JP2004284917A - Method and equipment for treating organic waste - Google Patents

Method and equipment for treating organic waste Download PDF

Info

Publication number
JP2004284917A
JP2004284917A JP2003082097A JP2003082097A JP2004284917A JP 2004284917 A JP2004284917 A JP 2004284917A JP 2003082097 A JP2003082097 A JP 2003082097A JP 2003082097 A JP2003082097 A JP 2003082097A JP 2004284917 A JP2004284917 A JP 2004284917A
Authority
JP
Japan
Prior art keywords
methane fermentation
carbonization
dry
organic waste
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082097A
Other languages
Japanese (ja)
Other versions
JP4466815B2 (en
Inventor
Hoko Ryu
宝鋼 劉
Masakazu Yasuda
雅一 安田
Mitsuaki Kuroshima
光昭 黒島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003082097A priority Critical patent/JP4466815B2/en
Publication of JP2004284917A publication Critical patent/JP2004284917A/en
Application granted granted Critical
Publication of JP4466815B2 publication Critical patent/JP4466815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Coke Industry (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treating organic wastes that enhances utilization efficiency for energy to realize an energy self-supporting system and suppresses the compost product yield low to enhance the reduction ratio of volume, and further, that can eliminate a deodorizing step from the composting treatment. <P>SOLUTION: The method of treating the organic wastes comprises adding 10% or less of steam to the amount of the wastes to conduct the dry fermentation of the organic wastes (biodegradable wastes) in a dry methane fermentation tank 1 and then conducting a carbonization treatment of 70-90% of the obtained methane fermentation residue in a carbonizing apparatus 7(charring furnace). On the other hand, a part or whole of the carbonized material obtained by the carbonization treatment is added to the balance of 10-30% of the methane fermentation residue to conduct the composting treatment of the resulting mixture in a composting apparatus 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、乾式メタン発酵と炭化処理及び堆肥化処理を組み合わせて有機系廃棄物を資源化処理するエネルギー自立型の処理方法及び処理装置に関する。
【0002】
【従来の技術】
家畜糞尿、木質、食品残渣、水産加工残渣、可燃ゴミ、生ゴミ等の有機系廃棄物を焼却することなく資源化する方法の1つとして、有機系廃棄物を発酵させてコンポスト化し、これを農地に戻す方法は既に知られ、実用に供されている。
【0003】
又、有機系廃棄物をコンポスト化し、これを炭化処理して得られた炭化物を土壌改良材等として有効利用する方法も知られており、この方法において、炭化物を発酵槽に返送することによってこれを副資材として利用し、減容率の向上を図る提案がなされている(例えば、特開2000−205096参照)。
【0004】
【発明が解決しようとする課題】
ところが、有機系廃棄物の発酵方式として湿式メタン発酵を採用する場合、発酵残渣には多量の水分が含まれるため、脱水及び廃水処理が必要となり、これらの処理に膨大なコストと労力を要していた。
【0005】
そこで、発酵方式として乾式メタン発酵を採用し、この乾式メタン発酵と炭化処理を組み合わせる処理方法が考えられる。この方法では廃水処理が不要となるが、メタン発酵残渣の全量を炭化処理すると加熱蒸気中の水分が炭化工程に入り、又、炭化の廃熱を有効利用することができない等のため、エネルギーの利用効率が悪いという問題があった。
【0006】
又、乾式メタン発酵と堆肥化処理を組み合わせた処理方法では、多量の水分調整材が必要であるとともに、堆肥生産量が多くなって減量率が悪いという問題があった。
【0007】
本発明は上記問題に鑑みてなされたもので、その目的とする処は、エネルギーの利用効率を高めてエネルギー自立型を実現するとともに、堆肥製品生成量を低く抑えて減量率を高め、更には堆肥化処理から脱臭工程を省略することができる有機系廃棄物の処理方法及び処理装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、廃棄物量に対して10%以下の水蒸気を加えて有機系廃棄物の乾式メタン発酵を行った後、得られたメタン発酵残渣の70〜90%を炭化処理する一方、残りの10〜30%のメタン発酵残渣に、前記炭化処理で得られた炭化物の一部又は全部を添加し、その混合物を堆肥化処理することを特徴とする。
【0009】
請求項2記載の発明は、請求項1記載の発明において、前記メタン発酵残渣と前記炭化物との混合物の含水率を70%以下とすることを特徴とする。
【0010】
請求項1及び2記載の発明によれば、乾式メタン発酵によって得られたメタン発酵残渣の全てではなく、その70%〜90%を炭化処理するようにしたため、炭化工程に入る加熱蒸気中の水分量が低く抑えられ、水分蒸発に要する消費エネルギーが低く抑えられるとともに、堆肥物の生産量が低く抑えられて減量率が高められる。又、炭化処理で得られた炭化物の一部又は全部を残りの10〜30%のメタン発酵残渣に添加し、その混合物を堆肥化処理するようにしたため、炭化物の脱臭作用によって堆肥物の脱臭がなされ、その結果として堆肥化処理から脱臭工程を省略することができる。
【0011】
請求項3記載の発明は、請求項1記載発明において、前記乾式メタン発酵によって発生するメタンガスの一部を燃料として前記蒸気を得ることを特徴とする。
【0012】
請求項4記載の発明は、請求項1〜3の何れかに記載の発明において、前記乾式メタン発酵によって発生するメタンガスの一部を熱源として発電することを特徴とする。
【0013】
請求項5記載の発明は、請求項1〜4の何れかに記載の発明において、前記乾式メタン発酵によって発生するメタンガスの一部を前記炭化処理における燃料として利用することを特徴とする。
【0014】
請求項6記載の発明は、請求項1〜5の何れかに記載の発明において、前記乾式メタン発酵によって発生するメタンガスの一部を燃焼脱臭の燃料として利用することを特徴とする。
【0015】
請求項3〜6記載の発明によれば、乾式メタン発酵によって発生するメタンガスをエネルギー源として、処理に必要な水蒸気や電力を賄うとともに、炭化処理や燃焼脱臭の燃料として利用するため、エネルギーの利用効率が高められてエネルギー自立型のシステムを構築することができる。
【0016】
請求項7記載の発明は、請求項1〜6の何れかに記載の発明において、前記メタン発酵残渣に対して10〜40%の非生分解性廃棄物を炭化工程に加えて炭化処理し、この炭化処理によって発生する乾留ガスの燃焼排ガスで、炭化処理されるメタン発酵残渣を予熱乾燥処理することを特徴とする。
【0017】
請求項8記載の発明は、請求項7記載の発明において、メタン発酵残渣の予熱乾燥処理に供された乾留ガスの燃焼排ガスを前記堆肥化処理における熱源として利用することを特徴とする。
【0018】
請求項9記載の発明は、請求項7又は8記載の発明において、予熱乾燥処理された含水率15〜30%の前記メタン発酵残渣と炭化工程に加えられる含水率30%以下の前記非生分解性廃棄物の比率を4:1〜1:5(乾燥固形物として)とすることを特徴とする。
【0019】
請求項7〜9記載の発明によれば、メタン発酵残渣に対して10〜40%の非生分解性廃棄物を炭化工程に直接加えて炭化処理し、この炭化処理によって発生する乾留ガスをメタン発酵残渣の予熱乾燥処理や堆肥化処理における熱源として利用するため、エネルギーの利用効率が高められてエネルギー自立型のシステムを実現することができる。又、堆肥化処理においてメタン発酵残渣は昇温しづらく、堆肥化しにくいが、乾留ガスの燃焼排ガスによってメタン発酵残渣を加熱することができるため、前記問題を解消してメタン発酵残渣の堆肥化を容易化することができる。
【0020】
請求項10記載の発明は、廃棄物量に対して10%以下の水蒸気を加えて有機系廃棄物の乾式メタン発酵を行う乾式メタン発酵槽と、
乾式メタン発酵によって得られたメタン発酵残渣の70〜90%を炭化処理する炭化装置と、
残りの10〜30%のメタン発酵残渣に、前記炭化処理で得られた炭化物の一部又は全部を添加して得られる混合物を堆肥化処理する堆肥化装置と、
を含んで有機系廃棄物の処理装置を構成したことを特徴とする。
【0021】
従って、請求項10記載の発明によれば、本発明方法を有効に実施して前記効果を得ることができる。
【0022】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。
【0023】
図1は本発明に係る有機系廃棄物の処理装置の構成を示すブロック図である。
【0024】
図1に示す処理装置を用いて実施される本発明に係る有機系廃棄物の処理方法を説明すると、先ず、原料としての有機系廃棄物のうち、家畜糞尿、食品残渣等の生分解性廃棄物が後述のボイラー3,4にて発生した70〜90℃の水蒸気によって45〜60℃まで加熱された後、ラインL1から乾式メタン発酵槽1に投入されて発酵に好適な50〜57℃の嫌気性雰囲気の下で発酵される。
【0025】
そして、上記乾式メタン発酵槽1における有機系廃棄物の乾式メタン発酵処理によって発生したメタンガスは、ラインL2を経て発電機2に供給されるとともに、ラインL2から分岐するラインL3を通って前記ボイラー3に供給される。
【0026】
ところで、発電機2においては、不図示のガスエンジンがメタンガスを燃料として駆動され、このガスエンジンによって発電機2が駆動されて発電され、これによってシステムに必要な電力が賄われる。そして、ガスエンジンから排出される排気ガスの熱(排熱)によって前記ボイラー4が駆動されて70〜90℃の水蒸気が発生し、この水蒸気は、メタンガスを燃料とする前記ボイラー3からラインL4に排出される水蒸気にラインL5を通って合流し、合流した水蒸気は、前述のようにラインL4から乾式メタン発酵槽1に投入される生分解性廃棄物の加熱に供される。尚、生分解性廃棄物に加えられる水蒸気は、投入廃棄物量に対して10wt%以下に設定される。
【0027】
他方、乾式メタン発酵槽1からラインL6へと排出されるメタン発酵残渣は、65〜85%の水分を含んでおり、その一部(10〜30wt%)はラインL6から分岐するラインL7を経て堆肥化装置5に投入され、残りの70〜90wt%のメタン発酵残渣は、乾燥機6に投入されて含水率が15〜30%となるまで予熱乾燥処理される。
【0028】
そして、乾燥機6によって予熱乾燥処理された含水率15〜30%のメタン発酵残渣は、炭化装置(炭化炉)7に投入されて炭化処理されるが、原料としての有機系廃棄物のうち、木質廃材、建設廃材(木材主体)、おが屑、間伐材、コーヒー粕等の含水率30%以下の非生分解性廃棄物は、発酵処理されることなくラインL8を経て炭化装置7に直接投入されて前記メタン発酵残渣と共に炭化処理される。尚、このときのメタン発酵残渣(含水率65〜85%)と非生分解性廃棄物(含水率30%以下)の比率(重量比)は、4:1〜1:5(乾燥固形物として)に設定される。
【0029】
ここで、炭化装置7での炭化処理前段の予熱炉と後段の再燃炉のバーナーに供給される燃料には、前記乾式メタン発酵槽1にて発生したメタンガスの一部が利用される。即ち、乾式メタン発酵槽1からラインL2へと排出されるメタンガスの一部がラインL2からラインL9を通って炭化装置7に供給されて燃焼に供される。
【0030】
炭化装置7での炭化処理は、内部に空気を供給しないで、例えば外熱式のスクリューで600〜800℃に0.2〜1時間加熱することによってなされる。この炭化処理によって得られる炭化物の含水率は10%以下であり、本実施の形態では、その全部がラインL10を経てメタン発酵残渣に添加される。このように、含水率65〜85%のメタン発酵残渣に含水率10%以下の炭化物が添加されることによって得られる混合物の含水率は70%以下に調整され、この混合物が前記堆肥化装置5に投入され、堆肥化処理される。
【0031】
尚、本実施の形態では、炭化物の全量をメタン発酵残渣に添加するようにしたが、一部を添加し、残りを図1に破線にて示すようにラインL11から排出し、この炭化物を種々の用途に供するようにしても良い。ここで、炭化物の用途としては、脱臭や水分調整、空隙率アップによる通気性改良、粘度の低減による装置への付着抑制、粉塵の減少、陽イオン交換能力(CEC)の向上、土壌の保水性や団粒構造の向上等に資する用途が考えられる。
【0032】
ところで、炭化装置7おいて発生する800〜900℃の乾留ガス(バイオガス)は、ラインL12を通って前記乾燥機6に熱風として供給されてメタン発酵残渣の予熱乾燥に供され、予熱乾燥に供されて温度が200〜230℃に低下した乾留排ガスは、ラインL13を経て熱交換器8に供給される。
【0033】
熱交換器8においては、ラインL14から供給される大気中の新鮮空気が乾留ガスによって60〜70℃に加熱され、堆肥の通気用熱風としてラインL15を通って前記堆肥化装置5に供給される。そして、熱交換器8において空気の加熱に供された乾留ガスは、白煙が出ない程度の150℃程度まで温度が下がり、ラインL16から大気中に排出される。
【0034】
而して、上述のように熱交換器8における乾留ガスとの熱交換によって60〜70℃に加熱された新鮮空気が堆肥の通気用熱風としてラインL15を通って堆肥化装置5に供給されることによって、メタン発酵残渣と炭化物が堆肥化装置5において加熱され、これらが最適な温度60℃の好気性雰囲気の下で堆肥化処理され、含水率30〜70%(最適値60%)の堆肥物がラインL17から排出されるとともに、堆肥排ガスがラインL18から排出される。
【0035】
他方、乾式メタン発酵槽1周りに置いて発生する臭気は、ラインL19を通って脱臭装置9に吸引され、ラインL9から分岐するラインL20を経て脱臭装置9に供給されるメタンガスによって燃焼脱臭される。
【0036】
以上において、図1に示す処理装置を用いて実施される本発明に係る処理方法によれば、乾式メタン発酵によって得られたメタン発酵残渣の全てではなく、その70%〜90%を炭化処理するようにしたため、炭化工程に入る加熱蒸気中の水分量が低く抑えられ、水分蒸発に要する消費エネルギーが低く抑えられるとともに、堆肥物の生産量が低く抑えられて減量率が高められる。
【0037】
又、炭化処理で得られた炭化物の一部又は全部を残りの10〜30%のメタン発酵残渣に添加し、その混合物を堆肥化処理するようにしたため、炭化物の脱臭作用によって堆肥物の脱臭がなされ、その結果として堆肥化処理から脱臭工程を省略することができる。
【0038】
更に、乾式メタン発酵によって発生するメタンガスをエネルギー源として、処理に必要な水蒸気や電力を賄うとともに、炭化処理や燃焼脱臭の燃料として利用するようにしたため、エネルギーの利用効率が高められてエネルギー自立型のシステムを構築することができる。
【0039】
又、本発明によれば、メタン発酵残渣に対して10〜40%の非生分解性廃棄物を炭化工程に直接加えて炭化処理し、この炭化処理によって発生する乾留ガスをメタン発酵残渣の予熱乾燥処理や堆肥化処理における熱源として利用するため、エネルギーの利用効率が高められてエネルギー自立型のシステムを実現することができる。
【0040】
尚、堆肥化処理においてメタン発酵残渣は昇温しづらく、堆肥化しにくいが、本発明では乾留ガスの燃焼排ガスによってメタン発酵残渣を加熱するようにしたため、前記問題を解消してメタン発酵残渣の堆肥化を容易化することができる。
【0041】
ここで、本実施の形態における有機系廃棄物の処理における乾物収支と水収支及び重量収支を図2、図3及び図4に基づいてそれぞれ具体的に説明する。
【0042】
先ず、乾物収支を図2に基づいて説明すると、投入乾物合計32.9t/dのうち、メタン発酵槽に投入される生分解性廃棄物であるメタン発酵原料乾物が23.4t/d、蒸気が0t/d、非生分解性廃棄物である木質廃材乾物が9.5t/dである場合、メタン発酵工程における乾物分解量は7.6t/d−(−は減量を意味する)、炭化及び堆肥工程における乾物分解量は17.4t/d−となり、処理工程全体における乾物分解量は26.0(=7.6+17.4)t/d−となる。
【0043】
従って、処理工程の乾物減少量は26.0t/dとなり、炭化及び堆肥工程によって得られる炭入り堆肥乾物は6.9(=32.9−26.0)t/dとなり、乾物収支は投入乾物合計=排出と分解乾物合計=32.9t/dとなる。
【0044】
次に、水収支を図3に基づいて説明すると、メタン発酵槽に投入される生分解性廃棄物であるメタン発酵原料に含まれる水分が72.8t/d、加熱に用いられる蒸気の水分が7.8t/d、非生分解性廃棄物である木質廃材に含まれる水分が4.0t/dである場合、メタン発酵工程における水分消費量は2.3t/d−(−は減量を意味する)、炭化及び堆肥工程における水分生成量は8.6t/d+(+は増量)となり、処理工程全体における水分生成量は6.3(=8.6−2.3)t/d+となる。従って、投入水と生成水の合計は90.9(=72.8+7.8+4.0+6.3)t/dとなる。
【0045】
そして、炭化及び堆肥工程によって得られる炭入り堆肥乾物に含まれる水分は3.0t/dであるため、処理工程での水分蒸発量は87.9(=90.9−3.0)t/dとなり、水収支は投入水と生成水合計=蒸発水と排出水合計=90.9t/dとなる。
【0046】
従って、図2に示す乾物収支と図3に示す水収支から、重量収支は図4に示すようになる。
【0047】
即ち、投入物合計117.5(=32.9+90.9−6.3)t/dのうち、メタン発酵槽に投入されるメタン発酵原料が96.2(=23.4+72.8)t/d、蒸気水分が7.8t/d、木質廃材が13.5(=9.5+4.0)t/dとなり、処理工程における重量変化は107.6(=26+87.9−6.3)t/d−となる。そして、炭化及び堆肥工程によって得られる炭入り堆肥乾物の重量は9.9(=6.9+3.0)t/dであるため、処理工程での水分蒸発量は107.6(=117.5−9.9)t/dとなり、重量収支は投入物合計=分解と製品合計=117.5t/dとなる。尚、本例における減量率は、100−(9.9/117.5)×100=91.5%となる。
【0048】
次に、処理装置全体の熱収支を表1に基づいて説明する。
【0049】
表1:処理装置全体の熱収支

Figure 2004284917
表1に示すように、図1に示した処理装置においては、乾式メタン発酵槽において発生するメタン発酵ガスの熱量41,830kwh/dと炭化装置において発生する炭化乾留ガスの熱量74,860kWh/dの合計116,690kWh/dが入熱として加えられる。
【0050】
そして、装置において消費又は失われる熱量(損失熱量)としては、装置を駆動するための動力(装置動力)5,965kWh/d(熱量換算)、乾式メタン発酵槽に投入される生分解性廃棄物の加熱に用いられる蒸気(メタン加熱蒸気)の熱量8,140kWh/d、炭化工程と堆肥工程での水分蒸発熱69,502kWh/d、脱臭工程における燃料(メタンガス)の燃焼熱3,890kkWh/d、発電機やボイラーでの熱損失(メタンガス熱損失)12,698kWh/d及び炭化、堆肥熱損失(熱交換器からラインLを経て大気中に排出される乾留ガスの熱量+堆肥装置からラインLを経て大気中に排出される空気の熱量)16,495kWh/dが考えられ、これらの総計は116,690kWh/dとなり、その値は入熱に等しい。
【0051】
つまり、本発明に係る処理装置において消費又は失われる熱量(損失熱量)は、装置自体において発生したメタン発酵ガス及び炭化乾留ガスの熱量によって賄われるため、本発明に係る処理装置はエネルギー自立型となり、化石燃料のインプットが不要となるとともに、装置全体の電力自給が可能となる。
【0052】
【発明の効果】
以上の説明で明らかなように、本発明によれば、廃棄物量に対して10%以下の水蒸気を加えて有機系廃棄物の乾式メタン発酵を行った後、得られたメタン発酵残渣の70〜90%を炭化処理する一方、残りの10〜30%のメタン発酵残渣に、前記炭化処理で得られた炭化物の一部又は全部を添加し、その混合物を堆肥化処理するようにしたため、エネルギーの利用効率を高めてエネルギー自立型を実現するとともに、堆肥製品生成量を低く抑えて減量率を高め、更には堆肥化処理から脱臭工程を省略することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る有機系廃棄物の処理装置の構成を示すブロック図である。
【図2】本発明の実施の形態における有機系廃棄物の処理における乾物収支を説明する図である。
【図3】本発明の実施の形態における有機系廃棄物の処理における水収支を説明する図である。
【図4】本発明の実施の形態における有機系廃棄物の処理における重量収支を説明する図である。
【符号の説明】
1 乾式メタン発酵槽
2 発電機
3,4 ボイラー
5 堆肥化装置
6 乾燥機
7 炭化装置(炭化炉)
8 熱交換器
9 脱臭装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an energy-independent treatment method and a treatment apparatus for recycling organic waste into resources by combining dry methane fermentation with carbonization and composting.
[0002]
[Prior art]
As one of the methods to recycle organic waste such as livestock excreta, wood, food residue, fishery processing residue, combustible waste and garbage without incineration, ferment the organic waste and compost it. The method of returning to farmland is already known and put to practical use.
[0003]
A method is also known in which organic waste is composted, and the carbonized material obtained by carbonizing the waste is effectively used as a soil amendment material.In this method, the carbonized material is returned to a fermentation tank. Is proposed as an auxiliary material to improve the volume reduction rate (for example, see JP-A-2000-205096).
[0004]
[Problems to be solved by the invention]
However, when wet methane fermentation is used as a fermentation method for organic waste, the fermentation residue contains a large amount of water, so dehydration and wastewater treatment are required, and these treatments require enormous costs and labor. I was
[0005]
Then, a dry methane fermentation is adopted as a fermentation method, and a processing method combining this dry methane fermentation and carbonization is considered. This method does not require wastewater treatment, but if the entire amount of the methane fermentation residue is carbonized, the water in the heated steam enters the carbonization step, and the waste heat of carbonization cannot be used effectively. There was a problem that utilization efficiency was poor.
[0006]
In addition, the treatment method combining dry methane fermentation and composting treatment has a problem that a large amount of water conditioning material is required, and the amount of compost produced is large, resulting in a poor weight loss rate.
[0007]
The present invention has been made in view of the above-described problems, and aims at realizing a self-sustainable energy by increasing the energy use efficiency, increasing the rate of weight loss by suppressing the amount of compost product generated, An object of the present invention is to provide a method and an apparatus for treating organic waste, which can omit the deodorizing step from the composting process.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 performs dry methane fermentation of organic waste by adding steam of 10% or less to the amount of waste, and then obtains 70 to 70% of the obtained methane fermentation residue. A carbonization treatment of 90%, a part or all of the carbide obtained by the carbonization treatment is added to the remaining 10 to 30% of the methane fermentation residue, and the mixture is composted.
[0009]
According to a second aspect of the present invention, in the first aspect of the invention, the water content of the mixture of the methane fermentation residue and the carbide is set to 70% or less.
[0010]
According to the first and second aspects of the present invention, since not all of the methane fermentation residue obtained by dry methane fermentation but 70% to 90% thereof is carbonized, the moisture in the heated steam entering the carbonization step The amount is kept low, the energy consumption required for water evaporation is kept low, and the production of compost is kept low, so that the rate of weight loss is increased. In addition, a part or all of the char obtained by the carbonization is added to the remaining 10 to 30% of the methane fermentation residue, and the mixture is subjected to a composting treatment. As a result, the deodorizing step can be omitted from the composting process.
[0011]
The invention according to claim 3 is characterized in that, in the invention according to claim 1, the steam is obtained by using a part of methane gas generated by the dry methane fermentation as fuel.
[0012]
According to a fourth aspect of the present invention, in any one of the first to third aspects, power is generated by using a part of methane gas generated by the dry methane fermentation as a heat source.
[0013]
The invention according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, a part of methane gas generated by the dry methane fermentation is used as fuel in the carbonization treatment.
[0014]
The invention according to claim 6 is characterized in that, in the invention according to any one of claims 1 to 5, a part of methane gas generated by the dry methane fermentation is used as fuel for combustion and deodorization.
[0015]
According to the inventions of claims 3 to 6, methane gas generated by dry methane fermentation is used as an energy source to supply steam and electric power required for the treatment and to be used as a fuel for carbonization treatment and combustion deodorization. Efficiency can be increased and an energy independent system can be constructed.
[0016]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the methane fermentation residue is carbonized by adding 10 to 40% of non-biodegradable waste to a carbonization step, The methane fermentation residue to be carbonized is preheat-dried with the combustion exhaust gas of the carbonization gas generated by the carbonization.
[0017]
The invention according to claim 8 is characterized in that, in the invention according to claim 7, the combustion exhaust gas of the carbonized gas provided for the preheating drying treatment of the methane fermentation residue is used as a heat source in the composting treatment.
[0018]
The invention according to claim 9 is the invention according to claim 7 or 8, wherein the methane fermentation residue having a moisture content of 15 to 30% subjected to the preheating drying treatment and the non-biodegradation having a moisture content of 30% or less added to the carbonization step. The ratio of the sexual waste is set to 4: 1 to 1: 5 (as a dry solid).
[0019]
According to the invention of claims 7 to 9, 10 to 40% of non-biodegradable waste to the methane fermentation residue is directly added to the carbonization step for carbonization, and the carbonized gas generated by this carbonization is converted to methane. Since the fermentation residue is used as a heat source in the preheating drying process and the composting process, the energy use efficiency is improved, and an energy independent system can be realized. In addition, in the composting process, the methane fermentation residue is difficult to raise the temperature and is difficult to compost, but the methane fermentation residue can be heated by the combustion exhaust gas of the carbonization gas. It can be facilitated.
[0020]
The invention according to claim 10 provides a dry methane fermentation tank for performing dry methane fermentation of organic waste by adding steam of 10% or less to the amount of waste,
A carbonization device for carbonizing 70-90% of the methane fermentation residue obtained by dry methane fermentation;
A composting device for composting a mixture obtained by adding a part or all of the carbide obtained by the carbonization process to the remaining 10 to 30% of the methane fermentation residue;
And an organic waste treatment apparatus is configured.
[0021]
Therefore, according to the tenth aspect, the effect can be obtained by effectively executing the method of the present invention.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0023]
FIG. 1 is a block diagram showing a configuration of an organic waste treatment apparatus according to the present invention.
[0024]
The method for treating organic waste according to the present invention which is carried out using the treatment apparatus shown in FIG. 1 will be described. First, among organic waste as raw materials, biodegradable waste such as livestock manure and food residues After the product is heated to 45 to 60 ° C. by 70 to 90 ° C. steam generated in boilers 3 and 4 to be described later, it is charged from line L1 to dry methane fermentation tank 1 and heated to 50 to 57 ° C. suitable for fermentation. Fermented under anaerobic atmosphere.
[0025]
The methane gas generated by the dry methane fermentation treatment of the organic waste in the dry methane fermenter 1 is supplied to the generator 2 via the line L2, and is passed through the line L3 branched from the line L2. Supplied to
[0026]
By the way, in the generator 2, a gas engine (not shown) is driven by using methane gas as fuel, and the generator 2 is driven by the gas engine to generate electric power, thereby supplying electric power required for the system. Then, the boiler 4 is driven by the heat (exhaust heat) of the exhaust gas discharged from the gas engine to generate steam at 70 to 90 ° C., and the steam is transferred from the boiler 3 using methane gas as fuel to the line L4. The discharged steam joins through the line L5, and the combined steam is used for heating the biodegradable waste put into the dry methane fermentation tank 1 from the line L4 as described above. The water vapor added to the biodegradable waste is set to 10 wt% or less based on the amount of the input waste.
[0027]
On the other hand, the methane fermentation residue discharged from the dry methane fermentation tank 1 to the line L6 contains 65 to 85% of water, and a part (10 to 30% by weight) passes through the line L7 branched from the line L6. The remaining 70-90 wt% methane fermentation residue is put into the composting apparatus 5 and put into the dryer 6 and preheat-dried until the water content becomes 15-30%.
[0028]
The methane fermentation residue having a water content of 15 to 30%, which has been preheat-dried by the dryer 6, is charged into a carbonization device (carbonization furnace) 7 and carbonized. Among the organic waste as a raw material, Non-biodegradable waste having a water content of 30% or less, such as wood waste, construction waste (mainly wood), sawdust, thinned wood, coffee cake, etc., is directly fed to the carbonization device 7 via the line L8 without being subjected to fermentation treatment. And carbonized together with the methane fermentation residue. In this case, the ratio (weight ratio) of the methane fermentation residue (water content 65 to 85%) and non-biodegradable waste (water content 30% or less) was 4: 1 to 1: 5 (as dry solid matter). ).
[0029]
Here, a part of the methane gas generated in the dry methane fermentation tank 1 is used as fuel supplied to the burners of the preheating furnace before the carbonization treatment and the reburning furnace after the carbonization treatment in the carbonization device 7. That is, a part of the methane gas discharged from the dry methane fermentation tank 1 to the line L2 is supplied from the line L2 to the carbonization device 7 through the line L9 to be subjected to combustion.
[0030]
The carbonization treatment in the carbonization device 7 is performed by heating to 600 to 800 ° C. for 0.2 to 1 hour with an externally heated screw without supplying air to the inside. The water content of the carbide obtained by this carbonization treatment is 10% or less, and in the present embodiment, all of the water is added to the methane fermentation residue via the line L10. As described above, the water content of the mixture obtained by adding the carbide having the water content of 10% or less to the methane fermentation residue having the water content of 65 to 85% is adjusted to 70% or less. And composted.
[0031]
In the present embodiment, the entire amount of the carbide is added to the methane fermentation residue, but a part is added and the remainder is discharged from a line L11 as shown by a broken line in FIG. You may make it serve for the use of. Here, the use of carbides includes deodorization and moisture control, improvement of air permeability by increasing porosity, suppression of adhesion to equipment by reducing viscosity, reduction of dust, improvement of cation exchange capacity (CEC), water retention of soil And contributing to the improvement of the aggregate structure.
[0032]
Incidentally, the dry distillation gas (biogas) at 800 to 900 ° C. generated in the carbonization device 7 is supplied as hot air to the dryer 6 through a line L12 and is subjected to preheating and drying of the methane fermentation residue. The provided carbonization exhaust gas whose temperature has been reduced to 200 to 230 ° C. is supplied to the heat exchanger 8 via the line L13.
[0033]
In the heat exchanger 8, fresh air in the atmosphere supplied from the line L14 is heated to 60 to 70 ° C. by the carbonization gas and supplied to the composting device 5 through the line L15 as hot air for ventilating compost. . Then, the temperature of the dry distillation gas used for heating the air in the heat exchanger 8 decreases to about 150 ° C., at which white smoke is not emitted, and is discharged into the atmosphere from the line L16.
[0034]
Thus, fresh air heated to 60 to 70 ° C. by heat exchange with the carbonization gas in the heat exchanger 8 as described above is supplied to the composting apparatus 5 through the line L15 as hot air for compost ventilation. As a result, the methane fermentation residue and the carbonized material are heated in the composting apparatus 5, and these are composted under an aerobic atmosphere at an optimum temperature of 60 ° C. to obtain a compost having a water content of 30 to 70% (optimum value 60%). The material is discharged from the line L17, and the compost exhaust gas is discharged from the line L18.
[0035]
On the other hand, the odor generated around the dry methane fermentation tank 1 is sucked into the deodorizer 9 through the line L19, and is combusted and deodorized by methane gas supplied to the deodorizer 9 via the line L20 branched from the line L9. .
[0036]
In the above, according to the processing method according to the present invention which is performed using the processing apparatus shown in FIG. 1, not all of the methane fermentation residue obtained by dry methane fermentation, but 70% to 90% of the methane fermentation residue is carbonized. As a result, the amount of water in the heated steam entering the carbonization step is kept low, the energy consumption required for water evaporation is kept low, and the production amount of compost is kept low, thereby increasing the rate of weight loss.
[0037]
In addition, a part or all of the char obtained by the carbonization is added to the remaining 10 to 30% of the methane fermentation residue, and the mixture is subjected to a composting treatment. As a result, the deodorizing step can be omitted from the composting process.
[0038]
In addition, methane gas generated by dry methane fermentation is used as an energy source to supply steam and power required for processing, and to use it as fuel for carbonization and combustion deodorization. System can be constructed.
[0039]
Further, according to the present invention, 10 to 40% of non-biodegradable waste based on the methane fermentation residue is directly added to the carbonization step for carbonization, and the carbonization gas generated by the carbonization is preheated to the methane fermentation residue. Since it is used as a heat source in the drying process and the composting process, the energy use efficiency is improved and an energy independent system can be realized.
[0040]
In the composting process, the methane fermentation residue is difficult to raise the temperature and is difficult to compost.However, in the present invention, the methane fermentation residue is heated by the combustion exhaust gas of the dry distillation gas. Can be facilitated.
[0041]
Here, a dry matter balance, a water balance, and a weight balance in the treatment of the organic waste in the present embodiment will be specifically described with reference to FIGS. 2, 3, and 4, respectively.
[0042]
First, the dry matter balance will be described with reference to FIG. 2. Of the total dry matter input of 32.9 t / d, 23.4 t / d of methane fermentation raw material dry matter, which is a biodegradable waste, and steam Is 0 t / d, and the dry matter of woody waste which is a non-biodegradable waste is 9.5 t / d, the amount of dry matter decomposition in the methane fermentation step is 7.6 t / d- (-means weight loss), carbonization The dry matter decomposition amount in the composting step is 17.4 t / d-, and the dry matter decomposition amount in the entire treatment step is 26.0 (= 7.6 + 17.4) t / d-.
[0043]
Therefore, the amount of dry matter reduction in the treatment step is 26.0 t / d, the dry matter of carbonized compost obtained in the carbonization and composting step is 6.9 (= 32.9-26.0) t / d, and the dry matter balance is input. Dry matter total = discharge and decomposition dry matter total = 32.9 t / d.
[0044]
Next, the water balance will be described with reference to FIG. 3. The water contained in the methane fermentation raw material, which is a biodegradable waste put into the methane fermentation tank, has a water content of 72.8 t / d, and the steam used for heating has a water content of In the case where 7.8 t / d and water contained in woody waste material which is a non-biodegradable waste is 4.0 t / d, the water consumption in the methane fermentation step is 2.3 t / d-(-means weight loss). ), The amount of water generation in the carbonization and composting steps is 8.6 t / d + (+ is increased), and the amount of water generation in the entire treatment step is 6.3 (= 8.6-2.3) t / d +. . Therefore, the sum of the input water and the generated water is 90.9 (= 72.8 + 7.8 + 4.0 + 6.3) t / d.
[0045]
And since the moisture contained in the charcoal-containing compost dry matter obtained by the carbonization and the composting process is 3.0 t / d, the water evaporation amount in the treatment process is 87.9 (= 90.9-3.0) t / d. d, and the water balance is such that the sum of input water and generated water = evaporated water and discharged water = 90.9 t / d.
[0046]
Therefore, from the dry matter balance shown in FIG. 2 and the water balance shown in FIG. 3, the weight balance becomes as shown in FIG.
[0047]
That is, out of the total of 117.5 (= 32.9 + 90.9-6.3) t / d of the input materials, 96.2 (= 23.4 + 72.8) t / is the methane fermentation raw material input to the methane fermentation tank. d, steam moisture is 7.8 t / d, wood waste is 13.5 (= 9.5 + 4.0) t / d, and the weight change in the treatment process is 107.6 (= 26 + 87.9-6.3) t. / D-. And, since the weight of the carbonized compost dry matter obtained in the carbonization and composting step is 9.9 (= 6.9 + 3.0) t / d, the amount of water evaporation in the treatment step is 107.6 (= 117.5). −9.9) t / d, and the weight balance is as follows: total input = decomposition and total product = 117.5 t / d. Note that the weight loss rate in this example is 100- (9.9 / 117.5) * 100 = 91.5%.
[0048]
Next, the heat balance of the entire processing apparatus will be described based on Table 1.
[0049]
Table 1: Heat balance of the whole processing equipment
Figure 2004284917
As shown in Table 1, in the processing apparatus shown in FIG. 1, the calorific value of the methane fermentation gas generated in the dry methane fermentation tank is 41,830 kWh / d, and the calorific value of the carbonized carbonization gas generated in the carbonization device is 74,860 kWh / d. , And a total of 116,690 kWh / d is applied as heat input.
[0050]
The amount of heat consumed or lost in the apparatus (heat loss) includes power for driving the apparatus (power of the apparatus) 5,965 kWh / d (converted to the amount of heat), biodegradable waste put into the dry methane fermentation tank. 8,140 kWh / d of steam (methane heating steam) used for heating the fuel, 69,502 kWh / d of heat of water evaporation in the carbonization step and the composting step, and 3,890 kWh / d of combustion heat of fuel (methane gas) in the deodorization step , Generator and boiler heat loss (methane gas heat loss) 12,698 kWh / d and carbonization and compost heat loss (calorific value of carbonized gas discharged from the heat exchanger to the atmosphere via line L + line L from the composting device) 16,495 kWh / d), the total of which is 116,690 kWh / d, which is equal to the heat input. There.
[0051]
That is, the amount of heat consumed or lost in the processing apparatus according to the present invention (heat loss amount) is covered by the amount of heat of the methane fermentation gas and carbonized carbonization gas generated in the apparatus itself, so that the processing apparatus according to the present invention is an energy independent type. This eliminates the need for fossil fuel input and allows the entire device to be self-sufficient in power.
[0052]
【The invention's effect】
As apparent from the above description, according to the present invention, after performing dry methane fermentation of organic waste by adding water vapor of 10% or less to the amount of waste, 70 to 90% of the obtained methane fermentation residue is obtained. While 90% is carbonized, a part or all of the char obtained by the carbonization is added to the remaining 10 to 30% of the methane fermentation residue, and the mixture is subjected to a composting process. In addition to realizing an energy-independent type by increasing the utilization efficiency, it is possible to obtain an effect that the amount of compost product produced can be suppressed low to increase the weight loss rate, and further, the deodorization step can be omitted from the composting process.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an organic waste treatment apparatus according to the present invention.
FIG. 2 is a diagram illustrating a dry matter balance in the treatment of organic waste according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating a water balance in the treatment of organic waste according to the embodiment of the present invention.
FIG. 4 is a diagram illustrating a weight balance in the treatment of organic waste in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dry methane fermentation tank 2 Generator 3,4 Boiler 5 Composting device 6 Dryer 7 Carbonization device (carbonization furnace)
8 Heat exchanger 9 Deodorizing device

Claims (10)

廃棄物量に対して10%以下の水蒸気を加えて有機系廃棄物の乾式メタン発酵を行った後、得られたメタン発酵残渣の70〜90%を炭化処理する一方、残りの10〜30%のメタン発酵残渣に、前記炭化処理で得られた炭化物の一部又は全部を添加し、その混合物を堆肥化処理することを特徴とする有機系廃棄物の処理方法。After performing the dry methane fermentation of the organic waste by adding steam of 10% or less to the waste amount, 70 to 90% of the obtained methane fermentation residue is carbonized, while the remaining 10 to 30% A method for treating organic waste, comprising adding a part or all of the carbonized material obtained by the carbonizing treatment to a methane fermentation residue, and subjecting the mixture to a composting treatment. 前記メタン発酵残渣と前記炭化物との混合物の含水率を70%以下とすることを特徴とする請求項1記載の有機系廃棄物の処理方法。The method for treating organic waste according to claim 1, wherein the water content of the mixture of the methane fermentation residue and the carbide is 70% or less. 前記乾式メタン発酵によって発生するメタンガスの一部を燃料として前記蒸気を得ることを特徴とする請求項1又は2記載の有機系廃棄物の処理方法。The method according to claim 1 or 2, wherein the steam is obtained by using a part of methane gas generated by the dry methane fermentation as fuel. 前記乾式メタン発酵によって発生するメタンガスの一部を熱源として発電することを特徴とする請求項1〜3の何れかに記載の有機系廃棄物の処理方法。The method for treating organic waste according to any one of claims 1 to 3, wherein power is generated by using a part of methane gas generated by the dry methane fermentation as a heat source. 前記乾式メタン発酵によって発生するメタンガスの一部を前記炭化処理における燃料として利用することを特徴とする請求項1〜4の何れかに記載の有機系廃棄物の処理方法。The method according to any one of claims 1 to 4, wherein a part of methane gas generated by the dry methane fermentation is used as fuel in the carbonization treatment. 前記乾式メタン発酵によって発生するメタンガスの一部を燃焼脱臭の燃料として利用することを特徴とする請求項1〜5の何れかに記載の有機系廃棄物の処理方法。The method according to any one of claims 1 to 5, wherein a part of methane gas generated by the dry methane fermentation is used as a fuel for burning and deodorizing. 前記メタン発酵残渣に対して10〜40%の非生分解性廃棄物を炭化工程に加えて炭化処理し、この炭化処理によって発生する乾留ガスの燃焼排ガスで、炭化処理されるメタン発酵残渣を予熱乾燥処理することを特徴とする請求項1〜6の何れかに記載の有機系廃棄物の処理方法。The methane fermentation residue is subjected to carbonization by adding 10 to 40% of non-biodegradable waste to a carbonization step, and the methane fermentation residue to be carbonized is preheated by the combustion exhaust gas of the carbonization gas generated by the carbonization. The method for treating organic waste according to any one of claims 1 to 6, wherein the organic waste is dried. メタン発酵残渣の予熱乾燥処理に供された乾留ガスの燃焼排ガスを前記堆肥化処理における熱源として利用することを特徴とする請求項7記載の有機系廃棄物の処理方法。The method for treating organic waste according to claim 7, wherein the combustion exhaust gas of the carbonized gas provided for the preheating drying treatment of the methane fermentation residue is used as a heat source in the composting treatment. 予熱乾燥処理された含水率15〜30%の前記メタン発酵残渣と炭化工程に加えられる含水率30%以下の前記非生分解性廃棄物の比率を4:1〜1:5(乾燥固形物として)とすることを特徴とする請求項7又は8記載の有機系廃棄物の処理方法。The ratio of the preheat-dried methane fermentation residue having a water content of 15 to 30% and the non-biodegradable waste having a water content of 30% or less to be added to the carbonization step is 4: 1 to 1: 5 (as dry solid matter). The method for treating organic waste according to claim 7 or 8, wherein 廃棄物量に対して10%以下の水蒸気を加えて有機系廃棄物の乾式メタン発酵を行う乾式メタン発酵槽と、
乾式メタン発酵によって得られたメタン発酵残渣の70〜90%を炭化処理する炭化装置と、
残りの10〜30%のメタン発酵残渣に、前記炭化処理で得られた炭化物の一部又は全部を添加して得られる混合物を堆肥化処理する堆肥化装置と、
を含んで構成されることを特徴とする有機系廃棄物の処理装置。
A dry methane fermentation tank for performing dry methane fermentation of organic waste by adding steam of 10% or less to the amount of waste;
A carbonization device for carbonizing 70-90% of the methane fermentation residue obtained by dry methane fermentation;
A composting device for composting a mixture obtained by adding a part or all of the carbide obtained by the carbonization process to the remaining 10 to 30% of the methane fermentation residue;
An organic waste treatment apparatus characterized by comprising:
JP2003082097A 2003-03-25 2003-03-25 Organic waste disposal methods Expired - Fee Related JP4466815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082097A JP4466815B2 (en) 2003-03-25 2003-03-25 Organic waste disposal methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082097A JP4466815B2 (en) 2003-03-25 2003-03-25 Organic waste disposal methods

Publications (2)

Publication Number Publication Date
JP2004284917A true JP2004284917A (en) 2004-10-14
JP4466815B2 JP4466815B2 (en) 2010-05-26

Family

ID=33295472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082097A Expired - Fee Related JP4466815B2 (en) 2003-03-25 2003-03-25 Organic waste disposal methods

Country Status (1)

Country Link
JP (1) JP4466815B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246858A (en) * 2005-03-14 2006-09-21 Kagoshima Univ Method for producing plant growing carbide board
JP2013146666A (en) * 2012-01-18 2013-08-01 Bunzo Kobayashi Recycling system
KR101312618B1 (en) * 2012-06-20 2013-09-30 (주) 동명기계 Methods for processing organic waste and carbonized fuel or fetilizer prepared therefrom
CN111233290A (en) * 2020-01-23 2020-06-05 重庆市渝西水务有限公司 Sludge treatment system for sewage treatment plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101831607B1 (en) * 2016-11-21 2018-02-23 주식회사 포이엔 Manufacturing method of pellets for solid fuel containing coffee grounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246858A (en) * 2005-03-14 2006-09-21 Kagoshima Univ Method for producing plant growing carbide board
JP4714860B2 (en) * 2005-03-14 2011-06-29 国立大学法人 鹿児島大学 Manufacturing method of carbide board for plant growth
JP2013146666A (en) * 2012-01-18 2013-08-01 Bunzo Kobayashi Recycling system
KR101312618B1 (en) * 2012-06-20 2013-09-30 (주) 동명기계 Methods for processing organic waste and carbonized fuel or fetilizer prepared therefrom
CN111233290A (en) * 2020-01-23 2020-06-05 重庆市渝西水务有限公司 Sludge treatment system for sewage treatment plant

Also Published As

Publication number Publication date
JP4466815B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
CN101628779B (en) Method and device for drying sludge by utilizing high-temperature steam
CN105645714B (en) Device and method for treating sludge through desiccation and carbonization combined method by utilizing steam of thermal power plant
CN102537973A (en) Novel process for pyrolysis of solid wastes
JP2012096219A (en) Technique and equipment for substance circulation in organism waste
WO2021208544A1 (en) Self-sustaining smoldering and high-temperature aerobic fermentation combined sludge disposal process and device
CN102476907A (en) Equipment and method of high-efficiency high-speed environmentally-friendly energy-saving sludge treatment system
JP2007330918A (en) Method and apparatus for recycling sludge
KR102614257B1 (en) Environmental energy virtuous cycle system using waste
CN110280562A (en) Organic waste cooperative processing method and system
CN105174245A (en) System for preparing biological activated carbon by recycling waste resources
JP2001276772A (en) Comprehensive organic waste disposal method and device therefor
JP4466815B2 (en) Organic waste disposal methods
JP3417314B2 (en) Organic waste treatment method
JP2007105614A (en) Waste treatment method and system
RU2442757C2 (en) Way of organic waste reclamation
JP2007083217A (en) Method for dehydrating and carbonizing wet organic substance, and apparatus therefor
CN205347174U (en) Utilize plus sludge drying of living beings and processing apparatus that carbomorphism combined together
CN211871883U (en) Range-dividing domestic garbage drying pyrolysis purification technology
CN108384559A (en) A kind of method of disposal in parallel of decoration garbage and sludge
JP2003170147A (en) Apparatus and method of treating waste containing organic substance
JP4295942B2 (en) Production facilities for dry fertilizer made from livestock manure
JPH11323345A (en) Carbide preparation apparatus
JP2002174412A (en) Method of incinerating organic waste
CN106017064A (en) Combined deodorization technology of biomass heat source
CN114075025A (en) System and method for treating sludge by combining pyrohydrolysis with anaerobic digestion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4466815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees