JP2004283862A - Method for manufacturing cylinder block - Google Patents

Method for manufacturing cylinder block Download PDF

Info

Publication number
JP2004283862A
JP2004283862A JP2003078532A JP2003078532A JP2004283862A JP 2004283862 A JP2004283862 A JP 2004283862A JP 2003078532 A JP2003078532 A JP 2003078532A JP 2003078532 A JP2003078532 A JP 2003078532A JP 2004283862 A JP2004283862 A JP 2004283862A
Authority
JP
Japan
Prior art keywords
hollow member
cooling water
mold
cylinder block
common wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003078532A
Other languages
Japanese (ja)
Inventor
Tetsuro Ishida
哲朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003078532A priority Critical patent/JP2004283862A/en
Publication of JP2004283862A publication Critical patent/JP2004283862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress knocking by surely preventing cast sand or molten metal from flowing into a hollow member to obtain a desired cooling performance, thereby correcting unbalanced thermal deformation due to variation of temperature distribution around a cylinder and reducing gas temperature inside the cylinder in the case of casting the hollow member inside a common wall formed between mutually adjacent cylinders. <P>SOLUTION: In the method for manufacturing a cylinder block 1, a plurality of cylinders 2 are arrayed adjacently to each other and cooling water channels 3 are formed along the arraying directions A of respective cylinders. In the mold for molding the cylinder block, in the positions 24, 25 corresponding to the inside of the common wall part 4 which is formed between the adjacent cylinders, a hollow member 5 with the edge made to be a closed cross section is preliminarily arranged in the manner that both ends 5a, 5b of the closed cross section edge is each situated in the cooling water channels 3a, 3b. Then, molten metal is poured in the mold with this hollow member 5 arranged and is cooled to cast the hollow member 5 inside the common wall part 4. After cooling, both ends 5a, 5b are removed which are situated in the cooling water channels 3a, 3b in the molded hollow member 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、隣接するシリンダの壁部が一体化されて共通化された、いわゆるサイアミーズ型のシリンダブロックの鋳造方法に関する。
【0002】
【従来の技術】
多気筒エンジンにおいては、エンジンの小型化を図るために、各シリンダの隣接する壁部を共通壁部として薄くして一体化したサイアミーズ方式のシリンダブロックが知られている。このシリンダブロックでは、隣接するシリンダの共通壁部が薄いため一般に冷却通路を形成するのが難しく、シリンダ周部の温度分布のばらつきによる熱変形の不均衡の是正やシリンダ内ガス温度を低減させてノッキングを抑制する観点からもシリンダ周部の温度を低減させることが要望されている。
このような背景の中にあって、特許文献1には、シリンダブロックを成型する型の、隣接するシリンダ間の共通壁部内に相当する位置に、その両側が開口された中空部材を、その開口が冷却水路内にそれぞれ位置するように配置し、この中空部材が配置された型に溶湯を流し込んで冷却することで共通壁部内に中空部材を鋳込むシリンダブロックの製造方法が提案されている。
【0003】
【特許文献1】
特許公報第2743131号
【0004】
【発明が解決しようとする課題】
共通壁部内に中空部材を鋳込む場合に問題となるのは、溶湯や鋳砂が中空部材内に入って塞いでしまう点である。このため、特許文献1では、冷却水路内に位置する開口に、溶湯の熱によって消失するピンを溶湯の流し込み前に予め挿入しておき、型内に流し込まれる溶湯の熱によってピンを消失させることで、開口から中空部材への鋳砂の流入を防止しながら共通壁部内に中空部材を鋳込んでいる。
しかしながら、このような溶湯の熱によってピンを消失させる場合、溶湯の温度をピンが消失可能な適温に保つことで確実にピンを消失することはできるが、溶湯が冷却されて固まる前にピンが消失した場合、流動性のある溶湯が開口部から中空部材に内に流入して開口や中空部材内を塞いでしまうことが懸念される。サイアミーズ方式のシリンダブロックの場合、中空部材を鋳込む共通壁部の厚さが薄く、開口の面積や中空部材の容積自体を十分に確保することが難しいため、溶湯が中空部材内に流入してそれらの面積や容積が減ると所望の冷却性能が得られにくくなる。
本発明は、共通壁部内に中空部材を鋳込む場合において、中空部材内への鋳砂や溶湯の流入を確実に防止して所望の冷却性能を得ることで、シリンダ周部の温度分布のばらつきによる熱変形の不均衡を是正、シリンダ内ガス温度の低減させてノッキングを抑制可能なシリンダブロックの製造方法を提供することを、その目的とする。
【0005】
【課題を解決するための手段】
このような目的を達成するため、本発明にかかる、互いに隣接して配列される複数のシリンダと、これらシリンダの配列方向に沿って冷却水路とが形成されるシリンダブロックの製造方法では、シリンダブロックを成型する型の、隣接するシリンダ間の共通壁部内に相当する位置に、その縁部が閉断面とされた中空部材を、その閉断面の縁部の両端が冷却水路内にそれぞれ位置するように予め配置し、この中空部材が配置された型に溶湯を流し込んで冷却することで共通壁部内に中空部材を鋳込み、この鋳込まれた中空部材における冷却水路内に位置する両端を冷却後に取り除くことを特徴としている。
このため、中空部材の縁部は、型への溶湯注入時においては閉断面のままであり、共通壁部内に鋳込まれた後に、冷却水路内に位置する閉断面縁部の両側が取り除かれることで、冷却水路に対して開口されることになる。
【0006】
シリンダブロックをダイキャスト製法で製造する場合には、中空部材を配設する型を、冷却水路をシリンダの両側に形成する型とし、この冷却水路を形成する型における、隣接するシリンダ間の共通壁部内に相当する部位に、成型後の冷却水路内まで達する段部を形成し、この段部に中空部材を装着して溶湯を流し込んで冷却することで中空部材を共通壁部内に鋳込み、冷却水路を形成する型を外した後に、形成された冷却水路内に切削工具を挿入して、鋳込まれた中空部材の冷却水路内に位置する両端を取り除くようにする。こうような工程とすることで、中空部材の縁部は、型への溶湯注入時においては閉断面のままであり、共通壁部内に鋳込まれた後に冷却水路内に位置する閉断面縁部の両側が取り除かれて冷却水路に対して開口される。このため、型の離型性を考慮して型の段部と中空部材との間に隙間を形成した場合では、鋳砂や溶湯の中空部材への流入を防ぐことができる。
【0007】
シリンダブロックを中子製法で製造する場合、中空部材を配設する型を、冷却水路を両側に形成し、鋳砂によって形成された中子あるいはシリンダの溶湯の熱によって消失する中子とし、この中子の、隣接するシリンダ間の共通壁部内に相当する部位に中空部材の両端を埋設し、溶湯を流し込んで冷却することで中空部材を共通壁部内に鋳込み、冷却後に形成される冷却水路内に切削工具を挿入して、鋳込まれた中空部材の冷却水路内に位置する両端を取り除く。
こうような製法とすることで、中空部材の縁部は、型への溶湯注入時においては閉断面のままであり、共通壁部内に鋳込まれた後に冷却水路内に位置する閉断面の縁部の両側が取り除かれて冷却水路に対して開口される。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明する。図1において、符号1は、互いに隣接して直接配列される4つのシリンダ2,2・・と、矢印Aで示すこれらシリンダ2,2・・の配列方向(以下「配列方向A」と記す)に沿って冷却水路3とが形成されたシリンダブロックを示す。冷却水路3は、各シリンダ2の外形に沿うように連続して形成されている。このシリンダブロック1は、矢印Bで示す配列方向Aと直交する方向(以下「直交方向B」と記す)に向かって、互いに隣接するシリンダ間に共通壁部4,4,4がそれぞれ形成されている。各共通壁部4の内部には中空部材5が直交方向Bに配されて鋳込まれている。
【0009】
各中空部材5の形状の一例を図2に示す。図2に示す中空部材5は、金属製の袋状を成し、その縁部5a,5b,5c,5dの全部が溶接などにより閉断面とされている。中空部材5の幅W1は、共通壁部4の幅Wよりも広く形成されていて、その両端5a,5bが直交方向Bに位置する冷却水路3a,3b内に位置するように突出されている。
【0010】
図4は、パイプ部材で構成された中空部材10を示す。この中空部材10は、複数のパイプ部材を矢印Cで示すシリンダの軸線方向に並べて溶接などにより一体化したものである。中空部材10の縁部となる各パイプの両端10a,10bは、それぞれ耐湯製の金属で塞がれていて閉断面構造とされている。耐湯製の金属で両端10a,10bを塞ぐのではなく、押し潰したり叩いて潰して各パイプ部材の両端を閉断面としてもよい。中空部材10の幅となるパイプ部材の軸線方向への長さW2は、共通壁部4の幅W1よりも長く、両端10a,10bが鋳込み時に冷却水路3a,3b内に位置するように突設されている。
【0011】
各中空部材5,10は、図3に示すように、鋳造時においては両端5a,5bや両端10a,10bが閉断面とされて閉じられた状態で冷却水路3a,3b内に突出して鋳込まれ、冷却後にその閉断面の両端5a,5bおよび両端10a,10bをドリルやリーマーなどの切削工具6で削り取られることで、冷却水路3a,3bと連通する開口が形成される。
【0012】
次にシリンダブロック1の製造方法について説明する。本形態では、ダイキャスト製法と中子製法について一般的な方法と比較しながら説明する。
(ダイキャスト製法)
図5において、(a)は一般的なダイキャスト製法によるシリンダブロックの工程を示し、(b)は本発明にかかるダイキャスト製法によるシリンダブロックの工程それぞれ記す。図5(a)において、先ず、所望の形状に加工されている複数の金型を組む型セットを行い、組み込んだ型にシリンダブロックに用いる金属の溶湯を注入する。注入後は溶湯を型に組んでいる状態で冷却し、冷却して溶融状態の金属が固まった後に型を外して湯口やバリの削除を行う。そして一旦成型されたシンリダブロックを洗浄し、シリンダヘッドやクランクケースなどを締結するためのねじ孔加工や等の各種切削可能が行われ、この加工後に削りカスなどを除去するために洗浄を行う。
【0013】
本形態においては、図5(b)に示すように、事前に中空部材5を作成し、この中空部材5を、図6に示すよう、下型27の左右方向に位置するの型20,21の上にセットされる上型22に装着してセットする。上型22には、冷却後にシリンダ2の周部に沿って冷却水路3を連続形成する突部23と、この突部23における共通壁部に相当する部位24,25に中空部材5を装着するための段部24a,25aが形成されている。段部24a,25aは、シリンダの軸線方向Cに延設されていて、段部24a,25aも同方向に延びて形成されている。段部24aと段部25aの幅W3は、中空部材5の幅W1より幾分幅広く成型されていて、型抜きの際に中空部材5との分離が良好に行われるようになっている。すなわち、冷却水路3a,3bを形成する突部24,25に形成された段部24a,25aは、成型後の冷却水路3a,3b内まで達するように形成されていて、この段部24a,25a中空部材5を装着する。ここまでの工程が本発明の最初の特徴的工程となる。
【0014】
中空部材5を組む型セットを行い、図5(a)と同様に、金属の溶湯を注入し、溶湯を型に組んでいる状態で冷却して中空部材5を共通壁部4へ鋳込み、その後冷却して溶融状態の金属が固まった後に型を外して湯口やバリの削除を行う。そして一旦成型されたシンリダブロックを洗浄し、加工工程に入る。本形態では、この加工工程において、図7(a)に示すように、共通壁部4に鋳込まれて、冷却水路3a,3b内に突出状態とされている閉断面の両端5a,5bを切削工具6で取り除き、この加工後に削りカスなどを除去するために洗浄を行う。
【0015】
このように、共通壁部4に鋳込む中空部材5の縁部を閉じ状態として上型22に予めセットして溶湯を注入することで、鋳造時に鋳砂や溶湯の中空部材5内への流入を防止できる。そして、溶湯が冷却された後に切削工具6で冷却水路3a,3b内に突出している両端5a,5bを削ることで、図7(b)に示すように、冷却水路3a,3bと中空部材5とを連通する開口部を冷却水路内に臨ませて形成することができるので、冷却水路3a,3b内の冷却水が中空部材5内に導入されるので、中空部材5が鋳込まれている各共通壁部4を冷却することができる。また、中空部材5内には鋳砂や溶湯が流れ込まないので、所望の冷却性能を得るこができる。
(中子製法)
図9において、(a)は一般的な中子製法によるシリンダブロックの工程を示し、(b)は本発明にかかる中子製法によるシリンダブロックの工程それぞれ記す。図9(a)において、先ず、冷却水路の外形を形成する中子を鋳砂によって作成し、鋳型と中子とを組む型セットを行い、組み込んだ型にシリンダブロックに用いる金属の溶湯を注入する。注入後は溶湯を型に組んでいる状態で冷却し、冷却して溶融状態の金属が固まった後に鋳型および中子を外し、砂落しを行った後に湯口やバリの削除を行う。そして成型されたシリンダブロックを洗浄し、シリンダヘッドやクランクケースなどを締結するためのねじ孔加工や等の各種切削可能が行われ、この加工後に削りカスなどを除去するために洗浄を行う。
【0016】
本形態においては、図9(b)に示すように、事前に図2,図4に示すような中空部材5,10を作成する。次にこの中空部材5,10を図8に示すよう、中子30の、隣接する共通壁部4内に相当する部位31,32,33に、中空部材の両端を埋設してセットし、中子ブローを行う。本形態では中子30に中空部材10をセットしたものとする。ここまでの工程が本形態の最初の特徴的工程となる。次に図示しない鋳型と中子30とをセットし、図9(a)に示す工程と同様、組み込んだ型にシリンダブロックに用いる金属の溶湯を注入し、溶湯を型に組んでいる状態で冷却する。冷却して溶融状態の金属が固まった後に鋳型および中子を外して砂落しを行い、湯口やバリの削除を行う。そして成型されたシリンダブロックを洗浄し、加工工程に入る。
【0017】
本形態では、この加工工程において、図10(a)に示すように、共通壁部4に鋳込まれて、冷却水路3a,3b内に突出状態とされている閉断面の両端10a,10bを切削工具6で取り除き、この加工後に削りカスなどを除去するために洗浄を行う。
【0018】
このように、共通壁部4に鋳込む中空部材10の縁部を閉じ状態として中子30に装着して鋳型に予めセットして溶湯を注入することで、鋳造時に鋳砂や溶湯の中空部材10内への流入を防止できる。そして、溶湯が冷却された後に切削工具6で冷却水路3a,3b内に突出している両端10a,10bを削ることで、図10(b)に示すように、冷却水路3a,3bと中空部材10とを連通する開口部を各冷却水路内に臨ませて形成することができるので、冷却水路内の冷却水が中空部材10に導入されるので、各共通壁部4を冷却することができる。また、中空部材10内には、鋳造時にあいて鋳砂や溶湯が流れ込まないので、所望の冷却性能を得るこができる。
【0019】
上述の製造方法を用いて中空部材5,10を共通壁部に鋳込むと、所望の冷却性能を得ることができるので、シリンダ周部の温度分布のばらつきを抑制できて熱変形の不均衡を是正することができる。また、燃焼時におけるシリンダ2内のガス温度の低減を期待できるため、ノッキングの発生を抑制することができ、耐ノック性能が向上する。
【0020】
本形態では、中子30を鋳砂で形成したが、例えば溶湯の熱によって消失する樹脂材質で中子を形成し、この中子に中空部材5,10をセットして用いてもよい。一般に樹脂製の中子は強度的に強いが、鋳砂製の中子はシリンダ部分が空洞になっているので直行方向Bへの強度が不足することがある。このような場合には、図9(a)に破線四角で示すように、中子補強板を作成し、この作成した中子補強板を中子にセットして中子ブロー工程が行われることもある。従って、この中子補強板として上記中空部材5,10を用いることで、中子30の強度を高めることもできる。
【0021】
【発明の効果】
本発明によれば、中空部材の縁部が型への溶湯注入時においては閉断面のままであり、互いに隣接するシリンダの共通壁部内に鋳込まれた後に冷却水路内に位置する閉断面縁部の両側が取り除かれることで冷却水路に対して開口されることになるので、共通壁部内に中空部材を鋳込む場合でも中空部材内への鋳砂や溶湯の流入を確実に防止でき、所望の冷却性能が得られ易くなる。このため、シリンダ周部の温度分布のばらつきによる熱変形の不均衡を是正できるとともに、シリンダ内ガス温度の低減をはかれてノッキングを抑制することができる。
【図面の簡単な説明】
【図1】本発明の製造方法によって製造されたシリンダブロックの構成を示す平面図である。
【図2】シリンダブロックに鋳込まれる中空部材の一形態を示す正面図である。
【図3】中空部材が鋳込まれた共有壁部近傍の拡大図である。
【図4】シリンダブロックに鋳込まれる中空部材の別な形態を示す正面図である。
【図5】(a)は一般的なダイキャスト製法による製造工程の一例を示す工程図で、(b)は本形態にかかるダイキャスト製法による製造工程の一例を示す工程図ある。
【図6】中空部材を上型へセットした状態を示す拡大断面図である。
【図7】(a)は鋳込まれた中空部材の状態と、冷却水路内の出ているその両端に対する切削工程を示す拡大断面図、(b)は(a)に示す切削工程で加工された中空部材による共通壁部の冷却状態を示す拡大断面図である。
【図8】中空部材が装着された中子を示す拡大斜視図である。
【図9】(a)は一般的な中子製法による製造工程の一例を示す工程図、(b)は本発明にかかる中子製法による製造工程の一例を示す工程図である。
【図10】(a)は鋳込まれた中空部材の状態と、冷却水路内の出ているその両端に対する切削工程を示す拡大断面図、(b)は(a)に示す切削工程で加工された中空部材による共通壁部の冷却状態を示す拡大断面図である。
【符号の説明】
1 シリンダブロック
2・・ 複数のシリンダ
3,3a,3b 冷却水路
4・・ シリンダ間の共通壁部
5,10 中空部材
5a,5b、10a,10b 両端
6 切削工具
22 上型(成型する型)
24,25 共通壁部内に相当する位置
24a,25a 段部
30 中子(成型する型)
31,32,33 共通壁部内に相当する位置
A シリンダの配列方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called Siamese type cylinder block casting method in which adjacent cylinder walls are integrated and shared.
[0002]
[Prior art]
In a multi-cylinder engine, a cylinder block of a siamese type in which adjacent walls of each cylinder are thinned and integrated as a common wall in order to reduce the size of the engine is known. In this cylinder block, it is generally difficult to form a cooling passage because the common wall of adjacent cylinders is thin, and it is necessary to correct thermal deformation imbalance due to variations in temperature distribution around the cylinder and to reduce gas temperature in the cylinder. From the viewpoint of suppressing knocking, there is a demand to reduce the temperature of the cylinder periphery.
Against this background, Patent Literature 1 discloses a hollow member having both sides opened at a position corresponding to a common wall between adjacent cylinders of a mold for molding a cylinder block. There has been proposed a method of manufacturing a cylinder block in which a hollow member is disposed in a cooling water channel, a molten metal is poured into a mold in which the hollow member is disposed and cooled to cast the hollow member in a common wall portion.
[0003]
[Patent Document 1]
Patent Publication No. 2743131
[Problems to be solved by the invention]
A problem when casting the hollow member in the common wall portion is that molten metal or casting sand enters the hollow member and blocks it. For this reason, in Patent Literature 1, a pin that disappears due to the heat of the molten metal is inserted in advance into the opening located in the cooling water passage before pouring the molten metal, and the pin is vanished by the heat of the molten metal flowing into the mold. Thus, the hollow member is cast into the common wall while preventing the inflow of the casting sand from the opening into the hollow member.
However, when the pins are lost due to the heat of the molten metal, the pins can be reliably removed by maintaining the temperature of the molten metal at an appropriate temperature at which the pins can be removed, but before the pins are cooled and solidified, the pins are cooled. In the case of disappearance, there is a concern that the molten metal having fluidity flows into the hollow member from the opening and blocks the opening and the inside of the hollow member. In the case of the Siamese type cylinder block, the thickness of the common wall into which the hollow member is cast is small, and it is difficult to sufficiently secure the area of the opening and the volume of the hollow member. Therefore, the molten metal flows into the hollow member. If those areas and volumes are reduced, it becomes difficult to obtain desired cooling performance.
The present invention, when casting a hollow member in a common wall portion, reliably prevents the inflow of molding sand or molten metal into the hollow member and obtains a desired cooling performance, so that the temperature distribution of the cylinder peripheral portion varies. It is an object of the present invention to provide a method of manufacturing a cylinder block capable of correcting imbalance of thermal deformation due to heat and reducing knocking by reducing gas temperature in a cylinder.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, in the method of manufacturing a cylinder block according to the present invention, in which a plurality of cylinders arranged adjacent to each other and a cooling water channel are formed along the arrangement direction of the cylinders, In a position corresponding to the common wall between the adjacent cylinders of the mold for molding the hollow member whose edge is a closed section, both ends of the edge of the closed section are located in the cooling water channel, respectively. The hollow member is cast in the common wall portion by pouring the molten metal into the mold in which the hollow member is disposed and cooling, and both ends of the cast hollow member located in the cooling water channel are removed after cooling. It is characterized by:
For this reason, the edge of the hollow member remains a closed section when the molten metal is poured into the mold, and after being cast into the common wall, both sides of the closed section edge located in the cooling water channel are removed. As a result, the cooling water passage is opened.
[0006]
When the cylinder block is manufactured by the die-casting method, the mold in which the hollow member is provided is a mold in which the cooling water passage is formed on both sides of the cylinder, and the common wall between the adjacent cylinders in the mold in which the cooling water passage is formed. A step corresponding to the inside of the cooling water passage after molding is formed in a portion corresponding to the inside of the part, a hollow member is mounted on this step, a molten metal is poured and cooled, and the hollow member is cast into a common wall portion, and the cooling water passage is formed. After removing the mold that forms, a cutting tool is inserted into the formed cooling channel to remove both ends of the cast hollow member located in the cooling channel. By adopting such a process, the edge of the hollow member remains in the closed section when the molten metal is injected into the mold, and is closed in the cooling water channel after being cast into the common wall. Are removed and open to the cooling water channel. Therefore, in the case where a gap is formed between the step portion of the mold and the hollow member in consideration of the mold releasability, it is possible to prevent casting sand or molten metal from flowing into the hollow member.
[0007]
When the cylinder block is manufactured by the core manufacturing method, the mold in which the hollow member is disposed is formed with cooling water passages on both sides, and is a core formed by molding sand or a core that disappears due to heat of the molten metal of the cylinder. Both ends of the hollow member are buried in portions corresponding to the common wall between adjacent cylinders of the core, and the hollow member is cast into the common wall by pouring the molten metal and cooling, and in a cooling water passage formed after cooling. A cutting tool is inserted into the hollow member to remove both ends of the cast hollow member located in the cooling water channel.
By adopting such a manufacturing method, the edge of the hollow member remains in the closed section when the molten metal is poured into the mold, and the edge of the closed section located in the cooling water channel after being cast into the common wall. Both sides of the section are removed and open to the cooling channel.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes four cylinders 2, 2,... Arranged directly adjacent to each other and an arrangement direction of these cylinders 2, 2,. 2 shows a cylinder block in which a cooling water passage 3 is formed along. The cooling water passage 3 is formed continuously along the outer shape of each cylinder 2. In the cylinder block 1, common wall portions 4, 4, 4 are formed between cylinders adjacent to each other in a direction orthogonal to the arrangement direction A indicated by the arrow B (hereinafter referred to as "orthogonal direction B"). I have. A hollow member 5 is cast in the interior of each common wall portion 4 in the orthogonal direction B.
[0009]
FIG. 2 shows an example of the shape of each hollow member 5. The hollow member 5 shown in FIG. 2 is in the form of a metal bag, and all of its edges 5a, 5b, 5c, 5d are closed by welding or the like. The width W1 of the hollow member 5 is formed wider than the width W of the common wall portion 4, and both ends 5a, 5b protrude so as to be located in the cooling water passages 3a, 3b located in the orthogonal direction B. .
[0010]
FIG. 4 shows a hollow member 10 formed of a pipe member. The hollow member 10 is obtained by arranging a plurality of pipe members in the axial direction of a cylinder indicated by an arrow C and integrating them by welding or the like. Both ends 10a and 10b of each pipe, which are edges of the hollow member 10, are closed with a metal made of hot water, and have a closed cross-sectional structure. Instead of closing both ends 10a and 10b with a metal made of hot water, both ends of each pipe member may be closed by crushing or hitting. The length W2 in the axial direction of the pipe member, which is the width of the hollow member 10, is longer than the width W1 of the common wall 4, and both ends 10a, 10b protrude so as to be located in the cooling water passages 3a, 3b during casting. Have been.
[0011]
As shown in FIG. 3, each of the hollow members 5, 10 protrudes into the cooling water passages 3a, 3b in a state where both ends 5a, 5b and both ends 10a, 10b have a closed cross section and are closed during casting. In rare cases, after cooling, both ends 5a and 5b and both ends 10a and 10b of the closed cross section are cut off by a cutting tool 6 such as a drill or a reamer, so that an opening communicating with the cooling water passages 3a and 3b is formed.
[0012]
Next, a method for manufacturing the cylinder block 1 will be described. In this embodiment, the die casting method and the core method will be described in comparison with general methods.
(Die casting method)
In FIG. 5, (a) shows steps of a cylinder block by a general die-casting method, and (b) shows steps of a cylinder block by a die-casting method according to the present invention. In FIG. 5A, first, a mold set for assembling a plurality of molds processed into a desired shape is performed, and a metal melt used for a cylinder block is poured into the assembled mold. After pouring, the molten metal is cooled in a state where it is assembled into a mold, and after cooling and the molten metal is solidified, the mold is removed to remove the gate and burrs. Then, the molded thin cylinder block is cleaned, and various cutting operations such as screw hole processing for fastening a cylinder head and a crankcase are performed. After this processing, cleaning is performed to remove shavings and the like. .
[0013]
In this embodiment, as shown in FIG. 5B, the hollow member 5 is formed in advance, and the hollow member 5 is placed in the left and right dies 20, 21 of the lower die 27 as shown in FIG. It is mounted on the upper mold 22 set on the above. The upper die 22 is provided with a projection 23 for continuously forming the cooling water passage 3 along the periphery of the cylinder 2 after cooling, and the hollow member 5 is mounted on portions 24 and 25 of the projection 23 corresponding to a common wall. Steps 24a and 25a are formed. The steps 24a, 25a extend in the axial direction C of the cylinder, and the steps 24a, 25a also extend in the same direction. The width W3 of the step portion 24a and the step portion 25a is formed to be somewhat wider than the width W1 of the hollow member 5, so that the hollow member 5 can be separated well from the hollow member 5 during die cutting. That is, the steps 24a, 25a formed on the projections 24, 25 forming the cooling water channels 3a, 3b are formed so as to reach the inside of the cooling water channels 3a, 3b after molding, and the steps 24a, 25a are formed. The hollow member 5 is mounted. The steps so far are the first characteristic steps of the present invention.
[0014]
A mold setting for assembling the hollow member 5 is performed, and as in FIG. 5A, a molten metal is poured, and the molten metal is cooled in a state where the molten metal is assembled into the mold, and the hollow member 5 is cast into the common wall portion 4. After cooling and solidification of the molten metal, the mold is removed and the gate and burrs are removed. Then, the molded thin block is washed, and the process is started. In the present embodiment, as shown in FIG. 7A, both ends 5a and 5b of the closed cross section cast into the common wall portion 4 and projecting into the cooling water passages 3a and 3b in this processing step. It is removed by a cutting tool 6, and after this processing, cleaning is performed to remove shavings and the like.
[0015]
As described above, by setting the edge of the hollow member 5 to be cast into the common wall portion 4 in a closed state and setting it in the upper mold 22 in advance and injecting the molten metal, the casting sand or the molten metal flows into the hollow member 5 during casting. Can be prevented. After the molten metal is cooled, both ends 5a and 5b protruding into the cooling water passages 3a and 3b are cut by the cutting tool 6, so that the cooling water passages 3a and 3b and the hollow member 5 are formed as shown in FIG. Can be formed facing the inside of the cooling water passage, so that the cooling water in the cooling water passages 3a and 3b is introduced into the hollow member 5, so that the hollow member 5 is cast. Each common wall 4 can be cooled. In addition, since casting sand or molten metal does not flow into the hollow member 5, a desired cooling performance can be obtained.
(Core production method)
In FIG. 9, (a) shows a cylinder block process by a general core manufacturing method, and (b) shows a cylinder block process by a core manufacturing method according to the present invention. In FIG. 9 (a), first, a core forming the outer shape of the cooling water channel is formed by casting sand, a mold is set by assembling a mold and a core, and a molten metal of a metal used for a cylinder block is injected into the assembled mold. I do. After the casting, the molten metal is cooled in a state where it is assembled into a mold, and after the metal is cooled and solidified in a molten state, the mold and the core are removed. Then, the molded cylinder block is cleaned, and various cuts such as screw hole processing for fastening a cylinder head, a crankcase, and the like are performed. After this processing, cleaning is performed to remove shavings and the like.
[0016]
In this embodiment, as shown in FIG. 9B, hollow members 5 and 10 as shown in FIGS. 2 and 4 are prepared in advance. Next, as shown in FIG. 8, the hollow members 5 and 10 are set by embedding both ends of the hollow members in portions 31, 32 and 33 of the core 30 corresponding to the adjacent common wall portion 4, respectively. Perform child blow. In this embodiment, the hollow member 10 is set on the core 30. The steps up to this point are the first characteristic steps of this embodiment. Next, a mold (not shown) and the core 30 are set, and in the same manner as in the step shown in FIG. 9A, a molten metal of a metal used for the cylinder block is poured into the assembled mold, and the molten metal is cooled in a state assembled in the mold. I do. After cooling and solidification of the molten metal, the mold and the core are removed, sand removal is performed, and gates and burrs are removed. Then, the molded cylinder block is cleaned, and a processing step is started.
[0017]
In the present embodiment, in this processing step, as shown in FIG. 10A, both ends 10a and 10b of the closed cross section cast into the common wall portion 4 and projecting into the cooling water passages 3a and 3b are formed. It is removed by a cutting tool 6, and after this processing, cleaning is performed to remove shavings and the like.
[0018]
As described above, the hollow member 10 to be cast into the common wall portion 4 is attached to the core 30 in a closed state, and is set in the mold in advance to inject the molten metal. 10 can be prevented from flowing. After the molten metal is cooled, both ends 10a and 10b projecting into the cooling water passages 3a and 3b are cut by the cutting tool 6, so that the cooling water passages 3a and 3b and the hollow member 10 are formed as shown in FIG. Can be formed facing each cooling water channel, and the cooling water in the cooling water channel is introduced into the hollow member 10, so that each common wall portion 4 can be cooled. In addition, since casting sand and molten metal do not flow into the hollow member 10 during casting, desired cooling performance can be obtained.
[0019]
When the hollow members 5 and 10 are cast into the common wall using the above-described manufacturing method, a desired cooling performance can be obtained, so that a variation in the temperature distribution around the cylinder can be suppressed, and the imbalance in thermal deformation can be reduced. Can be corrected. Further, since a reduction in the gas temperature in the cylinder 2 during combustion can be expected, occurrence of knocking can be suppressed, and knock resistance is improved.
[0020]
In the present embodiment, the core 30 is formed of cast sand. However, for example, the core may be formed of a resin material that disappears by the heat of the molten metal, and the hollow members 5 and 10 may be set on the core and used. Generally, the resin core is strong in strength, but the core in cast sand may have insufficient strength in the orthogonal direction B because the cylinder portion is hollow. In such a case, as shown by a broken-line square in FIG. 9 (a), a core reinforcing plate is created, and the created core reinforcing plate is set on the core to perform the core blowing step. There is also. Therefore, the strength of the core 30 can be increased by using the hollow members 5 and 10 as the core reinforcing plate.
[0021]
【The invention's effect】
According to the present invention, the edge of the hollow member remains closed when the molten metal is poured into the mold, and is closed in the cooling water channel after being cast into the common wall of the adjacent cylinders. Since the opening is opened to the cooling water channel by removing both sides of the portion, even when the hollow member is cast in the common wall portion, it is possible to reliably prevent the inflow of molding sand or molten metal into the hollow member, and Cooling performance is easily obtained. For this reason, it is possible to correct the imbalance of thermal deformation due to the variation of the temperature distribution in the cylinder peripheral portion, and to suppress the knocking by reducing the gas temperature in the cylinder.
[Brief description of the drawings]
FIG. 1 is a plan view showing a configuration of a cylinder block manufactured by a manufacturing method of the present invention.
FIG. 2 is a front view showing an embodiment of a hollow member cast into a cylinder block.
FIG. 3 is an enlarged view of the vicinity of a common wall portion into which a hollow member is cast.
FIG. 4 is a front view showing another form of the hollow member cast into the cylinder block.
FIG. 5A is a process diagram showing an example of a manufacturing process by a general die-casting method, and FIG. 5B is a process diagram showing an example of a manufacturing process by a die-casting method according to the present embodiment.
FIG. 6 is an enlarged sectional view showing a state in which the hollow member is set on an upper mold.
FIG. 7A is an enlarged cross-sectional view showing a state of a cast hollow member and a cutting step for both ends of the cooling water channel, and FIG. 7B is processed in the cutting step shown in FIG. It is an expanded sectional view which shows the cooling state of the common wall part by the hollow member which fell.
FIG. 8 is an enlarged perspective view showing a core on which a hollow member is mounted.
9A is a process diagram showing an example of a manufacturing process by a general core manufacturing method, and FIG. 9B is a process diagram showing an example of a manufacturing process by a core manufacturing method according to the present invention.
10A is an enlarged cross-sectional view showing a state of a cast hollow member, and a cutting process for both ends of the hollow member in a cooling water channel, and FIG. It is an expanded sectional view which shows the cooling state of the common wall part by the hollow member which fell.
[Explanation of symbols]
1 Cylinder block 2 ... A plurality of cylinders 3, 3a, 3b Cooling water channel 4 ... Common wall 5,10 between cylinders Hollow members 5a, 5b, 10a, 10b Both ends 6 Cutting tool 22 Upper mold (mold)
24, 25 Positions 24a, 25a corresponding to common wall portion Step 30 Core (mold to be molded)
31, 32, 33 Position A corresponding to the common wall portion Arrangement direction of cylinders

Claims (3)

互いに隣接して配列される複数のシリンダと、これらシリンダの配列方向に沿って冷却水路とが形成されるシリンダブロックの製造方法であって、
前記シリンダブロックを成型する型の、隣接する上記シリンダ間の共通壁部内に相当する位置に、その縁部が閉断面とされた中空部材を、その閉断面の縁部の両端が前記冷却水路内にそれぞれ位置するように予め配置し、
この中空部材が配置された型に溶湯を流し込んで冷却することで前記共通壁部内に前記中空部材を鋳込み、
この鋳込まれた中空部材における前記冷却水路内に位置する両端を冷却後に取り除くことを特徴とするシリンダブロックの製造方法。
A method of manufacturing a cylinder block in which a plurality of cylinders arranged adjacent to each other and a cooling water passage are formed along the arrangement direction of the cylinders,
At the position corresponding to the common wall between the adjacent cylinders of the mold for molding the cylinder block, a hollow member having an edge of a closed cross section is provided. Pre-arranged to be located in each,
The hollow member is cast into the common wall by pouring the molten metal into the mold in which the hollow member is arranged and cooling the molten metal,
A method of manufacturing a cylinder block, comprising removing both ends of the cast hollow member located in the cooling water channel after cooling.
請求項1記載のシリンダブロックの製造方法において、
前記シリンダブロックをダイキャスト製法で製造する場合、
前記中空部材を配設する型は、前記冷却水路を前記シリンダの両側に形成する型であり、この冷却水路を形成する型における、隣接する上記シリンダ間の共通壁部内に相当する部位に、成型後の冷却水路内まで達する段部を形成し、この段部に前記中空部材を装着して溶湯を流し込んで冷却することで前記中空部材を前記共通壁部内に鋳込み、
前記冷却水路を形成する型を外した後に、前記冷却水路内に切削工具を挿入して鋳込まれた中空部材の前記冷却水路内に位置する両端を取り除くことを特徴とするシリンダブロックの製造方法。
The method for manufacturing a cylinder block according to claim 1,
When manufacturing the cylinder block by a die casting method,
The mold in which the hollow member is disposed is a mold in which the cooling water passage is formed on both sides of the cylinder. In the mold in which the cooling water passage is formed, a portion corresponding to a common wall portion between the adjacent cylinders is formed. Forming a step that reaches the inside of the later cooling water channel, casting the hollow member into the common wall by mounting the hollow member on this step and pouring and cooling the molten metal,
A method of manufacturing a cylinder block, comprising: removing a mold forming the cooling water channel, and removing both ends of the cast hollow member located in the cooling water channel by inserting a cutting tool into the cooling water channel. .
請求項1記載のシリンダブロックの製造方法において、
前記シリンダブロックを中子製法で製造する場合、
前記中空部材を配設する型は、前記冷却水路を前記シリンダの両側に形成し、鋳砂によって形成された中子あるいは溶湯の熱によって消失する中子であり、この中子の、隣接する上記シリンダ間の共通壁部内に相当する部位に、前記中空部材の両端を埋設し、溶湯を流し込んで冷却することで前記中空部材を前記共通壁部内に鋳込み、
冷却後に前記冷却水路内に切削工具を挿入して、鋳込まれた中空部材の前記冷却水路内に位置する両端を取り除くことを特徴とするシリンダブロックの製造方法。
The method for manufacturing a cylinder block according to claim 1,
When manufacturing the cylinder block by a core manufacturing method,
The mold in which the hollow member is disposed is a core in which the cooling water passage is formed on both sides of the cylinder, and a core that is formed by casting sand or a core that disappears due to heat of the molten metal. In a portion corresponding to a common wall portion between cylinders, both ends of the hollow member are embedded, and the hollow member is cast into the common wall portion by pouring and cooling a molten metal,
A method of manufacturing a cylinder block, comprising: after cooling, inserting a cutting tool into the cooling water passage to remove both ends of the cast hollow member located in the cooling water passage.
JP2003078532A 2003-03-20 2003-03-20 Method for manufacturing cylinder block Pending JP2004283862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078532A JP2004283862A (en) 2003-03-20 2003-03-20 Method for manufacturing cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078532A JP2004283862A (en) 2003-03-20 2003-03-20 Method for manufacturing cylinder block

Publications (1)

Publication Number Publication Date
JP2004283862A true JP2004283862A (en) 2004-10-14

Family

ID=33292989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078532A Pending JP2004283862A (en) 2003-03-20 2003-03-20 Method for manufacturing cylinder block

Country Status (1)

Country Link
JP (1) JP2004283862A (en)

Similar Documents

Publication Publication Date Title
CN100404171C (en) Divider plate for an inlet port, sand core for forming an inlet port, and cylinder head
JP6362548B2 (en) Manufacturing method of spacer for water jacket
US5188071A (en) Cylinder block structure
JP2001514374A5 (en)
KR101805853B1 (en) Method and casting mold for producing castings, in particular cylinder blocks and cylinder heads, having functional connection of the feeder
KR100686532B1 (en) Partition plate for intake port, sand core for forming intake port, and cylinder head
JPH09271924A (en) Combination of device for casting closed deck type cylinder block and sand core used to the device
KR20050037983A (en) Partition plate for intake port, intake port molding sand core and cylinder head
JP3417331B2 (en) Cylinder head and method of manufacturing the same
JP2004283862A (en) Method for manufacturing cylinder block
KR100611180B1 (en) Method of manufacturing cylinder head
JP4330422B2 (en) Plate member to be cast, partition plate for intake port, sand core for forming intake port, and cylinder head
JPH08309479A (en) Sand core for manufacturing cylinder block
CN206839061U (en) A kind of core chill mould for accelerating aluminium liquid solidification
JPH11216555A (en) Low pressure casting
BR0314859A (en) Mold core arrangement for fabrication of a cylinder engine block with separate water-cooled region
JPH0399767A (en) Method for manufacturing internal chilling piping in casting metallic mold
JP4276922B2 (en) Casting equipment
JP3052723B2 (en) Method for manufacturing cooling passage of cylinder block in internal combustion engine
JP4284149B2 (en) Sand core molding device and cylinder head
JP2002178102A (en) Core for casting and method for manufacturing core for casting cylinder head
JPH0123225B2 (en)
JPH1043836A (en) Method for casting pipe joint having larger size in axial direction than size in diameter direction
JP2007130665A (en) Method for manufacturing cylinder block, method for manufacturing core for forming water jacket, and cylinder block
JP4284148B2 (en) Sand core molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050721

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630