JP2004283970A - Deep hole cutting tool - Google Patents

Deep hole cutting tool Download PDF

Info

Publication number
JP2004283970A
JP2004283970A JP2003079996A JP2003079996A JP2004283970A JP 2004283970 A JP2004283970 A JP 2004283970A JP 2003079996 A JP2003079996 A JP 2003079996A JP 2003079996 A JP2003079996 A JP 2003079996A JP 2004283970 A JP2004283970 A JP 2004283970A
Authority
JP
Japan
Prior art keywords
shank shaft
shank
coolant
screw
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003079996A
Other languages
Japanese (ja)
Other versions
JP4141297B2 (en
Inventor
Takuji Nomura
倬司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitac Inc
Original Assignee
Unitac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitac Inc filed Critical Unitac Inc
Priority to JP2003079996A priority Critical patent/JP4141297B2/en
Publication of JP2004283970A publication Critical patent/JP2004283970A/en
Application granted granted Critical
Publication of JP4141297B2 publication Critical patent/JP4141297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure the easiness of precise manufacturing and the sufficient strength of a shank by well designing the formation of a coolant feed passage and a coolant discharge groove or the structure of the shank, and to improve chip discharging capability by the coolant. <P>SOLUTION: A through hole 7 is axially formed at the whole area concentrically with the shank 3, and the through hole 7 forms the coolant feed passage 2. A part of the outer peripheral wall of the shank 3 is axially cut off linearly at the whole area avoiding the through hole, and the cut-off part 8 forms the coolant discharge groove 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガンドリルシステムに適用されるドリルやリーマなどの深孔切削具に関するものである。
【0002】
【従来の技術】
深孔加工システムとして、ガンドリルシステム、BTAシステム、エジェクタシステムなどが知られているが、比較的小径の深孔加工には簡単な構成のガンドリルシステムが汎用されている。
【0003】
ガンドリルシステムとして、一般的に例えば特許文献1或いは同2に掲げる従来技術を挙げることができる。この構造を図6の(A)によって説明すると、中空筒状で外面に長手方向に沿う断面V字状の凹溝34を形成したシャンク軸31の先端にドリルヘッド32を一体的に固着し、そのシャンク軸31の中空部内をクーラントCの供給通路33とし、凹溝を切屑Sの排出溝34としたガンドリル30を用い、深孔加工時に、高圧のクーラントCを供給通路33を通してドリルヘッド32の先端側より吐出させ、被加工物Wの切削孔H内で発生した切屑Sを当該クーラントCと共に排出溝34を通して外部に排出するように構成されている。
【0004】
【特許文献1】
特公昭59−12405号公報
【特許文献2】
実開昭60−53416号公報
【0005】
上記のガンドリルシステムに使用されるガンドリルとしては、同(b)の断面図に示すように、シャンク軸31の中空部内をクーラントCの供給通路33a,33bを形成すると共に、該シャンク軸31の切除断面がシャンク軸心Oを中心として略90度のV字状をなすようにして軸方向略全域に切除してクーラントの排出溝34を形成しており、このようにクーラントの排出溝34の排出面積を大きく取りクーラントの排出能力を余裕を持って設けるようにしている。その反面、シャンク軸31の軸心付近に形成されるクーラントCの供給通路33a,33bの断面積を強度上の理由から余り大きく取ることができず、それがために、例えクーラントの排出面積を大きく取ってその排出能力を上げても、クーラントCの供給能力に限界があるため、結局のところ、被加工物Wの切削孔H内で発生した切屑Sを当該クーラントCと共に排出溝34を通して外部に排出する排出能力に一定の限界があった。
【0006】
しかも、前述のように、シャンク軸31の断面積の略4分の1をその軸心Oを中心として切除してクーラントの排出溝34の断面積は大きく取るようになっているため、シャンク軸31の軸心付近に形成されるクーラント供給通路33a,33bは、図示のようにシャンク軸31の軸心Oを避けて小径の単独又は複数の貫通通路33a,33bとならざるを得ず、これがためにシャンク軸31の長さが1.5メートルを超えると孔明け加工において貫通通路33a,33bの直進性を維持することが困難で、その製作面で問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、以上の課題に鑑みなされたものであり、クーラントの供給通路とクーラントの排出溝の形成あるいはシャンク軸の構造に工夫を凝らすことにより、シャンク軸の充分な強度の確保と精度良好な製作の容易性を確保し、併せてクーラントによる切屑の排出能力を向上させることを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、実施形態に示す参照符号を付して示すと、外周部にはクーラントの排出溝1が設けられ内部にはクーラントの供給通路2が設けられたシャンク軸3と、シャンク軸3の先端部に切削ヘッド4を備える深孔切削具であって、前記シャンク軸3に同心に略軸方向全域に貫通孔7が設けられて該貫通孔7が上記クーラントの供給通路2を形成し、シャンク軸3の外周壁の一部が前記貫通孔7を避けて略軸方向全域に直線状に切除されて該切除部8が上記クーラントの排出溝1を形成してなることを特徴とする構成からなるものである。
【0009】
請求項1に係る発明によれば、まず、シャンク軸3に同心に略軸方向全域に貫通孔7が設けられて、該貫通孔7を利用して、これをクーラントの供給通路2としたため、該供給通路の製作が容易である。なお、このシャンク軸3は、後述のように複数のシャンク軸部材9が互いにねじ結合されて形成される場合以外に、長尺の一本のシャンク軸からなる場合にも適用されることは勿論である。
【0010】
製作上において、中実丸軸部材の中心部を穿孔して貫通孔7を形成する場合にあっても、中実丸軸部材の同心(軸心)に貫通孔7を形成する際に、中実丸軸部材と孔明け工具との相対回転によって孔明け作業を行うことが可能であり、このため中実丸軸部材が1.5メートルを超える長尺部材であっても直進性の優れたクーラント供給通路である貫通孔を形成することができ、精度良好な深孔切削具を容易に製作することができる。
【0011】
更に、シャンク軸3に同心に貫通孔7を形成し、この貫通孔7をクーラント供給通路2となすため、クーラント供給通路2を大径に形成することが可能となり、それだけクーラントの供給能力を向上させることができる。このように、クーラント供給通路2を大径に形成しても、後述のようにシャンク軸3が外周壁を一部切除して形成されるクーラント排出溝1の断面積を出来るだけ小さくとることによって、必要充分な軸強度を確保することができる。
【0012】
そして、シャンク軸3の外周壁の一部を前記貫通孔7を避けて、即ち貫通孔7に連通しないようにして略軸方向全域を切除して、この切除部8をクーラント及び切屑の排出溝1となしたため、製作上からはシャンク軸3の一部を軸方向に切削するだけでよいからその製作が容易である。
【0013】
そしてまた、シャンク軸3の外周壁の一部を前記貫通孔7を避けて切除することによって、該切除部8の底部には貫通孔7の外周面8aの一部が露出することになり、従って、該切除部8は前記貫通孔7の露出した外周面5aとシャンク軸3の一部を切除した切除端面8b,8cとに囲繞された空隙部によって形成され、該切除部8は大径に形成された貫通孔7の外側に形成されるため、従来のシャンク軸の軸心を通る断面V字状のクーラント排出溝の断面積にくらべて、その断面積が小さくなるが、上述のようにクーラントの供給通路2のクーラント供給能力が向上することと相まって、クーラントの排出溝の断面積が多少小さくなっても、むしろクーラントの流速が速くなり、切屑の排出能力が格段に向上させことができる。
【0014】
また請求項2に係る発明は、前記シャンク軸3は、先端部に切削ヘッド4がねじ結合により着脱可能に設けられてなる請求項1に記載の構成からなるものである。
【0015】
請求項2に係る発明によれば、切削ヘッド4がシャンク軸3から着脱可能に設けられることによって、切削ヘッド4あるいはシャンク軸3の摩耗や欠損等で何れか一方を取り替える必要がある場合に、従来の切削ヘッドとシャンク軸との一体のものに比べて、摩耗や欠損した上記部品のみを交換すればよいからそれだけ修理費用が安価につく。
【0016】
更にはドリリングとリーミングのように他の切削作業に切り換えたりする場合には、この切削ヘッド4のみを交換し、シャンク軸3を継続使用することができる。
【0017】
このように切削ヘッド4がシャンク軸3がねじ結合によって連結されるようになっているため、両者の連結構造が簡単で安価に製作することが可能であり、且つ摩耗や欠損時の何れか一方の部品の交換作業を容易に行うことができる。
【0018】
また請求項3に係る発明は、前記シャンク軸3は、複数のシャンク軸部材9からなり、各シャンク軸部材9は互いに着脱可能にねじ結合されてなる請求項1又は2に記載の構成からなるものである。
【0019】
請求項3に係る発明によれば、シャンク軸3が複数の互いにねじ結合された複数のシャンク軸部材9からなるため、各シャンク軸部材9として長さの異なる複数本を用意しておけば、その交換によってシャンク長さを変更でき、もって基端部側のドライバ部16を有するシャンク軸部材9Aを交換することなく、適用する削孔深さに応じた適正なシャンク長さを設定できると共に、このシャンク軸部材9の損耗、折損、変形等を生じた際には、該シャンク軸部材9のみを交換して継続使用できる。
【0020】
また請求項4に係る発明は、前記シャンク軸部材9の両側のねじ結合部10の一方が雄ねじ5d、他方が雌ねじ5bを構成すると共に、このシャンク軸部材9と切削ヘッド4とのねじ結合部13が、当該シャンク軸部材9相互のねじ結合部10と同一寸法形状に設定されてなる請求項1〜3の何れかに記載の構成からなるもである。
【0021】
請求項4に係る発明によれば、必要に応じて複数本のシャンク軸部材9をねじ結合部10において結合したり、シャンク軸部材9に切削ヘッド4をねじ結合部13において結合して所用の切削加工を施すことが可能となる。
【0022】
また請求項5に係る発明は、上記ねじ結合部10,13に用いるねじは角ねじであり、かつ該角ねじにおける雄ねじ5dの末端側と雌ねじ5bの開口端側の不完全ねじ部13aを上記クーラントの排出用の溝1(1A,1B,1C)の形成範囲内に入って存在しない状態である請求項1〜4の何れかに記載の構成からなるものである。
【0023】
請求項5に係る発明によれば、シャンク軸部材9相互あるいはシャンク軸部材9と切削ヘッド4との各ねじ係合部10,13を角ねじとすれば、結合強度が大きくなると共に、隙間を生じにくいためにねじ係合部10,13からのクーラントの漏れを防止できる。
【0024】
また、シャンク軸部材9相互或いはシャンク軸部材9と切削ヘッドとの各ねじ係合部10,13における雄ねじ5dの末端側と雌ねじ5bの開口端側の不完全ねじ部13aが、前記排出溝1(1A,1B,1C)の形成範囲内に入って存在しない状態となっているため、排出溝1(1A,1B,1C)を形成する切除端面に完全な端面形状のねじ端が臨んで隙間を生じないので、隙間に切屑が引っ掛かって円滑に排出できないというような不具合の発生を防止できる。
【0025】
また請求項6に係る発明は、前記シャンク軸3の外周のクーラントの排出溝1は、軸に直交する方向の切断面の深さL1はシャンク軸半径の1/2乃至1/4の割合であり、周方向には全周の略1/3〜1/5の長さL2の割合に形成されてなる請求項1〜5の何れかに記載の構成からなるもである。
【0026】
請求項6に係る発明によれば、クーラントの排出溝1は、シャンク軸3の外周壁の一部が切除された部分6に形成されるものであるが、その部分の径方向の深さ、即ちシャンク軸3の外周壁を切除した切除端面8b,8cの深さL1とシャンク軸3の周方向の外周壁の切除量L2を上記の範囲内に自在に設定することができ、これによってクーラントの排出能力、従って、被加工物Wの切削孔H内で発生した切屑Sの排出能力を自在に調整することができる。
【0027】
また請求項7に係る発明は、切削ヘッド4には、シャンク軸3側のクーラントの供給通路2側に連通して単数又は複数のクーラントの吐出口15が設けられてなる請求項1〜6の何れかに記載の構成からなるものである。
【0028】
切削ヘッド4には切刃である超硬チップが取り付けられるようになっているため、そのヘッド本体4aには中心部から略90°の断面V字状の開口部が形成されなければならず、これがために、他の部分に形成するようなの前述の切除部8からなる供給通路2を形成することができない。これがために、この発明にあっては、シャンク軸3側のクーラントの供給通路2側に連通して単数又は複数のクーラントの吐出口15が設けられてなるため、ヘッド本体4aにはその中心部から略90°の断面V字状の開口部を形成することができ、なおかつ切屑やクーラントの排出能力を妨げることはない。
【0029】
【発明の実施の形態】
以下に本発明に係る深孔切削具の好適実施形態について、図面を参照して具体的に説明する。
【0030】
本発明の一実施形態であるガンドリルは、図1(A)〜(C)に示すように、ドライバ部16を備えた基部シャンク軸部材9Aと、その先端に一端側をねじ結合部10でねじ結合して同軸状に着脱可能に連結された中間部シャンク軸部材9Bと、この中間部シャンク軸部材9の他端側にヘッド部シャンク軸部材9Cを同じくねじ結合部13でねじ結合して同軸状に着脱可能に連結されたドリリング用の切削ヘッドであるドリルヘッド4とで構成されている。なお、図1(A)のBで囲んだ部分は、図1(B)に、またCで囲んだ部分は、図1(C)に拡大して示す。
【0031】
基端部側のシャンク軸部材9Aは、図2(A)〜(C)で詳細に示すように、シャンク軸3に同心に略軸方向全域に貫通孔7が設けられて該貫通孔7がクーラントの供給通路2を形成し、シャンク軸3の外周壁の一部が前記貫通孔7を避けて略軸方向全域に直線状に切除されて該切除部8が上記クーラントの排出溝1Aを形成してなる。
【0032】
シャンク軸部材9Aを、長尺な中実丸軸部材を用いて形成する場合に、例えば1.5メートルを超える中実丸軸部材の中心部に孔明け作業を行う場合に、孔明け作業具と中実丸軸部材を相対回転させながら孔明け作業を行うことができるから、直進性の良好なシャンク軸部材9Aを容易に製作することができる。なお、シャンク軸部材9Aの基端部には回転駆動力を受ける太径のドライバ部16が同軸状に切削加工によって一体形成されている。
【0033】
また、図2の(B),(C)に示すように、シャンク軸部材9Aの外周壁の一部が貫通孔7を避けて略軸方向に切除されて切除部8を形成することによって切除部8の底面には貫通孔7の外周面の一部が露出することになり、この貫通孔7の露出した外周面8aと前記切除部の切除端面8b,8cとに囲繞されて切除部8が形成され、該切除部8がクーラントの排出溝1Aを形成することになる。
【0034】
基部シャンク軸部材9Aの基部側には、図2の(A)に示すように、基端側の大径なドライバ部16の付近まで切除部8であるクーラント排出溝1Aが長手方向に沿って形成されると共に、基部シャンク部材9Aの先端側には接続筒部5aが設けてあり、この接続筒部5aの内奥側に角ねじにて構成される雌ねじ5bが刻設されている。しかして、排出溝1Aは、図2(B),(C)に示すように、基部シャンク軸部材9Aの外周側に形成される切除部8は、シャンク軸9Aのシャンク軸心Oを中心として略90°の開きをなす周方向長さL2で該切除端面5e,5fの厚み幅L1分が欠いた形になっており、接続筒部5a及び雌ねじ5bでは周壁5a1を切り欠いて切除部8が形成される。また、ドライバ部16には基端から中間位置に達する中心孔16aが形成され、この中心孔10aの内底から基部シャンク軸部材9Aの接続筒部5aの雌ねじ5bの直前に至る貫通孔6であるクーラント供給通路2が形成されている。
【0035】
上述のように、排出溝1Aである切除部8は、図2(B),(C)に示すように、基部シャンク軸部材9Aの外周側に形成される切除部8は、シャンク軸心Oを中心として略90°の開きをなす周方向長さL2で該切除端面5e,5fの厚み幅L1分が欠いて形成されるため、排出溝1Aの排出断面積は、上記周方向長さL2と厚み幅L1との割合で決定されることになり、前記貫通孔7の内径が一定であれば、上記周方向長さL2によって排出溝1Aの排出断面積、従ってクーラントの排出能力が決定されることになる。
【0036】
中間部シャンク部材9Bは、前述の基部シャンク部材9Aと同一外径の丸筒状であり、図3(A)〜(C)で詳細に示すように、シャンク軸3に同心に略軸方向全域に貫通孔7が設けられて該貫通孔7がクーラントの供給通路2を形成し、シャンク軸3の外周壁の一部が前記貫通孔7を避けて略軸方向全域に直線状に切除されて該切除部8が上記クーラントの排出溝1Bを形成してなる。
【0037】
そして、中間部シャンク部材9Bの一端側には前述の基部シャンク部材9A、に形成した接続筒部5a内に密に嵌入し得る外径の接続軸部5cを有し、この接続軸部5cの先端側に前記接続筒部5aの雌ねじ5dに螺合する角ねじからなる雄ねじ5dが刻設されると共に、他端側には基部シャンク軸部材9Aの接続筒部5aと同一寸法形状で内奥に角ねじからなる雌ねじ5bを刻設した接続筒部5aが形成されている。そしてシャンク軸3に形成した貫通孔6であるクーランク供給通路2は、その一端部が雌ねじ5bの直前に至り、他端部が雄ねじ5dの先端面に至るまで設けられている。
【0038】
しかして、排出溝1Bは、図3(B),(C)に示すように、中間部シャンク軸部材9Bの外周側に形成される切除部8は、シャンク軸心Oを中心として略90°の開きをなす周方向長さL2で該切除端面5e,5fの厚み幅L1分が欠いた形になっており、他端部の接続筒部5a及び雌ねじ5bでは周壁5a1を切り欠いて切除部8が形成され、一端部の接続軸部5c及び雄ねじ5dでも周壁5c1を切り欠いて切除部8が形成される。
【0039】
しかして、基部シャンク軸部材9Aと中間部シャンク軸部材9Bとは、図1(A),(C)に示すように、両者の連結状態、つまり基部シャンク部材9Aの外周側に形成した接続筒部5aに中間部シャンク軸部材9Bの外周側に形成した接続軸部5cを一杯に嵌入螺合して、接続軸部5cの基部側の段部5gが接続筒部5aの端面に密接した状態で、両者の排出溝1A,1B同士がずれなく直線的に連なると共に、基部側シャンク部材9Aに形成した貫通孔6であるクーラント供給通路2と中間部シャンク軸部材9Bに形成した貫通孔6であるクーラント供給孔2とが連通するように設定されており、これによってシャンク軸3が形成されることになる。
【0040】
ドリルヘッド4は、図4(A)〜(D)で詳細に示すように、基端側にヘッド部シャンク軸部材9Cが形成され、該軸部材9Cに接続軸部5cが形成され、この接続軸部5cの先端側に前記中間部シャンク部材9B側の前記接続筒部5aの雌ねじ5bに螺合する角ねじからなる雄ねじ5dが刻設されると共に、ヘッド部シャンク軸部材9Cに形成した貫通孔7であるクーランク供給通路2は、その一端部が後述のドリル本体4bの端面に至り、他端部は雄ねじ5dの先端面に至るまで設けられている。また、排出溝1Cは、図4(C)、(D)に示すように、ヘッド部シャンク軸部材9Cの軸心Oを中心として切除して形成され、これがために接続軸部5c及び雄ねじ5dはその一部周壁5c1が切除されることは前記中間部シャンク軸部材9Bと同じである。
【0041】
そして、ドリルヘッド4の切刃側のヘッド本体4bは中実となっており、この中実ヘッド本体4bに前記ヘッド部シャンク軸部材9Cに形成した切除部8である排出溝1Cに隣接するヘッド本体4bには、切刃を形成する超硬チップ17を取り付ける必要があるため、軸心を中心として約90°に開いた断面V字状の排出溝4cが形成され、この排出溝4cの一側に臨むように超硬チップ17がロー付けなどによって取り付けられる一方、中実ヘッド本体4bには接続軸部5cの端面、正確にはヘッド部シャンク軸部材9Cに形成した貫通孔7である供給通路2に連通して当該ヘッド本体4bの先端面4dに至る2本のクーラント供給孔6c,6cが穿設され、当該先端面4dに両クーラント供給孔6c,6cの開口部である吐出口15,15が開いている。また、排出溝4cを外れた外周部の二箇所にガイドパッド18が固着されている。
【0042】
しかして、このドリルヘッド4は、図1(A),(B)に示すように、そのヘッド部シャンク部材9Cに形成した接続軸部5cを中間部シャンク軸部材9Bの接続筒部5aに一杯に嵌入螺合して、接続筒部5aの端面が接続軸部5cの基部側の段部5g密接した状態で、排出溝4cおよび1Cが中間部シャンク軸部材9Bの排出溝1Bにずれなく直線的に連なると共に、ドリルヘッド4側のクーラント供給通路2が中間部シャンク軸部材9Bのクーラント供給孔2に連通するように設定されている。なお、ドリルヘッド4の接続軸部5cと中間部シャンク軸部材9Bの接続軸部5cとは同一寸法形状になっている。
【0043】
基部側シャンク部材9A及び中間部シャンク軸部材9Bの接続筒部5a,5a(図2(A),図3(A))における雌ねじ5b,5bの末端側と、中間部シャンク軸部材9B及びドリルヘッド4のヘッド部シャンク軸部材9Cの接続軸部5c,5c(図2(A),図3(A))における雄ねじ5d,5dの開口端側においては、図4(C)におけるドリルヘッド4のヘッド部シャンク軸部材9Cと中間部シャンク軸部材9Bとのねじ結合部13(図1(B)参照)で代表して示すように、雌雄ねじ5a,5dの不完全ねじ部13aを排出溝1(1C)の形成範囲に収め、これら排出溝1(1C)の両側面で完全なねじ断面形状でねじ端が終了し、排出溝1に臨むねじ端で隙間が生じないようになっている。
【0044】
なお、中間部シャンク軸部材9B及びヘッド部シャンク軸部材9Cの接続軸部5c,5c、ならびにこれらに各々対応する中間部シャンク軸部材9B及び基部シャンク軸部材9Aの接続筒部5a,5aとは、同一長さで且つ略同じ内外径のパイロット部として、接続筒部5a,5aに接続軸部5c,5cが円滑に嵌入して正確に同芯状態に螺合できるように構成されている。
【0045】
このようなガンドリルにあっては、シャンク軸3として通常150〜500mm程度の長さのものが使用されるが、このような範囲で長さの異なる複数本の中間部シャンク軸部材9A…を用意しておく。また、上記実施形態では切削ヘッドとしてドリルヘッド4を例示したが、例えばミリングヘッド等の他の切削作業に用いる切削ヘッドとしても、ドリルヘッド4と同様に基端側にヘッド部シャンク部材9Cを形成して、これに雄ねじ5dを有する接続軸部5cと、外周面に全長に排出溝4c,1Cを設けたものを用意することが推奨される。
【0046】
このガンドリルにあっては、まず、シャンク軸3に同心に略軸方向全域に貫通孔7が設けられて、該貫通孔7を利用して、これをクーラントの供給通路2としたため、該供給通路の製作が容易である。なお、このシャンク軸3は、後述のように複数のシャンク軸部材9が互いにねじ結合されて形成される場合以外に、長尺の一本のシャンク軸からなる場合にも適用されることは勿論である。
【0047】
製作上において、中実丸軸部材の中心部を穿孔して貫通孔7を形成する場合にあっても、中実丸軸部材の同心(軸心)に貫通孔7を形成する際に、従来のように偏心位置に孔明けするものであるから、中実丸軸部材と孔明け工具との相対回転によって孔明け作業を行うことが可能であり、このため中実丸軸部材が1.5メートルを超える長尺部材であっても直進性の優れたクーラント供給通路である貫通孔を形成することができ、精度良好な深孔切削具を容易に製作することができる。
【0048】
更に、シャンク軸3に同心に貫通孔7を形成し、この貫通孔7をクーラント供給通路2となすため、クーラント供給通路2を大径に形成することが可能となり、それだけクーラントの供給能力を向上させることができる。このように、クーラント供給通路2を大径に形成しても、後述のようにシャンク軸3が外周壁を一部切除して形成されるクーラント排出溝1の断面積を出来るだけ小さくとることによって、軸強度を必要充分に確保することができる。
【0049】
そして、シャンク軸3の外周壁の一部を前記貫通孔7を避けて、即ち貫通孔7に連通しないようにして略軸方向全域を切除して、この切除部8をクーラント及び切屑の排出溝1となしたため、製作上からはシャンク軸3の一部を軸方向に切削するだけでよいからその製作が容易である。
【0050】
そしてまた、シャンク軸3の外周壁の一部を前記貫通孔7を避けて切除することによって、該切除部8の底部には貫通孔7の外周面8aの一部が露出することになり、従って、該切除部8は前記貫通孔7の露出した外周面8aとシャンク軸3の一部を切除した切除端面8b,8cとに囲繞された空隙部によって形成され、該切除部8は大径に形成された貫通孔7の外側に形成されるため、従来のシャンク軸の軸心を通る断面V字状のクーラント排出溝の断面積にくらべて、その断面積が小さくなるが、上述のようにクーラントの供給通路2のクーラント供給能力が向上することと相まって、クーラントの排出溝の断面積が多少小さくなっても、むしろクーラントの流速が速くなり、切屑の排出能力を格段に向上させことができる。
【0051】
また本実施形態のガンドリルによれば、シャンク軸3が基部側シャンク部材9Aと独立部材である中間部シャンク軸部材9Bとから構成されているから、シャンク軸部材9Bとして長さの異なるものを交換することによってシャンク長さを変更でき、もって同じ基部シャンク軸部材9Aを用いて適用する削孔深さに応じた適正なシャンク長さに設定することが可能となる。従って、従来のようにシャンク長さが数段階に異なる複数種の深孔切削具を用意する場合に比較して、備品コストが大幅に低減される。また、経時的なシャンク側の損耗、ならびに使用中におけるシャンク側の突発的な折損や変形の殆どは、切削負荷による捩れ応力が集中し易いシャンク軸中間部で生起するが、本発明の実施形態のガンドリルでは、該捩れ応力の集中部分が概して中間部シャンク軸部材9Bになるため、傷んだ中間部シャンク軸部材9Bのみを新品と交換することにより、傷みにくいが構造的及びサイズ的に製作コストの高い基部シャンク部材9Aを長期にわたって継続使用でき、これによって保全コストも大きく低減できる。
【0052】
更に、本実施形態のガンドリルにあっては、中間部シャンク軸部材9Bの一端側が雄ねじ5dを有する接続軸部5c、他端側が雌ねじ5bを有する接続筒部5aを構成し、基部側シャンク部材9Aと中間部シャンク軸部材9Bの接続筒部5a,5a、ならびに中間部シャンク軸部材9Bとドリルヘッド4のヘッド部シャンク部材9Cの接続軸部5c,5cが同一寸法形状に設定されているから、複数本の中間部シャンク軸部材9B…を直線状に連結したり、中間部シャンク軸部材9Bを介さずに基部にドライバ部16を備えた長尺な一本のシャンク軸3に対してドリルヘッド4を直接に連結することも可能であり、複数本の中間部シャンク軸部材9B…の連結によって極端に長い削孔にも対応できる一方、逆に一本の長尺なシャンク軸3へのドリルヘッド4の直接連結によって比較的に短い削孔にも対応できる。
【0053】
一方、ドリルヘッド4の切刃である超硬チップ17の消耗や折損を生じた際は、該ドリルヘッド4のみを取り替えるだけでよく、基部シャンク軸部材9A及び中間部シャンク軸部材9Bをそのまま継続使用でき、段取り替えに際しても該ドリルヘッド4のみをねじ込み交換するだけでよいため、簡単に短時間で作業を行えて生産効率が向上し、また、ドリリングとリーミングのように他の切削作業に切り換える場合にも、対応する種類の切削ヘッドだけを用意しておけばよいので、備品コストを低減できると共に交換作業も短時間で容易に行える。
【0054】
また、本実施形態では、中間部シャンク軸部材9Bと基部シャンク部材9A及びドリルヘッド4のヘッド部シャンク部材9Cとの各ねじ結合部における雌ねじ5b及び雄ねじ5dを角ねじにて構成しているので、高い結合強度が得られると共に、ねじ部に隙間が生じ難いため、ねじ結合部からのクーラントの漏れが防止される。
【0055】
また、各ねじ係合部における雄ねじ5dの末端側と雌ねじ5bの開口端側の不完全ねじ部が、図4の(C)に示すように、前記排出溝1(1A,1B,1C)の形成範囲内に収まっているため、これら排出溝の両側面に完全な断面形状のねじ端が臨んで隙間を生じないから、隙間に切屑が引っ掛かって円滑に排出できないといった不具合も防止される。
【0056】
なお、上記実施形態では、基部シャンク軸部材9A及び中間部シャンク軸部材9Bの一端部を接続筒部5a及び雌ねじ5bとし、中間部シャンク軸部材9Bの他端部を接続軸部5c及び雄ねじ5dとし、ヘッド部シャンク軸部材9Cの一端部を接続軸部5c及び雄ねじ5dとしているが、これとは反対に基部シャンク軸部材9A及び中間部シャンク軸部材9Bの一端部を接続軸部5c及び雄ねじ5dとし、中間部シャンク軸部材9Bの他端部を接続筒部5a及び雌ねじ5bとし、ヘッド部シャンク軸部材9Cの一端部を接続筒部5a及び雌ねじ5bとし、これによってねじ結合部10,13を形成するようにしてもよい。また、実施形態の説明ではドリルヘッド4に切刃を形成する超硬チップ17をロウ付けした例を示したが、ドリルヘッド4の如き切削ヘッド全体を工具鋼にて構成し、その先端に切刃を直接形成したり、前記超硬チップ8をドリルヘッド3にねじ止めしたりする構成も採用可能である。更に、各部材9A,9B,9Cの排出溝1(1A,1b,1C)の周方向長さL2は、V字状断面の開き角が90°のものを例示したが、略90°〜130°の範囲の適当な開き角に設定することもできる。
【0057】
【発明の効果】
請求項1に係る発明によれば、まず、シャンク軸に同心に略軸方向全域に貫通孔が設けられて、該貫通孔を利用して、これをクーラントの供給通路としたため、該供給通路の製作が容易である。なお、このシャンク軸は、後述のように複数のシャンク軸部材が互いにねじ結合されて形成される場合以外に、長尺の一本のシャンク軸からなる場合にも適用されることは勿論である。
【0058】
製作上において、中実丸軸部材の中心部を穿孔して貫通孔を形成する場合にあっても、中実丸軸部材の同心(軸心)に貫通孔を形成する際に、中実丸軸部材と孔明け工具との相対回転によって孔明け作業を行うことが可能であり、このため中実丸軸部材が1.5メートルを超える長尺部材であっても直進性の優れたクーラント供給通路である貫通孔を形成することができ、精度良好な深孔切削具を容易に製作することができる。
【0059】
更に、シャンク軸に同心に貫通孔を形成し、この貫通孔をクーラント供給通路となすため、クーラント供給通路を大径に形成することが可能となり、それだけクーラントの供給能力を向上させることができる。このように、クーラント供給通路を大径に形成しても、後述のようにシャンク軸が外周壁を一部切除して形成されるクーラント排出溝の断面積を出来るだけ小さくとることによって、軸強度を必要充分に確保することができる。
【0060】
そして、シャンク軸の外周壁の一部を前記貫通孔を避けて、即ち貫通孔に連通しないようにして略軸方向全域を切除して、この切除部をクーラント及び切屑の排出溝となしたため、製作上からはシャンク軸の一部を軸方向に切削するだけでよいからその製作が容易である。
【0061】
そしてまた、シャンク軸の外周壁の一部を前記貫通孔を避けて切除することによって、該切除部の底部には貫通孔の外周面の一部が露出する形とになり、従って、該切除部は前記貫通孔の露出した外周面とシャンク軸の一部を切除した切除端面とに囲繞された空隙部によって形成され、該切除部は大径に形成された貫通孔の外側に形成されるため、従来のシャンク軸の軸心を通る断面V字状のクーラント排出溝の断面積にくらべて、その断面積が小さくなるが、上述のようにクーラントの供給通路のクーラント供給能力が向上することと相まって、クーラントの排出溝の断面積が多少小さくなっても、むしろクーラントの流速が速くなり、切屑の排出能力が格段に向上させことができる。
【0062】
請求項2に係る発明によれば、切削ヘッドがシャンク軸から着脱可能に設けられることによって、切削ヘッドあるいはシャンク軸の摩耗や欠損等で何れか一方を取り替える必要がある場合に、従来の切削ヘッドとシャンク軸との一体のものに比べて、摩耗や欠損した上記部品のみを交換すればよいからそれだけ修理費用が安価につく。
【0063】
更にはドリリングとリーミングのように他の切削作業に切り換えたりする場合には、この切削ヘッドのみを交換するだけで、ドリリング作業からリーミング作業に容易に転換することができ、一方シャンク軸は継続使用することができる。
【0064】
このように切削ヘッド4がシャンク軸3がねじ結合によって連結されるようになっているため、両者の連結構造が簡単で安価に製作することが可能であり、且つ摩耗や欠損時の何れか一方の部品の交換作業を容易に行うことができる。
【0065】
請求項3に係る発明によれば、シャンク軸が複数の互いにねじ結合された複数のシャンク軸部材からなるため、各シャンク軸部材として長さの異なる複数本を用意しておけば、その交換によってシャンク長さを変更でき、もって基端部側のドライバ部を有するシャンク軸部材を交換することなく、適用する削孔深さに応じた適正なシャンク長さを設定できると共に、このシャンク軸部材の損耗、折損、変形等を生じた際には、該シャンク軸部材のみを交換して継続使用できる。
【0066】
請求項4に係る発明によれば、必要に応じて複数本のシャンク軸部材を連結したり、シャンク軸部材に切削ヘッドを連結して所用の切削加工を施すことが可能となる。
【0067】
請求項5に係る発明によれば、シャンク軸部材相互あるいはシャンク軸部材と切削ヘッドとの各ねじ係合部を角ねじとすれば、結合強度が大きくなると共に、隙間を生じにくいためにねじ係合部からのクーラントの漏れを防止できる。
【0068】
また、シャンク軸部材相互或いはシャンク軸部材と切削ヘッドとの各ねじ係合部における雄ねじの末端側と雌ねじの開口端側の不完全ねじ部が、前記排出溝の形成範囲内に入って存在しない状態となっているため、排出溝を形成する切除端面に完全な端面形状のねじ端が臨んで隙間を生じないので、隙間に切屑が引っ掛かって円滑に排出できないというような不具合の発生を防止できる。
【0069】
請求項6に係る発明によれば、クーラントの排出溝は、シャンク軸の外周壁の一部が切除された部分に形成されるものであるが、その部分の径方向の深さ、即ちシャンク軸の外周壁を切除した切除端面の深さとシャンク軸の周方向の外周壁の切除量を上記の範囲内に自在に設定することができ、これによってクーラントの排出能力、従って、被加工物の切削孔内で発生した切屑の排出能力を自在に調整することができる。
【0070】
請求項7に係る発明によれば、切削ヘッドには切刃である超硬チップが取り付けられるようになっているため、そのヘッド本体には中心部から略90°の断面V字状の開口部が形成されなければならず、これがために、他の部分に形成するようなの前述の切除部からなる供給通路を形成することができない。これがために、この発明にあっては、シャンク軸側のクーラントの供給通路側に連通して単数又は複数のクーラントの吐出口が設けられてなるため、ヘッド本体にはその中心部から略90°の断面V字状の開口部を形成することができ、なおかつ切屑やクーラントの排出能力を妨げることはない。
【図面の簡単な説明】
【図1】本発明の一実施形態であるガンドリルを示し、(A)は全体構成を示す部分省略正面図、(B)は(A)の仮想線円B内の拡大図、(C)は(A)の仮想線円C内の拡大図である。
【図2】同実施形態のガンドリルに用いる基部シャンク軸部材を示し、(A)は全体構成を示す部分省略正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の矢視断面図である。
【図3】同実施形態のガンドリルに用いる中間部シャンク軸部材を示し、(A)は全体構成を示す部分省略正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の矢視断面図である。
【図4】同実施形態のガンドリルに用いる切削ヘッドを示し、(A)は全体構成を示す部分省略正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の断面図、(D)は基端から見た側面図である。
【図5】本発明の他の実施形態を示すガンドリルの正面図である。
【図6】(a)および(b)は、従来から使用されているガンドリルシステムの概略構成とそれに用いるガンドリルの断面図である。
【符号の説明】
1 クーラントの排出溝
2 クーラントの供給通路
3 シャンク軸
4 切削ヘッド
7 貫通孔
8 切除部
9 シャンク軸部材
9A 基部シャンク軸部材
9B 中間部シャンク軸部材
9C ヘッド部シャンク軸部材
10 ねじ結合部
5d 雄ねじ
5b 雌ねじ
13 ねじ結合部
13a 不完全ねじ部
15 吐出口
16 ドライバ部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a deep hole cutting tool such as a drill and a reamer applied to a gun drill system.
[0002]
[Prior art]
As a deep hole drilling system, a gun drill system, a BTA system, an ejector system, and the like are known, but a gun drill system having a simple configuration is widely used for deep hole drilling of a relatively small diameter.
[0003]
As a gun drill system, for example, conventional techniques described in Patent Literature 1 or 2 can be generally mentioned. This structure will be described with reference to FIG. 6A. A drill head 32 is integrally fixed to the tip of a shank shaft 31 having a hollow cylindrical shape and having a V-shaped concave groove 34 formed along the longitudinal direction on the outer surface thereof. Using a gun drill 30 in which a hollow portion of the shank shaft 31 is a supply passage 33 for the coolant C and a concave groove is a discharge groove 34 for the chips S, a high-pressure coolant C is supplied through the supply passage 33 to the drill head 32 during deep hole drilling. The chip S is discharged from the front end side, and the chips S generated in the cutting holes H of the workpiece W are discharged to the outside through the discharge grooves 34 together with the coolant C.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 59-12405 [Patent Document 2]
Japanese Utility Model Publication No. 60-53416 [0005]
As a gun drill used in the above-mentioned gun drill system, as shown in the sectional view of FIG. 1B, supply passages 33a and 33b for the coolant C are formed in the hollow portion of the shank shaft 31, and the shank shaft 31 is cut off. The coolant discharge groove 34 is formed by cutting out substantially the entire area in the axial direction so that the cross section has a V-shape of approximately 90 degrees about the shank axis O as a center. Thus, the discharge of the coolant discharge groove 34 is performed. The area is large and the coolant discharge capacity is provided with a margin. On the other hand, the cross-sectional area of the supply passages 33a and 33b for the coolant C formed near the axis of the shank shaft 31 cannot be made too large for reasons of strength. Even if the discharge capacity is increased, the supply capacity of the coolant C is limited. Therefore, after all, the chips S generated in the cutting hole H of the workpiece W are discharged through the discharge groove 34 together with the coolant C. There was a certain limit on the discharge capacity to discharge.
[0006]
Further, as described above, approximately one-fourth of the cross-sectional area of the shank shaft 31 is cut off around its axis O to increase the cross-sectional area of the coolant discharge groove 34. The coolant supply passages 33a, 33b formed in the vicinity of the axis of the shaft 31 have to be single or plural small-diameter through passages 33a, 33b avoiding the axis O of the shank shaft 31 as shown in the figure. For this reason, if the length of the shank shaft 31 exceeds 1.5 meters, it is difficult to maintain the straightness of the through passages 33a and 33b in drilling, and there is a problem in the production thereof.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and by devising the formation of a coolant supply passage and a coolant discharge groove or the structure of a shank shaft, it is possible to ensure sufficient strength of the shank shaft and achieve high precision. It is an object of the present invention to secure ease of manufacture and to improve the ability of chips to be discharged by coolant.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is provided with a reference numeral shown in the embodiment, and a coolant discharge groove 1 is provided in an outer peripheral portion, and a coolant supply passage 2 is provided in the inside. 1. A deep hole cutting tool provided with a shank shaft 3 provided and a cutting head 4 at a tip end of the shank shaft 3, wherein a through hole 7 is provided concentrically with the shank shaft 3 in substantially the entire axial direction. 7 forms the coolant supply passage 2, and a part of the outer peripheral wall of the shank shaft 3 is cut linearly in substantially the entire axial direction avoiding the through hole 7, and the cut portion 8 is formed as the coolant discharge groove. 1 is formed.
[0009]
According to the first aspect of the present invention, first, the through hole 7 is provided concentrically with the shank shaft 3 in substantially the entire axial direction, and the through hole 7 is used as the coolant supply passage 2. The supply passage is easy to manufacture. The shank shaft 3 is of course applicable not only to the case where a plurality of shank shaft members 9 are formed by screw connection to each other as described later, but also to the case where the shank shaft 9 is formed of a single long shank shaft. It is.
[0010]
In manufacturing, even when the center portion of the solid round shaft member is pierced to form the through hole 7, when forming the through hole 7 concentrically (axially) of the solid round shaft member, Drilling work can be performed by the relative rotation of the solid round shaft member and the drilling tool, and therefore, even if the solid round shaft member is a long member exceeding 1.5 meters, excellent straightness can be obtained. A through hole serving as a coolant supply passage can be formed, and a high-precision deep hole cutting tool can be easily manufactured.
[0011]
Further, since the through hole 7 is formed concentrically with the shank shaft 3 and the through hole 7 is used as the coolant supply passage 2, the coolant supply passage 2 can be formed to have a large diameter, thereby improving the coolant supply capability. Can be done. Thus, even if the coolant supply passage 2 is formed to have a large diameter, the cross-sectional area of the coolant discharge groove 1 formed by partially cutting the outer peripheral wall of the shank shaft 3 as described later is made as small as possible. The required and sufficient axial strength can be secured.
[0012]
Then, a part of the outer peripheral wall of the shank shaft 3 is cut away from the through hole 7, that is, the whole axial direction is cut so as not to communicate with the through hole 7, and the cut portion 8 is formed into a coolant and chip discharge groove. Since the number is set to 1, it is only necessary to cut a part of the shank shaft 3 in the axial direction from the viewpoint of manufacture, so that the manufacture is easy.
[0013]
Further, by cutting a part of the outer peripheral wall of the shank shaft 3 avoiding the through hole 7, a part of the outer peripheral surface 8a of the through hole 7 is exposed at the bottom of the cut part 8, Therefore, the cut portion 8 is formed by a gap surrounded by the exposed outer peripheral surface 5a of the through hole 7 and cut end surfaces 8b and 8c obtained by cutting a part of the shank shaft 3, and the cut portion 8 has a large diameter. Is formed outside the through-hole 7 formed in the coolant passage, the cross-sectional area is smaller than the cross-sectional area of the coolant discharge groove having a V-shaped cross-section passing through the axis of the conventional shank shaft. In addition to the fact that the coolant supply capacity of the coolant supply passage 2 is improved, even if the cross-sectional area of the coolant discharge groove is slightly reduced, the flow rate of the coolant is rather increased, and the chip discharge capacity is significantly improved. it can.
[0014]
According to a second aspect of the present invention, the shank shaft 3 has a configuration according to the first aspect, wherein a cutting head 4 is detachably provided at a tip portion by screw connection.
[0015]
According to the invention according to claim 2, the cutting head 4 is detachably provided from the shank shaft 3, so that when any one of the cutting head 4 and the shank shaft 3 needs to be replaced due to wear or breakage, Compared with the conventional one in which the cutting head and the shank shaft are integrated, only the above-mentioned worn or defective parts need to be replaced, so that the repair cost is correspondingly lower.
[0016]
Further, when switching to another cutting operation such as drilling and reaming, only the cutting head 4 is replaced, and the shank shaft 3 can be continuously used.
[0017]
As described above, since the cutting head 4 is connected to the shank shaft 3 by the screw connection, the connection structure between the two can be manufactured simply and inexpensively. The replacement work of the parts can be easily performed.
[0018]
The invention according to claim 3 has the configuration according to claim 1 or 2, wherein the shank shaft 3 includes a plurality of shank shaft members 9, and the shank shaft members 9 are detachably screwed to each other. Things.
[0019]
According to the invention according to claim 3, since the shank shaft 3 is composed of the plurality of shank shaft members 9 which are screw-connected to each other, if a plurality of shank shaft members 9 having different lengths are prepared, By changing the shank length, the shank length can be changed, and without changing the shank shaft member 9A having the driver portion 16 on the base end side, an appropriate shank length can be set according to the drilling depth to be applied. When the shank shaft member 9 is worn, broken, deformed, or the like, only the shank shaft member 9 can be replaced and used continuously.
[0020]
The invention according to claim 4 is characterized in that one of the threaded joints 10 on both sides of the shank shaft member 9 constitutes a male screw 5d and the other constitutes a female screw 5b, and a threaded joint between the shank shaft member 9 and the cutting head 4. 13 is configured to have the same size and shape as the threaded joints 10 of the shank shaft members 9 to each other.
[0021]
According to the invention according to claim 4, a plurality of shank shaft members 9 are connected at the screw connection portion 10 as needed, or the cutting head 4 is connected to the shank shaft member 9 at the screw connection portion 13 as required. Cutting can be performed.
[0022]
According to a fifth aspect of the present invention, the screws used for the screw connection portions 10 and 13 are square screws, and the incomplete screw portion 13a on the end side of the male screw 5d and the open end side of the female screw 5b in the square screw is connected to the screw. The structure according to any one of claims 1 to 4, wherein the coolant discharge groove 1 (1A, 1B, 1C) does not exist within the formation range.
[0023]
According to the fifth aspect of the present invention, if the screw engaging portions 10 and 13 between the shank shaft members 9 or between the shank shaft members 9 and the cutting head 4 are square screws, the joining strength is increased and the gap is reduced. Since it is unlikely to occur, it is possible to prevent coolant from leaking from the screw engagement portions 10 and 13.
[0024]
In addition, the incomplete screw portion 13a on the end side of the male screw 5d and the open end side of the female screw 5b in each of the screw engaging portions 10 and 13 of the shank shaft member 9 or the shank shaft member 9 and the cutting head is formed by the discharge groove 1 (1A, 1B, 1C) is in a state where it does not exist within the formation range, so that a thread end of a complete end face faces the cut end face forming the discharge groove 1 (1A, 1B, 1C), and a gap is formed. Therefore, it is possible to prevent a problem that chips are caught in the gap and cannot be discharged smoothly.
[0025]
In the invention according to claim 6, in the coolant discharge groove 1 on the outer periphery of the shank shaft 3, the depth L1 of the cut surface in a direction perpendicular to the shaft is 1/2 to 1/4 of the radius of the shank shaft. There is provided a configuration according to any one of claims 1 to 5, which is formed at a ratio of a length L2 of about 1/3 to 1/5 of the entire circumference in the circumferential direction.
[0026]
According to the invention according to claim 6, the coolant discharge groove 1 is formed in the portion 6 from which a part of the outer peripheral wall of the shank shaft 3 is cut off. That is, the depth L1 of the cut end faces 8b and 8c obtained by cutting the outer peripheral wall of the shank shaft 3 and the cut amount L2 of the outer peripheral wall of the shank shaft 3 in the circumferential direction can be freely set within the above-described ranges. , And therefore, the ability to discharge the chips S generated in the cutting holes H of the workpiece W can be freely adjusted.
[0027]
The invention according to claim 7 is characterized in that the cutting head 4 is provided with one or more coolant discharge ports 15 in communication with the coolant supply passage 2 on the shank shaft 3 side. It has a configuration described in any of the above.
[0028]
Since a cutting tip 4 is provided with a carbide tip as a cutting blade, an opening having a V-shaped cross section of approximately 90 ° from the center must be formed in the head main body 4a. For this reason, it is not possible to form the supply passage 2 including the above-described cutout 8 as formed in another portion. For this reason, according to the present invention, one or more coolant discharge ports 15 are provided in communication with the coolant supply passage 2 on the shank shaft 3 side. And an opening having a V-shaped cross section of approximately 90 ° can be formed, and the ability to discharge chips and coolant is not hindered.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the deep hole cutting tool according to the present invention will be specifically described with reference to the drawings.
[0030]
As shown in FIGS. 1A to 1C, a gun drill according to an embodiment of the present invention includes a base shank shaft member 9 </ b> A provided with a driver portion 16, and one end side of which is screwed to a distal end thereof with a screw connection portion 10. An intermediate shank shaft member 9B which is connected and detachably connected coaxially, and a head shank shaft member 9C is similarly screw-connected to the other end side of the intermediate shank shaft member 9 by a screw connection portion 13 to be coaxial. And a drill head 4, which is a cutting head for drilling, detachably connected in a shape. Note that a portion surrounded by B in FIG. 1A is enlarged in FIG. 1B, and a portion surrounded by C is enlarged in FIG. 1C.
[0031]
As shown in detail in FIGS. 2 (A) to 2 (C), a through-hole 7 is provided concentrically with the shank shaft 3 in substantially the entire axial direction of the shank shaft member 9A on the proximal end side. The coolant supply passage 2 is formed, and a part of the outer peripheral wall of the shank shaft 3 is cut linearly in substantially the entire axial direction avoiding the through hole 7, and the cut portion 8 forms the coolant discharge groove 1A. Do it.
[0032]
In the case where the shank shaft member 9A is formed using a long solid round shaft member, for example, when performing a drilling operation at the center of a solid round shaft member exceeding 1.5 meters, a drilling tool is used. Since the drilling operation can be performed while rotating the solid round shaft member and the solid round shaft member relatively, the shank shaft member 9A having good linearity can be easily manufactured. Note that a large-diameter driver section 16 that receives a rotational driving force is coaxially formed integrally with the base end of the shank shaft member 9A by cutting.
[0033]
Further, as shown in FIGS. 2B and 2C, a part of the outer peripheral wall of the shank shaft member 9A is cut substantially in the axial direction so as to avoid the through hole 7, thereby forming a cut portion 8. A part of the outer peripheral surface of the through hole 7 is exposed on the bottom surface of the portion 8, and is surrounded by the exposed outer peripheral surface 8a of the through hole 7 and the cut end surfaces 8b and 8c of the cut portion. Is formed, and the cutout 8 forms the coolant discharge groove 1A.
[0034]
On the base side of the base shank shaft member 9A, as shown in FIG. 2A, a coolant discharge groove 1A, which is a cutout portion 8 up to the vicinity of the large-diameter driver portion 16 on the base end side, extends in the longitudinal direction. At the same time, a connecting cylinder portion 5a is provided at the distal end side of the base shank member 9A, and a female screw 5b formed of a square screw is engraved on the inner side of the connecting cylinder portion 5a. As shown in FIGS. 2B and 2C, the cutout portion 8 formed on the outer peripheral side of the base shank shaft member 9A is formed around the shank axis O of the shank shaft 9A. The cut-out end faces 5e and 5f have a thickness L1 that is cut off by a circumferential length L2 that forms an opening of about 90 °, and the cut-off portion 8 is formed by cutting off the peripheral wall 5a1 in the connection cylinder portion 5a and the female screw 5b. Is formed. The driver 16 has a center hole 16a extending from the base end to an intermediate position. The through hole 6 extends from the inner bottom of the center hole 10a to immediately before the female screw 5b of the connection cylinder 5a of the base shank shaft member 9A. A certain coolant supply passage 2 is formed.
[0035]
As described above, as shown in FIGS. 2B and 2C, the cut portion 8 serving as the discharge groove 1A is formed on the outer peripheral side of the base shank shaft member 9A. The cutout end faces 5e and 5f are formed so as to lack the thickness width L1 at the circumferential length L2 that forms an opening of about 90 ° with respect to the center, and the discharge cross-sectional area of the discharge groove 1A is equal to the circumferential length L2. And the thickness L1. If the inner diameter of the through-hole 7 is constant, the discharge cross-sectional area of the discharge groove 1A, that is, the discharge capacity of the coolant, is determined by the circumferential length L2. Will be.
[0036]
The intermediate shank member 9B has a round cylindrical shape having the same outer diameter as that of the base shank member 9A described above and, as shown in detail in FIGS. The through hole 7 forms the coolant supply passage 2, and a part of the outer peripheral wall of the shank shaft 3 is cut straight in substantially the entire axial direction avoiding the through hole 7. The cutout 8 forms the coolant discharge groove 1B.
[0037]
The intermediate shank member 9B has, at one end thereof, a connecting shaft portion 5c having an outer diameter capable of being tightly fitted in the connecting cylindrical portion 5a formed on the base shank member 9A. A male screw 5d, which is a square screw that is screwed into the female screw 5d of the connection cylinder portion 5a, is engraved on the distal end side, and has the same size and shape as the connection cylinder portion 5a of the base shank shaft member 9A on the other end side. Is formed with a connection cylinder portion 5a in which a female screw 5b made of a square screw is engraved. The cool rank supply passage 2 which is a through hole 6 formed in the shank shaft 3 is provided so that one end thereof reaches immediately before the female screw 5b and the other end thereof reaches the tip end surface of the male screw 5d.
[0038]
As shown in FIGS. 3B and 3C, the cutout 8 formed on the outer peripheral side of the intermediate shank shaft member 9B is substantially 90 ° about the shank axis O. The cut-out end faces 5e and 5f have a thickness L1 that is cut off by a circumferential length L2 that forms an opening, and the cut-out portion is formed by cutting off the peripheral wall 5a1 at the connection cylindrical portion 5a and the female screw 5b at the other end. 8 is formed, and the peripheral wall 5c1 is also cut out with the connecting shaft 5c and the male screw 5d at one end to form the cutout 8.
[0039]
Thus, as shown in FIGS. 1A and 1C, the base shank shaft member 9A and the intermediate shank shaft member 9B are connected to each other, that is, a connecting cylinder formed on the outer peripheral side of the base shank member 9A. The connecting shaft 5c formed on the outer peripheral side of the intermediate shank member 9B is fully fitted and screwed into the portion 5a, and the step 5g on the base side of the connecting shaft 5c is in close contact with the end face of the connecting cylindrical portion 5a. Thus, the two discharge grooves 1A and 1B are linearly connected without displacement, and the coolant supply passage 2 which is the through hole 6 formed in the base side shank member 9A and the through hole 6 formed in the intermediate portion shank shaft member 9B. The coolant supply hole 2 is set so as to communicate with the coolant supply hole 2, thereby forming the shank shaft 3.
[0040]
As shown in detail in FIGS. 4A to 4D, the drill head 4 has a head shank shaft member 9C formed on the base end side, and a connection shaft portion 5c formed on the shaft member 9C. A male screw 5d, which is a square screw that is screwed into the female screw 5b of the connection cylinder part 5a on the intermediate part shank member 9B side, is engraved on the tip end side of the shaft part 5c, and a through hole formed on the head part shank shaft member 9C. One end of the cool rank supply passage 2 which is the hole 7 reaches an end face of a drill body 4b described later, and the other end extends to a tip end face of the male screw 5d. As shown in FIGS. 4 (C) and 4 (D), the discharge groove 1C is formed by cutting off about the axis O of the head shank shaft member 9C, thereby forming the connection shaft portion 5c and the male screw 5d. The part of the peripheral wall 5c1 is cut away in the same manner as the intermediate shank shaft member 9B.
[0041]
The head body 4b on the cutting edge side of the drill head 4 is solid, and the head adjacent to the discharge groove 1C which is the cutout 8 formed in the head shank shaft member 9C is formed on the solid head body 4b. Since it is necessary to attach a carbide tip 17 forming a cutting edge to the main body 4b, a discharge groove 4c having a V-shaped cross section opened at about 90 ° about the axis is formed. The carbide tip 17 is attached by brazing or the like so as to face the side, while the solid head main body 4b is provided with an end face of the connection shaft portion 5c, more precisely, a through hole 7 formed in the head portion shank shaft member 9C. Two coolant supply holes 6c, 6c communicating with the passage 2 and leading to the front end face 4d of the head main body 4b are formed, and the front end face 4d is a discharge port 15 serving as an opening of the two coolant supply holes 6c, 6c. , 1 It is open. Further, guide pads 18 are fixed to two places on the outer peripheral part outside the discharge groove 4c.
[0042]
As shown in FIGS. 1 (A) and 1 (B), the drill head 4 has a connection shaft 5c formed on the head shank 9C and a connection cylinder 5a of the intermediate shank 9B. And the discharge grooves 4c and 1C are linearly aligned with the discharge groove 1B of the intermediate shank shaft member 9B in a state in which the end surface of the connection cylinder 5a is in close contact with the step 5g on the base side of the connection shaft 5c. The coolant supply passage 2 on the drill head 4 side is set so as to communicate with the coolant supply hole 2 of the intermediate shank shaft member 9B. The connection shaft 5c of the drill head 4 and the connection shaft 5c of the intermediate shank shaft member 9B have the same dimensions and shape.
[0043]
The distal ends of the female screws 5b, 5b in the connecting cylindrical portions 5a, 5a (FIGS. 2A and 3A) of the base-side shank member 9A and the intermediate shank shaft member 9B, the intermediate shank shaft member 9B, and the drill At the open end sides of the male screws 5d and 5d in the connection shaft portions 5c and 5c (FIGS. 2A and 3A) of the head shank shaft member 9C of the head 4, the drill head 4 in FIG. As shown by the screw connection portion 13 (see FIG. 1B) of the head shank shaft member 9C and the intermediate shank shaft member 9B, the incomplete screw portion 13a of the female and male screws 5a and 5d is discharged. 1 (1C), the screw ends are finished with a complete screw cross-sectional shape on both side surfaces of the discharge grooves 1 (1C), and no gap is formed at the screw ends facing the discharge grooves 1. .
[0044]
The connecting shaft portions 5c, 5c of the intermediate shank shaft member 9B and the head shank shaft member 9C, and the connecting cylindrical portions 5a, 5a of the intermediate shank shaft member 9B and the base shank shaft member 9A corresponding thereto, respectively. The connecting shaft portions 5c, 5c are smoothly inserted into the connecting cylinder portions 5a, 5a as the pilot portions having the same length and substantially the same inner and outer diameters, so that the connecting shaft portions 5c, 5c can be screwed accurately and concentrically.
[0045]
In such a gun drill, a shank shaft 3 usually having a length of about 150 to 500 mm is used. A plurality of intermediate shank shaft members 9A having different lengths in such a range are prepared. Keep it. In the above embodiment, the drill head 4 is exemplified as the cutting head. However, for example, a head shank member 9C is formed on the base end side similarly to the drill head 4 as a cutting head used for other cutting operations such as a milling head. It is recommended to prepare a connecting shaft portion 5c having an external thread 5d and a discharge groove 4c, 1C provided on the entire outer peripheral surface.
[0046]
In this gun drill, first, a through hole 7 is provided concentrically with the shank shaft 3 in substantially the entire axial direction, and the through hole 7 is used as the coolant supply passage 2. Is easy to manufacture. The shank shaft 3 is of course applicable not only to the case where a plurality of shank shaft members 9 are formed by screw connection to each other as described later, but also to the case where the shank shaft 9 is formed of a single long shank shaft. It is.
[0047]
In manufacturing, even when the center portion of the solid round shaft member is pierced to form the through hole 7, when forming the through hole 7 concentrically (axial) of the solid round shaft member, Since the hole is drilled at the eccentric position as described above, it is possible to perform the drilling operation by the relative rotation of the solid round shaft member and the drilling tool. Even a long member exceeding a meter can form a through hole as a coolant supply passage having excellent straightness, and a highly accurate deep hole cutting tool can be easily manufactured.
[0048]
Further, since the through hole 7 is formed concentrically with the shank shaft 3 and the through hole 7 is used as the coolant supply passage 2, the coolant supply passage 2 can be formed to have a large diameter, thereby improving the coolant supply capability. Can be done. Thus, even if the coolant supply passage 2 is formed to have a large diameter, the cross-sectional area of the coolant discharge groove 1 formed by partially cutting the outer peripheral wall of the shank shaft 3 as described later is made as small as possible. In addition, the shaft strength can be sufficiently and sufficiently secured.
[0049]
Then, a part of the outer peripheral wall of the shank shaft 3 is cut away from the through hole 7, that is, the whole axial direction is cut so as not to communicate with the through hole 7, and the cut portion 8 is formed into a coolant and chip discharge groove. Since the number is set to 1, it is only necessary to cut a part of the shank shaft 3 in the axial direction from the viewpoint of manufacture, so that the manufacture is easy.
[0050]
Further, by cutting a part of the outer peripheral wall of the shank shaft 3 avoiding the through hole 7, a part of the outer peripheral surface 8a of the through hole 7 is exposed at the bottom of the cut part 8, Accordingly, the cut portion 8 is formed by a gap surrounded by the exposed outer peripheral surface 8a of the through hole 7 and cut end surfaces 8b and 8c obtained by cutting a part of the shank shaft 3, and the cut portion 8 has a large diameter. Is formed outside the through-hole 7 formed in the coolant passage, the cross-sectional area is smaller than the cross-sectional area of the coolant discharge groove having a V-shaped cross-section passing through the axis of the conventional shank shaft. In addition to the fact that the coolant supply capacity of the coolant supply passage 2 is improved, even if the cross-sectional area of the coolant discharge groove is slightly reduced, the flow rate of the coolant is rather increased, and the chip discharge capacity is significantly improved. it can.
[0051]
According to the gun drill of the present embodiment, since the shank shaft 3 is composed of the base side shank member 9A and the intermediate shank shaft member 9B which is an independent member, the shank shaft members 9B having different lengths are exchanged. By doing so, the shank length can be changed, and it is possible to set an appropriate shank length according to the drilling depth to be applied using the same base shank shaft member 9A. Therefore, the equipment cost is greatly reduced as compared with the conventional case where a plurality of types of deep hole cutting tools having different shank lengths in several stages are prepared. In addition, most of the shank side wear over time and sudden breakage and deformation of the shank side during use occur in the middle portion of the shank shaft where the torsional stress due to the cutting load tends to concentrate. In the gun drill of the above, since the concentrated portion of the torsional stress generally becomes the intermediate shank shaft member 9B, it is difficult to be damaged by replacing only the damaged intermediate shank shaft member 9B with a new one, but the manufacturing cost is structurally and in size. The base shank member 9A having a high height can be continuously used for a long period of time, and thus the maintenance cost can be greatly reduced.
[0052]
Further, in the gun drill of the present embodiment, one end of the intermediate shank shaft member 9B constitutes a connection shaft portion 5c having a male screw 5d, and the other end constitutes a connection cylinder portion 5a having a female screw 5b. And the connecting cylinder portions 5a and 5a of the intermediate shank shaft member 9B and the connecting shaft portions 5c and 5c of the intermediate shank shaft member 9B and the head shank member 9C of the drill head 4 are set to have the same dimensions and shape. A plurality of intermediate shank shaft members 9B are connected linearly, or a drill head is attached to a single long shank shaft 3 provided with a driver portion 16 at the base without passing through the intermediate shank shaft members 9B. 4 can be directly connected to each other to cope with extremely long drilling by connecting a plurality of intermediate shank shaft members 9B. It can cope with relatively short drilling by direct coupling of Riruheddo 4.
[0053]
On the other hand, when the carbide tip 17 which is the cutting edge of the drill head 4 is worn out or broken, only the drill head 4 needs to be replaced, and the base shank shaft member 9A and the intermediate shank shaft member 9B are continued. Since it can be used and only the screw head 4 needs to be screwed and replaced at the time of setup change, the work can be performed easily and in a short time and the production efficiency is improved, and switching to other cutting work such as drilling and reaming is also possible. Also in this case, only the corresponding type of cutting head needs to be prepared, so that the equipment cost can be reduced and the replacement operation can be easily performed in a short time.
[0054]
Further, in the present embodiment, the female screw 5b and the male screw 5d in each screw connection portion of the intermediate shank shaft member 9B, the base shank member 9A, and the head shank member 9C of the drill head 4 are formed by square screws. As a result, a high coupling strength is obtained, and a gap is hardly formed in the screw portion, so that leakage of the coolant from the screw connection portion is prevented.
[0055]
In addition, as shown in FIG. 4 (C), the incomplete thread portions on the distal end side of the male screw 5d and the open end side of the female screw 5b in each screw engaging portion are formed in the discharge groove 1 (1A, 1B, 1C). Since the screw ends are within the formation range, screw ends having a complete cross-sectional shape face both side surfaces of these discharge grooves, so that no gap is formed. Therefore, a problem that chips are caught in the gap and cannot be discharged smoothly is also prevented.
[0056]
In the above embodiment, one ends of the base shank shaft member 9A and the intermediate shank shaft member 9B are used as the connecting cylinder 5a and the female screw 5b, and the other end of the intermediate shank shaft member 9B is used as the connection shaft 5c and the male screw 5d. One end of the head shank shaft member 9C is connected to the connecting shaft 5c and the male screw 5d. On the contrary, one end of the base shank shaft member 9A and the intermediate shank shaft member 9B is connected to the connecting shaft 5c and the male screw. 5d, the other end of the intermediate shank shaft member 9B is a connection cylinder 5a and a female screw 5b, and one end of the head shank shaft member 9C is a connection cylinder 5a and a female screw 5b. May be formed. Further, in the description of the embodiment, the example in which the carbide tip 17 forming the cutting edge is brazed to the drill head 4 is shown. However, the entire cutting head such as the drill head 4 is made of tool steel, and the tip is cut. It is also possible to adopt a configuration in which a blade is directly formed or the carbide tip 8 is screwed to the drill head 3. Further, the circumferential length L2 of the discharge groove 1 (1A, 1b, 1C) of each member 9A, 9B, 9C is exemplified by a V-shaped cross section having an opening angle of 90 °, but approximately 90 ° to 130 °. It is also possible to set an appropriate opening angle in the range of °.
[0057]
【The invention's effect】
According to the invention of claim 1, first, a through hole is provided substantially in the entire axial direction concentrically with the shank shaft, and the through hole is used as a coolant supply passage. Easy to manufacture. It should be noted that this shank shaft is naturally applied to a case where the shank shaft is formed of a single long shank shaft, in addition to the case where a plurality of shank shaft members are formed by screwing together as described later. .
[0058]
In manufacturing, even when a through hole is formed by piercing the center of a solid round shaft member, when a through hole is formed concentrically (axially) with the solid round shaft member, a solid round shaft member is formed. Drilling work can be performed by the relative rotation of the shaft member and the drilling tool. Therefore, even when the solid round shaft member is a long member exceeding 1.5 meters, the coolant supply excellent in straightness is provided. A through hole serving as a passage can be formed, and a high-precision deep hole cutting tool can be easily manufactured.
[0059]
Furthermore, since a through hole is formed concentrically on the shank shaft and this through hole is used as a coolant supply passage, the coolant supply passage can be formed with a large diameter, and the coolant supply capacity can be improved accordingly. As described above, even if the coolant supply passage is formed to have a large diameter, the cross-sectional area of the coolant discharge groove formed by partially cutting off the outer peripheral wall of the shank shaft as described later is made as small as possible to achieve the shaft strength. Can be secured as necessary.
[0060]
Then, a part of the outer peripheral wall of the shank shaft was cut away from the through-hole, that is, the whole area in the axial direction was cut off so as not to communicate with the through-hole, so that the cut-off portion was formed as a coolant and chip discharge groove. From a manufacturing standpoint, it is only necessary to cut a part of the shank shaft in the axial direction, so that the manufacturing is easy.
[0061]
Further, by cutting off a part of the outer peripheral wall of the shank shaft avoiding the through hole, a part of the outer peripheral surface of the through hole is exposed at the bottom of the cut part. The portion is formed by a gap surrounded by the exposed outer peripheral surface of the through hole and a cut end surface obtained by cutting a part of the shank shaft, and the cut portion is formed outside the through hole formed with a large diameter. Therefore, the cross-sectional area is smaller than the cross-sectional area of the coolant discharge groove having a V-shaped cross section passing through the axis of the conventional shank shaft, but the coolant supply capacity of the coolant supply passage is improved as described above. Accordingly, even if the cross-sectional area of the coolant discharge groove is somewhat reduced, the flow rate of the coolant is rather increased, and the chip discharge capability can be significantly improved.
[0062]
According to the invention according to claim 2, since the cutting head is provided detachably from the shank shaft, a conventional cutting head can be used when any one of the cutting head and the shank shaft needs to be replaced due to wear or defect. Since only the worn or missing parts need to be replaced, the repair cost is lower as compared with the one integrated with the shaft and the shank shaft.
[0063]
Furthermore, when switching to another cutting operation such as drilling and reaming, it is possible to easily switch from drilling to reaming by simply changing this cutting head, while the shank shaft is continuously used. can do.
[0064]
As described above, since the cutting head 4 is connected to the shank shaft 3 by the screw connection, the connection structure between the two can be manufactured simply and inexpensively. The replacement work of the parts can be easily performed.
[0065]
According to the invention according to claim 3, since the shank shaft is composed of a plurality of shank shaft members which are screwed to each other, if a plurality of shank shaft members having different lengths are prepared, the shank shaft members are replaced. The shank length can be changed, and without changing the shank shaft member having the driver portion on the base end side, an appropriate shank length according to the drilling depth to be applied can be set, and the shank shaft member When wear, breakage, deformation, etc. occur, only the shank shaft member can be replaced and used continuously.
[0066]
According to the invention according to claim 4, it becomes possible to connect a plurality of shank shaft members as needed, or to connect a cutting head to the shank shaft members to perform required cutting.
[0067]
According to the fifth aspect of the present invention, if each screw engaging portion between the shank shaft members or between the shank shaft member and the cutting head is a square screw, the coupling strength is increased and a gap is hardly generated. Coolant leakage from the joint can be prevented.
[0068]
In addition, incomplete screw portions on the distal end side of the male screw and the open end side of the female screw in each screw engaging portion between the shank shaft members or between the shank shaft members and the cutting head do not exist within the formation range of the discharge groove. In this state, a screw end having a complete end face faces the cut end surface forming the discharge groove, so that no gap is generated. Therefore, it is possible to prevent a problem that chips are caught in the gap and cannot be discharged smoothly. .
[0069]
According to the sixth aspect of the present invention, the coolant discharge groove is formed in a portion of the outer peripheral wall of the shank shaft that is cut off, but the radial depth of the portion, that is, the shank shaft. The depth of the cut end face from which the outer peripheral wall has been cut off and the amount of cut of the outer peripheral wall in the circumferential direction of the shank axis can be freely set within the above-described range, whereby the coolant discharge ability, and thus the cutting of the workpiece can be performed. The ability to discharge chips generated in the hole can be freely adjusted.
[0070]
According to the seventh aspect of the present invention, the cutting head is provided with a cemented carbide tip, which is a cutting blade, so that the head body has an opening having a V-shaped cross section substantially 90 ° from the center. Has to be formed, which makes it impossible to form a supply channel consisting of the above-mentioned cutout as is formed in other parts. For this reason, in the present invention, since one or more coolant discharge ports are provided in communication with the coolant supply passage side on the shank shaft side, the head main body is approximately 90 ° from the center thereof. Can be formed, and the ability to discharge chips and coolant is not hindered.
[Brief description of the drawings]
1A and 1B show a gun drill according to an embodiment of the present invention, in which FIG. 1A is a partially omitted front view showing an entire configuration, FIG. 1B is an enlarged view of an imaginary line circle B in FIG. 1A, and FIG. FIG. 4A is an enlarged view of the inside of a virtual line circle C of FIG.
2A and 2B show a base shank shaft member used for the gun drill of the embodiment, wherein FIG. 2A is a partially omitted front view showing the entire configuration, FIG. 2B is a side view seen from the tip, and FIG. It is arrow sectional drawing of CC line.
3A and 3B show an intermediate shank shaft member used for the gun drill according to the embodiment, FIG. 3A is a partially omitted front view showing the entire configuration, FIG. 3B is a side view seen from the tip, and FIG. 5 is a sectional view taken along line CC of FIG.
4A and 4B show a cutting head used in the gun drill of the embodiment, wherein FIG. 4A is a partially omitted front view showing the entire configuration, FIG. 4B is a side view seen from the tip, and FIG. FIG. 3D is a cross-sectional view taken along line C, and FIG.
FIG. 5 is a front view of a gun drill showing another embodiment of the present invention.
FIGS. 6 (a) and (b) are a schematic configuration of a conventionally used gun drill system and a sectional view of a gun drill used therefor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coolant discharge groove 2 Coolant supply passage 3 Shank shaft 4 Cutting head 7 Through hole 8 Cutout portion 9 Shank shaft member 9A Base shank shaft member 9B Intermediate shank shaft member 9C Head shank shaft member 10 Screw coupling portion 5d Male screw 5b Female screw 13 Screw connection part 13a Incomplete screw part 15 Discharge port 16 Driver part

Claims (7)

外周部にはクーラントの排出溝が設けられ内部にはクーラントの供給通路が設けられたシャンク軸と、シャンク軸の先端部に切削ヘッドを備える深孔切削具であって、前記シャンク軸に同心に略軸方向全域に貫通孔が設けられて該貫通孔が上記クーラントの供給通路を形成し、シャンク軸の外周壁の一部が前記貫通孔を避けて略軸方向全域に直線状に切除されて該切除部が上記クーラントの排出溝を形成してなることを特徴とする深孔切削具。A shank shaft provided with a coolant discharge groove in the outer peripheral portion and a coolant supply passage therein, and a deep hole cutting tool having a cutting head at the tip of the shank shaft, concentric with the shank shaft. A through-hole is provided in substantially the entire axial direction, the through-hole forms the coolant supply passage, and a part of the outer peripheral wall of the shank shaft is cut linearly in substantially the entire axial direction avoiding the through-hole. A deep hole cutting tool, wherein the cut portion forms the coolant discharge groove. 前記シャンク軸は、先端部に切削ヘッドがねじ結合により着脱可能に設けられてなる請求項1に記載の深孔切削具。2. The deep hole cutting tool according to claim 1, wherein the shank shaft is provided with a cutting head at a tip end thereof, which is detachably provided by screw connection. 前記シャンク軸は、複数のシャンク軸部材からなり、各シャンク軸部材は互いに着脱可能にねじ結合されてなる請求項1又は2に記載の深孔切削具。The deep hole cutting tool according to claim 1, wherein the shank shaft includes a plurality of shank shaft members, and the shank shaft members are detachably screwed to each other. 前記シャンク軸部材の両側のねじ結合部の一方が雄ねじ、他方が雌ねじを構成すると共に、このシャンク軸部材と切削ヘッドとのねじ結合部が、当該シャンク軸部材相互のねじ結合部と同一寸法形状に設定されてなる請求項1〜3の何れかに記載の深孔切削具。One of the threaded joints on both sides of the shank shaft member constitutes a male thread and the other constitutes a female thread, and the threaded joint between the shank shaft member and the cutting head has the same size and shape as the threaded joint between the shank shaft members. The deep hole cutting tool according to claim 1, wherein: 上記ねじ結合に用いるねじは角ねじであり、かつ該角ねじにおける雄ねじの末端側と雌ねじの開口端側の不完全ねじ部を上記クーラントの排出用の溝の形成範囲内に入って存在しない状態である請求項1〜4の何れかに記載の深孔切削具。The screw used for the screw connection is a square screw, and the incompletely threaded portion of the male screw at the end side of the male screw and the open end side of the female screw is not included in the range for forming the coolant discharge groove. The deep hole cutting tool according to any one of claims 1 to 4, wherein 前記シャンク軸の外周のクーラントの排出溝は、軸に直交する方向の切断面の深さがシャンク軸半径の1/2乃至1/4の割合であり、周方向には全周の略1/3〜1/5の長さの割合になるよう形成されてなる請求項1〜5の何れかに記載の深孔切削具。In the coolant discharge groove on the outer periphery of the shank shaft, the depth of the cut surface in the direction perpendicular to the shaft is a ratio of 1/2 to 1/4 of the radius of the shank shaft, and approximately 1/1 of the entire circumference in the circumferential direction. The deep hole cutting tool according to any one of claims 1 to 5, wherein the tool is formed so as to have a length of 3 to 1/5. 切削ヘッドには、シャンク軸側のクーラントの供給通路と連通して単数又は複数のクーラントの吐出口が設けられてなる請求項1〜6の何れかに記載の深孔切削具。The deep hole cutting tool according to any one of claims 1 to 6, wherein the cutting head is provided with one or more coolant discharge ports in communication with a coolant supply passage on the shank shaft side.
JP2003079996A 2003-03-24 2003-03-24 Deep hole cutting tool Expired - Fee Related JP4141297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079996A JP4141297B2 (en) 2003-03-24 2003-03-24 Deep hole cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079996A JP4141297B2 (en) 2003-03-24 2003-03-24 Deep hole cutting tool

Publications (2)

Publication Number Publication Date
JP2004283970A true JP2004283970A (en) 2004-10-14
JP4141297B2 JP4141297B2 (en) 2008-08-27

Family

ID=33293971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079996A Expired - Fee Related JP4141297B2 (en) 2003-03-24 2003-03-24 Deep hole cutting tool

Country Status (1)

Country Link
JP (1) JP4141297B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091452B2 (en) * 2006-11-17 2012-01-10 Unitac, Incorporated Method for manufacturing drill head
JP2014124689A (en) * 2012-12-25 2014-07-07 Yunitakku Kk Gun drill
CN105665798A (en) * 2016-04-18 2016-06-15 哈尔滨理工大学 Polycrystalline diamond inner chip removal drill
JP6094004B1 (en) * 2015-10-23 2017-03-22 有限会社スキルワン Shaft with a mounting attachment that can be attached to and removed from an electric drill tool
EP2650069B1 (en) * 2012-04-11 2019-07-31 Sandvik Intellectual Property AB Cutting head with coolant channel and method of forming such a cutting head

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091452B2 (en) * 2006-11-17 2012-01-10 Unitac, Incorporated Method for manufacturing drill head
EP2650069B1 (en) * 2012-04-11 2019-07-31 Sandvik Intellectual Property AB Cutting head with coolant channel and method of forming such a cutting head
JP2014124689A (en) * 2012-12-25 2014-07-07 Yunitakku Kk Gun drill
JP6094004B1 (en) * 2015-10-23 2017-03-22 有限会社スキルワン Shaft with a mounting attachment that can be attached to and removed from an electric drill tool
JP2017080728A (en) * 2015-10-23 2017-05-18 有限会社スキルワン Shafts attached with removable/exchangeable attachments for electric drill tool
CN105665798A (en) * 2016-04-18 2016-06-15 哈尔滨理工大学 Polycrystalline diamond inner chip removal drill

Also Published As

Publication number Publication date
JP4141297B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
KR100674665B1 (en) Deep hole cutter
US8091452B2 (en) Method for manufacturing drill head
EP2070617B1 (en) A basic body for tools for chip removing machining
KR20090088840A (en) Method for manufacture of through-hole
JP2004122350A (en) Drill and throwaway tip
JP4230878B2 (en) Deep hole cutting tool
KR20110005238A (en) Deep-hole boring drill head
JP4164337B2 (en) Deep hole cutting tool
JP2004283970A (en) Deep hole cutting tool
JP4057936B2 (en) Deep hole cutting tool
JP4142930B2 (en) Deep hole cutting tool
JP4047703B2 (en) Deep hole cutting tool
JP4201627B2 (en) Deep hole cutting tool
JP4035415B2 (en) Deep hole cutting tool
JP2011206869A (en) Blade edge replaceable rotary cutting tool
JP4272021B2 (en) Deep hole cutting tool
JP2003175413A (en) Drill
JP2003291015A (en) Throwaway type drill
JP2007216322A (en) Manufacturing method for drill head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees