JP2004286052A - Vibration damping apparatus - Google Patents

Vibration damping apparatus Download PDF

Info

Publication number
JP2004286052A
JP2004286052A JP2003075783A JP2003075783A JP2004286052A JP 2004286052 A JP2004286052 A JP 2004286052A JP 2003075783 A JP2003075783 A JP 2003075783A JP 2003075783 A JP2003075783 A JP 2003075783A JP 2004286052 A JP2004286052 A JP 2004286052A
Authority
JP
Japan
Prior art keywords
horizontal
damping device
vertical
plate
vertical plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003075783A
Other languages
Japanese (ja)
Inventor
Mitsuru Kageyama
満 蔭山
Tsuyoshi Sano
剛志 佐野
Katsuhiko Umeki
克彦 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Japan Atomic Power Co Ltd
Original Assignee
Obayashi Corp
Japan Atomic Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Japan Atomic Power Co Ltd filed Critical Obayashi Corp
Priority to JP2003075783A priority Critical patent/JP2004286052A/en
Publication of JP2004286052A publication Critical patent/JP2004286052A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration damping apparatus which can satisfactorily suppress the response displacement of a structure caused by a strong earthquake in a limited seismic isolation space. <P>SOLUTION: The vibration damping apparatus (1) located between the ground and the structure (100) so as to constitute a seismic isolation system for isolatedly supporting the structure comprises outside disks (50, 51) which are fixed to the ground side so as to horizontally elongate and vertically have a required interval, and inside disks (52) alternately arranged so as to overlap with the outside disks arranged so as to horizontally elongate and vertically have a required interval, and inside cylindrical plates (55, 56) horizontally elongated. The vibration damping apparatus (1) further comprises a moving body (70) which can horizontally slide with respect to the ground side, and outside cylindrical plates (58) fixed to the structure side so as to vertically elongate and overlap with the inside cylindrical plates. Further, fluid having chemically stable viscosity is located between both of the disks and both of the cylindrical plates in order to apply shearing resistance to both of the disks and both of the cylindrical plates, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、粘性流体のせん断抵抗力を利用した、2次元ないしは3次元の自由度を有する減衰装置に関する。
【0002】
【従来の技術】
一般に、地震は、地盤に水平な2方向、及び地盤に鉛直な1方向の3次元の自由度において発生する。従って、柔らかいバネを建物等の基礎下部に設置して建物等の固有周期を長くし、地震に対する当該建物等の応答加速度を低減させれば、作用する慣性力は小さくなり、建物等の設計上有利になる。この際、建物等の応答変位は逆に大きくなるため、これを抑制する減衰装置が適用される。柔らかいバネと減衰装置とを合わせて免震装置と称されている。
【0003】
中小地震に対しては、建物等に作用する慣性力が小さいため、金属間の摩擦抵抗等を利用した軽微な減衰装置でも、当該建物等の応答変位に対する抑制機能は十分である(例えば、特許文献1参照。)。一方、大地震に対しては、対向する基板面の間に粘性流体を介在させて、この粘性流体の大きなせん断抵抗力によって当該建物等の応答変位を抑制させる方法が効果的である。
【0004】
上記のような粘性流体のせん断抵抗力を利用した従来の免震方法では、地盤に対して水平方向の免震と鉛直方向の免震とに対して別々の免震装置が対応していた。水平免震においては、1枚の抵抗板が、粘性流体で充填された粘性流体容器の底面と対向する構成が用いられ、鉛直免震においては、軟塑性体ダンパや鉛押出し型ダンパといった、ピストンとシリンダとから構成されるダンパが用いられていた。
【0005】
【特許文献1】
特開2001−50336号公報
【0006】
【発明が解決しようとする課題】
しかしながら、大地震に対応する場合、上記の1枚の抵抗板と粘性流体容器の底面との間の単層の粘性流体に発生するせん断抵抗力のみでは、減衰装置の設置面積当たりの減衰効率が低いという問題点があった。また、ピストン・シリンダ型ダンパの鉛直減衰装置は1基あたりの減衰力が小さいために、大地震に対応するためには多数の減衰装置を配設しなければならない。しかし、免震層の限られた空間内には十分な数の減衰装置を配設できないという問題点もある。
本発明はかかる課題に鑑みてなされたものであり、その目的とするところは、限られた免震空間において、大地震による構造物の応答変位を十分に抑制できる減衰装置を提供することにある。
【0007】
【課題を解決するための手段】
そこで、本発明は、地盤と構造物との間に介在され構造物を免震支持する免震装置を構成する減衰装置であって、前記地盤側に固定されて水平方向に延在し鉛直方向に所定間隔をおいて設けられた複数の第1水平板状部材と、前記構造物側に固定されて水平方向に延在し鉛直方向に所定間隔をおいて設けられ前記第1水平板状部材と重なった状態で交互に配置された複数の第2水平板状部材とを備え、第1水平板状部材と第2水平板状部材との間にせん断抵抗力を作用するための化学的に安定した粘性を有する流体を前記第1水平板状部材と前記第2水平板状部材との間隙に介在してなることを特徴とする。
【0008】
このような減衰装置によれば、前記地盤が水平方向に振動すると、前記複数の第1水平板状部材に対して前記複数の第2水平板状部材が相互に面方向に沿って振動し、当該両水平板状部材の間隙に介在し複数層をなす前記流体にせん断抵抗力が発生する。当該せん断抵抗力は、当該振動によって前記構造物に作用する慣性力を相殺する向きに作用するために、当該構造物の応答変位を抑制することができる。ここで、当該せん断抵抗力は、当該流体の当該複数層分だけ足し合わされてなるため、当該両水平板状部材の数を鉛直方向に増やして当該流体の層数を増やせば、限られた設置面積における水平減衰効果を高めることができる。
【0009】
また、本発明は、地盤と構造物との間に介在され構造物を免震支持する免震装置を構成する減衰装置であって、前記地盤側に固定されて鉛直方向に延在する第1鉛直板状部材と、前記構造物側に固定されて鉛直方向に延在し前記第1鉛直板状部材と重なった状態で配置された第2鉛直板状部材とを備え、第1鉛直板状部材と第2鉛直板状部材との間にせん断抵抗力を作用するための化学的に安定した粘性を有する流体を前記第1鉛直板状部材と前記第2鉛直板状部材との間隙に介在してなることを特徴とする。
【0010】
このような減衰装置によれば、前記地盤が鉛直方向に振動すると、前記第1鉛直板状部材に対して前記第2鉛直板状部材が相互に面方向に沿って振動し、当該両鉛直板状部材の間隙に介在する前記流体にせん断抵抗力が発生する。当該せん断抵抗力は、当該振動によって前記構造物に作用する慣性力を相殺する向きに作用するために、当該構造物の応答変位を抑制することができる。ここで、当該せん断抵抗力は、当該両鉛直板状部材の間隙に介在する前記流体の層数だけ足し合わされてなるため、当該両鉛直板状部材の数を水平方向に増やして当該流体の層数を増やせば、限られた設置高さにおける鉛直減衰効果を高めることができる。
【0011】
また、本発明は、地盤と構造物との間に介在され構造物を免震支持する免震装置を構成する減衰装置であって、前記地盤側に固定されて水平方向に延在し鉛直方向に所定間隔をおいて設けられた複数の第1水平板状部材と、水平方向に延在し鉛直方向に所定間隔をおいて設けられ前記第1水平板状部材と重なった状態で交互に配置された複数の第2水平板状部材、及び鉛直方向に延在する第1鉛直板状部材を有し、前記地盤側に対して水平方向に摺動可能な移動体と、前記構造物側に固定されて鉛直方向に延在し前記第1鉛直板状部材と重なった状態で配置された第2鉛直板状部材とを備え、第1水平板状部材と第2水平板状部材との間、及び第1鉛直板状部材と第2鉛直板状部材との間にせん断抵抗力をそれぞれ作用するための化学的に安定した粘性を有する流体を前記第1水平板状部材と前記第2水平板状部材との間隙、及び前記第1鉛直板状部材と前記第2鉛直板状部材との間隙にそれぞれ介在してなることを特徴とする。
このような減衰装置によれば、1基で3次元の応答変位に対する減衰ができる。
【0012】
また、前記地盤側に固定され上方が開口し、内部に前記第1水平板状部材又は前記第1鉛直板状部材が配置された第1筒状体と、前記構造物側において下方が開口し水平方向及び鉛直方向に適宜間隔を隔てて前記第1筒状体の外周面を囲繞する第2筒状体とを備え、前記第1筒状体の外周部と前記第2筒状体の内周部とは、前記両筒状体の内部が連通しつつ気密となるようにシート部材によって連結されてなる空気バネと組み合わせられてもよい。
こうして、前記第1筒状体と第2筒状体と前記シート部材とで画成される空気が3次元的な弾性を帯びた空気バネとなり、当該空気バネは3次元免震の主要な機構を担う。
【0013】
また、前記移動体は、前記地盤側に対して鋼球を介在してなってもよい。
このような減衰装置によれば、前記移動体と前記地盤側とに対する前記鋼球のころがり摩擦力が、地震によって前記構造物に作用する慣性力を相殺する向きに作用し、当該構造物の応答変位を抑制することができる。
【0014】
【発明の実施の形態】
===減衰装置の構成===
本実施の形態における減衰装置の構成について説明する。
減衰装置1の模式的な断面図を図1に示す。地盤上には、金属製の下部基礎板10と上部基礎板20とが対向するように配置され、それぞれに対して金属製で円筒形状をなす内筒30(第1筒状体)と外筒40(第2筒状体)とが嵌合するように鉛直方向に接合されている。即ち、水平方向及び鉛直方向に、図1に示されるような適宜間隔を隔てて、同軸に、外筒40が内筒30を囲繞している。
【0015】
内筒30の底面及び下部内周面は、それぞれ金属板31、32が張られている。中央部が穿孔された金属製の外側円盤50、51(第1水平板状部材)が、鉛直方向に等間隔で延在するように、金属板32の内周面に接合されている。本実施の形態においては、図1に示されるように、6個の外側円盤51は同じ厚さを有するが、最下部に延在する外側円盤50はこれらよりも厚い。
【0016】
外側円盤50、51の形成する6個の間隙に、6個の金属製の内側円盤52(第2水平板状部材)がそれぞれ挿入されるように、中央の金属製の支柱53に接合されている。支柱53は金属製の底面部54に接合して支持され、この底面部54は鋼球60を介して金属板31の表面に、水平方向に摺動自在に支持されている。さらに、底面部54の外周部上面は、外側円盤50の穿孔部の外周部下面に対して、鋼球60を介して、水平方向に摺動自在に保持されている。鋼球60の表面が底面部54下面全体及び底面部54外周部上面と常に当接するように、底面部54下面及び底面部54外周部上面には不図示の鋼球ホルダが設けられている。
【0017】
支柱53の上端部には、内側円筒板55を側面とする金属製の有底円筒体が接合されている。この内側では、同軸且つ等間隔に、底面から上部に向かって、3個の金属製の内側円筒板56(第1鉛直板状部材)が延在している。内側円筒板55の上部外周面は、これを囲繞し上部基礎板20の下面に接合された外側円筒板57に対して、鋼球60を介して保持されている。これにより、外側円筒板57は、内側円筒板55に対して、鉛直方向に摺動自在となっている。鋼球60の表面が内側円筒板55の外周面及び外側円筒板57の内周面に常に当接するように、内側円筒板55外周面には不図示の鋼球ホルダが設けられている。また、内側円筒板55、56の形成する3個の間隙に、3個の外側円筒板58(第2鉛直板状部材)がそれぞれ挿入されるように、上部基礎板20の中央部下面に接合されて延在している。図1に示されるように、3個の内側円筒板56は同じ厚さを有するが、最外郭の内側円筒板55はこれらよりも厚い。また、3個の外側円筒板58は同じ厚さを有するが、最外郭の外側円筒板57はこれらよりも厚い。
【0018】
以上から、下部基礎板10には内筒30を介して外側円盤50、51が固定されている。一方、内側円盤52、支柱53、底面部54、及び内側円筒板55、56が一体となって移動体70をなす。また、上部基礎板20の中央部には、外側円筒板57、58が固定されている。移動体70は、その内側円盤52と下部基礎板10の外側円盤50、51とを係合させて、下部基礎板10上を水平方向に摺動自在である。また、上部基礎板20は、その外側円筒板57、58と移動体70の内側円筒板56とを係合させて、鉛直方向に摺動自在である。
【0019】
本実施の形態においては、金属板31、32で画成される領域、及び内側円筒板55で画成される領域の内部は、化学的に安定に存在するブタン系の化合物からなる粘性流体80でそれぞれ充たされている。これにより、相互に重なり合う外側円盤50、51の穿孔部の外周面と内側円盤52の外周面との間隙に粘性流体80が介在する。また、相互に重なり合う内側円筒板55、56の上部と外側円筒板58の下部との間隙に粘性流体80が介在する。本実施の形態においては、外側円盤50、51と内側円盤52との鉛直方向における間隔はおよそ20mmであり、内側円筒板55、56と外側円筒板58との水平方向における間隔もおよそ20mmである。これらの間隔は、粘性流体80の所定のせん断抵抗力を得るために設定される値である。粘性流体80がシリコン系化合物からなる場合は、シリコン系化合物の粘性がブタン系化合物の粘性よりも低いために、所定のせん断抵抗力を得るためには、上記の間隙を20mmよりも狭くする。
【0020】
本実施の形態の減衰装置1には3次元空気バネ90が組み合わされる。即ち、可撓性のローリングシート部材91(シート部材)が、内筒30の開口端部外周と外筒40の底面部内周とにそれぞれ連結されて、内筒30と外筒40との水平方向間隙に垂れ下がるように折り返されて配置されている。これにより、内筒30、外筒40、及びローリングシート部材91で画成される空間には空気が気密封入され、空気室92が形成される。
【0021】
上記の減衰装置1を3次元空気バネと組み合わせて32個、地盤に配置して、構造物100を免震する実施の形態を図2に示す。図2は、減衰装置1の平面図を示す。略長方形の構造物100の下面に32個の減衰装置1を略均一に配置して支持している。但し、構造物100の底面の長手方向中央部において減衰装置1どうしの間隙をより広くして、これを減衰装置1のメンテナンス用空間101としている。また、構造物100の下面の外周部には、合計28個の油圧式ロッキング防止装置110を略等間隔に配置している。
【0022】
===減衰装置の動作===
本実施の形態における減衰装置1の動作について説明する。
地震によって、地盤が、水平な2方向、及び鉛直な1方向の3次元の自由度において振動すると、免震されていない構造物100には、地盤の変位する向きとは逆向きに慣性力が直接作用し、この慣性力が構造物100の倒壊をもたらす。
【0023】
本実施の形態においては、水平方向では、地震による慣性力は減衰装置1の移動体70にも同様に作用する。この時、下部基礎板10の外側円盤50、51の穿孔部の外周面と移動体70の内側円盤52の外周面とが互いに逆向きに変位し、これらの面に挟まれた粘性流体80にせん断抵抗力が発生する。このせん断抵抗力は、上記の変位を相殺する向きに発生するため、せん断抵抗力は移動体70に作用する慣性力を相殺する向きに作用することになる。従って、地盤の水平方向の振動に連動した移動体70の振動は減衰する。水平方向においては、上部基礎板20は移動体70に対して固定されているため、移動体70の水平変位が減衰されれば、構造物100の水平変位も減衰される。
【0024】
本実施の形態の減衰装置1は、水平方向において、上記のせん断抵抗力が発生する粘性流体80の層を12層有するため、1層の粘性流体を有するだけの従来の水平減衰装置に比べて、限られた免震空間において、およそ12倍の減衰効果を有する。
【0025】
また、この底面部54と金属板31の表面との間隙、及び底面部54の外周部上面と外側円盤50の穿孔部の外周部下面との間隙には、粘性流体80のせん断抵抗力に加えて、それぞれの面に当接する鋼球60のころがり摩擦が発生し、これも、移動体70に対して、地震による慣性力を相殺する向きに作用する。従って、構造物100の水平変位は減衰される。
【0026】
移動体70の水平方向の変位と、移動体70に作用する水平方向の慣性力との関係はヒステリシスループをなし、このループを図3に示す。本実施の形態をモデル化した理論的な計算により得たループ(計算値)と、本実施の形態により実験的に得たループ(実測値)とはよく一致し、滑らかな楕円形のループをなすことがわかった。一般に、このような滑らかな楕円形状は、穏やかな免震に対応することがわかっている。従って、粘性流体80のせん断抵抗力を利用する免震は、穏やかな免震であることがわかった。一方、例えば一般の固体間の摩擦力を利用して免震する場合のヒステリシスループは略長方形をなすことがわかっている。このような略長方形のループ上をたどる場合、例えば同一変位において、ある慣性力を受ける状態から、これと大きさが略等しく向きが逆である慣性力を受ける状態に急激に遷移し得るために、緩やかな免震が期待できなくなることがわかっている。
【0027】
鉛直方向の慣性力が減衰装置1の上部基礎板20に作用する時、上部基礎板20の外側円筒板58の下部と移動体70の内側円筒板55、56の上部とが互いに逆向きに変位し、これらの面に挟まれた粘性流体80にせん断抵抗力が発生する。このせん断抵抗力は、上記の変位を相殺する向きに発生するため、せん断抵抗力は上部基礎板20に作用する慣性力を相殺する向きに作用することになる。従って、地盤の鉛直方向の振動に連動した上部基礎板20の振動は減衰する。従って、構造物100の鉛直変位は減衰される。
【0028】
また、この内側円筒板55の外周面と外側円筒板57の内周面との間隙には、粘性流体80のせん断抵抗力に加えて、それぞれの面に当接する鋼球60のころがり摩擦が発生し、これも、上部基礎板20に対して、地震による慣性力を相殺する向きに作用する。従って、構造物100の鉛直変位は減衰される。
【0029】
本実施の形態の減衰装置1は、鉛直方向において、上記のせん断抵抗力が発生する粘性流体80の層を6層有するため、軟塑性体ダンパや鉛押出し型ダンパといった、ピストンとシリンダとから構成されるダンパが用いられていた従来の鉛直減衰装置に比べて、限られた免震空間において、格別に高い減衰効果を有する。
【0030】
本実施の形態の減衰装置1は、粘性流体80のせん断抵抗力を利用した水平減衰及び鉛直減衰を同時に行うことができるために、これらを別々の装置で行っていた従来の減衰装置に比べて、限られた免震空間において、格別に高い減衰効果を有する。
【0031】
また、空気室92に封じられた空気は、地盤に水平な2方向、及び地盤に鉛直な1方向の3次元の自由度において低剛性による弾性を有する、構造物100に対する主要な免震機構を担う。
【0032】
【発明の効果】
本発明の減衰装置によれば、限られた免震空間において、大地震による構造物の応答変位を十分に抑制できる。
【図面の簡単な説明】
【図1】本実施の形態における減衰装置の鉛直方向に沿った断面図である。
【図2】本実施の形態における減衰装置の平面図である。
【図3】本実施の形態における減衰装置の水平方向の変位に対する、水平方向の慣性力を対応させたグラフである。
【符号の説明】
1 減衰装置
30 内筒
40 外筒
50、51 外側円盤
52 内側円盤
55、56 内側円筒板
57、58 外側円筒板
60 鋼球
80 粘性流体
90 3次元空気バネ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a damping device having two-dimensional or three-dimensional degrees of freedom utilizing the shear resistance of a viscous fluid.
[0002]
[Prior art]
Generally, earthquakes occur in three directions of freedom in two directions horizontal to the ground and one direction perpendicular to the ground. Therefore, if a natural spring of a building or the like is lengthened by installing a soft spring below the foundation of the building or the like and the response acceleration of the building or the like to an earthquake is reduced, the inertia force acting on the building becomes small, and the design of the building or the like is reduced. It will be advantageous. At this time, since the response displacement of the building or the like becomes large on the contrary, a damping device for suppressing the displacement is applied. The combination of a soft spring and a damping device is called a seismic isolation device.
[0003]
For small and medium-sized earthquakes, the inertial force acting on buildings and the like is small, so even a small damping device using frictional resistance between metals, etc., can sufficiently suppress the response displacement of the buildings and the like (for example, see Patent Reference 1). On the other hand, for a large earthquake, a method of interposing a viscous fluid between the opposing substrate surfaces and suppressing a response displacement of the building or the like by a large shear resistance force of the viscous fluid is effective.
[0004]
In the conventional seismic isolation method using the shear resistance of a viscous fluid as described above, separate seismic isolation devices are used for horizontal seismic isolation and vertical seismic isolation for the ground. In horizontal seismic isolation, a structure is used in which one resistance plate faces the bottom surface of a viscous fluid container filled with a viscous fluid. In vertical seismic isolation, a piston such as a soft plastic damper or a lead extrusion type damper is used. And a cylinder.
[0005]
[Patent Document 1]
JP 2001-50336 A
[Problems to be solved by the invention]
However, when dealing with a large earthquake, the damping efficiency per installation area of the damping device is reduced only by the shear resistance generated in the single-layer viscous fluid between the above-mentioned one resistance plate and the bottom surface of the viscous fluid container. There was a problem that it was low. Also, since the vertical damping device of the piston / cylinder type damper has a small damping force per unit, a large number of damping devices must be provided to cope with a large earthquake. However, there is a problem that a sufficient number of damping devices cannot be installed in the limited space of the seismic isolation layer.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a damping device capable of sufficiently suppressing a response displacement of a structure due to a large earthquake in a limited seismic isolation space. .
[0007]
[Means for Solving the Problems]
Therefore, the present invention provides a damping device that constitutes a seismic isolation device that is interposed between the ground and a structure to seismically support the structure, and is fixed to the ground side and extends horizontally to extend vertically. A plurality of first horizontal plate-shaped members provided at predetermined intervals, and the first horizontal plate-shaped members fixed to the structure side and extending in the horizontal direction and provided at predetermined intervals in the vertical direction A plurality of second horizontal plate-like members alternately arranged in a state of being overlapped with each other, and chemically acting to exert a shear resistance between the first horizontal plate-like member and the second horizontal plate-like member. A fluid having a stable viscosity is interposed in a gap between the first horizontal plate-shaped member and the second horizontal plate-shaped member.
[0008]
According to such a damping device, when the ground vibrates in the horizontal direction, the plurality of second horizontal plate members vibrate along the plane direction with respect to the plurality of first horizontal plate members, A shear resistance force is generated in the plurality of layers of the fluid interposed in the gap between the horizontal plate members. The shear resistance acts in a direction to cancel the inertial force acting on the structure due to the vibration, so that the response displacement of the structure can be suppressed. Here, since the shear resistance is added by the plurality of layers of the fluid, if the number of the two horizontal plate members is increased in the vertical direction to increase the number of layers of the fluid, a limited installation is possible. The horizontal damping effect in the area can be increased.
[0009]
Further, the present invention is a damping device constituting a seismic isolation device which is interposed between the ground and a structure to seismically support the structure, the first damping device being fixed to the ground side and extending in a vertical direction. A first vertical plate-like member comprising: a vertical plate-like member; and a second vertical plate-like member fixed to the structure side, extending in the vertical direction, and arranged so as to overlap the first vertical plate-like member. A fluid having a chemically stable viscosity for exerting a shear resistance force between the member and the second vertical plate member is interposed in a gap between the first vertical plate member and the second vertical plate member. It is characterized by becoming.
[0010]
According to such a damping device, when the ground vibrates in the vertical direction, the second vertical plate-like members vibrate in the plane direction with respect to the first vertical plate-like member, and the two vertical plates vibrate. A shear resistance force is generated in the fluid interposed in the gap between the members. The shear resistance acts in a direction to cancel the inertial force acting on the structure due to the vibration, so that the response displacement of the structure can be suppressed. Here, since the shear resistance is added by the number of layers of the fluid interposed in the gap between the two vertical plate members, the number of the two vertical plate members is increased in the horizontal direction to increase the layer of the fluid. Increasing the number can increase the vertical damping effect at a limited installation height.
[0011]
Further, the present invention is a damping device that constitutes a seismic isolation device that is interposed between the ground and a structure to seismically support the structure, the damping device being fixed to the ground side and extending in a horizontal direction and extending in a vertical direction. A plurality of first horizontal plate-shaped members provided at predetermined intervals, and alternately arranged in a state of extending horizontally and provided at predetermined intervals in the vertical direction and overlapping with the first horizontal plate-shaped members. A plurality of second horizontal plate-shaped members, and a first vertical plate-shaped member extending in a vertical direction, and a movable body slidable in the horizontal direction with respect to the ground side; A second vertical plate-shaped member fixed and extending in the vertical direction and arranged so as to overlap with the first vertical plate-shaped member, wherein a second vertical plate-shaped member is provided between the first horizontal plate-shaped member and the second horizontal plate-shaped member. , And a chemically safe material for applying a shear resistance force between the first vertical plate member and the second vertical plate member. The fluid having the viscosity is interposed in the gap between the first horizontal plate member and the second horizontal plate member and in the gap between the first vertical plate member and the second vertical plate member, respectively. It is characterized by the following.
According to such a damping device, a single device can attenuate a three-dimensional response displacement.
[0012]
In addition, a first cylindrical body fixed to the ground side and opening upward, the first horizontal plate-like member or the first vertical plate-like member is disposed inside, and a lower part opening on the structure side. A second tubular body surrounding an outer peripheral surface of the first tubular body at appropriate intervals in a horizontal direction and a vertical direction, and an outer peripheral portion of the first tubular body and an inner portion of the second tubular body. The peripheral portion may be combined with an air spring connected by a sheet member so that the insides of the two tubular bodies communicate with each other and become airtight.
Thus, the air defined by the first cylindrical body, the second cylindrical body, and the sheet member becomes an air spring having three-dimensional elasticity, and the air spring is a main mechanism of three-dimensional seismic isolation. Carry.
[0013]
Further, the moving body may have a steel ball interposed on the ground side.
According to such a damping device, the rolling frictional force of the steel ball against the moving body and the ground side acts in a direction to cancel the inertial force acting on the structure due to the earthquake, and the response of the structure Displacement can be suppressed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
=== Configuration of damping device ===
The configuration of the damping device according to the present embodiment will be described.
FIG. 1 shows a schematic sectional view of the damping device 1. A metal lower base plate 10 and an upper base plate 20 are arranged on the ground so as to face each other, and an inner cylinder 30 (first cylindrical body) and an outer cylinder each made of metal and having a cylindrical shape. 40 (the second cylindrical body) is joined in the vertical direction so as to fit. That is, the outer cylinder 40 surrounds the inner cylinder 30 coaxially in the horizontal and vertical directions at appropriate intervals as shown in FIG.
[0015]
Metal plates 31 and 32 are provided on the bottom surface and the lower inner peripheral surface of the inner cylinder 30, respectively. Metal outer disks 50 and 51 (first horizontal plate-like members) having a central portion perforated are joined to the inner peripheral surface of the metal plate 32 so as to extend at equal intervals in the vertical direction. In the present embodiment, as shown in FIG. 1, the six outer disks 51 have the same thickness, but the outer disk 50 extending to the lowermost portion is thicker.
[0016]
The inner disks 52 (second horizontal plate-shaped members) are joined to the central metal column 53 so that the six inner disks 52 (second horizontal plate members) are inserted into the six gaps formed by the outer disks 50 and 51, respectively. I have. The column 53 is supported by being joined to a metal bottom portion 54, and the bottom portion 54 is slidably supported in the horizontal direction on the surface of the metal plate 31 via a steel ball 60. Further, the upper surface of the outer peripheral portion of the bottom portion 54 is slidably held in the horizontal direction via the steel ball 60 with respect to the lower surface of the outer peripheral portion of the perforated portion of the outer disk 50. A steel ball holder (not shown) is provided on the lower surface of the bottom portion 54 and the upper surface of the outer peripheral portion so that the surface of the steel ball 60 always contacts the entire lower surface of the bottom portion 54 and the upper surface of the outer peripheral portion.
[0017]
At the upper end of the column 53, a metal bottomed cylinder having the inner cylindrical plate 55 as a side surface is joined. Inside this, three metal inner cylindrical plates 56 (first vertical plate-like members) extend coaxially and at equal intervals from the bottom to the top. The upper outer peripheral surface of the inner cylindrical plate 55 is held via steel balls 60 with respect to the outer cylindrical plate 57 surrounding the inner cylindrical plate 55 and joined to the lower surface of the upper base plate 20. Thereby, the outer cylindrical plate 57 is slidable in the vertical direction with respect to the inner cylindrical plate 55. A steel ball holder (not shown) is provided on the outer peripheral surface of the inner cylindrical plate 55 so that the surface of the steel ball 60 always contacts the outer peripheral surface of the inner cylindrical plate 55 and the inner peripheral surface of the outer cylindrical plate 57. Also, the three outer cylindrical plates 58 (second vertical plate-like members) are respectively inserted into the three gaps formed by the inner cylindrical plates 55 and 56 and joined to the lower surface of the central portion of the upper base plate 20. Has been extended. As shown in FIG. 1, the three inner cylindrical plates 56 have the same thickness, but the outermost inner cylindrical plate 55 is thicker. Also, the three outer cylindrical plates 58 have the same thickness, but the outermost outer cylindrical plate 57 is thicker.
[0018]
As described above, the outer disks 50 and 51 are fixed to the lower base plate 10 via the inner cylinder 30. On the other hand, the inner disk 52, the support 53, the bottom surface 54, and the inner cylindrical plates 55 and 56 form a moving body 70 integrally. Outer cylindrical plates 57 and 58 are fixed to the center of the upper base plate 20. The moving body 70 is slidable in the horizontal direction on the lower base plate 10 by engaging its inner disk 52 with the outer disks 50 and 51 of the lower base plate 10. The upper base plate 20 is slidable in the vertical direction by engaging its outer cylindrical plates 57, 58 with the inner cylindrical plate 56 of the moving body 70.
[0019]
In the present embodiment, the region defined by the metal plates 31 and 32 and the region defined by the inner cylindrical plate 55 have a viscous fluid 80 made of a chemically stable butane-based compound. Each is filled with. As a result, the viscous fluid 80 is interposed in the gap between the outer peripheral surface of the perforated portion of the outer disks 50 and 51 and the outer peripheral surface of the inner disk 52 overlapping each other. In addition, a viscous fluid 80 is interposed in a gap between the upper portions of the inner cylindrical plates 55 and 56 and the lower portion of the outer cylindrical plate 58 that overlap each other. In the present embodiment, the vertical distance between the outer disks 50, 51 and the inner disk 52 is approximately 20 mm, and the horizontal distance between the inner cylindrical plates 55, 56 and the outer cylindrical plate 58 is also approximately 20 mm. . These intervals are values set to obtain a predetermined shear resistance of the viscous fluid 80. When the viscous fluid 80 is made of a silicon-based compound, since the viscosity of the silicon-based compound is lower than that of the butane-based compound, the gap is made smaller than 20 mm in order to obtain a predetermined shear resistance.
[0020]
A three-dimensional air spring 90 is combined with the damping device 1 of the present embodiment. That is, a flexible rolling sheet member 91 (sheet member) is connected to the outer periphery of the opening end of the inner cylinder 30 and the inner periphery of the bottom surface of the outer cylinder 40, respectively, so that the inner cylinder 30 and the outer cylinder 40 can move in the horizontal direction. It is folded and disposed so as to hang down in the gap. As a result, air is hermetically sealed in the space defined by the inner cylinder 30, the outer cylinder 40, and the rolling sheet member 91, and an air chamber 92 is formed.
[0021]
FIG. 2 shows an embodiment in which 32 of the above damping devices 1 are combined with a three-dimensional air spring and arranged on the ground to seismically isolate the structure 100. FIG. 2 shows a plan view of the damping device 1. On the lower surface of the substantially rectangular structure 100, 32 damping devices 1 are arranged substantially uniformly and supported. However, the gap between the damping devices 1 is made wider at the central portion in the longitudinal direction of the bottom surface of the structure 100, and this is used as a maintenance space 101 of the damping device 1. Further, a total of 28 hydraulic locking prevention devices 110 are arranged at substantially equal intervals on the outer peripheral portion of the lower surface of the structure 100.
[0022]
=== Operation of the damping device ===
The operation of the attenuation device 1 according to the present embodiment will be described.
When the ground vibrates in two horizontal directions and one vertical direction in three-dimensional degrees of freedom due to an earthquake, inertia force is applied to the unisolated structure 100 in a direction opposite to the direction in which the ground is displaced. Acting directly, this inertial force causes the structure 100 to collapse.
[0023]
In the present embodiment, in the horizontal direction, the inertial force due to the earthquake acts on the moving body 70 of the damping device 1 similarly. At this time, the outer peripheral surfaces of the perforated portions of the outer disks 50 and 51 of the lower base plate 10 and the outer peripheral surface of the inner disk 52 of the moving body 70 are displaced in opposite directions, and the viscous fluid 80 sandwiched between these surfaces is displaced. Shear resistance occurs. Since the shear resistance is generated in a direction to offset the displacement, the shear resistance acts in a direction to offset the inertial force acting on the moving body 70. Therefore, the vibration of the moving body 70 linked to the horizontal vibration of the ground is attenuated. In the horizontal direction, since the upper base plate 20 is fixed to the moving body 70, if the horizontal displacement of the moving body 70 is attenuated, the horizontal displacement of the structure 100 is also attenuated.
[0024]
Since the damping device 1 of the present embodiment has twelve layers of the viscous fluid 80 in which the above-mentioned shear resistance is generated in the horizontal direction, compared with a conventional horizontal damping device having only one layer of the viscous fluid. In a limited seismic isolation space, the damping effect is about 12 times.
[0025]
In addition, the gap between the bottom portion 54 and the surface of the metal plate 31 and the gap between the upper surface of the outer peripheral portion of the bottom portion 54 and the lower surface of the outer peripheral portion of the perforated portion of the outer disk 50 are added to the shear resistance force of the viscous fluid 80. As a result, the rolling friction of the steel balls 60 abutting on the respective surfaces is generated, and this also acts on the moving body 70 in a direction to offset the inertial force due to the earthquake. Therefore, the horizontal displacement of the structure 100 is attenuated.
[0026]
The relationship between the horizontal displacement of the moving body 70 and the horizontal inertial force acting on the moving body 70 forms a hysteresis loop, and this loop is shown in FIG. The loop (calculated value) obtained by theoretical calculation modeling this embodiment and the loop (measured value) obtained experimentally by this embodiment match well, and a smooth elliptical loop is formed. I understood what to do. Generally, it has been found that such a smooth elliptical shape corresponds to a gentle seismic isolation. Therefore, it was found that the seismic isolation using the shear resistance of the viscous fluid 80 was a gentle seismic isolation. On the other hand, for example, it is known that a hysteresis loop in the case of seismic isolation using a general frictional force between solids is substantially rectangular. When following such a substantially rectangular loop, for example, at the same displacement, it is possible to rapidly transition from a state of receiving an inertial force to a state of receiving an inertial force having substantially the same magnitude as this and the opposite direction. It is known that gentle seismic isolation cannot be expected.
[0027]
When a vertical inertial force acts on the upper base plate 20 of the damping device 1, the lower portion of the outer cylindrical plate 58 of the upper base plate 20 and the upper portions of the inner cylindrical plates 55 and 56 of the moving body 70 are displaced in opposite directions. Then, a shear resistance force is generated in the viscous fluid 80 sandwiched between these surfaces. Since this shear resistance force is generated in a direction to offset the displacement, the shear resistance force acts in a direction to offset the inertial force acting on the upper base plate 20. Therefore, the vibration of the upper foundation plate 20 linked to the vertical vibration of the ground is attenuated. Therefore, the vertical displacement of the structure 100 is attenuated.
[0028]
In addition, in the gap between the outer peripheral surface of the inner cylindrical plate 55 and the inner peripheral surface of the outer cylindrical plate 57, in addition to the shear resistance of the viscous fluid 80, rolling friction of the steel balls 60 abutting on the respective surfaces is generated. However, this also acts on the upper base plate 20 in a direction to cancel the inertial force due to the earthquake. Therefore, the vertical displacement of the structure 100 is attenuated.
[0029]
Since the damping device 1 of the present embodiment has six layers of the viscous fluid 80 in which the above-mentioned shear resistance is generated in the vertical direction, the damping device 1 includes a piston and a cylinder, such as a soft plastic damper and a lead extrusion type damper. It has a particularly high damping effect in a limited seismic isolation space as compared with the conventional vertical damping device using a damper that is used.
[0030]
Since the damping device 1 of the present embodiment can simultaneously perform horizontal damping and vertical damping using the shear resistance force of the viscous fluid 80, the damping device 1 is different from the conventional damping device in which these are performed by separate devices. It has a particularly high damping effect in limited seismic isolation space.
[0031]
Further, the air sealed in the air chamber 92 provides a major seismic isolation mechanism for the structure 100 having low-rigidity elasticity in three directions of freedom in two directions horizontal to the ground and one direction perpendicular to the ground. Carry.
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the damping device of this invention, the response displacement of the structure by a large earthquake can be suppressed sufficiently in the limited seismic isolation space.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view taken along a vertical direction of a damping device according to the present embodiment.
FIG. 2 is a plan view of the damping device according to the present embodiment.
FIG. 3 is a graph in which a horizontal inertial force corresponds to a horizontal displacement of the damping device according to the present embodiment.
[Explanation of symbols]
Reference Signs List 1 damping device 30 inner cylinder 40 outer cylinder 50, 51 outer disk 52 inner disk 55, 56 inner cylindrical plate 57, 58 outer cylindrical plate 60 steel ball 80 viscous fluid 90 three-dimensional air spring

Claims (5)

地盤と構造物との間に介在され構造物を免震支持する免震装置を構成する減衰装置であって、
前記地盤側に固定されて水平方向に延在し鉛直方向に所定間隔をおいて設けられた複数の第1水平板状部材と、
前記構造物側に固定されて水平方向に延在し鉛直方向に所定間隔をおいて設けられ前記第1水平板状部材と重なった状態で交互に配置された複数の第2水平板状部材とを備え、
第1水平板状部材と第2水平板状部材との間にせん断抵抗力を作用するための化学的に安定した粘性を有する流体を前記第1水平板状部材と前記第2水平板状部材との間隙に介在してなることを特徴とする減衰装置。
A damping device that is interposed between the ground and the structure and constitutes a seismic isolation device that supports the structure in a seismic isolation manner,
A plurality of first horizontal plate-like members fixed to the ground side and extending in the horizontal direction and provided at predetermined intervals in the vertical direction,
A plurality of second horizontal plate members fixed to the structure side, extending in the horizontal direction, provided at predetermined intervals in the vertical direction, and alternately arranged so as to overlap with the first horizontal plate members; With
A fluid having a chemically stable viscosity for applying a shear resistance between the first horizontal plate member and the second horizontal plate member is applied to the first horizontal plate member and the second horizontal plate member. Characterized by being interposed in a gap between the damping device and the damping device.
地盤と構造物との間に介在され構造物を免震支持する免震装置を構成する減衰装置であって、
前記地盤側に固定されて鉛直方向に延在する第1鉛直板状部材と、
前記構造物側に固定されて鉛直方向に延在し前記第1鉛直板状部材と重なった状態で配置された第2鉛直板状部材とを備え、
第1鉛直板状部材と第2鉛直板状部材との間にせん断抵抗力を作用するための化学的に安定した粘性を有する流体を前記第1鉛直板状部材と前記第2鉛直板状部材との間隙に介在してなることを特徴とする減衰装置。
A damping device that is interposed between the ground and the structure and constitutes a seismic isolation device that supports the structure in a seismic isolation manner,
A first vertical plate-shaped member fixed to the ground side and extending in the vertical direction;
A second vertical plate-like member fixed to the structure side, extending in the vertical direction, and arranged so as to overlap the first vertical plate-like member;
A fluid having a chemically stable viscosity for applying a shear resistance between the first vertical plate member and the second vertical plate member is applied to the first vertical plate member and the second vertical plate member. Characterized by being interposed in a gap between the damping device and the damping device.
地盤と構造物との間に介在され構造物を免震支持する免震装置を構成する減衰装置であって、
前記地盤側に固定されて水平方向に延在し鉛直方向に所定間隔をおいて設けられた複数の第1水平板状部材と、
水平方向に延在し鉛直方向に所定間隔をおいて設けられ前記第1水平板状部材と重なった状態で交互に配置された複数の第2水平板状部材、及び鉛直方向に延在する第1鉛直板状部材を有し、前記地盤側に対して水平方向に摺動可能な移動体と、
前記構造物側に固定されて鉛直方向に延在し前記第1鉛直板状部材と重なった状態で配置された第2鉛直板状部材とを備え、
第1水平板状部材と第2水平板状部材との間、及び第1鉛直板状部材と第2鉛直板状部材との間にせん断抵抗力をそれぞれ作用するための化学的に安定した粘性を有する流体を前記第1水平板状部材と前記第2水平板状部材との間隙、及び前記第1鉛直板状部材と前記第2鉛直板状部材との間隙にそれぞれ介在してなることを特徴とする減衰装置。
A damping device that is interposed between the ground and the structure and constitutes a seismic isolation device that supports the structure in a seismic isolation manner,
A plurality of first horizontal plate-like members fixed to the ground side and extending in the horizontal direction and provided at predetermined intervals in the vertical direction,
A plurality of second horizontal plate members extending in the horizontal direction and arranged at predetermined intervals in the vertical direction and alternately arranged so as to overlap with the first horizontal plate members; (1) a movable body having a vertical plate-like member and slidable in a horizontal direction with respect to the ground side;
A second vertical plate-like member fixed to the structure side, extending in the vertical direction, and arranged so as to overlap the first vertical plate-like member;
A chemically stable viscosity for applying a shear resistance between the first horizontal plate member and the second horizontal plate member and between the first vertical plate member and the second vertical plate member, respectively. And that a fluid having the following is interposed in the gap between the first horizontal plate-shaped member and the second horizontal plate-shaped member and in the gap between the first vertical plate-shaped member and the second vertical plate-shaped member. Characteristic damping device.
前記地盤側に固定され上方が開口し、内部に前記第1水平板状部材又は前記第1鉛直板状部材が配置された第1筒状体と、
前記構造物側において下方が開口し水平方向及び鉛直方向に適宜間隔を隔てて前記第1筒状体の外周面を囲繞する第2筒状体とを備え、
前記第1筒状体の外周部と前記第2筒状体の内周部とは、前記両筒状体の内部が連通しつつ気密となるようにシート部材によって連結されてなることを特徴とする空気バネと組み合わせられる、請求項1乃至請求項3のいずれかに記載の減衰装置。
A first cylindrical body fixed to the ground side and opening upward, and the first horizontal plate-like member or the first vertical plate-like member is disposed therein;
A second tubular body that opens downward at the structure side and surrounds the outer peripheral surface of the first tubular body at appropriate intervals in the horizontal and vertical directions,
An outer peripheral portion of the first tubular body and an inner peripheral portion of the second tubular body are connected by a sheet member so that the insides of the two tubular bodies communicate with each other and are airtight. The damping device according to claim 1, wherein the damping device is combined with an air spring.
前記移動体は、前記地盤側に対して鋼球を介在してなることを特徴とする請求項4に記載の減衰装置。The damping device according to claim 4, wherein the moving body has a steel ball interposed on the ground side.
JP2003075783A 2003-03-19 2003-03-19 Vibration damping apparatus Pending JP2004286052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075783A JP2004286052A (en) 2003-03-19 2003-03-19 Vibration damping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075783A JP2004286052A (en) 2003-03-19 2003-03-19 Vibration damping apparatus

Publications (1)

Publication Number Publication Date
JP2004286052A true JP2004286052A (en) 2004-10-14

Family

ID=33291008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075783A Pending JP2004286052A (en) 2003-03-19 2003-03-19 Vibration damping apparatus

Country Status (1)

Country Link
JP (1) JP2004286052A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241773A (en) * 2005-03-02 2006-09-14 Kaneka Corp Thermally insulated building
JP2006299524A (en) * 2005-04-15 2006-11-02 Ohbayashi Corp Base isolation device and base isolation system
JP2006299563A (en) * 2005-04-18 2006-11-02 Shinku Kensetsu Kk Base-isolating equipment
CN107313645A (en) * 2017-07-28 2017-11-03 中国地震局工程力学研究所 The damping drop impact explosion-protection equipment of flexible clay ball
KR101860240B1 (en) * 2016-12-30 2018-05-21 박해동 Damper with middle horizontal plate for increasing horizontal damping force
CN110424256A (en) * 2019-06-21 2019-11-08 江苏鸿基节能新技术股份有限公司 One kind can anti-impact sliding and shock isolation device based on STF
CN115492254A (en) * 2022-09-27 2022-12-20 上海市市政公路工程检测有限公司 Sliding shock insulation support with lead core

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241773A (en) * 2005-03-02 2006-09-14 Kaneka Corp Thermally insulated building
JP2006299524A (en) * 2005-04-15 2006-11-02 Ohbayashi Corp Base isolation device and base isolation system
JP4706312B2 (en) * 2005-04-15 2011-06-22 株式会社大林組 Seismic isolation device, seismic isolation system
JP2006299563A (en) * 2005-04-18 2006-11-02 Shinku Kensetsu Kk Base-isolating equipment
KR101860240B1 (en) * 2016-12-30 2018-05-21 박해동 Damper with middle horizontal plate for increasing horizontal damping force
CN107313645A (en) * 2017-07-28 2017-11-03 中国地震局工程力学研究所 The damping drop impact explosion-protection equipment of flexible clay ball
CN110424256A (en) * 2019-06-21 2019-11-08 江苏鸿基节能新技术股份有限公司 One kind can anti-impact sliding and shock isolation device based on STF
CN110424256B (en) * 2019-06-21 2021-03-02 江苏鸿基节能新技术股份有限公司 Shock isolator based on shear thickening fluid and capable of resisting impact and sliding
CN115492254A (en) * 2022-09-27 2022-12-20 上海市市政公路工程检测有限公司 Sliding shock insulation support with lead core
CN115492254B (en) * 2022-09-27 2023-11-10 上海市市政公路工程检测有限公司 Set up plumbous core and slide shock insulation support

Similar Documents

Publication Publication Date Title
JP2010007859A (en) Isolation platform
JP2004286052A (en) Vibration damping apparatus
JP2001032881A (en) Vertical base isolation device
JPH08240033A (en) Base isolation structure
JP2006299563A (en) Base-isolating equipment
JP3888887B2 (en) Seismic isolation device
JP4613333B2 (en) Seismic isolation device
JP2649074B2 (en) Swing damper device for structures
JP2007332643A (en) Base isolated building
JPH10176436A (en) Damping mechanism, construction of vibration isolation making use thereof and damper
JP3254919B2 (en) Three-dimensional seismic isolation device
JP2652429B2 (en) Multi-stage viscous fluid damper
JPH01165885A (en) Vibration-damping structure
JP4029685B2 (en) Damping type seismic isolation building and vibration damping device used therefor
JP2767303B2 (en) Seismic isolation support device
JPH09217785A (en) Base isolation system for vertical vibration
JP2012202510A (en) Base isolation structure
JP2004100308A (en) Vibration damper used for vibration damping seismic isolation building
JPH0288834A (en) Earthquake isolation system
JP7257747B2 (en) Damping structure
JP2000104420A (en) Base isolation structure
JP2544347Y2 (en) Vibration energy absorber attached to building frame
JP2006241841A (en) Base-isolating device
JP2024090144A (en) Vibration damping structure
JPH02178441A (en) Vibration insulating device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924