JP2004284893A - Molding die for hot press, method of manufacturing silica glass using the same, and silica glass - Google Patents

Molding die for hot press, method of manufacturing silica glass using the same, and silica glass Download PDF

Info

Publication number
JP2004284893A
JP2004284893A JP2003080110A JP2003080110A JP2004284893A JP 2004284893 A JP2004284893 A JP 2004284893A JP 2003080110 A JP2003080110 A JP 2003080110A JP 2003080110 A JP2003080110 A JP 2003080110A JP 2004284893 A JP2004284893 A JP 2004284893A
Authority
JP
Japan
Prior art keywords
molding
mold
silica glass
die
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080110A
Other languages
Japanese (ja)
Other versions
JP4290449B2 (en
Inventor
Hiroyuki Goto
浩之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003080110A priority Critical patent/JP4290449B2/en
Publication of JP2004284893A publication Critical patent/JP2004284893A/en
Application granted granted Critical
Publication of JP4290449B2 publication Critical patent/JP4290449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding die for hot press capable of finely patterning or transferring and molding a material to be molded into a prescribed shape without biting the material to be molded by the shrinkage of the molding die, a method of manufacturing silica glass using the same, and a silica glass. <P>SOLUTION: In the molding die for hot press, a die of one side is composed of divided dies divided to plural numbers which are integrally held by engaging a tapered projected engaging part provided on the outer circumference of each divided die with a tapered recessed engaging part provided on a seat to which the die of one side is attached and is pressed with the material to be molded by a die of another side and the material to be molded is pressed by the side surface of the die of one side. The method of manufacturing silica glass using the same, and the silica glass formed by using the same are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は加熱プレス用成形型、これを用いたシリカガラスの製造方法、シリカガラスに係わり、特に割り型の被成形材の噛み込みを防止した加熱プレス用成形型、これを用いたシリカガラスの製造方法、シリカガラスに関する。
【0002】
【従来の技術】
熱軟化性素材の成形には、加熱プレス加工が一般的に行われている。その場合、離型性を考慮して、被成形材と成形型の熱膨張率を可能な限り一致させあるいは、成形型の方が被成形材よりも熱膨張率が小さくなるように考慮されている。
【0003】
しかしながら、このような従来の加熱プレス用成形型を用い、シリカガラス(石英ガラスと言うこともある)など低熱膨張率の被成形材を成形する際、適当な成形型材料の入手が困難である。このため、転写パターンの壁面に角度を付け、冷却時に成形型が収縮しても被成形材を噛み込まず、滑って離型する方向に移動するよう成形型を設計する方策が採られている。しかし、この方法では、成形型の側面の形状保持、特に垂直に立った壁面を被成形材に与えることができない。
【0004】
すなわち、図9のような加熱プレス用成形型22の構成を考えた場合、昇温後に被成形材Mの熱膨張係数よりも下型23の熱膨張係数が大きい場合、下型23の収縮により被成形材Mを噛み込んで、下型23から被成形材Mが離型できないか、あるいは、下型23が破損するおそれがある。また、プレス成形時、上型24からの圧力が、被成形材Mの外周部ほど変形によって逃げてしまうため、微細なパターンの変形や転写不足が発生する問題があった。
【0005】
また、図9に示す上記従来の成形型で問題となる噛み込みを回避するために、図10に示すように、加熱プレス用成形型32の下型33を分割し、複数個の下分割型33zとするものが提案されている。しかしながら、この下型33は、冷却時の収縮による応力発生を回避できるが、下型33の成形側面33aから積極的な被成形材Mへの加圧は期待できず、逆に分割面のズレにより下分割型33z間に隙間が生じて、被成形材Mの形状に悪影響を与える問題があった。
【0006】
なお、断面三角形状の凹状成形面が設けられた下型を2分割したガラス成形型があるが、この成形型は、上記従来の後者と成形型同様に、冷却時の収縮による応力発生を回避できるが、下型の成形側面から積極的な被成形材への加圧は期待できず、逆に分割面のズレにより下分割型間に隙間が生じて、被成形材の形状に悪影響を与える(例えば、特許文献1など)。
【0007】
【特許文献1】
特開平6−9232号公報(段落番号[0008]、図1)
【0008】
【発明が解決しようとする課題】
本発明は上述した事情を考慮してなされたもので、成形型の収縮により被成形物を噛み込むことがなく、微細なパターンや転写が可能で、被成形材を所望の形状に成形できる加熱プレス用成形型、これを用いたシリカガラスの製造方法、シリカガラスを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、加熱して軟化させた被成形材をプレス成形するのに用いられる加熱プレス用成形型であって、この成形型を構成し凹状成形面が形成された一方の型は、複数に分割された分割型からなり、この分割型の外周に設けられ先細の凸状嵌合部を、一方の型が取り付けられる台座に設けられた先細の凹状嵌合部に嵌合することにより一体的に保持され、前記成形型を構成する他方の型により、被成形材を介して一方の型を押圧し、前記凹状成形面の成形側面により被成形材を押圧することを特徴とする加熱プレス用成形型が提供される。これにより、成形型の収縮により被成形物を噛み込むことがなく、微細なパターンや転写が可能で、また、被成形材を所望の形状に成形できる加熱プレス用成形型が実現される。
【0010】
好適な一例では、前記成形型は、被成形材と反応し難い材質で形成される。これにより、型の表面の離型膜が不要になる。
【0011】
また、他の好適な一例では、前記一方の型は、その成形側面と同一方向の面で分割される。これにより、一方の型の収縮により被成形材の噛み込みが発生せず、さらに、一方の型に加わる力は、成形側面同士を接近させる方向に引き付ける分力を発生させやすくなる。
【0012】
また、他の好適な一例では、前記先細の凸状嵌合部及び前記先細の凹状嵌合部は、円錐状あるいは角錐状である。これにより、一方の型に加わる力から、成形側面同士を接近させる方向に引き付ける分力を確実に発生させることができる。
【0013】
また、他の好適な一例では、前記先細の凹状嵌合部の深さを変えることにより、前記凹状成形面の成形側面と成形主面に加わる力配分を調整することができる。
【0014】
また、他の好適な一例では、前記凹状成形面の少なくとも成形主面に被成形材と反応し難い部材が取り付けられる。これにより、凹状成形面の全面に取り付けられる場合には、反応し難い部材を交換可能にすることで、下型の劣化による交換をなくし、成形コストの低減が図れ、成形主面にのみ取り付けた場合には、分割型の分割面の段差が一層軽減される。
【0015】
また、本発明の他の態様によれば、請求項1〜6のいずれかの成形型を用いて成形するシリカガラスの製造方法である。これにより、成形型の収縮により被成形物を噛み込むことがなく、微細なパターンや転写が可能で、被成形材を所望の形状に成形できる。
【0016】
また、本発明の他の態様によれば、請求項1〜7のいずれかの成形型を用いて精密パターンを転写したシリカガラスである。これにより、容易に精密なパターンを転写したシリカガラスを得ることができる。
【0017】
【発明の実施の形態】
以下、本発明に係わる加熱プレス用成形型の第1実施形態について添付図面を参照して説明する。
【0018】
図1は本発明に係わる加熱プレス用成形型の第1実施形態を組み込んだ成形装置の概念図である。
【0019】
図1に示すように、成形装置1には、本発明に係わるプレス用成形型2が組み込まれている。この本発明に係わるプレス用成形型2は、正方形板状の凹状成形面3aが形成され一方の型としての下型3と、凹状成形面3aに収納された被成形材、例えばシリカガラスMを押圧し、凹状成形面3aに進入する平面視正方形で柱状の他方の型としての上型4で構成されている。
【0020】
上記下型3は、熱軟化性素材である被成形材として熱膨張率が小さいガラス等と高温で反応し難い材質、例えば、ガラス状カーボン、モリブデン、タングステン、超硬などが用いられる。被成形材としてシリカガラスが用いられる場合には、ガラス状カーボンが好ましく、その理由として、ガラス状カーボンは、フルフリールアルコールなどの熱硬化性樹脂を成形後、加圧下で徐々に加熱し、硬化後炭素化して製造され、無配向組織を有し、さらに、高耐熱性、高耐食性、高強度、高硬度を有する。また、ガラス状カーボンは、一般的な型材料とは異なり、ガラスとの間の離型性に優れ、型の表面の離型膜が不要になる。
【0021】
また、下型3の形状は、順次断面積が減少する先細形状をなし、成形側面3aと成形主面3aからなる凹状成形面3aが形成された円板形状の下型主部3bと、この下型主部3bから突出する円錐あるいは多角錐状の凸状嵌合部3cとからなっている。上記成形主面3aには、例えば図2(a)、(b)に示すような頂部を有する凸部が形成されている。
【0022】
さらに、図3及び図4に示すように、下型3は、成形側面3aと同一方向の面(垂直面)で、下分割型3zに均等に4分割されて各々平面視扇状をなし、図1に示すように、使用時、下型3の凸状嵌合部3cが、台座5に設けられた円錐あるいは多角錐状の凹状嵌合部5aに嵌合して、一体的に保持されている。これにより、四方より被成形材を均等に押さえ付けることが可能な構成となっており、成形型2からの圧力が、平板状の被成形材へ均一に分配されるように考慮されている。なお、円錐あるいは多角錐の凹状嵌合部の深さを変えることにより、押圧する圧力に対する成形側面と成形主面の圧力配分が適当に調整される。
【0023】
さらに、台座5は固定軸6上に固定されている。
【0024】
上記上型4は、下型3と同様に、被成形材と反応し難い材質としてガラス状カーボン等が用いられ、油圧手段(図示せず)によって昇降する移動軸7に取り付けられている。プレス用成形型2は、ランプユニット8等の加熱手段により、使用時加熱されている。
【0025】
次に本発明に係わる加熱プレス用成形型の第1実施形態を用いた成形方法について説明する。
【0026】
図1に示すように、下型3の凸状嵌合部3cは台座5の凹状嵌合部5aに嵌合され、下分割型3zは一体的に保持されて、下型3が形成されており、下型3及び上型4は、予め加熱されている。
【0027】
この予熱された下型3の凹状成形面3aに軟化状態のシリカガラスMを収納し、移動軸7を降下させて、上型4を降下させ、シリカガラスMを押圧する。
【0028】
これにより、シリカガラスMは下型3及び上型4の形状に沿って成形される。
【0029】
図1及び図5に示すように、このとき、移動軸7の降下に伴って固定軸6との間の構成物に加わる力fは、下型3の凸状嵌合部3cと台座5の凹状嵌合部5aの接触面で、この接触面に垂直な分力fと平行な分力fに分解され、分力fにより、下分割型3zの成形側面3a同士を接近させる方向への力が加わり、結果として、下分割型3zの成形側面3aが被成形材Mの側面へ積極的に押し付けられる。同時に下分割型3zとの分割面同士が密着し、被成形材Mの形状変化に対する影響も軽減できる。シリカガラスMは下型3及び上型4の形状に沿って成形される。
【0030】
また、下型3は、その成形側面3aと同一方向の面で、下分割型3zに均等に4分割されているので、下型3の収縮により被成形材Mの噛み込みが発生せず、さらに、下型3に加わる力fは、成形側面3a同士を接近させる方向に引き付ける分力fを発生させやすい。また、下型3の凸状嵌合部3cと台座5の凹状嵌合部5aが、円錐状あるいは角錐状に形成されているので、下型3に加わる力fから、成形側面3a同士を接近させる方向に引き付ける分力fを確実に発生させることができる。
【0031】
さらに、成形工程において、成形型の熱膨張率を被成形材と同等、あるいはより小さくできない場合にも、力fにより被成形材が水平方向に広がろうとした結果、プレス成形用型の下型3を水平方向に広げようとする力が生じてもそれに打勝って、分力fにより、成形側面3a同士を接近させる方向に引き付けて、被成形材の周辺部での変形を抑制し、プレス成形型により、被成形材の側壁成形を可能とすると共に、成形型全面に確実に圧力を加えることができるようになり、プレス成形型に転写パターンを形成しておけば、刻印、特殊形状の転写精度を向上させることができるとともに、被成形物の隅々まで精密な成形を行うことができる。また、成形型と被成形材の熱膨張係数の差によって被成形材が噛み込まれるおそれがある場合でも、側面形状を管理しながら精度よくプレス加工を行うことができる。
【0032】
また、本発明に係わる加熱プレス用成形型の第2実施形態について説明する。
【0033】
本第2実施形態は、上述した第1実施形態が下型全体に被成形材と反応し難い材質を使用するのに対して、被成形材と接する部位に被成形材と反応し難い材質を使用するものである。
【0034】
例えば、図6に示すように、第2実施形態のプレス用成形型2Aは、共に一般的な金属製の下型3Aと上型4Aで構成され、下型3Aの凹状成形面3Aaには、その成形主面3Aaに敷設された板状で被成形材と反応し難い材質としてのガラス状カーボン製の成形板11Aと、その成形側面3Aaに付設されたガラス状カーボン製の成形側板12Aが設けられている。他の構成は図1に示す加熱プレス用成形型と異ならないので、同一符号を付して説明は省略する。
【0035】
このように少なくとも凹状成形面3Aaの成形主面3Aaにガラス状カーボン製の成形板11Aが設けられているので、下分割型3Azの分割面の段差を一層軽減することができ、また、被成形材と接する部位のみにガラス状カーボンを使用して交換可能な別構成とすることで、下型の劣化による交換をなくし、成形コストの低減が図れる。
【0036】
このように本発明の加熱用プレス成形型を用いれば、シリカガラスの成型を容易に行うことができるし、表面に例えば、500μm以下の凹凸模様等の精密なパターンを転写したシリカガラスを得ることも容易にできるようになる。
【0037】
勿論、1μm以下の凹凸模様はさらに精度よく転写できる。
【0038】
【実施例】
図2のような高さ100μm、幅200μmのV突起のパターンを施した□40mm、厚さ3mmのガラス状カーボン板を下型にし、□40mm、厚さ2mmの石英(シリカガラス)板を、四方と上型をガラス状カーボンの鏡面研磨板で囲んで図6に示した形でプレスを行った。その際、下型と上型の温度は1450℃、加圧は2.5kN、加圧時間は80秒であった。また比較例として、四方の内向かい合った1組の側壁を拘束するガラス状カーボン鏡面研磨板をセットせず、変形が可能な状態で、同一条件にてプレスを行い、前述の図6での転写性と比較した。上記プレスは温度が安定してから加圧を開始し、加圧終了後に加えていた圧力を完全に取り除き、その後に降温を開始した。これは石英が十分に軟化しないうちに加圧した場合、パターン付き下型を破損する可能性があるためと、加圧しながら温度を下げた場合、石英とガラス状カーボンの熱膨張率の差から生じた応力が、本発明の効果により緩和することができないためである。以上のプレスの結果、図8に示すようなV突起の裾野にある未転写領域は、図7(b),(c)で示すように、未転写領域U〜UおよびU,Uが、側壁拘束をしなかった場合(図7(a)のU,U)に比べ、図6に示した型で拘束した場合には縮小していることが分かった。このことから、本発明での側壁拘束によって転写性が大幅に向上したことが確認された。また、上記プレスを実施しても、石英にもガラス状カーボン型にも破損は生じなかった。型のV突起と比較して、本手法によるプレスでもまだ転写性は甘いが、これは窒素雰囲気中のためにエア溜まりが発生した影響であり、図7(c)のように真空中で行えば未転写領域UおよびUが殆ど認められないことからも明らかな通り改善されることが実験から分かっている。
【0039】
なお、本発明は上記実施例に限定されるものではない。例えば図3においては、下分割型3zは4分割されているが、2分割の方がセッティングが容易である。また、分割は対角方向に直線で行なわれているが、曲線等でもよい。
【0040】
【発明の効果】
本発明に係わる加熱プレス用成形型によれば、成形型の収縮により被成形物を噛み込むことがなく、微細なパターンや転写が可能で、被成形材を所望の形状に成形できる加熱プレス用成形型を提供することができる。
【0041】
また、本発明に係わるシリカガラスの製造方法によれば、成形型の収縮により被成形物を噛み込むことがなく、微細なパターンや転写が可能で、被成形材を所望の形状に成形できるシリカガラスの製造方法を提供することができる。
【0042】
さらに、本発明に係わるシリカガラスによれば、容易に精密なパターンを転写したシリカガラスを提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる加熱プレス用成形型の第1実施形態の使用状態を示す概念図。
【図2】(a)は本発明に係わる加熱プレス用成形型の第1実施形態の下型の成形主面の平面図、(b)はその断面図。
【図3】本発明に係わる加熱プレス用成形型の第1実施形態の下型の平面図。
【図4】図3の下型を構成する下分割型の側面図。
【図5】本発明に係わる加熱プレス用成形型の使用時の力の状態を示す説明図。
【図6】本発明に係わる加熱プレス用成形型の第2実施形態の使用状態を示す概念図。
【図7】本発明に係わる加熱プレス用成形型及び比較例を用いた試験結果図を示し、(a)は比較例、(b)は一実施例、(c)は他の実施例である。
【図8】成形試験において比較例に発生する未転写領域の概念図。
【図9】従来の加熱プレス用成形型の使用状態を示す概念図。
【図10】従来の加熱プレス用成形型の使用状態を示す概念図。
【符号の説明】
1 成形装置
2 プレス用成形型
3 下型
3a 凹状成形面
3a 成形側面
3a 成形主面
3b 下型主部
3c 凸状嵌合部
3z 下分割型
4 上型
5 台座
5a 凹状嵌合部
6 固定軸
7 移動軸
8 ランプユニット
M シリカガラス
〜U 未転写領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot-press mold, a method for producing silica glass using the same, and a silica glass, and particularly relates to a hot-press mold that prevents biting of a molding material of a split mold, and a silica glass using the same. It relates to a production method and silica glass.
[0002]
[Prior art]
Heat press working is generally performed for forming a thermosoftening material. In that case, considering the releasability, the thermal expansion coefficient of the molding material and the molding die are made to match as much as possible, or it is considered that the thermal expansion coefficient of the molding die is smaller than that of the molding material. I have.
[0003]
However, when molding a material having a low coefficient of thermal expansion such as silica glass (also referred to as quartz glass) using such a conventional mold for hot press, it is difficult to obtain a suitable molding material. . For this reason, a measure is taken to form an angle on the wall surface of the transfer pattern and design the molding die so that the molding material shrinks at the time of cooling and does not bite the material to be molded, but moves in the direction of slipping and releasing. . However, in this method, the shape of the side surface of the mold cannot be maintained, and particularly, the wall surface which stands upright cannot be given to the material to be molded.
[0004]
That is, in consideration of the configuration of the hot press molding die 22 as shown in FIG. 9, when the thermal expansion coefficient of the lower die 23 is larger than the thermal expansion coefficient of the molding material M after the temperature rise, the lower die 23 contracts. There is a possibility that the molding material M cannot be released from the lower mold 23 by biting the molding material M, or the lower mold 23 may be damaged. Further, at the time of press molding, the pressure from the upper mold 24 escapes due to deformation toward the outer peripheral portion of the molding material M, so that there is a problem that a fine pattern is deformed or insufficient transfer occurs.
[0005]
In addition, in order to avoid biting, which is a problem in the conventional molding die shown in FIG. 9, the lower die 33 of the heating press molding die 32 is divided as shown in FIG. 33z has been proposed. However, the lower mold 33, which can avoid stress caused by cooling during contraction, pressurization of the aggressive the molded material M from the molded side 33a 1 of the lower die 33 can not be expected, the splitting surface in the opposite A gap is generated between the lower split molds 33z due to the displacement, which has a problem that the shape of the molding material M is adversely affected.
[0006]
There is a glass mold in which a lower mold having a concave molding surface having a triangular cross section is divided into two, but this mold does not generate stress due to shrinkage during cooling, similarly to the latter conventional mold. Although it is possible, positive pressure from the molding side of the lower mold to the molding material cannot be expected, and conversely, a gap between the lower division molds due to the deviation of the division surface adversely affects the shape of the molding material. (For example, Patent Document 1 etc.).
[0007]
[Patent Document 1]
JP-A-6-9232 (paragraph number [0008], FIG. 1)
[0008]
[Problems to be solved by the invention]
The present invention has been made in consideration of the above circumstances, and does not bite a molding object due to shrinkage of a molding die, can perform a fine pattern or transfer, and can heat a molding material into a desired shape. An object of the present invention is to provide a press mold, a method for producing silica glass using the same, and silica glass.
[0009]
[Means for Solving the Problems]
According to one aspect of the present invention, there is provided a hot-press mold used for press-molding a heated and softened material, the concave being formed by forming the mold. One of the molds on which the molding surface is formed is a divided mold that is divided into a plurality of parts, and a tapered convex fitting portion provided on the outer periphery of the divided mold is provided on a base to which one of the molds is attached. Are held together by fitting into the concave fitting portion of the mold, and one of the molds constituting the molding die presses one of the molds via a molding material, and is covered by the molding side surface of the concave molding surface. There is provided a mold for heating press, characterized by pressing a molding material. Accordingly, a molding die for heating press, which can perform a fine pattern and transfer without causing the molding object to bite due to shrinkage of the molding die and can mold the molding material into a desired shape is realized.
[0010]
In a preferred example, the molding die is formed of a material that does not easily react with the molding material. This eliminates the need for a release film on the surface of the mold.
[0011]
In another preferred example, the one mold is divided along a surface in the same direction as a molding side surface. Accordingly, the molding material does not bite due to the contraction of one of the dies, and the force applied to the one of the dies easily generates a component force that attracts the molding side surfaces in a direction of approaching each other.
[0012]
In another preferred example, the tapered convex fitting portion and the tapered concave fitting portion have a conical shape or a pyramid shape. This makes it possible to reliably generate, from the force applied to one of the dies, a component force that attracts the molding side surfaces in a direction of approaching each other.
[0013]
In another preferred example, the distribution of the force applied to the molding side surface and the molding main surface of the concave molding surface can be adjusted by changing the depth of the tapered concave fitting portion.
[0014]
In another preferred example, a member that does not easily react with the material to be molded is attached to at least the main molding surface of the concave molding surface. Thereby, when it can be attached to the entire surface of the concave molding surface, by replacing the hard-to-react member, it is possible to eliminate the exchange due to the deterioration of the lower mold, reduce the molding cost, and attach only to the main molding surface. In this case, the step of the split type split surface is further reduced.
[0015]
Further, according to another aspect of the present invention, there is provided a method for producing silica glass, which is molded using the mold according to any one of claims 1 to 6. Thereby, a fine pattern or transfer can be performed without the object to be bitten by the shrinkage of the molding die, and the material to be molded can be molded into a desired shape.
[0016]
According to another aspect of the present invention, there is provided a silica glass having a precision pattern transferred thereto using the mold according to any one of claims 1 to 7. This makes it possible to easily obtain a silica glass on which a precise pattern is transferred.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of a hot press mold according to the present invention will be described with reference to the accompanying drawings.
[0018]
FIG. 1 is a conceptual diagram of a molding apparatus incorporating a first embodiment of a heating press molding die according to the present invention.
[0019]
As shown in FIG. 1, a molding die 1 for a press according to the present invention is incorporated in a molding device 1. The press forming die 2 according to the present invention includes a lower die 3 having a square plate-shaped concave forming surface 3a formed therein, and a molding material, for example, silica glass M, housed in the concave forming surface 3a. It is constituted by an upper mold 4 as the other mold having a square shape and a columnar shape in plan view, which presses and enters the concave molding surface 3a.
[0020]
The lower mold 3 is made of a material that is not easily reacted with glass having a low coefficient of thermal expansion at a high temperature, such as glassy carbon, molybdenum, tungsten, and ultra-hard, as a material to be molded, which is a thermosoftening material. When silica glass is used as the material to be molded, glassy carbon is preferable.For that reason, glassy carbon is formed by molding a thermosetting resin such as full free alcohol, and then gradually heated under pressure, It is manufactured by carbonization after curing, has a non-oriented structure, and has high heat resistance, high corrosion resistance, high strength, and high hardness. In addition, glassy carbon is different from a general mold material in that it has excellent mold releasability between glass and eliminates the need for a mold release film on the surface of the mold.
[0021]
The shape of the lower mold 3, without a tapered shape that decreases sequentially sectional area, and a lower die main portion 3b of the disk-shaped concave molding surface 3a is formed consisting of the molded side 3a 1 and the molding main surface 3a 2 And a conical or polygonal pyramid-shaped convex fitting portion 3c protruding from the lower die main portion 3b. The aforementioned molding main surface 3a 2, for example, FIG. 2 (a), is formed convex portions having a top portion as shown in (b).
[0022]
Further, as shown in FIGS. 3 and 4, the lower mold 3 is equally divided into four by the lower split mold 3 z on a surface (vertical surface) in the same direction as the molding side surface 3 a 1, and each has a fan shape in a plan view. As shown in FIG. 1, during use, the convex fitting portion 3 c of the lower mold 3 is fitted into a conical or polygonal pyramid concave fitting portion 5 a provided on the pedestal 5 and is integrally held. ing. Thus, the material to be molded can be pressed evenly from all sides, and the pressure from the mold 2 is considered to be evenly distributed to the plate-like material to be molded. By changing the depth of the concave fitting portion of the cone or polygonal pyramid, the pressure distribution between the forming side surface and the forming main surface with respect to the pressing pressure is appropriately adjusted.
[0023]
Further, the pedestal 5 is fixed on a fixed shaft 6.
[0024]
Like the lower die 3, the upper die 4 is made of glassy carbon or the like as a material that hardly reacts with the material to be molded, and is attached to the moving shaft 7 that moves up and down by hydraulic means (not shown). The press mold 2 is heated at the time of use by a heating means such as a lamp unit 8.
[0025]
Next, a forming method using the first embodiment of the hot press forming die according to the present invention will be described.
[0026]
As shown in FIG. 1, the convex fitting portion 3c of the lower mold 3 is fitted into the concave fitting portion 5a of the pedestal 5, the lower split mold 3z is integrally held, and the lower mold 3 is formed. The lower mold 3 and the upper mold 4 are heated in advance.
[0027]
The preheated concave mold surface 3a of the lower mold 3 accommodates the softened silica glass M, lowers the moving shaft 7, lowers the upper mold 4, and presses the silica glass M.
[0028]
Thereby, the silica glass M is formed along the shapes of the lower mold 3 and the upper mold 4.
[0029]
As shown in FIGS. 1 and 5, at this time, the force f applied to the component between the moving shaft 7 and the fixed shaft 6 due to the lowering of the moving shaft 7 is equal to the convex fitting portion 3 c of the lower mold 3 and the pedestal 5. the contact surface of the recessed fitting portion 5a, is decomposed into vertical component force f v parallel component force f h to the contact surface, the component force f h, to approach the forming side 3a 1 between the lower split 3z force is applied in the direction, as a result, the molded side 3a 1 of the lower split mold 3z are pressed positively into the side surface of the molded material M. At the same time, the split surfaces of the lower split mold 3z are in close contact with each other, and the influence on the shape change of the molding material M can be reduced. The silica glass M is formed along the shapes of the lower mold 3 and the upper mold 4.
[0030]
Also, the lower mold 3, in terms of the forming side surface 3a 1 and the same direction, because it is equally divided into four lower split 3z, without biting of the molded material M is generated by the contraction of the lower mold 3 further, the force f applied to the lower mold 3 is likely to generate component force f h attract a direction to approach the forming side 3a 1 together. Further, since the convex fitting portion 3c of the lower die 3 and the concave fitting portion 5a of the pedestal 5 are formed in a conical or pyramid shape, the molding side surfaces 3a 1 are separated from each other by the force f applied to the lower die 3. it is possible to reliably generate the component force f h attract the direction to close.
[0031]
Further, even when the coefficient of thermal expansion of the molding die cannot be made equal to or smaller than that of the molding material in the molding process, the molding material attempts to spread in the horizontal direction by the force f, and as a result, the lower mold of the press molding die is formed. 3 overcomes it even if a force to widen in the horizontal direction, the component force f h, attracts a direction to approach the forming side 3a 1 together, suppressing deformation of the peripheral portion of the molded material The press mold enables the molding of the side wall of the material to be molded, and the pressure can be reliably applied to the entire surface of the mold. If a transfer pattern is formed on the press mold, stamping and special The transfer accuracy of the shape can be improved, and precise molding can be performed at every corner of the object. Further, even when there is a possibility that the molding material may be caught by the difference in the thermal expansion coefficient between the molding die and the molding material, the press working can be performed with high accuracy while controlling the side surface shape.
[0032]
Further, a second embodiment of the hot press molding die according to the present invention will be described.
[0033]
In the second embodiment, the first embodiment uses a material that does not easily react with the molding material for the entire lower mold, whereas a material that does not easily react with the molding material is used in a portion that contacts the molding material. Is what you use.
[0034]
For example, as shown in FIG. 6, the press mold 2A according to the second embodiment is composed of a common metal lower mold 3A and an upper mold 4A, and the concave mold surface 3Aa of the lower mold 3A has glassy carbon made of molded plate 11A, glassy carbon-made mold side plates 12A which are attached to the forming side surface 3Aa 1 as a reaction difficult material as the molded material in the laid plate to the molded main surface 3Aa 2 Is provided. The other configuration is not different from the hot press molding die shown in FIG.
[0035]
This way, since the glassy carbon made of molded plate 11A is provided in the molding main surface 3Aa 2 of at least the concave molding surface 3Aa, it is possible to further reduce the step difference of the divided surface of the lower split mold 3AZ, also be By using a glass-like carbon only for a portion that is in contact with the molding material and having a replaceable configuration, replacement due to deterioration of the lower mold can be eliminated, and molding cost can be reduced.
[0036]
As described above, the use of the heating press mold of the present invention makes it possible to easily form silica glass, and to obtain a silica glass in which a precise pattern such as an uneven pattern of 500 μm or less is transferred to the surface. Can also be easily done.
[0037]
Of course, an uneven pattern of 1 μm or less can be transferred with higher accuracy.
[0038]
【Example】
A □ 40 mm, 3 mm thick glassy carbon plate with a pattern of V protrusions having a height of 100 μm and a width of 200 μm as shown in FIG. 2 is used as a lower mold, and a quartz (silica glass) plate of □ 40 mm, 2 mm thick is formed. Pressing was carried out in the form shown in FIG. 6 by surrounding the four sides and the upper mold with a mirror-like polished plate of glassy carbon. At that time, the temperature of the lower mold and the upper mold was 1450 ° C., the pressure was 2.5 kN, and the pressure time was 80 seconds. As a comparative example, a glass-like carbon mirror-polished plate for restraining one set of side walls facing each other was pressed under the same conditions in a deformable state, and the transfer in FIG. Gender. The press started pressurizing after the temperature was stabilized, completely removed the pressure applied after the pressurization was completed, and then started lowering the temperature. This is because the lower mold with pattern may be damaged if pressed before the quartz is sufficiently softened, and the difference in thermal expansion coefficient between quartz and glassy carbon when the temperature is reduced while applying pressure. This is because the generated stress cannot be reduced by the effect of the present invention. As a result of the above pressing, non-transfer area on the foot of the V-projection as shown in FIG. 8, as shown in FIG. 7 (b), (c) , non-transfer area U 3 ~U 4 and U 5, U Compared to the case where 0 was not constrained by the side wall (U 1 , U 2 in FIG. 7A), it was found that when 0 was constrained by the mold shown in FIG. From this, it was confirmed that the transferability was significantly improved by the side wall constraint in the present invention. In addition, even when the above-mentioned press was performed, neither quartz nor glassy carbon mold was damaged. Compared with the V-shaped protrusion, the transferability of the press according to the present method is still weak, but this is due to the effect of air accumulation due to the nitrogen atmosphere, and the process is performed in a vacuum as shown in FIG. example, if it non-transfer area U 5 and U 6 is to be also clearly shown improvement since hardly recognized know from experiments.
[0039]
The present invention is not limited to the above embodiment. For example, in FIG. 3, the lower division type 3z is divided into four parts, but the setting is easier with two divisions. Further, the division is performed by a straight line in the diagonal direction, but may be a curve or the like.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the molding die for a heat press according to the present invention, a fine pattern or transfer is possible without biting the molding object due to shrinkage of the molding die, and the molding material for a heating press can be molded into a desired shape. A mold can be provided.
[0041]
Further, according to the method for producing silica glass according to the present invention, a fine pattern or transfer is possible without biting a molding object due to shrinkage of a molding die, and silica capable of molding a molding material into a desired shape. A method for producing glass can be provided.
[0042]
Further, according to the silica glass according to the present invention, it is possible to provide a silica glass in which a precise pattern is easily transferred.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a use state of a first embodiment of a hot press molding die according to the present invention.
FIG. 2 (a) is a plan view of a molding main surface of a lower mold of a first embodiment of a molding die for a heat press according to the present invention, and FIG. 2 (b) is a sectional view thereof.
FIG. 3 is a plan view of a lower mold according to the first embodiment of the heating press forming mold according to the present invention.
FIG. 4 is a side view of a lower split mold constituting the lower mold of FIG. 3;
FIG. 5 is an explanatory view showing a state of a force when the molding die for a hot press according to the present invention is used.
FIG. 6 is a conceptual diagram showing a use state of a second embodiment of a hot press molding die according to the present invention.
FIGS. 7A and 7B show test results using a hot-press mold and a comparative example according to the present invention, wherein FIG. 7A shows a comparative example, FIG. 7B shows one example, and FIG. 7C shows another example. .
FIG. 8 is a conceptual diagram of an untransferred region generated in a comparative example in a molding test.
FIG. 9 is a conceptual diagram showing a use state of a conventional hot press forming die.
FIG. 10 is a conceptual diagram showing a use state of a conventional hot press molding die.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molding apparatus 2 Press molding die 3 Lower mold 3a Concave molding surface 3a 1 Molding side 3a 2 Molding main surface 3b Lower mold main part 3c Convex fitting part 3z Lower split mold 4 Upper mold 5 Base 5a Concave fitting part 6 Fixed axis 7 Moving axis 8 Lamp unit M Silica glass U 1 to U 6 Untransferred area

Claims (8)

加熱して軟化させた被成形材をプレス成形するのに用いられる加熱プレス用成形型であって、この成形型を構成し凹状成形面が形成された一方の型は、複数に分割された分割型からなり、この分割型の外周に設けられ先細の凸状嵌合部を、一方の型が取り付けられる台座に設けられた先細の凹状嵌合部に嵌合することにより一体的に保持され、前記成形型を構成する他方の型により、被成形材を介して一方の型を押圧し、前記凹状成形面の成形側面により被成形材を押圧することを特徴とする加熱プレス用成形型。A heating press mold used to press-mold a heated and softened molding material. One of the molds that forms the mold and has a concave molding surface is divided into a plurality of divided molds. A mold, and the tapered convex fitting portion provided on the outer periphery of this split mold is integrally held by fitting into a tapered concave fitting portion provided on a pedestal to which one of the molds is attached, A molding die for heating press, wherein one of the dies forming the molding die presses one of the dies through a molding material, and the molding material is pressed by a molding side surface of the concave molding surface. 前記成形型は、被成形材と反応し難い材質で形成されることを特徴とする請求項1に記載の加熱プレス用成形型。The mold according to claim 1, wherein the mold is formed of a material that does not easily react with the material to be molded. 前記一方の型は、その成形側面と同一方向の面で分割されることを特徴とする請求項1または2に記載の加熱プレス用成形型。The mold according to claim 1, wherein the one mold is divided by a surface in the same direction as a molding side surface. 前記先細の凸状嵌合部及び前記先細の凹状嵌合部は、円錐状あるいは角錐状であることを特徴とする請求項1ないし3のいずれか1項に記載の加熱プレス用成形型。The mold according to any one of claims 1 to 3, wherein the tapered convex fitting portion and the tapered concave fitting portion have a conical shape or a pyramid shape. 前記先細の凹状嵌合部の深さを変えることにより、前記凹状成形面の成形側面と成形主面に加わる力配分を調整することを特徴とする請求項1ないし4のいずれか1項に記載の加熱プレス用成形型。The method according to claim 1, wherein a distribution of a force applied to a molding side surface and a molding main surface of the concave molding surface is adjusted by changing a depth of the tapered concave fitting portion. Mold for heating press. 前記凹状成形面の少なくとも成形主面に被成形材と反応し難い部材が取り付けられることを特徴とする請求項5に記載の加熱プレス用成形型。The molding die for hot press according to claim 5, wherein a member that does not easily react with the molding material is attached to at least the molding main surface of the concave molding surface. 請求項1〜6のいずれかの成形型を用いて成形するシリカガラスの製造方法。A method for producing silica glass, which is molded using the molding die according to claim 1. 請求項1〜7のいずれかの成形型を用いて精密パターンを転写したシリカガラス。A silica glass having a precision pattern transferred thereto using the mold according to claim 1.
JP2003080110A 2003-03-24 2003-03-24 Mold for heating press and method for producing silica glass using the same Expired - Lifetime JP4290449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080110A JP4290449B2 (en) 2003-03-24 2003-03-24 Mold for heating press and method for producing silica glass using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080110A JP4290449B2 (en) 2003-03-24 2003-03-24 Mold for heating press and method for producing silica glass using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009008423A Division JP4955023B2 (en) 2009-01-19 2009-01-19 Mold for heating press and method for producing silica glass using the same

Publications (2)

Publication Number Publication Date
JP2004284893A true JP2004284893A (en) 2004-10-14
JP4290449B2 JP4290449B2 (en) 2009-07-08

Family

ID=33294055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080110A Expired - Lifetime JP4290449B2 (en) 2003-03-24 2003-03-24 Mold for heating press and method for producing silica glass using the same

Country Status (1)

Country Link
JP (1) JP4290449B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290284A (en) * 2007-05-23 2008-12-04 Nano Craft Technologies Co Minute process technique
JP2009078973A (en) * 2009-01-19 2009-04-16 Covalent Materials Corp Mold for hot press and method of producing silica glass using the same
WO2009104356A1 (en) * 2008-02-18 2009-08-27 日本電気硝子株式会社 Wavelength conversion member and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290284A (en) * 2007-05-23 2008-12-04 Nano Craft Technologies Co Minute process technique
WO2009104356A1 (en) * 2008-02-18 2009-08-27 日本電気硝子株式会社 Wavelength conversion member and method for manufacturing the same
JP2009260234A (en) * 2008-02-18 2009-11-05 Nippon Electric Glass Co Ltd Wavelength conversion member, and method for manufacturing the same
EP2264790A1 (en) * 2008-02-18 2010-12-22 Nippon Electric Glass Co., Ltd. Wavelength conversion member and method for manufacturing the same
US8344404B2 (en) 2008-02-18 2013-01-01 Nippon Electric Glass Co., Ltd. Wavelength conversion member and method for manufacturing the same
EP2264790A4 (en) * 2008-02-18 2014-01-08 Nippon Electric Glass Co Wavelength conversion member and method for manufacturing the same
JP2009078973A (en) * 2009-01-19 2009-04-16 Covalent Materials Corp Mold for hot press and method of producing silica glass using the same

Also Published As

Publication number Publication date
JP4290449B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
TWI404681B (en) Method for molding sheet glass and molding mold
US20210101316A1 (en) Nanoimprinting by using soft mold and resist spreading
JP4192414B2 (en) Lens sheet manufacturing method
CN102958854B (en) Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
WO2007086558A1 (en) Metal mold for glass element shaping
JP2004284893A (en) Molding die for hot press, method of manufacturing silica glass using the same, and silica glass
US7713052B2 (en) Processing method of fine structure and processing equipment for fine structure
JP4955023B2 (en) Mold for heating press and method for producing silica glass using the same
TW201305066A (en) Molding device for glass molded product
CN111361149B (en) Uniform-heating anti-breaking selective laser sintering device and manufacturing method thereof
US20040040644A1 (en) Micro hot embossing method for quick heating and cooling, and uniformly pressing
JP2011016671A (en) Method for manufacturing glass lens by hot-imprinting process
TWI222925B (en) Hot-embossing forming method featuring fast heating/cooling and uniform pressurization
JP2007055094A (en) Method and apparatus for tablet-making compression molding resin
JP4409985B2 (en) Press molding apparatus, press molding method and molded product
JP2009028996A (en) Stamper and stamper attaching method
JP4718097B2 (en) Method for producing molded product having fine pattern on surface
JP2003063832A (en) Mold for forming optical element
JP2006111484A (en) Forming mold for optical device and forming method
JP4284106B2 (en) Method for forming silica glass
JPH10624A (en) Manufacture of three-dimensional thermal transfer decorative mold
JP2004145058A (en) Microlens array and its manufacturing method
JP2001100016A (en) Method for manufacturing optical device, method for manufacturing diffraction optical device and device for manufacturing optical device
JPH08245225A (en) Device for forming optical element
TW202310997A (en) Mold for glass molding and method for molding glass molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4290449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term