, in this method, the adsorbed DNA tends to drop off, so that hybridization does not occur efficiently, so that detection of DNA is impossible or detection intensity varies.
[0006]
Therefore, a method of forming a covalent bond is effective for immobilizing DNA. The most common method is a method in which a functional group such as an aldehyde group is introduced into the surface of a substrate, and a DNA having an amino group introduced into the terminal is reacted. This reaction is the formation of an intermediate Schiff base and the subsequent formation of a covalent bond by a dehydration reaction. At this time, by improving the reactivity between the aldehyde group and the amino group, an improvement in the efficiency of immobilizing DNA can be expected.
However, there is no means for increasing the reactivity between the aldehyde group and the amino group while keeping the shape and size of the spot stable, and an effective solution is required.
[0007]
[Non-Patent Document 1] "Cell Engineering Separate Volume DNA Microarray and Latest PCR Method" Shujunsha, 2000 [Patent Document 1] JP-A-2001-128683 [Patent Document 2] JP-A-2001-186880 [Patent Document] 3] Japanese Patent No. 3398366
[Problems to be solved by the invention]
An object of the present invention is to improve the immobilization efficiency when immobilizing a physiologically active substance containing an amino group, particularly an oligonucleotide, on the surface of a solid-phase substrate into which an aldehyde group is introduced, and to improve the reproducibility of the spot shape and size. An object of the present invention is to provide an aqueous composition for dissolving or dispersing the physiologically active substance in order to improve the composition.
[0009]
[Means for Solving the Problems]
The present invention
(1) An aqueous composition for dissolving or dispersing a physiologically active substance when a solution containing the physiologically active substance is brought into contact with the solid phase substrate in order to immobilize the physiologically active substance on the solid phase substrate. An aqueous composition comprising a surfactant and a water-soluble polymer, wherein the pH is adjusted by a buffer salt;
(2) The aqueous composition according to (1), wherein the pH is adjusted to 8 to 12.
(3) The aqueous composition according to (1) or (2), wherein the water-soluble polymer is polyvinyl alcohol having an average molecular weight of 10,000 to 200,000, and the concentration thereof is 0.0001 to 0.1% by weight.
(4) The aqueous composition according to any one of (1) to (3), wherein the surfactant comprises polyoxyethylene sorbitan monolaurate, and the concentration thereof is 0.0001 to 0.1% by weight.
(5) The aqueous composition according to any one of (1) to (4), wherein the viscosity is 0.1 to 2 mPa · s.
(6) an aqueous liquid comprising a physiologically active substance dissolved or dispersed in the aqueous composition according to any one of (1) to (5),
(7) The aqueous liquid according to (6), wherein the physiologically active substance contains an amino group,
(8) The aqueous liquid according to (7), wherein the physiologically active substance is a polynucleotide containing an amino group.
(9) In the method of immobilizing a physiologically active substance on a solid phase substrate, an aqueous liquid obtained by dissolving or dispersing the physiologically active substance in the aqueous composition according to any one of (1) to (5) is applied to the solid phase substrate. A method for immobilizing a physiologically active substance, the method comprising:
(10) The method for immobilizing a physiologically active substance according to (9), wherein the physiologically active substance contains at least one of a nucleic acid, a protein, a sugar chain, and a glycoprotein.
(11) The method for immobilizing a physiologically active substance according to (9), wherein the physiologically active substance is a nucleic acid,
(12) The method for immobilizing a physiologically active substance according to (11), wherein the physiologically active substance is a nucleic acid having 10 to 200 bases and an amino group is introduced into its molecular chain.
(13) The method for immobilizing a physiologically active substance according to any one of (9) to (12), wherein the solid phase substrate is made of a saturated cyclic polyolefin resin,
(14) The method for immobilizing a physiologically active substance according to any one of (9) to (13), wherein the contact angle between the surface of the solid substrate and pure water is 60 to 180 degrees.
(15) The method for immobilizing a physiologically active substance according to any one of (9) to (14), wherein an aldehyde group is previously introduced on the surface of the solid substrate.
(16) The method for immobilizing a physiologically active substance according to (15), wherein the physiologically active substance has an amino group, and the immobilization of the physiologically active substance on the solid phase substrate is performed through a chemical bond between the aldehyde group and the amino group. ,
It is.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
Describe the stabilization of spot shape and size. When a biochip is prepared, a bioactive substance is usually dissolved in a buffer such as an SSC buffer, a Tris-EDTA buffer, a phosphate buffer or the like, or distilled water or a physiological saline to be spotted. However, when these solutions are used, when the wettability and affinity between the substrate and the solution are low, the shape and size of the spot may vary. In order to solve this, it is effective to add an additive such as a water-soluble polymer to the solution to improve the affinity between the substrate and the solution. Further, the drying rate of the spotted solution can be controlled by changing the amount of the water-soluble polymer added. If the drying speed of the spot is too fast, the immobilization amount of the physiologically active substance may be uneven, or the immobilization amount may be low due to insufficient reaction time.
[0011]
Examples of the water-soluble polymer used in the present invention include polyvinyl alcohol, polyacrylic acid, synthetic polymers represented by polyethylene glycol, cellulose and derivatives thereof, and natural polymers represented by gelatin. Particularly preferred.
The amount of the water-soluble polymer added is preferably 0.0001 to 10% by weight, more preferably 0.001 to 1% by weight, and most preferably 0.001 to 0.1% by weight. If the added amount of the water-soluble polymer exceeds 10% by weight, the viscosity is too high, which hinders handling of the solution, cleaning of the spot device, etc., which is not preferable. Conversely, if the amount is less than 0.0001% by weight, the effect of adding the water-soluble polymer is not exhibited, so that it is not preferable.
[0012]
The aqueous composition of the present invention has an optimum viscosity range so as not to hinder operations such as handling of a solution and cleaning of a spot device and to improve affinity with a substrate. That is, the preferred viscosity of the aqueous composition of the present invention is 0.1 to 2 mPa · s, more preferably 0.5 to 1.8 mPa · s, and still more preferably 0.8 to 1.6 mPa · s. And most preferably 1 to 1.2 mPa · s.
[0013]
The average molecular weight of the water-soluble polymer is preferably from 10,000 to 1,000,000, more preferably from 10,000 to 500,000, further preferably from 10,000 to 200,000, and most preferably from 50,000 to 150,000.
Additives other than the water-soluble polymer include glycerin, ethylene glycol, dimethyl sulfoxide and the like, and can be used as appropriate.
[0014]
Hereinafter, the case where the substrate is made of plastic will be described. The molecular chains in the vicinity of the surface of the polymer substance have relatively high degrees of freedom, and the surface properties may change in the direction of decreasing the surface (interface) free energy according to the external environment. For example, when the polymer material surface is brought into contact with water, hydrophilic functional groups in the molecular chains near the surface tend to be oriented toward the surface, and hydrophobic chains tend to be oriented toward the bulk, in order to reduce the interfacial free energy. Is shown. Conversely, when the surface of the polymer is exposed to vacuum or air, the surface free energy is reduced, so that the hydrophilic functional groups are sunk into the bulk side and the surface tends to be hydrophobic.
[0015]
Since the storage of the substrate is usually performed in air, reduced-pressure air, or vacuum, the surface of the substrate becomes hydrophobic with the storage days as described above. For this reason, the surface of the substrate after long-term storage is more hydrophobic than at the time of substrate production, and stable spots are often difficult to obtain. In order to solve this, it is effective to lower the interfacial tension of the solution to be spotted. That is, by adding a surfactant to a solution containing a physiologically active substance to be immobilized, the wettability between the solution and the substrate surface is increased, and the shape and size of the spot are stabilized.
[0016]
As the surfactant used in the present invention, a general surfactant can be used and may be anionic, cationic or nonionic, but nonionic is more preferable. The surfactant is preferably liquid at normal temperature and normal pressure. A solid that is solid at normal temperature and normal pressure may aggregate when the spot dries, causing the spot to be non-uniform. As the nonionic surfactant, glycerin fatty acid esters, propylene glycol fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl ethers, alkyl glyceryl ethers and the like can be preferably used. However, polyoxyethylene sorbitan fatty acid esters are more preferable, and polyoxyethylene sorbitan monolaurate is most preferable.
The addition amount of the surfactant is preferably 0.00001 to 10% by weight, more preferably 0.0001 to 1% by weight, and most preferably 0.0001 to 0.1% by weight. Addition of an excessive amount of a surfactant may hinder immobilization of a physiologically active substance on a substrate, which is not preferable. Also, even if the wettability between the solution and the substrate surface is too high, the spot shape is not stable, so it is important to add an appropriate amount of a surfactant. Conversely, if the amount of the surfactant is too small, it is not preferable because a sufficient effect of improving the wettability cannot be obtained.
[0017]
Describe the improvement of immobilization efficiency. The solid substrate for producing a biochip used in the present invention preferably has a chemically active aldehyde group on the surface. The DNA to be immobilized may be an oligo DNA or a long chain DNA, and preferably has a functional group that reacts with an aldehyde group, particularly an amino group, at the molecular chain end or on the main chain. It is preferable to use plastic as the material of the substrate. Plastic is useful as a material for a substrate for a biochip because it has excellent processability and surface treatment properties. As the plastic, those having low self-fluorescence and excellent heat resistance and chemical resistance are preferably used, and a saturated cyclic polyolefin or the like can be suitably used.
[0018]
In order to improve the efficiency of immobilizing a physiologically active substance on a substrate, it is effective to increase the reactivity between an amino group contained in the physiologically active substance and an aldehyde group on the substrate surface. The reaction between the aldehyde group and the amino group is the formation of an intermediate Schiff base and the subsequent formation of a covalent bond by a dehydration reaction. The optimum pH for this reaction is 7 or higher, and the higher the pH, the greater the reactivity (see Bioconjugate Technologies, Academic Press (1996), etc.). Therefore, by adjusting the pH of the physiologically active substance solution to be spotted to 7 or more, improvement in immobilization efficiency can be expected. The pH of the solution is preferably 7 or more, more preferably 8 to 12, and most preferably 9 to 11. For the adjustment of pH and salt concentration, various salts can be appropriately used.
[0019]
【Example】
The present invention will be specifically described by the following examples.
The present invention will be specifically described by the following examples.
(Preparation of DNA solution)
DNA solution 1: Oligo DNA having a chain length of 24 bp having an amino group introduced at the 5 ′ end was dissolved in pure water at a concentration of 0.2 μg / μl.
DNA solution 2: Rhodamine-labeled 24-bp oligo DNA (having a sequence complementary to the amino group-introduced oligo DNA of solution 1) was dissolved in a predetermined buffer solution at a concentration of 0.002 μg / μl.
[0020]
(Adjustment of aqueous composition)
(Example 1)
A 0.2M aqueous sodium hydrogen carbonate solution and a 0.2M aqueous sodium carbonate solution were mixed in a ratio of 1: 9. In this solution, polyvinyl alcohol (average degree of polymerization 2000, degree of saponification 99.9%, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved at a concentration of 0.05% by weight. Further, polyoxyethylene sorbitan monolaurate ("TWEEN-20", manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved at a concentration of 0.005% by weight. The viscosity of this aqueous composition was measured according to the method described in JIS Z8803 and was found to be 1.1 mPa · s. An equal amount of this aqueous composition and DNA solution 1 were mixed to prepare an aqueous liquid having a final DNA concentration of 0.1 μg / μl. The pH of the aqueous liquid was 11.
[0021]
(Comparative Example 1)
A 0.2M aqueous sodium hydrogen carbonate solution and a 0.2M aqueous sodium carbonate solution were mixed at a ratio of 1: 9. An equal amount of the aqueous composition and the DNA solution 1 were mixed to prepare an aqueous liquid. The pH of the aqueous liquid was 11.
(Comparative Example 2)
Polyvinyl alcohol was dissolved in pure water at a concentration of 0.05% by weight. An equal amount of the aqueous composition and the DNA solution 1 were mixed to prepare an aqueous liquid. The pH of the aqueous liquid was 5.
(Comparative Example 3)
Polyoxyethylene sorbitan monolaurate was dissolved in pure water at a concentration of 0.005% by weight. An equal amount of the aqueous composition and the DNA solution 1 were mixed to prepare an aqueous liquid. The pH of the aqueous liquid was 5.
(Comparative Example 4)
Equal amounts of pure water and DNA solution 1 were mixed to prepare an aqueous liquid. The pH of the aqueous liquid was 5.
(Comparative Example 5)
An equal volume of a 2 × concentration of SSC buffer (0.03 M sodium citrate, 0.3 M aqueous sodium chloride) and DNA solution 1 were mixed to prepare an aqueous liquid. The pH of the aqueous liquid was 7.
(Comparative Example 6)
An equal amount of a commercially available phosphate buffer solution (2 times concentration) and the DNA solution 1 were mixed to prepare an aqueous liquid. The pH of the aqueous liquid was 7.4.
[0022]
(Spot and hybridization)
The aqueous liquid solutions prepared by the methods of Example 1 and Comparative Examples 1 to 6 were dispensed into a 96-well plate, and spotted on the substrate using a micropin type microarray spotter. A plastic substrate having an aldehyde group introduced into the surface was used as the substrate. The substrate used was 30 days after the aldehyde group introduction treatment. After completion of the spotting, an excess aldehyde group was blocked, and then the immobilized oligo DNA and the rhodamine-labeled oligo DNA were hybridized by bringing the substrate surface into contact with the DNA solution 2 at a constant temperature for a certain period of time. After washing, spot fluorescence was detected using a microarray scanner “ScanArray Lite” (manufactured by Packard Biochip Technology). Table 1 shows the results of digitizing the amount of fluorescence of the spot using the analysis software “QuantArray” attached to the scanner. Images showing the shape of the scanned spot are shown in FIGS.
[0023]
[Table 1]
Figure 2004286728
[0024]
【The invention's effect】
By using the aqueous composition of the present invention, improvement in the immobilization efficiency of DNA and stabilization of the shape and size when spotting the DNA solution on the substrate were realized. In particular, even when the substrate surface is hydrophobized and the spot shape is not stable due to low wettability with the substrate when using a general aqueous composition, stable immobilization is achieved by using the aqueous composition of the present invention. Became possible.
[Brief description of the drawings]
FIG. 1 is an image showing the shape of a spot in Example 1. FIG. 2 is an image showing the shape of a spot in Comparative Example 1. FIG. 3 is an image showing the shape of a spot in Comparative Example 2. FIG. FIG. 5 is an image showing a spot shape of Comparative Example 4. FIG. 6 is an image showing a spot shape of Comparative Example 5. FIG. 7 is an image showing a spot shape of Comparative Example 6.

Claims (16)

生理活性物質を固相基板上に固定化するために生理活性物質を含む溶液を固相基板上に接触させる際に、該生理活性物質を溶解または分散させるための水性組成物であって、界面活性剤および水溶性高分子を含み、かつ、緩衝塩によりpHが調整されていることを特徴とする水性組成物。An aqueous composition for dissolving or dispersing the physiologically active substance when a solution containing the physiologically active substance is brought into contact with the solid phase substrate to immobilize the physiologically active substance on the solid phase substrate; An aqueous composition comprising an activator and a water-soluble polymer, wherein the pH is adjusted by a buffer salt. pHが8〜12に調製されている請求項1記載の水性組成物。The aqueous composition according to claim 1, wherein the pH is adjusted to 8 to 12. 水溶性高分子が平均分子量10000〜200000のポリビニルアルコールであり,その濃度が0.0001〜0.1重量%である請求項1または2記載の水性組成物。3. The aqueous composition according to claim 1, wherein the water-soluble polymer is polyvinyl alcohol having an average molecular weight of 10,000 to 200,000, and the concentration thereof is 0.0001 to 0.1% by weight. 界面活性剤がポリオキシエチレンソルビタンモノラウレートを含み,その濃度が0.0001〜0.1重量%である請求項1〜3いずれか記載の水性組成物。The aqueous composition according to any one of claims 1 to 3, wherein the surfactant comprises polyoxyethylene sorbitan monolaurate, and the concentration thereof is 0.0001 to 0.1% by weight. 粘度が0.1〜2mPa・sである請求項1〜4いずれか記載の水性組成物。The aqueous composition according to any one of claims 1 to 4, wherein the viscosity is 0.1 to 2 mPa · s. 生理活性物質を請求項1〜5いずれか記載の水性組成物で溶解又は分散したことを特徴とする水性液。An aqueous liquid comprising a physiologically active substance dissolved or dispersed in the aqueous composition according to any one of claims 1 to 5. 生理活性物質がアミノ基を含有する請求項6記載の水性液。The aqueous liquid according to claim 6, wherein the physiologically active substance contains an amino group. 生理活性物質がアミノ基を含有するポリヌクレオチドである請求項7記載の水性液。The aqueous liquid according to claim 7, wherein the physiologically active substance is a polynucleotide containing an amino group. 生理活性物質を固相基板上に固定化する方法において、請求項1〜5いずれか記載の水性組成物に該生理活性物質を溶解または分散させた水性液を固相基板上に接触させる工程を含むことを特徴とする生理活性物質の固定化方法。In the method for immobilizing a physiologically active substance on a solid phase substrate, a step of contacting an aqueous liquid obtained by dissolving or dispersing the physiologically active substance in the aqueous composition according to any one of claims 1 to 5 onto the solid phase substrate. A method for immobilizing a physiologically active substance, comprising: 生理活性物質が核酸、タンパク質、糖鎖、糖タンパクのうち少なくとも一つを含む請求項9記載の生理活性物質の固定化方法。10. The method for immobilizing a physiologically active substance according to claim 9, wherein the physiologically active substance includes at least one of a nucleic acid, a protein, a sugar chain, and a glycoprotein. 生理活性物質が核酸である請求項9記載の生理活性物質の固定化方法。The method for immobilizing a physiologically active substance according to claim 9, wherein the physiologically active substance is a nucleic acid. 生理活性物質が塩基数10〜200の核酸であり、その分子鎖にアミノ基が導入されている請求項11記載の生理活性物質の固定化方法。The method for immobilizing a physiologically active substance according to claim 11, wherein the physiologically active substance is a nucleic acid having 10 to 200 bases, and an amino group is introduced into its molecular chain. 固相基板が飽和環状ポリオレフィン樹脂製である請求項9〜12いずれか記載の生理活性物質の固定化方法。The method for immobilizing a physiologically active substance according to any one of claims 9 to 12, wherein the solid phase substrate is made of a saturated cyclic polyolefin resin. 固相基板表面と純水との接触角が60〜180度である請求項9〜13いずれか記載の生理活性物質の固定化方法。The method for immobilizing a physiologically active substance according to any one of claims 9 to 13, wherein the contact angle between the surface of the solid substrate and pure water is 60 to 180 degrees. 固相基板の表面には予めアルデヒド基が導入されている請求項9〜14いずれか記載の生理活性物質の固定化方法。The method for immobilizing a physiologically active substance according to any one of claims 9 to 14, wherein an aldehyde group is previously introduced into the surface of the solid substrate. 生理活性物質がアミノ基を有し、生理活性物質の固相基板への固定化が,アルデヒド基とアミノ基の化学結合を介してなる請求項15記載の生理活性物質の固定化方法。16. The method for immobilizing a physiologically active substance according to claim 15, wherein the physiologically active substance has an amino group, and the immobilization of the physiologically active substance on the solid phase substrate is performed through a chemical bond between an aldehyde group and an amino group.
JP2003193383A 2002-07-09 2003-07-08 Aqueous composition, aqueous liquid and method for immobilizing physiologically active substance Pending JP2004286728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193383A JP2004286728A (en) 2002-07-09 2003-07-08 Aqueous composition, aqueous liquid and method for immobilizing physiologically active substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002199352 2002-07-09
JP2003021441 2003-01-30
JP2003193383A JP2004286728A (en) 2002-07-09 2003-07-08 Aqueous composition, aqueous liquid and method for immobilizing physiologically active substance

Publications (1)

Publication Number Publication Date
JP2004286728A true JP2004286728A (en) 2004-10-14

Family

ID=33303629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193383A Pending JP2004286728A (en) 2002-07-09 2003-07-08 Aqueous composition, aqueous liquid and method for immobilizing physiologically active substance

Country Status (1)

Country Link
JP (1) JP2004286728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515138A (en) * 2005-07-07 2009-04-09 ザ ユニヴァーシティー オブ ニューカッスル Immobilization of biological molecules

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507475A (en) * 1990-11-09 1994-08-25 アボット・ラボラトリーズ Dilution buffer and its usage
JPH08506902A (en) * 1993-07-06 1996-07-23 デイド、インターナショナル、インコーポレイテッド Water-soluble polymers for use in immunoassays and DNA hybridization assays
WO2000034456A1 (en) * 1998-12-10 2000-06-15 Takara Shuzo Co., Ltd. Method for immobilizing dna on a carrier
JP2001158800A (en) * 1999-12-03 2001-06-12 Jsr Corp Avidin particle
JP2001186880A (en) * 1999-10-22 2001-07-10 Ngk Insulators Ltd Method for producing dna chip
JP2002060671A (en) * 2000-08-11 2002-02-26 Mitsubishi Chemicals Corp Novel coating resin plate
JP2002122610A (en) * 2000-08-09 2002-04-26 Fuji Photo Film Co Ltd Method of manufacturing micro array for dna analysis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507475A (en) * 1990-11-09 1994-08-25 アボット・ラボラトリーズ Dilution buffer and its usage
JPH08506902A (en) * 1993-07-06 1996-07-23 デイド、インターナショナル、インコーポレイテッド Water-soluble polymers for use in immunoassays and DNA hybridization assays
WO2000034456A1 (en) * 1998-12-10 2000-06-15 Takara Shuzo Co., Ltd. Method for immobilizing dna on a carrier
JP2001186880A (en) * 1999-10-22 2001-07-10 Ngk Insulators Ltd Method for producing dna chip
JP2001158800A (en) * 1999-12-03 2001-06-12 Jsr Corp Avidin particle
JP2002122610A (en) * 2000-08-09 2002-04-26 Fuji Photo Film Co Ltd Method of manufacturing micro array for dna analysis
JP3398366B2 (en) * 2000-08-09 2003-04-21 富士写真フイルム株式会社 Method for producing microarray for DNA analysis
JP2002060671A (en) * 2000-08-11 2002-02-26 Mitsubishi Chemicals Corp Novel coating resin plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515138A (en) * 2005-07-07 2009-04-09 ザ ユニヴァーシティー オブ ニューカッスル Immobilization of biological molecules
US8497106B2 (en) 2005-07-07 2013-07-30 The University Of Newcastle Immobilisation of biological molecules

Similar Documents

Publication Publication Date Title
KR102626963B1 (en) Protective surface coatings for flow cells
CN113348253B (en) Low binding vectors for improved solid phase DNA hybridization and amplification
US7101621B2 (en) Azlactone-functional hydrophilic coatings and hydrogels
US20030008413A1 (en) Methods of making and using substrate surfaces having covalently bound polyelectrolyte films
US20040018498A1 (en) Methods for producing ligand arrays
US20200149105A1 (en) Device preparation using condensed nucleic acid particles
WO2005090997A1 (en) Method of agitating solution
US7846656B2 (en) Composition for polymerizing immobilization of biological molecules and method for producing said composition
WO2004102194A9 (en) Support having selectively bonding substance fixed thereto
US20050100905A1 (en) Novel method for production of dna biochips and applications thereof
CN1203169C (en) Substrates for nucleic acid immobilization onto solid supports
JP2004286728A (en) Aqueous composition, aqueous liquid and method for immobilizing physiologically active substance
JP2004198402A (en) Microarray and its manufacturing method
JP2005233955A (en) Method for fixing biomolecules on solid substrate via non-covalent bond, and microarray manufactured by it
JP4811355B2 (en) Biodevice, manufacturing method thereof, and biosensor
JP4533122B2 (en) Probe carrier, probe medium for probe carrier production, and method for producing probe carrier
JP4534818B2 (en) Polymer compound for biomaterial and polymer solution using the same
JP2005505782A5 (en)
KR20210116208A (en) Flow Cells Containing Heteropolymers
JP5568873B2 (en) Biochip manufacturing method
TWI843766B (en) Low binding supports for improved solid-phase dna hybridization and amplification
CN104805509A (en) Carboxyl-modified gene chip substrate and preparation method thereof
JP2004258002A (en) Solution for immobilizing physiologically active substance
JP2022537851A (en) Binding of polymerase to conducting channels
JP2007163354A (en) Method for immobilizing physiologically active substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707