JP2004286038A - Internal combustion engine control device and method - Google Patents

Internal combustion engine control device and method Download PDF

Info

Publication number
JP2004286038A
JP2004286038A JP2004210914A JP2004210914A JP2004286038A JP 2004286038 A JP2004286038 A JP 2004286038A JP 2004210914 A JP2004210914 A JP 2004210914A JP 2004210914 A JP2004210914 A JP 2004210914A JP 2004286038 A JP2004286038 A JP 2004286038A
Authority
JP
Japan
Prior art keywords
fuel
amount
injection
intake air
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210914A
Other languages
Japanese (ja)
Inventor
Mamoru Fujieda
護 藤枝
Toshiji Nogi
利治 野木
Takashige Oyama
宜茂 大山
Minoru Osuga
大須賀  稔
Takuya Shiraishi
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004210914A priority Critical patent/JP2004286038A/en
Publication of JP2004286038A publication Critical patent/JP2004286038A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve fuel consumption by eliminating a pump loss by stratified combustion under partial loading, and to increase output by premixed combustion at the time of the maximum output. <P>SOLUTION: An ignition source 14 is provided near a fuel injection valve 13 at the time of partial loading. Mixture is ignited after injecting fuel, and a generated flame is diffused in a cylinder by spraying the fuel, thereby carrying out stratified combustion. On the other hand, when a load is increased and soot and the like is generated by the stratified combustion, fuel injection is carried out several times, and premixture is generated by the injection in the first half, and the premixture is burned in a short time by injecting a flame generated by the injection in the last half into the cylinder. Combustion time is shortened, and knocking can be prevented. Furthermore, a compression rate of an engine is increased to raise thermal efficiency, and fuel consumption is improved. The generation of unburned hydrocarbon can be prevented by stratified suction. By cylinder injection of the fuel, reponsiveness of the fuel is enhanced to improve operability. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、火花点火内燃機関において、特に気筒内に直接燃料を噴射する火花点火内燃機関の制御装置及び制御方法に関する。   The present invention relates to a control apparatus and a control method for a spark ignition internal combustion engine, in particular, for directly injecting fuel into a cylinder.

内燃機関の燃料消費率を向上するには、圧縮比を高めて熱効率を上げ、燃料の濃度が低い希薄混合気を瞬時に燃焼させる必要がある。また、決められたシリンダ容積において、最大の出力を発生するには、シリンダに流入した空気を最大限に利用し、より多くの燃料を効率良く燃焼する必要が有る。前者がディーゼルエンジンであり、後者がガソリンエンジンの燃焼方法である。本発明は火花点火内燃機関であるガソリンエンジンに関するものである。   In order to improve the fuel consumption rate of the internal combustion engine, it is necessary to increase the compression ratio to increase the thermal efficiency and to burn a lean mixture having a low fuel concentration instantaneously. In addition, in order to generate the maximum output in a predetermined cylinder volume, it is necessary to make maximum use of the air flowing into the cylinder and burn more fuel efficiently. The former is a diesel engine and the latter is a gasoline engine combustion method. The present invention relates to a gasoline engine that is a spark ignition internal combustion engine.

図2にエンジンの燃焼状態を示す。図2(a)はガソリンエンジンの場合である。シリンダ内に均一な混合気を形成し、点火プラグ14で点火し、火炎が周りに伝パン(予混合燃焼)する。空燃比が大きくなると火炎の伝パンが遅くなり燃焼が不安定になりやすい。そのため、絞り弁で吸入空気量を絞り、トルクの小さいときの空燃比が大きくなるのを防止している。一方、空燃比が小さくなってもシリンダ内全体が均一な空燃比のため、多くの空気が利用でき、すす等の発生が少ない。図2(b)は、ディーゼルエンジンの場合である。シリンダ内に高温の圧縮空気を作り、その中に燃料を燃料噴射弁13で噴射する。燃料は、高温の空気内を飛翔しながらそれぞれの燃料液滴が蒸発しシリンダの一部分で燃焼する(層状燃焼)。このため、燃料液滴の周りより燃焼するため、燃料量が少なくても(空燃比が大きても)燃焼できる。しかし、燃料量が多く(空燃比が小さく)なると、液滴周りの空気が燃焼で消費されるため、空気不足になりすす等が発生しやすく、高出力時の空気の利用率が問題となる。   FIG. 2 shows the combustion state of the engine. FIG. 2A shows the case of a gasoline engine. A uniform air-fuel mixture is formed in the cylinder, ignited by the spark plug 14, and the flame spreads around (premix combustion). When the air-fuel ratio is large, the propagation of the flame is delayed, and the combustion tends to be unstable. Therefore, the amount of intake air is reduced by the throttle valve to prevent the air-fuel ratio from increasing when the torque is small. On the other hand, even when the air-fuel ratio becomes small, a large air-fuel ratio can be used because the entire inside of the cylinder has a uniform air-fuel ratio, and soot and the like are less generated. FIG. 2B shows the case of a diesel engine. Hot compressed air is produced in the cylinder, and fuel is injected into the cylinder by the fuel injection valve 13. As the fuel flies in the high-temperature air, each fuel droplet evaporates and burns in a part of the cylinder (stratified combustion). For this reason, since the fuel is burned from around the fuel droplet, the fuel can be burned even if the fuel amount is small (even if the air-fuel ratio is large). However, when the fuel amount becomes large (the air-fuel ratio becomes small), the air around the liquid droplets is consumed by combustion, so that air shortage and soot are likely to occur, and the air utilization rate at high output becomes a problem. .

図3にエンジンの空燃比とエンジンの発生するトルクとの関係を示す。図3において実線で示したガソリンエンジンの特性は、排気対策にも依るが、大部分のトルク(運転範囲)は、空燃比(A/F) 14.7(理論空燃比)で運転される。つまり、トルクを制御する場合、空気量に合わせて燃料量を制御し、空燃比を一定に保っている。また、より多くのトルクを必要とする場合は、空燃比を小さくしてトルクを増加する。通常の運転条件では、最小空燃比がA/F13である。それに対して、破線で示したディーゼルエンジンの場合は、燃料量の少ない(トルクが小さい)場合は、空燃比が大きく、空燃比がトルクの増加とともに小さくなる。空燃比が小さくなり、A/F14.7 近くなると図2(b)で示したように、層状燃焼のため空気不足になりやすく、すす等が発生する。このため、ガソリンエンジンの方がトルクが大きい。   FIG. 3 shows the relationship between the air-fuel ratio of the engine and the torque generated by the engine. Although the characteristics of the gasoline engine shown by the solid line in FIG. 3 depend on the emission measures, most of the torque (operating range) is operated at an air-fuel ratio (A / F) of 14.7 (theoretical air-fuel ratio). That is, when controlling the torque, the fuel amount is controlled in accordance with the air amount, and the air-fuel ratio is kept constant. If more torque is required, the air-fuel ratio is reduced to increase the torque. Under normal operating conditions, the minimum air-fuel ratio is A / F13. On the other hand, in the case of the diesel engine shown by the broken line, when the fuel amount is small (the torque is small), the air-fuel ratio is large, and the air-fuel ratio decreases as the torque increases. When the air-fuel ratio decreases and approaches A / F of 14.7, as shown in FIG. 2B, the air tends to be insufficient due to the stratified combustion, and soot and the like are generated. Therefore, the gasoline engine has a larger torque.

図4に燃料量と空気量との関係を示す。実線のガソリンエンジンの場合は、燃料と空気が共に多くなり、図3の空燃比が小さくなる点で、空気の増加が小さくなる。空気量は、シリンダの往復運動で決まる。そのためガソリンエンジンは、絞り弁で吸気管圧力を増減し、シリンダに入る質量空気量を変化させる。このため、絞り弁開度が小さい(吸気管圧力が小さい)部分負荷では、ポンピング損失(絞り損失)が発生し、燃費が減少する。これに対しディーゼルエンジンは、空気量はほぼ一定で(絞り損失が無い)、燃料のみが増加する。このため部分負荷の燃費が増加する。   FIG. 4 shows the relationship between the fuel amount and the air amount. In the case of the gasoline engine indicated by the solid line, the amount of fuel and air both increase, and the increase in air decreases at the point that the air-fuel ratio in FIG. 3 decreases. The amount of air is determined by the reciprocating motion of the cylinder. Therefore, in a gasoline engine, the intake pipe pressure is increased or decreased by a throttle valve, and the amount of mass air entering the cylinder is changed. For this reason, at a partial load with a small throttle valve opening (small intake pipe pressure), pumping loss (throttle loss) occurs and fuel consumption is reduced. On the other hand, in the diesel engine, the air amount is almost constant (there is no throttle loss), and only the fuel increases. Therefore, the fuel efficiency of the partial load increases.

以上のように、ディーゼルエンジンは層状燃焼であるため、部分負荷の燃費は増加するが、最大出力が小さい。これに対し、ガソリンエンジンは、予混合燃焼のため、最大出力は大きいが、部分負荷では、ポンプ損失により燃費が減少する。   As described above, since the diesel engine performs stratified combustion, the fuel efficiency of the partial load increases, but the maximum output is small. On the other hand, a gasoline engine has a large maximum output due to premixed combustion, but at partial load, fuel efficiency decreases due to pump loss.

本発明の課題は、部分負荷では層状燃焼によりポンプ損失をなくして、燃費を高め、最大出力時は、予混合燃焼により出力を大きくできる装置及び方法を提供することである。   An object of the present invention is to provide an apparatus and a method capable of improving fuel efficiency by eliminating pump loss by stratified combustion at a partial load, and increasing output by premixed combustion at maximum output.

上記従来技術の問題を解決するために、本発明においては、部分負荷時は燃料噴射弁の近傍に点火源を設け、燃料を噴射した後に混合気に点火し、生じた火炎を燃料の噴霧でシリンダ内に拡散し、層状燃焼させる。一方、負荷が大きくなり、層状燃焼ですす等が発生する場合は、燃料噴射を複数回にし、前半の噴射でシリンダ内に予混合気を作り、この予混合気を後半の噴射で作った火炎を気筒内に噴射し、予混合気を短時間で燃焼する。   In order to solve the above-mentioned problems of the prior art, in the present invention, at the time of partial load, an ignition source is provided near the fuel injection valve, and after fuel is injected, the mixture is ignited, and the generated flame is sprayed with fuel. It diffuses into the cylinder and causes stratified combustion. On the other hand, if the load increases and stratified combustion causes soot, etc., the fuel injection is performed multiple times, the premixed air is created in the cylinder in the first half of injection, and the premixed air is created in the second half of the flame. Is injected into the cylinder to burn the premixed gas in a short time.

部分負荷のように燃料の噴射量が少ないときは、噴射始めと点火時期を比較的近くできるため、燃料はシリンダ内にあまり分散せず、比較的狭い範囲で燃焼する(層状燃焼)。負荷の増加に合わせて噴射始めを速くすることにより混合気の形成される範囲(予混合気)が大きくでき予混合燃焼が発生し、発生トルクが増加できる。   When the fuel injection amount is small as in the case of a partial load, the start of the injection and the ignition timing can be relatively close, so that the fuel is not dispersed very much in the cylinder and burns in a relatively narrow range (stratified combustion). By increasing the start of the injection in accordance with the increase in the load, the range in which the air-fuel mixture is formed (the pre-air-fuel mixture) can be increased, so that the pre-mixed combustion occurs and the generated torque can be increased.

本発明により、燃焼時間が短縮し、ノックが防止でき、エンジンの圧縮比が高められ、熱効率が上昇し、燃費が高くなる。層状吸気により未燃炭化水素の発生が防止できる。筒内直接燃料噴射により、燃料の応答性が高まり運転性が向上する。   According to the present invention, the combustion time can be reduced, knocking can be prevented, the compression ratio of the engine can be increased, the thermal efficiency can be increased, and the fuel consumption can be increased. The generation of unburned hydrocarbons can be prevented by the stratified intake. The direct fuel injection in the cylinder improves the responsiveness of the fuel and improves the operability.

図1に本発明の第一実施例である制御システムの構成を示す。燃料タンク1より燃料ポンプ2に燃料を送り、加圧する。加圧された燃料は、圧力センサ3で燃料圧を検出し、制御回路5に圧力信号を送る。制御回路5は、あらかじめ決められた目標と比較し、設定値以上であれば燃料ポンプ2のスピル弁4を開き燃料圧を目標圧力に制御する。加圧された燃料は、燃料噴射弁13に送られる。制御回路5には、アクセルペダル19より運転者の意図する信号(トルク信号)が送られる。これを受けて制御回路5は、エンジン回転数センサ10の信号を加味して一回あたりの噴射量を計算し、燃料噴射弁13の噴射弁駆動部20に送る。これにより燃料噴射弁13が開き、燃料が燃焼室7に噴射される。この時の燃料の噴射時期と噴射量(噴射時間)は、制御回路5で最適値に選定される。燃焼室7に噴射された燃料は、最適な点火時期に制御回路5より点火回路22に信号が送られ、点火回路22で高電圧が発生し、これが点火プラグ14に送られて、火花点火により点火される。燃焼室7の圧力が上がり、ピストン9に作用し、クランク軸16に回転力を与え、変速機15よりデフレンシャルギア17を介して、タイヤ18a,18bを駆動して走行する。エンジン6の発生トルクは、燃焼室7の燃焼圧力を圧力センサ8で検出し、制御回路5に送り、運転者の意図であるアクセルペダル19の信号と比較される。この比較結果は、次の気筒の燃料噴射に反映される。エンジン6の空気量は、空気量検出器で計測され、絞り弁で流量が制御される。また、空気は、吸気管27に配置されたスワール制御弁28で気筒内に適度な乱れが生成できるように制御される。吸気弁12の弁リフトを弁リフト制御装置11で制御する。燃焼ガスは、排気弁21より排気される。   FIG. 1 shows a configuration of a control system according to a first embodiment of the present invention. Fuel is sent from the fuel tank 1 to the fuel pump 2 and pressurized. The pressurized fuel detects the fuel pressure by the pressure sensor 3 and sends a pressure signal to the control circuit 5. The control circuit 5 compares the fuel pressure with a predetermined target, and if it is equal to or more than the set value, opens the spill valve 4 of the fuel pump 2 and controls the fuel pressure to the target pressure. The pressurized fuel is sent to the fuel injection valve 13. A signal (torque signal) intended by the driver is sent from the accelerator pedal 19 to the control circuit 5. In response to this, the control circuit 5 calculates the injection amount per injection taking into account the signal of the engine speed sensor 10 and sends it to the injection valve drive unit 20 of the fuel injection valve 13. As a result, the fuel injection valve 13 opens, and fuel is injected into the combustion chamber 7. At this time, the fuel injection timing and the injection amount (injection time) are selected by the control circuit 5 to optimal values. For the fuel injected into the combustion chamber 7, a signal is sent from the control circuit 5 to the ignition circuit 22 at an optimal ignition timing, and a high voltage is generated in the ignition circuit 22 and sent to the spark plug 14 to be spark-ignited. Ignite. The pressure in the combustion chamber 7 rises, acts on the piston 9, applies a rotational force to the crankshaft 16, and drives the tires 18 a and 18 b from the transmission 15 via the differential gear 17 to travel. The generated torque of the engine 6 detects the combustion pressure of the combustion chamber 7 by the pressure sensor 8 and sends it to the control circuit 5 where it is compared with the signal of the accelerator pedal 19 which is intended by the driver. This comparison result is reflected in the fuel injection of the next cylinder. The air amount of the engine 6 is measured by an air amount detector, and the flow rate is controlled by a throttle valve. The air is controlled by a swirl control valve 28 arranged in the intake pipe 27 so that an appropriate turbulence can be generated in the cylinder. The valve lift of the intake valve 12 is controlled by the valve lift control device 11. The combustion gas is exhausted from the exhaust valve 21.

図5に燃焼室の縦断面図により、本発明の第一実施例を説明する。エンジンヘッド25に形成された副燃焼室23に燃料噴射弁13,点火プラグ14を設置する。この時の燃料噴射弁13と点火プラグ14の位置関係は燃料噴射弁13の噴霧の下流側に点火プラグ
14が設置されるのが良い。これは、点火プラグ14で形成した火炎核を噴霧で燃焼室7やピストン9に設置したキャビティ24に分散しやすい。しかし、点火プラグ14が噴霧に近過ぎると点火プラグ14が噴霧で濡れて点火不良を引き起こす場合もあり位置関係が重要である。また、副燃焼室23の出口部26を絞ることにより、火炎核の噴出速度を調整できる。この場合でも、絞り過ぎると圧力損失を生じ熱効率が低下する。
A first embodiment of the present invention will be described with reference to a longitudinal sectional view of a combustion chamber in FIG. The fuel injection valve 13 and the ignition plug 14 are installed in the sub-combustion chamber 23 formed in the engine head 25. At this time, the positional relationship between the fuel injection valve 13 and the ignition plug 14 is preferably such that the ignition plug 14 is provided on the downstream side of the spray of the fuel injection valve 13. This is because the flame nuclei formed by the spark plugs 14 are easily dispersed by spraying into the cavities 24 provided in the combustion chamber 7 and the piston 9. However, if the spark plug 14 is too close to the spray, the spark plug 14 may be wet with the spray and cause poor ignition, so the positional relationship is important. Also, by squeezing the outlet portion 26 of the sub-combustion chamber 23, the ejection speed of the flame nucleus can be adjusted. Even in this case, if the throttling is excessive, a pressure loss occurs and the thermal efficiency is reduced.

図6に空燃比A/Fと排気(HC,NOx)の関係を示す。燃料の噴射時期がクランク角90°の場合はNOxのピーク値がA/F16近くである。このようなNOxの排出量の変化は、均一混合気の場合に見られる傾向である。噴射時期がクランク角90°と吸気行程の中盤までは噴射された噴霧がピストンの動きや吸気による気筒内の空気の流れにより気筒内全体に分散するためである。噴射時期が大きくなるにつれてNOxのピーク値の発生空燃比が大きくなる。それと同時にNOxの発生がなだらかになって来る。また、
HCの排出量も変化する。噴射時期90°と噴射時期180°を比較するとA/F15近くのHCは、噴射時期90°が3800ppmC,噴射時期180°が6500ppmCである。このように同じ空燃比でHCが異なるのは、燃焼しているところの空燃比が異なるためである。つまり、噴射時期180°の方が実際に燃焼している場所の空燃比が小さいためである。このため、空燃比が大きくなった場合噴射時期が90°の場合が小さい空燃比で燃焼不良(失火)を起こしている。このように噴射時期を大きくすると安定して(HCが増加しない)燃焼する空燃比が大きくなるのは、噴射時期が大きくなると点火時期に近くなり、燃料が分散しにくくなり層状混合気となるためである。このように噴射時期を選定することにより、均一混合気と層状混合気が自由に形成できる。そこで、エンジントルクが小さいときは、噴射時期を大きくして点火時期に近かづける。トルクが大きくなるに従って噴射時期を小さくし均一混合気に近づける。
FIG. 6 shows the relationship between the air-fuel ratio A / F and the exhaust gas (HC, NOx). When the fuel injection timing is a crank angle of 90 °, the peak value of NOx is near A / F16. Such a change in the NOx emission amount tends to be observed in the case of a uniform air-fuel mixture. This is because the injected spray is dispersed throughout the cylinder by the movement of the piston and the flow of air in the cylinder due to the movement of the piston until the injection timing reaches the crank angle of 90 ° and the middle stage of the intake stroke. As the injection timing increases, the generated air-fuel ratio at the peak value of NOx increases. At the same time, the generation of NOx becomes gentle. Also,
HC emissions also change. Comparing the injection timing 90 ° and the injection timing 180 °, HC near the A / F 15 has an injection timing 90 ° of 3800 ppmC and an injection timing 180 ° of 6500 ppmC. The reason why the HC is different at the same air-fuel ratio is that the air-fuel ratio at the combustion is different. In other words, the reason is that the air-fuel ratio at the point where the fuel is actually combusted is smaller at the injection timing of 180 °. For this reason, when the air-fuel ratio becomes large, when the injection timing is 90 °, poor combustion (misfire) occurs at a small air-fuel ratio. The reason why the air-fuel ratio that stably burns (the HC does not increase) when the injection timing is increased is increased because the ignition timing becomes closer to the ignition timing when the injection timing is increased because the fuel becomes difficult to be dispersed and becomes a stratified mixture. It is. By selecting the injection timing in this way, a uniform mixture and a stratified mixture can be freely formed. Therefore, when the engine torque is small, the injection timing is increased to approach the ignition timing. As the torque increases, the injection timing is reduced to approach a uniform mixture.

図7に第二実施例を燃焼室の縦断面図で示す。本実施例は、燃料噴射弁13を燃焼室7に突出し燃料を気筒内に広く分散するように噴射口が穿孔されている。このような場合は、ピストンが低くなる下死点近くで燃料を噴射すると気筒壁面に燃料が直接あたり、壁面流が作られる。このような状態では、良好な燃焼は期待できない。そのため、このように噴霧が広い噴射弁場合はキャビティ24が上死点近くに有り、燃料がこのキャビティ24内に吹き込めるようなタイミングで吹く必要が有る。その一例として燃料の噴射を図8に示すように複数回に分けて噴射することができる。クランク角0度近くで前噴射を行い均一混合気を作る。点火時期近くで噴射する後噴射で火種を作り前噴射で形成した均一混合気を急速に燃焼させる。噴射量の調整は後噴射でも、前噴射でもできるので、最適状態で噴射できる。このように、前,後二回に分ける場合は、図5に示した噴射角度が小さい噴射弁であっても有効である。   FIG. 7 shows a second embodiment in a longitudinal sectional view of a combustion chamber. In this embodiment, the fuel injection valve 13 is protruded into the combustion chamber 7, and the injection port is perforated so that the fuel is widely dispersed in the cylinder. In such a case, when fuel is injected near the bottom dead center where the piston is lowered, the fuel directly hits the cylinder wall surface, and a wall flow is created. In such a state, good combustion cannot be expected. Therefore, in the case of such an injection valve having a wide spray, the cavity 24 is located near the top dead center, and it is necessary to blow the fuel at a timing such that the fuel can be blown into the cavity 24. As an example, the fuel can be injected in a plurality of times as shown in FIG. Pre-injection is performed near the crank angle of 0 degree to create a uniform mixture. A spark is created by post-injection near the ignition timing, and the homogeneous mixture formed by pre-injection is rapidly burned. Since the injection amount can be adjusted by either post-injection or pre-injection, injection can be performed in an optimal state. As described above, when the injection valve is divided into two before and after, it is effective even if the injection valve shown in FIG. 5 has a small injection angle.

図9に前噴射,後噴射する場合の燃料噴射時間の計算のフローチャートを示す。ステップ101でアクセル開度α、エンジン回転数Neを読み込む。この時空気量を測定している場合は、空気量Qaを追加してもよい。ステップ102で燃料量Qfを計算する。ステップ103でQf>Qf1の判定をする。NOの場合は、ステップ109に進み、無効噴射量Qxを加えて噴射時間Tp2を算出する。ステップ110でTp2を後噴射の時期に噴射して完了する。ステップ103がYesの場合は、ステップ104に進み、最小噴射量Qf0を減算して、Qf2を算出する。ステップ105でQf2に無効噴射量Qxを加えて噴射時間Tp1を算出する。Tp1を前噴射の時期で噴射する。ステップ107でQf0にQxを加えてTp2を算出し、Tp2を後噴射の時期に噴射する。このように、前,後噴射ともそれぞれ無効噴射量Qxを追加する必要が有る。   FIG. 9 shows a flowchart of calculation of the fuel injection time when performing the pre-injection and the post-injection. In step 101, the accelerator opening α and the engine speed Ne are read. At this time, if the air amount is measured, the air amount Qa may be added. In step 102, the fuel amount Qf is calculated. In step 103, it is determined that Qf> Qf1. In the case of NO, the routine proceeds to step 109, where the injection time Tp2 is calculated by adding the invalid injection amount Qx. In step 110, Tp2 is injected at the time of post-injection to complete. If step 103 is Yes, the process proceeds to step 104, where the minimum injection amount Qf0 is subtracted to calculate Qf2. In step 105, the injection time Tp1 is calculated by adding the invalid injection amount Qx to Qf2. Tp1 is injected at the time of pre-injection. In step 107, Tx2 is calculated by adding Qx to Qf0, and Tp2 is injected at the time of post-injection. As described above, it is necessary to add the invalid injection amount Qx for each of the front and rear injections.

図10に燃料圧力の制御装置を示す。燃料タンク1より燃料ポンプ2燃料が送られる。燃料ポンプ2は、モータ30で駆動され、加圧した燃料を高圧配管34に送る。高圧配管34には噴射弁13a〜13d,アキュームレータ33,燃料圧力センサ3,リリーフ弁32が配設されている。リリーフ弁33は、ガスがダンパとして封入されており燃料圧力が高くなるとアキュームレータ内に燃料が流入する。圧力が下がると燃料を高圧配管34に送り出す。リリーフ弁32は、燃料が高くなり過ぎた場合に燃料を流失させて、圧力上昇を防止する。燃料圧力センサ3は、圧力に比例した信号を制御回路5に送り燃料ポンプ2の電磁スピル装置4に送り燃料ポンプ2の吐出量を制御し、燃料圧力を制御する。また、モータ30のコントローラ31に信号をおくり、燃料ポンプ30の回転数を制御して、燃料圧力を制御する。本実施例は、電磁スピル装置4とコントローラ31の両方設置したがどちらか一つでも燃料圧力は、制御できる。しかし、燃料ポンプ2をエンジンにて駆動する場合はモータ30は無いので電磁スピル装置4だけとなる。   FIG. 10 shows a fuel pressure control device. Fuel is supplied from a fuel tank 1 to a fuel pump 2. The fuel pump 2 is driven by a motor 30 and sends pressurized fuel to a high-pressure pipe 34. The high-pressure pipe 34 is provided with injection valves 13 a to 13 d, an accumulator 33, a fuel pressure sensor 3, and a relief valve 32. The gas is sealed in the relief valve 33 as a damper, and when the fuel pressure increases, the fuel flows into the accumulator. When the pressure decreases, the fuel is sent to the high-pressure pipe 34. When the fuel becomes too high, the relief valve 32 causes the fuel to flow off, thereby preventing the pressure from rising. The fuel pressure sensor 3 sends a signal proportional to the pressure to the control circuit 5 and sends it to the electromagnetic spill device 4 of the fuel pump 2 to control the discharge amount of the fuel pump 2 to control the fuel pressure. Also, a signal is sent to the controller 31 of the motor 30 to control the number of revolutions of the fuel pump 30 to control the fuel pressure. In this embodiment, both the electromagnetic spill device 4 and the controller 31 are installed, but the fuel pressure can be controlled with either one. However, when the fuel pump 2 is driven by the engine, there is no motor 30, so that only the electromagnetic spill device 4 is used.

図11にEGRの制御系統図を示す。空気は、空気流量計35,絞り弁37,吸気管
27よりエンジン6に入り、排気となり排気管41に排出される。排気管41には、触媒39が有る。ここでEGRが必要になると、制御装置5よりEGR弁38に信号を送り
EGR弁を開く。また絞り弁アクチェータ36に信号を送り、絞り弁37を閉し吸気管
27の圧力を大気圧より低くする。すると、吸気管圧力に比例して排気が排気管41から吸気管27にEGR弁38を介して流れる。この時の排気の流量は、吸気管圧力に比例するので、この吸気管圧力を吸気管圧力センサ40で検出し、制御回路5に送り、絞り弁アクチェータ36で絞り弁37の開度を調節する。絞り弁37の開度を制御すれば吸気管
27の圧力が制御でき、EGR量がフィードバック制御により正確に制御できる。
FIG. 11 shows a control system diagram of the EGR. The air enters the engine 6 through the air flow meter 35, the throttle valve 37, and the intake pipe 27, is exhausted, and is discharged to the exhaust pipe 41. The exhaust pipe 41 has a catalyst 39. Here, when EGR becomes necessary, a signal is sent from the control device 5 to the EGR valve 38 to open the EGR valve. Further, a signal is sent to the throttle valve actuator 36, the throttle valve 37 is closed, and the pressure in the intake pipe 27 is made lower than the atmospheric pressure. Then, exhaust gas flows from the exhaust pipe 41 to the intake pipe 27 via the EGR valve 38 in proportion to the intake pipe pressure. Since the flow rate of the exhaust gas at this time is proportional to the intake pipe pressure, the intake pipe pressure is detected by the intake pipe pressure sensor 40, sent to the control circuit 5, and the opening of the throttle valve 37 is adjusted by the throttle valve actuator 36. . By controlling the opening of the throttle valve 37, the pressure of the intake pipe 27 can be controlled, and the EGR amount can be accurately controlled by feedback control.

図12に本発明の第三実施例を示す。空気は絞り弁213によって調整され、吸気管
214を介して、エンジンに吸入される。吸気弁208のリフトは形状の異なるカム203を切り替えることによって変化させることができる。カムの切り替えはロッカーアーム
210を油圧制御弁202で切り替えることによって行う。油圧制御弁202は例えば電磁ソレノイドで行う。絞り弁はモータ212によって開度を制御する。エンジンには気筒内圧力を検出するセンサ220を取り付ける。また、気筒内に燃料を直接噴射する噴射弁204を取り付ける。排気管には排気の空燃比を検出するセンサ205を取り付ける。排気管には触媒を取り付ける。触媒は酸素過多の条件でもNOxを除去できるものが望ましい。また、理論空燃比条件では、HC,CO,NOxを同時に除去できる三元触媒に機能が必要である。また、排気の1部は排気管流量を制御する弁215,218によって、制御される。これによって、燃焼温度を低下させ、NOxを低減する。これら、各制御弁は制御装置201で制御される。燃費を低減するためには、吸気管内の圧力を大気圧に近付け、ポンピング損失を小さくすることが望ましい。そのため、絞り弁212はなるべく全開状態とする。しかし、配管216から排気還流を行う場合では、吸気管内の圧力を排気管内の圧力より小さくする必要があるので、絞り弁を閉じる。
FIG. 12 shows a third embodiment of the present invention. The air is adjusted by the throttle valve 213 and is sucked into the engine via the intake pipe 214. The lift of the intake valve 208 can be changed by switching cams 203 having different shapes. The switching of the cam is performed by switching the rocker arm 210 by the hydraulic control valve 202. The hydraulic control valve 202 is, for example, an electromagnetic solenoid. The opening of the throttle valve is controlled by a motor 212. A sensor 220 for detecting the in-cylinder pressure is attached to the engine. Further, an injection valve 204 for directly injecting fuel into the cylinder is mounted. A sensor 205 for detecting an air-fuel ratio of exhaust gas is attached to the exhaust pipe. A catalyst is attached to the exhaust pipe. It is desirable that the catalyst be capable of removing NOx even under conditions of excess oxygen. Further, under the stoichiometric air-fuel ratio condition, a function is required for a three-way catalyst capable of simultaneously removing HC, CO, and NOx. Further, a part of the exhaust gas is controlled by valves 215 and 218 for controlling the exhaust pipe flow rate. This lowers the combustion temperature and reduces NOx. These control valves are controlled by the control device 201. In order to reduce fuel consumption, it is desirable to reduce the pumping loss by bringing the pressure in the intake pipe close to the atmospheric pressure. Therefore, the throttle valve 212 is set in a fully open state as much as possible. However, when the exhaust gas is recirculated from the pipe 216, the pressure in the intake pipe needs to be smaller than the pressure in the exhaust pipe, so the throttle valve is closed.

図13に本発明の第三実施例の動作を示す。運転条件に応じて図13のように吸気弁カムのリフトを変化させる。空気量が多く必要なときには吸気弁のリフトをAのようにする。空気量が少ないときには吸気弁のリフトをリフトB,リフトCのように変化させる。リフトを変化させることによって、排気弁とのオーバラップも変化させる。高出力運転時には、排気弁と吸気弁のオーバラップ期間を大きくする。このようにして、吸気弁のリフトによって、空気量を変化させることができる。   FIG. 13 shows the operation of the third embodiment of the present invention. The lift of the intake valve cam is changed as shown in FIG. 13 according to the operating conditions. When a large amount of air is needed, the lift of the intake valve is set to A. When the air amount is small, the lift of the intake valve is changed like lift B and lift C. Changing the lift also changes the overlap with the exhaust valve. During high-power operation, the overlap period between the exhaust valve and the intake valve is increased. In this way, the air amount can be changed by the lift of the intake valve.

図14にロッカーアーム221,223,224とカム225,226,227の構成の1例を示す。ロッカーアーム223とカム225で駆動し、吸気弁を往復運動させる。ロッカーアーム226とカム224は固定されておらず、自由な状態になっている。カムを切り替えるときには、ロッカーアーム224とカム226で駆動し、吸気弁を往復運動させる。ロッカーアーム223とカム225は固定されておらず、自由な状態になっている。このようにすることによって、カムを切り替えることができる。この例では、カムのリフトを変化させるようにしたが、カムの形状を変えて、開弁及び閉弁の時期を同時に制御しても良い。   FIG. 14 shows an example of the configuration of the rocker arms 221, 223, 224 and the cams 225, 226, 227. Driven by the rocker arm 223 and the cam 225, the intake valve is reciprocated. The rocker arm 226 and the cam 224 are not fixed and are free. When switching the cam, the cam is driven by the rocker arm 224 and the cam 226 to reciprocate the intake valve. The rocker arm 223 and the cam 225 are not fixed and are in a free state. By doing so, the cam can be switched. In this example, the lift of the cam is changed. However, the shape of the cam may be changed to simultaneously control the timing of opening and closing the valve.

図15にアクセル開度とエンジン回転数に対するカムの選択のマップを示す。この例ではカムの切り替えを3段階に選んだ。エンジン回転数が低く、アクセル開度が小さいときにはリフトの小さいカムAを選ぶ。エンジン回転数及びアクセル開度が大きくなるのに従って、リフトの大きいカムに切り替える。   FIG. 15 shows a map for selecting a cam with respect to the accelerator opening and the engine speed. In this example, cam switching was selected in three stages. When the engine speed is low and the accelerator opening is small, a cam A with a small lift is selected. As the engine speed and the accelerator opening increase, the cam is switched to a cam with a larger lift.

図16にエンジントルクとエンジン回転数に対するカムの選択のマップを示す。この例ではカムの切り替えを3段階に選んだ。エンジントルクはアクセル開度に対してあらかじめ決めた目標トルクとする。エンジン回転数が低く、エンジンが小さいときにはリフトの小さいカムAを選ぶ。エンジン回転数及びエンジントルクが大きくなるのに従って、リフトの大きいカムに切り替える。   FIG. 16 shows a map for selecting a cam with respect to the engine torque and the engine speed. In this example, cam switching was selected in three stages. The engine torque is a target torque predetermined for the accelerator opening. When the engine speed is low and the engine is small, a cam A with a small lift is selected. As the engine speed and the engine torque increase, the cam is switched to a cam with a larger lift.

図17に空燃比A/Fの切り替え時の吸入空気量の制御方法を示す。絞り弁全開やリフトの大きいカムを選定すると、空燃比を小さくすると燃料量が多くなり、軸トルクが大きくなる。空燃比が16付近はNOxの排出量が多くなりやすいので、空燃比を18から
15にスキップさせる。このとき、空気量をそのままにして、空燃比を15に切り替えると燃料量が多くなり、Cのように軸トルクが増大し、違和感を感じる。そこで、空燃比を切り替えるときには、空気量を少なくして、燃料量の増大を防止し、軸トルクがAからBのように変化させ、ショックを少なくする。空気量の調整は絞り弁またはカムの切り替えで行う。絞り弁で行うと吸気管内の圧力が小さくなり、ポンピング損失が大きくなるので、できる限り、カムの切り替えで行うのが良い。また、軸トルクが小さくなり、例えば空燃比を70以上にしても、目標の軸トルクにならない場合もカムまたは絞り弁で空気量を調整する。
FIG. 17 shows a method of controlling the amount of intake air when the air-fuel ratio A / F is switched. If a throttle valve is fully opened or a cam with a large lift is selected, reducing the air-fuel ratio increases the fuel amount and increases the shaft torque. When the air-fuel ratio is around 16, the emission amount of NOx tends to increase, so the air-fuel ratio is skipped from 18 to 15. At this time, if the air-fuel ratio is switched to 15 while keeping the air amount unchanged, the fuel amount increases, the shaft torque increases as indicated by C, and a sense of discomfort is felt. Therefore, when switching the air-fuel ratio, the amount of air is reduced to prevent an increase in the amount of fuel, and the shaft torque is changed from A to B to reduce shock. Adjustment of the air amount is performed by switching the throttle valve or the cam. If the operation is performed by the throttle valve, the pressure in the intake pipe becomes small, and the pumping loss increases. In addition, even when the shaft torque is reduced and the target shaft torque does not reach the target even if the air-fuel ratio is set to, for example, 70 or more, the air amount is adjusted by the cam or the throttle valve.

図18に燃料量と軸トルクの関係を示す。燃料量を多くすると軸トルクを大きくできるので、燃料量によって軸トルクを制御できる。   FIG. 18 shows the relationship between the fuel amount and the shaft torque. Since the shaft torque can be increased by increasing the fuel amount, the shaft torque can be controlled by the fuel amount.

図19に本発明の第四実施例を示す。アクセル開度α及びエンジン回転数Nなどエンジン状態を検出するエンジン状態検出部301、それから燃料噴射量Qfを計算する燃料噴射量計算部302によって燃料噴射量Qfを求める。充填効率マップ303に基づいて
304でエンジンの空気量を計算し、各カムの空気量を求めて空燃比を計算する。305で空燃比が可燃範囲であるかを判定し、306でカムの選定、及び、307で絞り弁開度の決定を行う。空気量が多過ぎる場合には、混合気が希薄状態になってしまうのでリフトの少ないカムに切り替える。筒内噴射では気筒内の混合気を直接制御するので、希薄混合気の限界を従来の吸気ポート噴射システムに比べて、大きくできるので、燃料量で制御できる軸トルクの範囲が広い。そのため、空気量を従来のように微細に制御しなくても燃料量で軸トルクを制御できる。
FIG. 19 shows a fourth embodiment of the present invention. The fuel injection amount Qf is obtained by an engine state detection unit 301 that detects an engine state such as the accelerator opening α and the engine speed N, and a fuel injection amount calculation unit 302 that calculates the fuel injection amount Qf. The air amount of the engine is calculated in 304 based on the charging efficiency map 303, and the air amount of each cam is obtained to calculate the air-fuel ratio. At 305, it is determined whether the air-fuel ratio is within the flammable range. At 306, a cam is selected, and at 307, the throttle valve opening is determined. If the amount of air is too large, the air-fuel mixture becomes lean, so switch to a cam with less lift. In-cylinder injection directly controls the air-fuel mixture in the cylinder, so that the limit of the lean air-fuel mixture can be made larger than that of the conventional intake port injection system, so that the range of the shaft torque that can be controlled by the fuel amount is wide. Therefore, the shaft torque can be controlled by the fuel amount without finely controlling the air amount as in the related art.

図20に本発明の第五実施例を示す。311でアクセル開度を検出し、312で目標トルクを決定する。目標トルクから燃料量計算手段313で燃料量を決定する。軸トルクに対して空燃比をあらかじめ決めておくと、空気量Qaを求めることができる。316で空燃比を判定し、空燃比が18以上である場合には、318で絞り弁を全開として、トルク検出手段319でエンジンのトルクを検出し、目標トルクになるように燃料噴射量を制御する。一方、空燃比が18以下の場合には321で目標の空燃比になるように空気量を制御する。空気量はたとえば絞り弁開度またはカムのリフトで行う。ここで、322の空気量センサで空気量を検出し、目標の空気量になるように空気量を制御してもよい。   FIG. 20 shows a fifth embodiment of the present invention. At 311 the accelerator opening is detected, and at 312 the target torque is determined. The fuel amount is determined by the fuel amount calculating means 313 from the target torque. If the air-fuel ratio is determined in advance for the shaft torque, the air amount Qa can be obtained. The air-fuel ratio is determined at 316, and if the air-fuel ratio is 18 or more, the throttle valve is fully opened at 318, the torque of the engine is detected by the torque detecting means 319, and the fuel injection amount is controlled to reach the target torque. I do. On the other hand, when the air-fuel ratio is 18 or less, the air amount is controlled at 321 so as to reach the target air-fuel ratio. The air amount is determined by, for example, the throttle valve opening or the lift of the cam. Here, the air amount may be detected by the air amount sensor 322 and the air amount may be controlled so as to be a target air amount.

図21に目標空燃比のマップを示す。軸トルクの増大とともに空燃比を小さくするが、B点では空燃比16をスキップするように空燃比をC点に切り替える。さらにトルクを大きくするときには空燃比を小さくして、D点に向かうようにする。空燃比をさらに小さくすると混合気が濃い状態になりすぎる。そのため、この領域では空気量を検出し、空燃比制御を行うのが望ましい。   FIG. 21 shows a map of the target air-fuel ratio. Although the air-fuel ratio is reduced with an increase in the shaft torque, the air-fuel ratio is switched to the point C so that the air-fuel ratio 16 is skipped at the point B. When the torque is further increased, the air-fuel ratio is decreased so as to approach point D. If the air-fuel ratio is further reduced, the mixture becomes too rich. Therefore, in this region, it is desirable to detect the air amount and perform the air-fuel ratio control.

図22にエンジン回転数Nと吸入空気量Qaに対する絞り弁開度θthの関係を示す。絞り弁で空気量を制御する場合には、吸入空気量に対するマップから絞り弁開度を求める。さらに精密な制御を行うときには空気量を検出し、フィードバックをかける。   FIG. 22 shows the relationship between the throttle valve opening degree θth and the engine speed N and the intake air amount Qa. When the air amount is controlled by the throttle valve, the throttle valve opening is obtained from a map for the intake air amount. When performing more precise control, the air amount is detected and feedback is applied.

図23,図24に本発明の第六実施例を示す。空燃比が18以上の場合、混合気が希薄すぎて運転性,排気浄化性が低下する場合があるので、燃焼変動を検出し、空気量を少なくするように、絞り弁開度またはカムリフトを設定する。   23 and 24 show a sixth embodiment of the present invention. If the air-fuel ratio is 18 or more, the air-fuel mixture may be too lean and the operability and exhaust purification performance may be reduced. Therefore, the combustion fluctuation is detected and the throttle valve opening or the cam lift is set so as to reduce the amount of air. I do.

図25に本発明の第七実施例を示す。エンジンのシリンダガスケット231に電極234を埋め込み電極232から高電圧を加える。ガスケットにはネジ止め用の穴233が開いている。   FIG. 25 shows a seventh embodiment of the present invention. The electrode 234 is embedded in the cylinder gasket 231 of the engine, and a high voltage is applied from the electrode 232. The gasket has a hole 233 for screwing.

図26に図25の縦断面図を示す。電極238と239の間に高電圧が点火コイルより加えられ、火花放電する。これによって気筒壁面近く及び多点から混合気に点火が行われるので、燃焼速度がおおきくなる。また、壁面近くから燃焼させるので、壁面近くのいわゆるクエンチ領域が少なくなり、未燃焼炭化水素が少なくなり、かつノッキングが発生しにくくなる。ガスケット上下面には絶縁層235及び237を設ける。電極239がアースである場合には絶縁層237はなくても良い。   FIG. 26 shows a longitudinal sectional view of FIG. A high voltage is applied between the electrodes 238 and 239 from the ignition coil, causing a spark discharge. As a result, the air-fuel mixture is ignited from near the cylinder wall surface and from multiple points, so that the combustion speed is increased. In addition, since combustion is performed near the wall surface, the so-called quench region near the wall surface is reduced, unburned hydrocarbons are reduced, and knocking is less likely to occur. The insulating layers 235 and 237 are provided on the upper and lower surfaces of the gasket. When the electrode 239 is ground, the insulating layer 237 may not be provided.

本発明の第一実施例を示し、本制御システムの構成を示す概念図。FIG. 1 is a conceptual diagram showing a first embodiment of the present invention and showing a configuration of the present control system. エンジンの燃焼室内の燃焼状態を示す概念図。FIG. 2 is a conceptual diagram showing a combustion state in a combustion chamber of the engine. 空燃比と発生トルクとの相関図。FIG. 4 is a correlation diagram between an air-fuel ratio and generated torque. 燃料量と空気量との相関図。FIG. 4 is a correlation diagram between a fuel amount and an air amount. 燃焼室の縦断面図。FIG. 3 is a vertical sectional view of a combustion chamber. 空燃比A/Fと排気中のHC,NOxの相関図。FIG. 4 is a correlation diagram between an air-fuel ratio A / F and HC and NOx in exhaust gas. 本発明の第二実施例を示し、図5と同様燃焼室の縦断面図。FIG. 6 shows a second embodiment of the present invention, and is a longitudinal sectional view of a combustion chamber similar to FIG. 5. 燃料噴射時期を表すチャート図。FIG. 3 is a chart showing a fuel injection timing. 燃料噴射時間の計算のフローチャート図。The flowchart figure of calculation of a fuel injection time. 燃料圧力の制御装置のブロック図。FIG. 2 is a block diagram of a fuel pressure control device. EGRの制御系統を表す概念図。The conceptual diagram showing the control system of EGR. 本発明の第三実施例を示し、本制御システムの構成を示す概念図。The conceptual diagram which shows the 3rd Example of this invention and shows the structure of this control system. 吸気弁の動作を示すタイムチャート図。FIG. 4 is a time chart showing the operation of the intake valve. ロッカーアームの構成を示す斜視図。FIG. 3 is a perspective view showing a configuration of a rocker arm. エンジン回転数とアクセル開度とカムの選択のマップ図。The map figure of selection of an engine speed, an accelerator opening, and a cam. エンジン回転数とエンジントルクとカムの選択のマップ図。The map figure of selection of an engine speed, engine torque, and a cam. 空燃比A/Fと軸トルクとの相関図。FIG. 4 is a correlation diagram between an air-fuel ratio A / F and a shaft torque. 燃料量と軸トルクとの相関図。FIG. 4 is a correlation diagram between a fuel amount and a shaft torque. 本発明の第四実施例を示す、本制御システムのブロック図。FIG. 9 is a block diagram of the control system, showing a fourth embodiment of the present invention. 本発明の第五実施例を示す、本制御システムのブロック図。FIG. 13 is a block diagram of the control system, showing a fifth embodiment of the present invention. 目標空燃比のエンジントルクに対するマップ図。The map figure with respect to engine torque of a target air-fuel ratio. エンジン回転数と吸入空気量に対する絞り弁開度の相関図。FIG. 4 is a correlation diagram of a throttle valve opening degree with respect to an engine speed and an intake air amount. 本発明の第六実施例を示す、本制御システムのブロック図。FIG. 13 is a block diagram of the present control system, showing a sixth embodiment of the present invention. 図23と同様、本制御システムのブロック図。FIG. 24 is a block diagram of the present control system as in FIG. 23. 本発明の第七実施例を示し、エンジンのシリンダガスケットの構成を示す上面図。FIG. 13 is a top view illustrating the configuration of the cylinder gasket of the engine according to the seventh embodiment of the present invention. 図25の縦断面図。FIG. 26 is a longitudinal sectional view of FIG. 25.

符号の説明Explanation of reference numerals

1…燃料タンク、2…燃料ポンプ、3…燃料圧力センサ、4…電磁スピル装置、5…制御回路、6…エンジン、7…燃焼室、8…燃焼圧力センサ、9…ピストン、12…吸気弁、13…燃料噴射弁、14…点火プラグ、19…アクセルペダル、21…排気弁、24…キャビティ、28…スワールコントロール弁。   DESCRIPTION OF SYMBOLS 1 ... Fuel tank, 2 ... Fuel pump, 3 ... Fuel pressure sensor, 4 ... Electromagnetic spill device, 5 ... Control circuit, 6 ... Engine, 7 ... Combustion chamber, 8 ... Combustion pressure sensor, 9 ... Piston, 12 ... Intake valve , 13 ... fuel injection valve, 14 ... spark plug, 19 ... accelerator pedal, 21 ... exhaust valve, 24 ... cavity, 28 ... swirl control valve.

Claims (8)

燃料を火花点火機関の燃焼室に直接噴射する燃料噴射手段と、
前記燃焼室内の混合気に点火する点火手段と、
前記火花点火機関の出力トルクを検出するトルク検出手段と、
前記燃焼室への吸入空気を導入する弁手段と、
前記燃料噴射手段から噴射される燃料の燃料量と噴射時期とを制御する燃料制御手段と、
前記点火手段の点火時期を制御する点火時期制御手段と、
前記燃焼室への吸入空気量を制御する吸入空気量制御手段とからなる火花点火内燃機関の制御装置において、
前記トルク検出手段が検出した出力トルクの値があらかじめ定められた値に近づくように、前記燃料制御手段は燃料量を変化させ、前記吸入空気量制御手段は吸入空気量を変化させて、空燃比を変化させるとともに、
前記燃料噴射手段の近傍に前記点火手段を設け、
部分負荷時は燃料を噴射した後に混合気に点火し、生じた火炎を燃料の噴霧でシリンダ内に拡散して燃焼させ、
負荷が大きくなり層状燃焼ですす等が発生する場合は、燃料噴射を複数回に分け、前半の噴射でシリンダ内に予混合気を作り、この予混合気を後半の噴射で作った火炎を気筒内に噴射して予混合気を燃焼させることを特徴とする火花点火内燃機関の制御装置。
Fuel injection means for directly injecting fuel into a combustion chamber of a spark ignition engine;
Ignition means for igniting the air-fuel mixture in the combustion chamber;
Torque detection means for detecting the output torque of the spark ignition engine,
Valve means for introducing intake air into the combustion chamber;
Fuel control means for controlling the fuel amount and the injection timing of the fuel injected from the fuel injection means,
Ignition timing control means for controlling the ignition timing of the ignition means,
In a control device for a spark ignition internal combustion engine, comprising: an intake air amount control means for controlling an intake air amount to the combustion chamber;
The fuel control means changes the amount of fuel, and the intake air amount control means changes the amount of intake air so that the value of the output torque detected by the torque detection means approaches a predetermined value. While changing
Providing the ignition means in the vicinity of the fuel injection means,
At the time of partial load, after fuel is injected, the air-fuel mixture is ignited, and the resulting flame is diffused into the cylinder with fuel spray and burned.
If the load increases and soot occurs due to stratified combustion, the fuel injection is divided into multiple injections, a premixed air mixture is created in the cylinder in the first half of injection, and the flame created in the second half of this premixed air is used as a cylinder. A control device for a spark-ignition internal combustion engine, characterized in that a premixed gas is burned by injecting the premixed air into the engine.
請求項1の記載において、前記吸入空気量制御手段は吸入空気量を一定として、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関の制御装置。   2. The control device for a spark ignition internal combustion engine according to claim 1, wherein said intake air amount control means keeps the intake air amount constant, and said fuel control means changes the fuel amount and changes the air-fuel ratio. 請求項1の記載において、前記吸入空気量制御手段は吸入空気量をステップ状に変化させて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関の制御装置。   2. The spark ignition internal combustion engine according to claim 1, wherein said intake air amount control means changes the intake air amount in a stepwise manner, and said fuel control means changes the fuel amount and changes the air-fuel ratio. Control device. 請求項1の記載において、前記吸入空気量制御手段は吸入空気量を定められた関数に従って変化させて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関の制御装置。   2. A spark ignition according to claim 1, wherein said intake air amount control means changes the intake air amount according to a predetermined function, and said fuel control means changes the fuel amount and changes the air-fuel ratio. Control device for internal combustion engine. 燃料噴射手段は燃料を火花点火機関の燃焼室に直接噴射し、
点火手段は前記燃焼室内の混合気に点火し、
トルク検出手段は前記火花点火機関の出力トルクを検出し、
弁手段は前記燃焼室へ吸入空気を導入し、
燃料制御手段は前記燃料噴射手段から噴射される燃料の燃料量と噴射時期とを制御し、
点火時期制御手段は前記点火手段の点火時期を制御し、
吸入空気量制御手段は前記燃焼室への吸入空気量を制御する火花点火内燃機関の制御方法において、
前記トルク検出手段が検出した出力トルクの値があらかじめ定められた値に近づくように、前記燃料制御手段は燃料量を変化させ、前記吸入空気量制御手段は吸入空気量を変化させ、空燃比を変化させるとともに、
前記燃料噴射手段の近傍に前記点火手段を設け、
部分負荷時は燃料を噴射した後に混合気に点火し、生じた火炎を燃料の噴霧でシリンダ内に拡散して燃焼させ、
負荷が大きくなり層状燃焼ですす等が発生する場合は、燃料噴射を複数回に分け、前半の噴射でシリンダ内に予混合気を作り、この予混合気を後半の噴射で作った火炎を気筒内に噴射して予混合気を燃焼させることを特徴とする火花点火内燃機関の制御方法。
The fuel injection means injects fuel directly into the combustion chamber of the spark ignition engine,
The ignition means ignites the air-fuel mixture in the combustion chamber,
The torque detecting means detects an output torque of the spark ignition engine,
Valve means for introducing intake air into the combustion chamber;
Fuel control means controls the fuel amount and injection timing of the fuel injected from the fuel injection means,
The ignition timing control means controls the ignition timing of the ignition means,
In the method for controlling a spark ignition internal combustion engine, wherein the intake air amount control means controls an intake air amount to the combustion chamber,
The fuel control unit changes the fuel amount, the intake air amount control unit changes the intake air amount, and adjusts the air-fuel ratio so that the value of the output torque detected by the torque detection unit approaches a predetermined value. Change it,
Providing the ignition means in the vicinity of the fuel injection means,
At the time of partial load, after fuel is injected, the air-fuel mixture is ignited, and the resulting flame is diffused into the cylinder with fuel spray and burned,
If the load increases and soot occurs due to stratified combustion, the fuel injection is divided into multiple injections, a premixed mixture is created in the cylinder by the first half of injection, and the flame created by this second half of injection is used as the cylinder A method for controlling a spark ignition internal combustion engine, characterized in that a premixed gas is burned by injecting the mixture into a gas.
請求項5の記載において、前記吸入空気量制御手段は吸入空気量を一定として、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関の制御方法。   6. A control method for a spark ignition internal combustion engine according to claim 5, wherein said intake air amount control means keeps the intake air amount constant, and said fuel control means changes the fuel amount and changes the air-fuel ratio. 請求項5の記載において、前記吸入空気量制御手段は吸入空気量をステップ状に変化させて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関の制御方法。   6. The spark ignition internal combustion engine according to claim 5, wherein said intake air amount control means changes the intake air amount in a stepwise manner, and said fuel control means changes the fuel amount and changes the air-fuel ratio. Control method. 請求項5の記載において、前記吸入空気量制御手段は吸入空気量を定められた関数に従って変化させて、前記燃料制御手段は燃料量を変化させ、空燃比を変化させることを特徴とする火花点火内燃機関の制御方法。
6. The spark ignition according to claim 5, wherein the intake air amount control means changes the intake air amount according to a predetermined function, and the fuel control means changes the fuel amount and changes the air-fuel ratio. A control method for an internal combustion engine.
JP2004210914A 2004-07-20 2004-07-20 Internal combustion engine control device and method Pending JP2004286038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210914A JP2004286038A (en) 2004-07-20 2004-07-20 Internal combustion engine control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210914A JP2004286038A (en) 2004-07-20 2004-07-20 Internal combustion engine control device and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33492893A Division JP3635670B2 (en) 1993-12-28 1993-12-28 Control apparatus and method for spark ignition internal combustion engine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007117912A Division JP2007192234A (en) 2007-04-27 2007-04-27 Control device and method for spark ignition internal combustion engine
JP2007117913A Division JP2007192235A (en) 2007-04-27 2007-04-27 Control device and method for spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004286038A true JP2004286038A (en) 2004-10-14

Family

ID=33297256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210914A Pending JP2004286038A (en) 2004-07-20 2004-07-20 Internal combustion engine control device and method

Country Status (1)

Country Link
JP (1) JP2004286038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031875A (en) * 2006-07-26 2008-02-14 Mazda Motor Corp Exhaust emission control device for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031875A (en) * 2006-07-26 2008-02-14 Mazda Motor Corp Exhaust emission control device for engine

Similar Documents

Publication Publication Date Title
KR100377645B1 (en) Apparatus and method for controlling internal combustion engine
EP1445461B1 (en) Combustion control device and method for engine
JP3500951B2 (en) Non-throttle compression-ignition internal combustion engine and control method thereof
KR101016924B1 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP2002004913A (en) Compression self-ignition type internal combustion engine
WO2002097255A1 (en) Compression ignition internal combustion engine
JP6191837B2 (en) Engine control device
JP4161789B2 (en) Fuel injection control device
JP4297288B2 (en) Control method of ignition timing of premixed compression ignition engine
CN107429625B (en) Fuel injection control device for direct injection engine
JP2009504973A (en) Turbocharged internal combustion engine and method for operating the same
JP2009036086A (en) Direct injection engine and method for controlling the same
JP4117799B2 (en) Control method of ignition timing of premixed compression ignition engine
JP3873560B2 (en) Combustion control device for internal combustion engine
JP2001355449A (en) Compressed self-ignition type internal combustion engine
JP4274063B2 (en) Control device for internal combustion engine
JP2007192235A (en) Control device and method for spark ignition internal combustion engine
JP3635670B2 (en) Control apparatus and method for spark ignition internal combustion engine
JP4023434B2 (en) Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel
JP2006052687A (en) Cylinder direct injection internal combustion engine
JP2004286038A (en) Internal combustion engine control device and method
JP3978965B2 (en) Combustion control device for internal combustion engine
JP6244881B2 (en) Control unit for direct injection engine
JP2007192234A (en) Control device and method for spark ignition internal combustion engine
JP2006002719A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904