JP2004285290A - Photocatalyst coating solution and method for measuring film thickness of photocatalyst layer with fluorescent x-ray spectroscopy and quality control using the same - Google Patents

Photocatalyst coating solution and method for measuring film thickness of photocatalyst layer with fluorescent x-ray spectroscopy and quality control using the same Download PDF

Info

Publication number
JP2004285290A
JP2004285290A JP2003082071A JP2003082071A JP2004285290A JP 2004285290 A JP2004285290 A JP 2004285290A JP 2003082071 A JP2003082071 A JP 2003082071A JP 2003082071 A JP2003082071 A JP 2003082071A JP 2004285290 A JP2004285290 A JP 2004285290A
Authority
JP
Japan
Prior art keywords
photocatalyst
ray
photocatalyst coating
coating liquid
fluorescence analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003082071A
Other languages
Japanese (ja)
Inventor
Akihiro Murakami
明宏 村上
Tatsuya Imura
達哉 井村
Kenjiro Shindo
憲二郎 新道
Masahiko Akamatsu
政彦 赤松
Yoshito Aranishi
義人 荒西
Seiji Terada
誠二 寺田
Nobuo Suda
信男 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003082071A priority Critical patent/JP2004285290A/en
Publication of JP2004285290A publication Critical patent/JP2004285290A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the film thickness of photocatalyst layers with fluorescent X-ray spectroscopy and the quality control using the same. <P>SOLUTION: To the photocatalyst coating liquid, is added a compound of an element (M) that is detectable with the fluorescent X-ray spectroscopy, different from the elements of the photocatalyst coating film components, the photocatalyst protecting layer components and the photocatalyst components. The resultant photocatalyst coating liquid is used to form the photocatalyst layers on the paint-coated layer formed on the surface of the substrate. Then, the measurement of the film thickness of the photocatalyst and the quality control are carried out by measuring the X-ray intensity of the M element through the fluorescent X-ray spectroscopy. Even in the case where the paint-coated layer includes the components of the photocatalyst, the thickness of the photocatalyst can exactly measured from the X-ray intensity of the M element and the quality control of the photocatalyst layer also can be carried out in high precision. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光触媒液に、蛍光X線分析により検出可能で光触媒、基材を塗装した塗料等に含まれない元素(M)を含む化合物を含有させた光触媒塗布液と、この光触媒塗布液を塗布して基材上に形成された光触媒層について、蛍光X線分析方法により光触媒層の膜厚測定及び品質管理を行う方法に関するものである。
【0002】
【従来の技術】
光触媒は、紫外線を照射された場合に酸化力を生じ、これにより脱臭、殺菌、防汚などの優れた効果を発揮し得る。従って、基材表面にこのような特性を発揮可能な光触媒層を形成することにより、優れた特性を発揮する複合材を得ようとする試みが、様々な分野においてなされている。そして、基材に光触媒(液)を塗布する場合、非常に薄く形成された光触媒層の膜厚測定、品質管理を行うことが必要となることが多い。
【0003】
一方、例えば、酸化チタンを含む塗料を塗布した基材(建材、鋼板等)に光触媒(酸化チタン)を塗布する場合、非常に薄く形成された光触媒層の膜厚測定、品質管理をどう行うかという問題がある。工場内での建材、鋼板等の生産ラインでは、塗料による塗膜の品質、膜厚測定に蛍光X線分析を利用するものも多い。したがって、工場内での光触媒塗布においても、光触媒層の膜厚測定、品質管理を蛍光X線分析で行うことが、ユーザー側から望まれている。しかし、汎用塗料のほとんどには酸化チタンが含まれるため、蛍光X線分析では非常に薄く形成された光触媒層のチタンだけでなく、塗料塗膜中のチタンも検出されてしまうため、光触媒層の正確な膜厚測定、品質管理は困難である。
【0004】
蛍光X線分析法を塗料や塗膜の測定に利用する技術としては、電着塗料中のフッ素樹脂濃度を測定するに際し、塗料中に含まれる塩素原子濃度を蛍光X線分析により測定し、この塩素原子濃度からフッ素原子濃度を求めてフッ素樹脂濃度を測定するという方法がある(例えば、特許文献1参照)。また、めっきされた金属体を被覆した塗膜の厚さを蛍光X線分析法で測定するに際し、めっき層厚の影響を理論的に求めた関係式を用いて補正し、正確な塗膜厚を求めるという方法がある(例えば、特許文献2参照)。
【0005】
また、基材の透明又は半透明上塗り塗膜中に蛍光体を含有させておき、該蛍光体から発せられる蛍光の分布状況を検出して前記塗膜の被覆状態を判定するという方法がある(例えば、特許文献3参照)。また、脱スケール、酸洗ステンレス鋼材の品質管理システムとして、鋼材表面のSi、Cr濃度、あるいは鋼材表面のSi、Cr濃度と地金中のSi、Cr濃度との比を蛍光X線分析により検出し、この検出結果に基づいて脱スケール又は酸洗の条件を調整するという技術がある(例えば、特許文献4参照)。
【0006】
また、光触媒に関する技術では、光触媒に、光触媒機能の発現により分解して消色される色素を含有させ、塗装現場における光触媒塗装剤の塗り残し等を判別するという方法がある(例えば、特許文献5参照)。また、光触媒塗膜中に蛍光物質を混入させて、光触媒塗膜の有無及び光触媒機能の発現を目視で確認できるようにした技術がある(例えば、特許文献6参照)。
これらのいずれの先行技術も、蛍光X線分析を用いた光触媒層の膜厚測定、品質管理に関するものではなかった。
【0007】
【特許文献1】
特開平7−197296号公報
【特許文献2】
特開平5−10743号公報
【特許文献3】
特開2002−54907号公報
【特許文献4】
特開平6−88794号公報
【特許文献5】
特開2001−321676号公報
【特許文献6】
特開平11−71136号公報
【0008】
【発明が解決しようとする課題】
本発明は上記の諸点に鑑みなされたもので、本発明の目的は、光触媒塗布液に、蛍光X線分析により検出可能であって、塗料塗膜成分元素、光触媒保護層成分元素、光触媒成分元素とは異なる元素(M)を含む化合物を含有させ、この光触媒塗布液により基材表面の塗料塗膜上に光触媒層を形成させて、光触媒層の膜厚測定、品質管理を蛍光X線分析によりM元素のX線強度値を測定することで行うことにより、塗料塗膜に光触媒の構成成分が含まれる場合であっても、M元素のX線強度値から光触媒層の膜厚を正確に測定することができ、光触媒層の品質管理も精度よく行える方法、及び、上記のような、光触媒液に、蛍光X線分析により検出可能で光触媒、基材を塗装した塗料等に含まれない元素(M)を含む化合物を含有させた光触媒塗布液を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明の光触媒塗布液は、光触媒(液)と、蛍光X線分析により検出可能であって、該光触媒を構成する成分元素とは異なる元素(M)を含む化合物とを含有するように構成されている。また、本発明の光触媒塗布液は、塗装された基材へ光触媒を塗布する場合、光触媒と、蛍光X線分析により検出可能であって、該光触媒を構成する成分元素及び前記基材の塗装に使用されている塗料の成分元素とは異なる元素(M)を含む化合物とを含有するものとする。また、基材を光触媒から保護するために下地剤を使用している場合、蛍光X線分析により検出可能である上記の元素(M)は、下地剤の成分元素と異なる元素とする。
【0010】
光触媒塗布液に含有される蛍光X線分析により検出可能である元素(M)は、例えば、B、Al、P、S、Cl、V、Rb、Sr、Y、Zr、Nb、Rh、Pd、Ag、Hf、Ta、W、Auなどである。特に、B、Al、P、S、Cl、Zr、Pd、Wなどを使用することが好ましい。また、光触媒としては、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウム、酸化タングステン、酸化マンガン、酸化ルテニウムなどが用いられる。特に、安全性、薬品に対する耐久性、透明性などにより、酸化チタンが好適である。この場合、光触媒塗布液に含有される蛍光X線分析により検出可能である元素(M)と光触媒に含まれるチタンとのモル比を、M/Ti=0.001〜1.0、望ましくは0.005〜0.5、より望ましくは0.01〜0.05とすることが好ましい。M/Tiのモル比が下限値未満の場合は、蛍光X線分析での元素MのX線強度値が低くなるため、光触媒層の膜厚測定の精度が悪くなるという不都合があり、M/Tiのモル比が上限値を超える場合は、満足する光触媒性能が得られないという不都合がある。
【0011】
本発明の蛍光X線分析を用いた光触媒層の膜厚測定・品質管理方法は、上記のような光触媒塗布液を用い、該光触媒塗布液が塗布されて基材上に形成された光触媒層の膜厚測定、品質管理を行うに際し、蛍光X線分析によりM元素のX線強度値を検出し、M元素のX線強度値から光触媒を構成する成分元素のX線強度値を求めることで、光触媒層の膜厚を測定し、さらに光触媒層の品質を管理することを特徴としている。ここで言う「品質管理」としては、一例として、光触媒の性能や、光触媒層の塗り残し、塗りムラ等を検出することが挙げられる。
【0012】
【発明の実施の形態】
つぎに、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更等して実施することが可能なものである。すなわち、以下の説明においては、理解を容易にし、かつ説明を具体的に成すために、光触媒は酸化チタンを例として記述するが、本発明は酸化チタンに限定されるものではない。
【0013】
酸化チタンを含む塗料を塗布した基材に光触媒として酸化チタンを塗布する場合、非常に薄く形成された光触媒層の膜厚測定、品質管理をどう行うかという課題がある。塗料による塗膜の品質、膜厚測定には蛍光X線分析方法を利用するものも多いので、塗装された基材への光触媒塗布においても、光触媒層の膜厚測定、品質管理を蛍光X線分析で行うことが望まれている。しかし、汎用塗料のほとんどには酸化チタンが含まれるため、蛍光X線分析では非常に薄く形成された光触媒層のチタンだけでなく、塗料塗膜中のチタンも検出されてしまうため、光触媒層の正確な膜厚測定、品質管理は困難である。
【0014】
本発明では、光触媒塗布液に、蛍光X線分析により検出可能であって、塗料塗膜成分元素、光触媒保護層成分元素、光触媒成分元素とは異なる元素(M)を含む化合物を含有させ、この光触媒塗布液により基材表面の塗料塗膜上に光触媒層を形成させて、光触媒層の膜厚測定、品質管理を蛍光X線分析によりM元素のX線強度値を測定することで行うことにより、塗料塗膜に光触媒の構成成分が含まれる場合であっても、M元素のX線強度値から光触媒層の膜厚を正確に測定することができ、光触媒層の品質管理も精度よく行える。具体的には、例えば、予めチタンとM元素を含む光触媒層の膜厚が異なるものを数種類準備し、蛍光X線分析によるM元素のX線強度値から光触媒である酸化チタンを構成する成分元素(この場合、チタン)のX線強度値が求められる検量線を作成しておくと、任意のM元素のX線強度値から光触媒層の膜厚を測定することができる。また、M元素のX線強度値からチタンのX線強度値が比例関係で判る。なお、光触媒層の膜厚を予め測定しておく際には、SEM(走査型電子顕微鏡)等を使用することができる。
【0015】
光触媒塗布液に含有される蛍光X線分析により検出可能なM元素としては、例えば、B、Al、P、S、Cl、V、Rb、Sr、Y、Zr、Nb、Rh、Pd、Ag、Hf、Ta、W、Auなどが使用される。特に、B、Al、P、S、Cl、Zr、Pd、Wなどを使用することが好ましい。また、光触媒としては、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウム、酸化タングステン、酸化マンガン、酸化ルテニウムなどが用いられる。特に、安全性、薬品に対する耐久性、透明性などにより、アモルファス型酸化チタン、アナターゼ型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタンを組み合わせたものが最適である。光触媒コーティング液としては、水系、溶剤系のどちらでも使用できるが、乾燥の比較的速いアルコール系溶媒に高分散している光触媒コーティング液を使用することが好適である。本発明に使用することが可能な光触媒コーティング材としては、例えば、チタニアゾル溶液、チタニアゲル体又はチタニアゾル・ゲル混合体を、密閉容器内で加熱処理すると同時に加圧処理し、ついで、分散・攪拌して得られるアナターゼ型酸化チタンスラリーなどが挙げられる。また、光触媒塗布液を基材に塗布する方法は、任意の方法でよい。
【0016】
【実施例】
実施例として、リン酸又はZrOを含有した光触媒塗布液での蛍光X線分析による測定結果を示す。なお、P又はZr、TiのX線強度値は、蛍光X線分析装置の機種、測定条件等によっても異なり、実施例での数値は一例として挙げたものであって、本発明の方法を何ら限定するものではない。
実施例1
光触媒コーティング材としてアナターゼ型酸化チタン分散液である「フォリウム(登録商標)」(川崎重工業(株)製)を用い、この光触媒コーティング材にリン酸(和光純薬工業製、純度85%以上)0.1wt%を含有させて光触媒塗布液1とした。そして、光触媒塗布液1をイソプロピルアルコールを主成分とする希釈剤である「フォリウム専用希釈剤」(川崎重工業(株)製)にて3倍、10倍に希釈したものをあわせて作成した。3倍希釈のものを光触媒塗布液2、10倍希釈のものを光触媒塗布液3とする。
【0017】
作成した光触媒塗布液1、2、3を用いて、ガラス基板上にディップコーティング方式で塗布速度10〜40cm/min、塗布回数1〜2回で塗布した。塗布後、ドライヤーにて乾燥し、蛍光X線分析装置(モデル:3080E2、Rigaku Denki Kogyo)にてTi、Pの測定を行った。光触媒塗布液を塗布する前のガラス基板のP、Tiの蛍光X線のX線強度値は、P:0.0698kcps、Ti:0.0777kcpsであった。
表1に試験結果(リン酸含有光触媒層の蛍光X線分析結果)を示す。表1の結果から横軸にPのX線強度値を、縦軸にTiのX線強度値をプロットしたグラフを図1に示す。表1、図1よりPのX線強度値とTiのX線強度値は非常に良好な比例関係を示した。この結果から光触媒のPのX線強度値を測定することにより、塗膜上に形成されたTiのX線強度値を測定することが可能とわかる。また、あらかじめTi又はPのX線強度値と光触媒層の膜厚を測定しておくことで、塗膜上に形成された光触媒層の膜厚測定が可能となる。
【0018】
【表1】

Figure 2004285290
【0019】
実施例2
汎用塗料(酸化チタンを含む)でシルバー色に塗装されたアルミ複合材に、ジルコニアを主成分とする光触媒下地剤「フォリウム用アンダーコート剤」(川崎重工業(株)製)をディップコーティング方式で塗布速度10cm/min、塗布回数1回で塗布し、ドライヤーで乾燥させた。基材を乾燥後、上記実施例1の光触媒塗布液1を同様にディップコーティング方式で塗布速度10〜40cm/min、塗布回数1回で塗布した。塗布後、ドライヤーで乾燥し、蛍光X線分析装置(モデル:3080E2、Rigaku Denki Kogyo)にてTi、Pの測定を行った。光触媒下地剤、光触媒塗布液を塗布する前のシルバー色で塗装されたアルミ複合材のP、Tiの蛍光X線のX線強度値は、P:0.0425kcps、Ti:8.5283kcpsであった。
【0020】
表2に試験結果(リン酸含有光触媒層の蛍光X線分析結果)を示す。表2の結果から横軸にPのX線強度値を、縦軸にTiのX線強度値をプロットしたグラフを図2に示す。図2には、比較のため実施例1の結果も合わせて示す。表2、図2より基材上の塗膜にTiが含まれる場合、蛍光X線によるTiの強度値は基材上の塗膜中のTiに影響され、光触媒層の厚みをTiのX線強度値から測定することはやはり困難であった。光触媒層は基材の意匠性、乾燥時の膜の亀裂等を防ぐために非常に薄い膜厚が要求される。そのため、蛍光X線分析によりTiのX線強度値が数kcps以上検出される基材では、光触媒層のTiは誤差として検出される恐れがある。そのような場合、実施例2のように、実施例1のプロットを検量線として、PのX線強度値からTiのX線強度値を測定することで、正確に光触媒層の膜厚測定、品質管理を行うことが可能となる。
【0021】
【表2】
Figure 2004285290
【0022】
実施例3
光触媒コーティング材としてアナターゼ型酸化チタン分散液である「フォリウム(登録商標)」(川崎重工業(株)製)を用い、この光触媒コーティング材にZr/Tiのモル比が0.5となるようにZrO分散液を含有させて光触媒塗布液4とした。そして、光触媒塗布液4をイソプロピルアルコールを主成分とする希釈剤である「フォリウム専用希釈剤」(川崎重工業(株)製)にて2倍、4倍に希釈したものをあわせて作成した。2倍希釈のものを光触媒塗布液5、4倍希釈のものを光触媒塗布液6とする。
【0023】
作成した光触媒塗布液4、5、6を用いて、ガラス基板上にディップコーティング方式で塗布速度10〜40cm/min、塗布回数1回で塗布した。塗布後、ドライヤーにて乾燥し、蛍光X線分析装置(モデル:3080E2、RigakuDenki Kogyo)にてTi、Zrの測定を行った。光触媒塗布液を塗布する前のガラス基板のZr、Tiの蛍光X線のX線強度値は、Zr:0.0304kcps、Ti:0.0777kcpsであった。
表3に試験結果(ZrO含有光触媒層の蛍光X線分析結果)を示す。表3の結果から横軸にZrのX線強度値を、縦軸にTiのX線強度値をプロットしたグラフを図3に示す。表3、図3よりZrのX線強度値とTiのX線強度値は非常に良好な比例関係を示した。この結果から光触媒のZrのX線強度値を測定することにより、塗膜上に形成されたTiのX線強度値を測定することが可能とわかる。
【0024】
【表3】
Figure 2004285290
【0025】
つぎに、B、P、Zr、Pd、Wの各元素を含有した光触媒液のアセトアルデヒド分解試験結果を示す。
実施例4
光触媒コーティング材としてアナターゼ型酸化チタン分散液である「フォリウム(登録商標)」(川崎重工業(株)製)を用い、B、P、Zr、Pd、Wの元素を含むそれぞれの光触媒塗布液を作成した。Bを含む化合物にはホウ酸、Pを含む化合物にはリン酸、Zrを含む化合物にはZrO、Pdを含む化合物にはパラジウム(II)アセチルアセトナート、Wを含む化合物にはW(OCを用いた。ガラス(100mm×100mm)に各光触媒塗布液を40cm/minの速度でディッピング塗布し、110℃で30分間処理した。
【0026】
ガラスへの塗布量は4.0〜6.0mgの範囲であった。2リットルの石英ガラスセパラブルフラスコに光触媒を塗布したガラスを入れ、アセトアルデヒド(以下、「AA」という)ガスを100ppmの濃度に調整したガスを2リットル注入し、15分間保持した。AAの希釈ガスは炭酸ガスを含まない合成空気を使用した。その後、ブラックライトブルー蛍光灯(BLB灯)の紫外線強度2.0mW/cmとなるよう調節したのち、それぞれ30分間紫外線を照射して試験を行った。紫外線強度はUVR−2(トプコン社製)にて計測した。セパラブルフラスコ内でAAの酸化分解により生成する炭酸ガスをGC−FID(水素炎イオン化検出器)にて計測した。
【0027】
ガス濃度の測定条件は下記に示すとおりである。
Figure 2004285290
【0028】
表4に試験結果を示す。表4において、AA分解活性の欄の記号「○」は、AAの分解による炭酸ガスの発生があったことを示している。この結果から、B、P、Zr、Pd、Wの各元素を含むそれぞれの光触媒塗布液について、優れた光触媒性能が確認できた。このように、B、P、Zr、Pd、Wの元素を含む各光触媒塗布液では、満足する光触媒性能を確保しつつ、前述のように蛍光X線分析による光触媒層の膜厚測定が精度よく行える。
【0029】
【表4】
Figure 2004285290
【0030】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 光触媒塗布液に、蛍光X線分析により検出可能であって、塗料塗膜成分元素、光触媒保護層成分元素、光触媒成分元素とは異なる元素(M)を含む化合物を含有させ、この光触媒塗布液により基材表面の塗料塗膜上に光触媒層を形成させて、光触媒層の膜厚測定、品質管理を蛍光X線分析によりM元素のX線強度値を測定することで行うことにより、塗料塗膜に光触媒の構成成分が含まれる場合であっても、M元素のX線強度値から光触媒層の膜厚を正確に測定することができ、光触媒層の品質管理も精度よく行える。
(2) M元素(例えば、B、Al、P、S、Cl、V、Rb、Sr、Y、Zr、Nb、Rh、Pd、Ag、Hf、Ta、W、Au等で、好ましくはB、Al、P、S、Cl、Zr、Pd、W等)を含む化合物を光触媒塗布液に含有させることにより、工場内塗装ラインで蛍光X線分析装置を用いた光触媒層の膜厚測定、品質管理が可能となる。
(3) 例えば、光触媒が酸化チタンである場合に、酸化チタンを含む塗料を塗布した母材に光触媒層を形成させても、光触媒層の正確な膜厚測定、品質管理が可能である。
(4) 蛍光X線分析によるM元素のX線強度値から光触媒成分元素(チタン等)のX線強度値が判るので、光触媒層の品質管理(光触媒の性能、塗り残し、塗りムラの判定等)が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるPとTiのX線強度値の関係を示すグラフである。
【図2】本発明の実施例2におけるPとTiのX線強度値の関係を示すグラフである。
【図3】本発明の実施例3におけるZrとTiのX線強度値の関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photocatalyst coating solution containing a photocatalyst solution and a compound containing an element (M) which can be detected by X-ray fluorescence analysis and is not contained in a coating material coated on a substrate or the like. The present invention relates to a method for measuring the film thickness of a photocatalyst layer and controlling the quality of the photocatalyst layer by a fluorescent X-ray analysis method with respect to a photocatalyst layer formed on a substrate by coating.
[0002]
[Prior art]
The photocatalyst generates oxidizing power when irradiated with ultraviolet rays, and can exhibit excellent effects such as deodorization, sterilization, and antifouling. Therefore, attempts have been made in various fields to obtain a composite material exhibiting excellent properties by forming a photocatalyst layer capable of exhibiting such properties on the surface of a base material. When a photocatalyst (liquid) is applied to a substrate, it is often necessary to measure the film thickness and control the quality of the photocatalyst layer formed extremely thin.
[0003]
On the other hand, for example, when applying a photocatalyst (titanium oxide) to a base material (building material, steel plate, etc.) to which a paint containing titanium oxide has been applied, how to measure the thickness of a very thin photocatalyst layer and perform quality control There is a problem. Many production lines for building materials and steel plates in factories use fluorescent X-ray analysis to measure the quality and film thickness of paint films. Therefore, even in the photocatalyst application in a factory, it is desired by the user to perform the thickness measurement and the quality control of the photocatalyst layer by the fluorescent X-ray analysis. However, since most general-purpose paints contain titanium oxide, X-ray fluorescence analysis detects not only titanium in the photocatalyst layer formed very thinly, but also titanium in the paint film. Accurate film thickness measurement and quality control are difficult.
[0004]
As a technique of using the fluorescent X-ray analysis method for measuring paints and coatings, when measuring the concentration of fluororesin in the electrodeposition paint, the concentration of chlorine atoms contained in the paint is measured by fluorescent X-ray analysis. There is a method of measuring a fluorine resin concentration by obtaining a fluorine atom concentration from a chlorine atom concentration (for example, see Patent Document 1). In addition, when measuring the thickness of the coating film coated with the plated metal body by X-ray fluorescence analysis, the effect of the plating layer thickness is corrected using a theoretically obtained relational expression, and the exact coating film thickness is corrected. (For example, see Patent Document 2).
[0005]
Further, there is a method in which a phosphor is contained in a transparent or translucent overcoat film of a base material, and a distribution state of fluorescence emitted from the phosphor is detected to determine a coating state of the coating film ( For example, see Patent Document 3). In addition, as a quality control system for descaling and pickling stainless steel, the concentration of Si and Cr on the surface of steel or the ratio of the concentration of Si and Cr on the surface of steel to the concentration of Si and Cr in the base metal is detected by X-ray fluorescence analysis. However, there is a technique of adjusting the conditions of descaling or pickling based on the detection result (for example, see Patent Document 4).
[0006]
Further, in the technology related to the photocatalyst, there is a method in which the photocatalyst contains a pigment that is decomposed and decolored due to the expression of the photocatalytic function, and the uncoated portion of the photocatalyst coating agent at the coating site is determined (for example, Patent Document 5). reference). There is also a technique in which a fluorescent substance is mixed into a photocatalyst coating film so that the presence or absence of the photocatalyst coating and the development of a photocatalytic function can be visually confirmed (for example, see Patent Document 6).
None of these prior arts relates to measurement of the thickness of the photocatalytic layer using X-ray fluorescence analysis and quality control.
[0007]
[Patent Document 1]
JP-A-7-197296 [Patent Document 2]
JP-A-5-10743 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-54907 [Patent Document 4]
JP-A-6-88794 [Patent Document 5]
JP 2001-321676 A [Patent Document 6]
JP-A-11-71136 [0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described points, and an object of the present invention is to provide a photocatalyst coating liquid that can be detected by X-ray fluorescence analysis, and that includes a paint film component element, a photocatalyst protective layer component element, and a photocatalyst component element. A compound containing an element (M) different from that described above is contained, and a photocatalyst layer is formed on the coating film on the substrate surface using the photocatalyst coating solution, and the film thickness measurement and quality control of the photocatalyst layer are performed by fluorescent X-ray analysis. By measuring the X-ray intensity value of the M element, even when the coating film contains a component of the photocatalyst, the thickness of the photocatalyst layer can be accurately measured from the X-ray intensity value of the M element. And a method capable of controlling the quality of the photocatalyst layer with high accuracy, and an element (such as described above) that can be detected in the photocatalyst liquid by X-ray fluorescence analysis and is not contained in the photocatalyst, the coating material coated on the base material, etc. Photocatalyst containing compound containing M) It is to provide a coating solution.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the photocatalyst coating liquid of the present invention contains a photocatalyst (liquid) and an element (M) that can be detected by X-ray fluorescence analysis and is different from the constituent elements constituting the photocatalyst. And a compound. Further, the photocatalyst coating liquid of the present invention, when applying a photocatalyst to the coated substrate, the photocatalyst, can be detected by X-ray fluorescence analysis, the component elements constituting the photocatalyst and the coating of the substrate And a compound containing an element (M) that is different from the component elements of the paint being used. When a base material is used to protect the base material from the photocatalyst, the above-mentioned element (M) that can be detected by X-ray fluorescence analysis is different from the component elements of the base material.
[0010]
Elements (M) that can be detected by X-ray fluorescence analysis contained in the photocatalyst coating solution include, for example, B, Al, P, S, Cl, V, Rb, Sr, Y, Zr, Nb, Rh, Pd, Ag, Hf, Ta, W, Au and the like. In particular, it is preferable to use B, Al, P, S, Cl, Zr, Pd, W and the like. As the photocatalyst, for example, titanium oxide, zinc oxide, zirconium oxide, barium titanate, strontium titanate, tungsten oxide, manganese oxide, ruthenium oxide and the like are used. Particularly, titanium oxide is preferred because of safety, durability against chemicals, transparency, and the like. In this case, the molar ratio of the element (M) detectable by X-ray fluorescence analysis contained in the photocatalyst coating liquid to titanium contained in the photocatalyst is M / Ti = 0.001 to 1.0, preferably 0. 0.005 to 0.5, more preferably 0.01 to 0.05. When the molar ratio of M / Ti is less than the lower limit, the X-ray intensity value of the element M in the fluorescent X-ray analysis becomes low, so that the accuracy of measuring the thickness of the photocatalyst layer is deteriorated. If the molar ratio of Ti exceeds the upper limit, there is a disadvantage that satisfactory photocatalytic performance cannot be obtained.
[0011]
The method for measuring the thickness and controlling the quality of the photocatalyst layer using the fluorescent X-ray analysis of the present invention uses the photocatalyst coating solution as described above, and applies the photocatalyst coating solution to the photocatalyst layer formed on the substrate. When measuring the film thickness and performing quality control, the X-ray intensity value of the M element is detected by X-ray fluorescence analysis, and the X-ray intensity value of the component elements constituting the photocatalyst is determined from the X-ray intensity value of the M element. The thickness of the photocatalyst layer is measured, and the quality of the photocatalyst layer is further controlled. As the “quality control” here, for example, detection of the performance of the photocatalyst, the uncoated portion of the photocatalyst layer, uneven coating, and the like can be mentioned.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. That is, in the following description, the photocatalyst is described using titanium oxide as an example in order to facilitate understanding and make the description concrete, but the present invention is not limited to titanium oxide.
[0013]
When titanium oxide is applied as a photocatalyst to a substrate coated with a paint containing titanium oxide, there is a problem of how to measure the film thickness and control the quality of a photocatalyst layer formed extremely thin. In many cases, the X-ray fluorescence analysis method is used to measure the quality and film thickness of the paint film, so even when applying the photocatalyst to the coated substrate, the measurement of the thickness of the photocatalyst layer and the quality control are performed by X-ray fluorescence. It is hoped that it will be done by analysis. However, since most general-purpose paints contain titanium oxide, X-ray fluorescence analysis detects not only titanium in the photocatalyst layer formed very thinly, but also titanium in the paint film. Accurate film thickness measurement and quality control are difficult.
[0014]
In the present invention, the photocatalyst coating liquid contains a compound that can be detected by X-ray fluorescence analysis and contains an element (M) that is different from the coating film component element, the photocatalytic protective layer component element, and the photocatalytic component element. The photocatalyst layer is formed on the paint film on the substrate surface with the photocatalyst coating liquid, and the film thickness measurement and quality control of the photocatalyst layer are performed by measuring the X-ray intensity value of the M element by fluorescent X-ray analysis. Even when the coating film contains a component of the photocatalyst, the thickness of the photocatalyst layer can be accurately measured from the X-ray intensity value of the element M, and the quality of the photocatalyst layer can be accurately controlled. Specifically, for example, several types of photocatalyst layers having different film thicknesses of titanium and the M element are prepared in advance, and the component elements constituting the titanium oxide as the photocatalyst are determined from the X-ray intensity values of the M element by fluorescent X-ray analysis. By preparing a calibration curve from which the X-ray intensity value of (in this case, titanium) is obtained, the thickness of the photocatalytic layer can be measured from the X-ray intensity value of an arbitrary M element. Further, the X-ray intensity value of titanium can be found from the X-ray intensity value of element M in a proportional relationship. When the thickness of the photocatalyst layer is measured in advance, an SEM (scanning electron microscope) or the like can be used.
[0015]
Examples of the M element detectable by X-ray fluorescence analysis contained in the photocatalyst coating solution include B, Al, P, S, Cl, V, Rb, Sr, Y, Zr, Nb, Rh, Pd, Ag, Hf, Ta, W, Au and the like are used. In particular, it is preferable to use B, Al, P, S, Cl, Zr, Pd, W and the like. As the photocatalyst, for example, titanium oxide, zinc oxide, zirconium oxide, barium titanate, strontium titanate, tungsten oxide, manganese oxide, ruthenium oxide and the like are used. In particular, a combination of amorphous titanium oxide, anatase titanium oxide, brookite titanium oxide, and rutile titanium oxide is optimal because of safety, durability against chemicals, transparency, and the like. As the photocatalyst coating liquid, either a water-based or solvent-based liquid can be used, but it is preferable to use a photocatalyst coating liquid that is highly dispersed in an alcohol-based solvent that dries relatively quickly. As a photocatalyst coating material that can be used in the present invention, for example, a titania sol solution, a titania gel or a titania sol-gel mixture, a heat treatment in a closed container, and at the same time, a pressure treatment, followed by dispersion and stirring. The resulting anatase-type titanium oxide slurry may, for example, be mentioned. The method for applying the photocatalyst coating liquid to the substrate may be any method.
[0016]
【Example】
As an example, a measurement result by a fluorescent X-ray analysis with a photocatalyst coating solution containing phosphoric acid or ZrO 2 is shown. Note that the X-ray intensity values of P, Zr, and Ti vary depending on the model of the fluorescent X-ray analyzer, measurement conditions, and the like. The numerical values in the examples are given as examples, and the method of the present invention is not described. There is no limitation.
Example 1
"Folium (registered trademark)" (manufactured by Kawasaki Heavy Industries, Ltd.), which is an anatase-type titanium oxide dispersion, was used as the photocatalyst coating material. Phosphoric acid (manufactured by Wako Pure Chemical Industries, purity: 85% or more) was used as the photocatalyst coating material. The photocatalyst coating liquid 1 contained 0.1 wt%. Then, the photocatalyst coating liquid 1 was diluted 3 times and 10 times with a “diluent for folium” (manufactured by Kawasaki Heavy Industries, Ltd.), which is a diluent containing isopropyl alcohol as a main component, to prepare a mixture. A three-fold dilution is referred to as a photocatalyst coating liquid 2, and a ten-fold dilution is referred to as a photocatalyst coating liquid 3.
[0017]
Using the prepared photocatalyst coating liquids 1, 2, and 3, coating was performed on a glass substrate by dip coating at a coating speed of 10 to 40 cm / min and a coating frequency of 1 to 2 times. After the application, the film was dried with a drier and measured for Ti and P with a fluorescent X-ray analyzer (Model: 3080E2, Rigaku Denki Kogyo). The X-ray intensity values of the fluorescent X-rays of P and Ti on the glass substrate before applying the photocatalyst coating liquid were P: 0.0698 kcps and Ti: 0.0777 kcps.
Table 1 shows the test results (the results of fluorescent X-ray analysis of the phosphoric acid-containing photocatalyst layer). FIG. 1 is a graph in which the X-ray intensity value of P is plotted on the horizontal axis and the X-ray intensity value of Ti is plotted on the vertical axis from the results in Table 1. From Table 1 and FIG. 1, the X-ray intensity value of P and the X-ray intensity value of Ti showed a very good proportional relationship. From this result, it can be seen that by measuring the X-ray intensity value of P of the photocatalyst, the X-ray intensity value of Ti formed on the coating film can be measured. In addition, by measuring the X-ray intensity value of Ti or P and the thickness of the photocatalyst layer in advance, the thickness of the photocatalyst layer formed on the coating film can be measured.
[0018]
[Table 1]
Figure 2004285290
[0019]
Example 2
Dip-coating method using a zirconia-based photocatalyst primer “Folium undercoat agent” (made by Kawasaki Heavy Industries, Ltd.) on an aluminum composite material painted silver with a general-purpose paint (including titanium oxide) The coating was performed at a speed of 10 cm / min and the number of times of application was one, and dried with a dryer. After the substrate was dried, the photocatalyst coating liquid 1 of Example 1 was applied by a dip coating method at an application speed of 10 to 40 cm / min and one application. After the application, it was dried with a drier, and the measurement of Ti and P was performed using a fluorescent X-ray analyzer (Model: 3080E2, Rigaku Denki Kogyo). The X-ray intensity values of P and Ti fluorescent X-rays of the aluminum composite material coated in silver before the application of the photocatalyst undercoating agent and the photocatalyst coating solution were P: 0.0425 kcps and Ti: 8.5283 kcps. .
[0020]
Table 2 shows the test results (the fluorescent X-ray analysis results of the phosphoric acid-containing photocatalyst layer). FIG. 2 is a graph in which the X-ray intensity value of P is plotted on the horizontal axis and the X-ray intensity value of Ti is plotted on the vertical axis from the results in Table 2. FIG. 2 also shows the results of Example 1 for comparison. According to Table 2 and FIG. 2, when Ti is contained in the coating film on the base material, the intensity value of Ti by fluorescent X-rays is affected by Ti in the coating film on the base material, and the thickness of the photocatalytic layer is reduced by X-ray of Ti. It was still difficult to measure from intensity values. The photocatalyst layer is required to have a very thin film thickness in order to prevent the design of the substrate and to prevent cracking of the film during drying. Therefore, in a substrate in which the X-ray intensity value of Ti is detected by several kcps or more by fluorescent X-ray analysis, Ti in the photocatalyst layer may be detected as an error. In such a case, as in Example 2, by using the plot of Example 1 as a calibration curve and measuring the X-ray intensity value of Ti from the X-ray intensity value of P, the film thickness measurement of the photocatalytic layer can be accurately performed. Quality control can be performed.
[0021]
[Table 2]
Figure 2004285290
[0022]
Example 3
"Folium (registered trademark)" (manufactured by Kawasaki Heavy Industries, Ltd.), which is an anatase-type titanium oxide dispersion liquid, was used as a photocatalyst coating material, and ZrO was added to the photocatalyst coating material so that the molar ratio of Zr / Ti was 0.5. Photocatalyst coating liquid 4 was prepared by incorporating the two dispersions. Then, the photocatalyst coating liquid 4 was diluted by a factor of 2 with a diluent mainly composed of isopropyl alcohol, "diluent for folium" (manufactured by Kawasaki Heavy Industries, Ltd.), and the photocatalyst coating solution 4 was prepared by diluting the solution 4 times. The two-fold dilution is referred to as a photocatalyst coating liquid 5, and the four-fold dilution is referred to as a photocatalyst coating liquid 6.
[0023]
Using the prepared photocatalyst coating liquids 4, 5, and 6, coating was performed on a glass substrate by dip coating at a coating speed of 10 to 40 cm / min and a single coating. After the application, the film was dried with a drier and measured for Ti and Zr with a fluorescent X-ray analyzer (Model: 3080E2, Rigaku Denki Kogyo). The X-ray intensity values of the fluorescent X-rays of Zr and Ti on the glass substrate before the application of the photocatalyst coating liquid were Zr: 0.0304 kcps and Ti: 0.0777 kcps.
Table 3 shows test results (X-ray fluorescence analysis results of the ZrO 2 -containing photocatalyst layer). FIG. 3 is a graph in which the X-ray intensity value of Zr is plotted on the horizontal axis and the X-ray intensity value of Ti is plotted on the vertical axis from the results in Table 3. From Table 3 and FIG. 3, the X-ray intensity value of Zr and the X-ray intensity value of Ti showed a very good proportional relationship. From this result, it is understood that by measuring the X-ray intensity value of Zr of the photocatalyst, it is possible to measure the X-ray intensity value of Ti formed on the coating film.
[0024]
[Table 3]
Figure 2004285290
[0025]
Next, the results of the acetaldehyde decomposition test of the photocatalyst solution containing each element of B, P, Zr, Pd, and W are shown.
Example 4
Using “Folium (registered trademark)” (produced by Kawasaki Heavy Industries, Ltd.), which is an anatase-type titanium oxide dispersion, as a photocatalyst coating material, each photocatalyst coating solution containing the elements B, P, Zr, Pd, and W was prepared. did. A compound containing B is boric acid, a compound containing P is phosphoric acid, a compound containing Zr is ZrO 2 , a compound containing Pd is palladium (II) acetylacetonate, and a compound containing W is W (OC using 2 H 5) 5. Each photocatalyst coating solution was dipped on glass (100 mm × 100 mm) at a speed of 40 cm / min, and treated at 110 ° C. for 30 minutes.
[0026]
The coating amount on the glass was in the range of 4.0 to 6.0 mg. The glass coated with the photocatalyst was placed in a 2-liter quartz glass separable flask, and 2 liters of a gas in which acetaldehyde (hereinafter, referred to as “AA”) gas was adjusted to a concentration of 100 ppm was injected and held for 15 minutes. As the diluting gas for AA, synthetic air containing no carbon dioxide gas was used. Thereafter, the test was performed by adjusting the ultraviolet intensity of a black light blue fluorescent lamp (BLB lamp) to 2.0 mW / cm 2 and irradiating each with ultraviolet light for 30 minutes. The ultraviolet intensity was measured by UVR-2 (manufactured by Topcon Corporation). Carbon dioxide gas generated by oxidative decomposition of AA in the separable flask was measured by GC-FID (hydrogen flame ionization detector).
[0027]
The measurement conditions of the gas concentration are as shown below.
Figure 2004285290
[0028]
Table 4 shows the test results. In Table 4, the symbol “○” in the column of AA decomposition activity indicates that carbon dioxide gas was generated due to decomposition of AA. From these results, excellent photocatalytic performance was confirmed for each photocatalyst coating liquid containing each element of B, P, Zr, Pd, and W. As described above, in each photocatalyst coating solution containing the elements B, P, Zr, Pd, and W, the thickness measurement of the photocatalyst layer by the fluorescent X-ray analysis is performed with high accuracy as described above, while ensuring satisfactory photocatalytic performance. I can do it.
[0029]
[Table 4]
Figure 2004285290
[0030]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
(1) The photocatalyst coating liquid contains a compound that can be detected by X-ray fluorescence analysis and contains an element (M) that is different from the coating film component element, the photocatalytic protection layer component element, and the photocatalytic component element. By forming a photocatalyst layer on the paint film on the substrate surface with the coating liquid, measuring the thickness of the photocatalyst layer and performing quality control by measuring the X-ray intensity value of the M element by fluorescent X-ray analysis, Even when the coating film contains a constituent component of the photocatalyst, the thickness of the photocatalyst layer can be accurately measured from the X-ray intensity value of the element M, and the quality control of the photocatalyst layer can be accurately performed.
(2) M element (for example, B, Al, P, S, Cl, V, Rb, Sr, Y, Zr, Nb, Rh, Pd, Ag, Hf, Ta, W, Au, etc., preferably B, Including a compound containing Al, P, S, Cl, Zr, Pd, W, etc.) in the photocatalyst coating solution, measuring the film thickness of the photocatalyst layer using a fluorescent X-ray analyzer at a coating line in a factory, and controlling the quality. Becomes possible.
(3) For example, when the photocatalyst is titanium oxide, even if the photocatalyst layer is formed on a base material coated with a paint containing titanium oxide, accurate measurement of the thickness of the photocatalyst layer and quality control are possible.
(4) Since the X-ray intensity value of the photocatalytic component element (such as titanium) can be determined from the X-ray intensity value of the M element by X-ray fluorescence analysis, the quality control of the photocatalyst layer (the performance of the photocatalyst, determination of uncoated area, unevenness of applied area, etc.) ) Is possible.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between X-ray intensity values of P and Ti in Example 1 of the present invention.
FIG. 2 is a graph showing a relationship between X-ray intensity values of P and Ti in Example 2 of the present invention.
FIG. 3 is a graph showing a relationship between X-ray intensity values of Zr and Ti in Example 3 of the present invention.

Claims (8)

光触媒と、蛍光X線分析により検出可能であって、該光触媒を構成する成分元素とは異なる元素(M)を含む化合物とを含有することを特徴とする光触媒塗布液。A photocatalyst coating solution comprising: a photocatalyst; and a compound that can be detected by X-ray fluorescence analysis and contains an element (M) that is different from a component element constituting the photocatalyst. 光触媒と、蛍光X線分析により検出可能であって、該光触媒を構成する成分元素及び基材の塗装に使用されている塗料の成分元素とは異なる元素(M)を含む化合物とを含有することを特徴とする塗装された基材に塗布する光触媒塗布液。It contains a photocatalyst and a compound that can be detected by X-ray fluorescence analysis and contains an element (M) that is different from the constituent elements constituting the photocatalyst and the paint used for coating the base material. A photocatalyst coating liquid applied to a coated substrate, characterized by the following. 蛍光X線分析により検出可能である元素(M)が、基材を光触媒から保護するために使用される下地剤の成分元素と異なる元素である請求項1又は2記載の光触媒塗布液。The photocatalyst coating liquid according to claim 1 or 2, wherein the element (M) that can be detected by X-ray fluorescence analysis is an element different from a component element of a base material used to protect the substrate from the photocatalyst. 光触媒塗布液に含有される蛍光X線分析により検出可能である元素(M)が、B、Al、P、S、Cl、V、Rb、Sr、Y、Zr、Nb、Rh、Pd、Ag、Hf、Ta、W及びAuの少なくともいずれかである請求項1、2又は3記載の光触媒塗布液。Elements (M) that can be detected by X-ray fluorescence analysis contained in the photocatalyst coating solution are B, Al, P, S, Cl, V, Rb, Sr, Y, Zr, Nb, Rh, Pd, Ag, 4. The photocatalyst coating liquid according to claim 1, which is at least one of Hf, Ta, W and Au. 光触媒塗布液に含有される蛍光X線分析により検出可能である元素(M)が、B、Al、P、S、Cl、Zr、Pd及びWの少なくともいずれかである請求項1、2又は3記載の光触媒塗布液。The element (M) detectable by X-ray fluorescence analysis contained in the photocatalyst coating liquid is at least one of B, Al, P, S, Cl, Zr, Pd and W. The photocatalyst coating liquid according to the above. 光触媒が、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウム、酸化タングステン、酸化マンガン及び酸化ルテニウムの少なくともいずれかである請求項1〜5のいずれかに記載の光触媒塗布液。The photocatalyst coating liquid according to any one of claims 1 to 5, wherein the photocatalyst is at least one of titanium oxide, zinc oxide, zirconium oxide, barium titanate, strontium titanate, tungsten oxide, manganese oxide, and ruthenium oxide. 光触媒が酸化チタンであり、光触媒塗布液に含有される蛍光X線分析により検出可能である元素(M)と光触媒に含まれるチタンとのモル比が、M/Ti=0.001〜1.0である請求項1〜6のいずれかに記載の光触媒塗布液。The photocatalyst is titanium oxide, and the molar ratio between the element (M) detectable by X-ray fluorescence analysis contained in the photocatalyst coating solution and titanium contained in the photocatalyst is M / Ti = 0.001 to 1.0. The photocatalyst coating liquid according to any one of claims 1 to 6. 請求項1〜7のいずれかに記載の光触媒塗布液を用い、該光触媒塗布液が塗布されて基材上に形成された光触媒層の膜厚測定、品質管理を行うに際し、蛍光X線分析によりM元素のX線強度値を検出し、M元素のX線強度値から光触媒を構成する成分元素のX線強度値を求めることで、光触媒層の膜厚を測定し、さらに光触媒層の品質を管理することを特徴とする蛍光X線分析を用いた光触媒層の膜厚測定・品質管理方法。Using the photocatalyst coating solution according to any one of claims 1 to 7, the thickness of the photocatalyst layer formed on the substrate by applying the photocatalyst coating solution is measured, and the quality is controlled by X-ray fluorescence analysis. The film thickness of the photocatalyst layer is measured by detecting the X-ray intensity value of the M element and obtaining the X-ray intensity values of the constituent elements constituting the photocatalyst from the X-ray intensity value of the M element, and further measuring the quality of the photocatalyst layer. A method for measuring the thickness and controlling the quality of a photocatalytic layer using X-ray fluorescence analysis, characterized in that the control is performed.
JP2003082071A 2003-03-25 2003-03-25 Photocatalyst coating solution and method for measuring film thickness of photocatalyst layer with fluorescent x-ray spectroscopy and quality control using the same Pending JP2004285290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082071A JP2004285290A (en) 2003-03-25 2003-03-25 Photocatalyst coating solution and method for measuring film thickness of photocatalyst layer with fluorescent x-ray spectroscopy and quality control using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082071A JP2004285290A (en) 2003-03-25 2003-03-25 Photocatalyst coating solution and method for measuring film thickness of photocatalyst layer with fluorescent x-ray spectroscopy and quality control using the same

Publications (1)

Publication Number Publication Date
JP2004285290A true JP2004285290A (en) 2004-10-14

Family

ID=33295454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082071A Pending JP2004285290A (en) 2003-03-25 2003-03-25 Photocatalyst coating solution and method for measuring film thickness of photocatalyst layer with fluorescent x-ray spectroscopy and quality control using the same

Country Status (1)

Country Link
JP (1) JP2004285290A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078616A (en) * 2005-09-16 2007-03-29 Sony Corp Method and device for measuring thickness of each component layer of thin film comprising a plurality of layers
JP2007105949A (en) * 2005-10-12 2007-04-26 Mitsubishi Kagaku Sanshi Corp Composite plate having photocatalytic function and its production method
CN102478395A (en) * 2010-11-26 2012-05-30 宝山钢铁股份有限公司 Method for on-line detection of thickness of non-chromium coating of strip steel surface
CN103743362A (en) * 2013-12-25 2014-04-23 武汉钢铁(集团)公司 Coating amount measuring method of electrical steel surface insulating coating
US10978358B2 (en) 2018-08-09 2021-04-13 Kabushiki Kaisha Toshiba Processing system for a catalytic layer of a noble metal formed on a surface of a substrate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078616A (en) * 2005-09-16 2007-03-29 Sony Corp Method and device for measuring thickness of each component layer of thin film comprising a plurality of layers
JP2007105949A (en) * 2005-10-12 2007-04-26 Mitsubishi Kagaku Sanshi Corp Composite plate having photocatalytic function and its production method
JP4529863B2 (en) * 2005-10-12 2010-08-25 三菱樹脂株式会社 Method for producing composite plate having photocatalytic function
CN102478395B (en) * 2010-11-26 2013-05-29 宝山钢铁股份有限公司 Method for on-line detection of thickness of non-chromium coating of strip steel surface
WO2012068831A1 (en) * 2010-11-26 2012-05-31 宝山钢铁股份有限公司 Method for on-line measuring non-chromic coating thickness on steel strip surface
JP2013515246A (en) * 2010-11-26 2013-05-02 宝山鋼鉄股▲分▼有限公司 Online detection method of chrome-free coating film thickness on strip steel surface
CN102478395A (en) * 2010-11-26 2012-05-30 宝山钢铁股份有限公司 Method for on-line detection of thickness of non-chromium coating of strip steel surface
RU2498215C1 (en) * 2010-11-26 2013-11-10 Баошань Айрон Энд Стил Ко., Лтд. Measuring method in real time mode of film thickness of coating not containing chrome on surface of strip steel
KR101354919B1 (en) 2010-11-26 2014-01-22 바오샨 아이론 앤 스틸 유한공사 An On-line Detection Method of Chromium-Free Coating Film Thickness on Surface of Strip Steel
US8673641B2 (en) 2010-11-26 2014-03-18 Baoshan Iron & Steel Co., Ltd. On-line detection method of chromium-free coating film thickness on surface of strip steel
EP2503282A4 (en) * 2010-11-26 2016-12-28 Baoshan Iron & Steel Method for on-line measuring non-chromic coating thickness on steel strip surface
CN103743362A (en) * 2013-12-25 2014-04-23 武汉钢铁(集团)公司 Coating amount measuring method of electrical steel surface insulating coating
CN103743362B (en) * 2013-12-25 2016-03-30 武汉钢铁(集团)公司 The measuring method of electrical sheet surface insulation coating applications amount
US10978358B2 (en) 2018-08-09 2021-04-13 Kabushiki Kaisha Toshiba Processing system for a catalytic layer of a noble metal formed on a surface of a substrate

Similar Documents

Publication Publication Date Title
JP3339304B2 (en) Painted object and painting method
Xagas et al. Preparation, fractal surface morphology and photocatalytic properties of TiO2 films
Yun et al. A study on the N-, S-and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel
US8048511B2 (en) Titanium oxide coating agent and titanium oxide film forming method
Fakhouri et al. Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor
EP1504816A1 (en) Titanium oxide photocatalyst, process for producing the same and application
KR20010049625A (en) Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
TW200906730A (en) Method for producing tungsten trioxide powder for photocatalyst, tungsten trioxide powder for photocatalyst, and photocatalyst product
KR20010071262A (en) Titanium oxide sol, thin film, and processes for producing these
Tupala et al. Preparation of regularly structured nanotubular TiO2 thin films on ITO and their modification with thin ALD-grown layers
Bogatu et al. Ultrasound assisted sol-gel TiO2 powders and thin films for photocatalytic removal of toxic pollutants
Awitor et al. Photo-protection and photo-catalytic activity of crystalline anatase titanium dioxide sputter-coated on polymer films
WO2005119220A1 (en) Method for detection of the photocatalytic degradation of organic dyes by means of fluorescence analysis
Romero et al. Effect of AC electric fields on the aerosol assisted chemical vapour deposition growth of titanium dioxide thin films
JP2004285290A (en) Photocatalyst coating solution and method for measuring film thickness of photocatalyst layer with fluorescent x-ray spectroscopy and quality control using the same
JP2002038054A (en) Coating agent for forming titanium oxide film, method for forming titanium oxide film and photocatalyst
Purcar et al. Bilayer coatings based on silica materials and iron (III) phthalocyanine–Sensitized TiO2 photocatalyst
US20080259315A1 (en) Composition and Method for Indicating a Certain UV Radiation Dose
US20140242289A1 (en) Method for forming titanium oxide film on surface of molded product composed of glass
Momeni et al. Development of visible light activated TiO2 thin films on stainless steel via sol spraying with emphasis on microstructural evolution and photocatalytic activity
WO2008068062A1 (en) Dispersion containing titanium dioxide
Sabbah Effect of sputtering parameters on the self-cleaning properties of amorphous titanium dioxide thin films
Ibáñez et al. Optimization of spray pyrolysis zirconia coatings on aluminized steel
Hyett et al. Ultra-violet light activated photocatalysis in thin films of the titanium oxynitride, Ti3− δO4N
Simonsen et al. Comparison of methods for evaluation of activity of photocatalytic films