JP2004283770A - Catalyst-deposited carrier and manufacturing method therefor - Google Patents

Catalyst-deposited carrier and manufacturing method therefor Download PDF

Info

Publication number
JP2004283770A
JP2004283770A JP2003080883A JP2003080883A JP2004283770A JP 2004283770 A JP2004283770 A JP 2004283770A JP 2003080883 A JP2003080883 A JP 2003080883A JP 2003080883 A JP2003080883 A JP 2003080883A JP 2004283770 A JP2004283770 A JP 2004283770A
Authority
JP
Japan
Prior art keywords
catalyst
fine particles
precursor
pores
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003080883A
Other languages
Japanese (ja)
Inventor
Hiroaki Wakayama
博昭 若山
Yoshiaki Fukushima
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003080883A priority Critical patent/JP2004283770A/en
Publication of JP2004283770A publication Critical patent/JP2004283770A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst-deposited carrier which has a catalytic fine particle deposited satisfactorily on even the inside of a pore of a porous base body having minute pore size and exhibits excellent characteristics as a catalyst, and to provide a method for manufacturing the catalyst-deposited carrier. <P>SOLUTION: The catalyst-deposited carrier 1 is obtained by dissolving a precursor of the catalytic fine particle 3 in a supercritical fluid and bringing the precursor-dissolved fluid into contact with the porous base body 2 so that the precursor-dissolved fluid is made to intrude into the pore 25 to arrange the precursor in the inside of the pore 25. The carrier 1 consists of the body 2 having the pore 25 of ≤3.4 nm average pore size and ≤0.2 nm standard deviation of the average pore size and the particle 3 arranged in the pore 25. The method for manufacturing the carrier 1 comprises a fluid intrusion step to dissolve the precursor of the particle 3 in the supercritical fluid and bring the precursor-dissolved fluid into contact with the body 2 so that the precursor-dissolved fluid is made to intrude into the pore 25 to arrange the precursor in the inside of the pore 25. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は,微細な細孔径を有する多孔質基体の細孔内に,金属等の触媒微粒子を担持した触媒担持体及びその製造方法に関する。
【0002】
【従来技術】
従来より,金属等の触媒微粒子を基材に担持した触媒担持体は,触媒等の用途に用いられている。
このような触媒担持体は,例えば多孔質の基材に触媒微粒子を担持させて製造することができる。基材に触媒微粒子を担持する方法としては,例えば液相担持法及び気相担持法等がある。
【0003】
上記液相担持法においては,水及びアルコール等の液相溶媒に,触媒微粒子の前駆体を溶解し,蒸発乾固により基材に担持した後,必要に応じて還元処理等を行うことにより触媒微粒子を担持した触媒担持体を得る(特許文献1参照)。
上記気相担持法においては,触媒微粒子の前駆体を揮発させて基材に担持した後,必要に応じて還元処理等を行うことにより触媒微粒子を担持した触媒担持体を得る(特許文献2参照)。
【0004】
一方,近年,反応物の吸着等といった触媒機能以外の機能を同時に付与させるため,上記基材として微細な細孔構造を有する多孔体を用いた触媒担持体の有用性が注目されている。
【0005】
【特許文献1】
特開平11−246901号公報
【特許文献2】
特開2002−102694号公報
【0006】
【解決しようとする課題】
しかしながら,上記液相担持法においては,高粘性,低拡散性,濡れ性,凝縮性,及び強固な溶媒和構造により,特に,上記のような微細な細孔構造を有する多孔体の細孔の内部まで,上記触媒微粒子の前駆体を導入することが困難であった。そのため,多孔体の表面にのみ触媒粒子の前駆体が担持され,最終的な触媒担持体は,触媒としての特性を充分に発揮できないという問題があった。
【0007】
また,CVD等の気相担持法においては,触媒微粒子の前駆体が,これを担持させる際の温度及び雰囲気条件において安定で,かつ揮発性のものに限定されてしまう。さらに,気相中の触媒微粒子の密度が低くなるため効率が悪い。
また,臨界温度以下では細孔内で凝集してしまうという問題があった。そのため,得られた触媒担持体は,触媒としての特性を充分に発揮することができなかった。
【0008】
本発明は,かかる従来の問題点に鑑みてなされたもので,微細な細孔径を有する多孔質基体の細孔の内部まで充分に触媒微粒子を有し,触媒特性の優れた触媒担持体及びその製造方法に関する。
【0009】
【課題の解決手段】
第1の発明は,平均細孔径が3.4nm以下でかつ標準偏差が0.2nm以下の細孔を有する多孔質基体と,上記細孔内に配置された触媒微粒子とよりなる触媒担持体であって,
該触媒担持体は,超臨界流体に上記触媒微粒子の前駆体を溶解させて,これを上記多孔質基体に接触させて,上記超臨界流体を上記細孔に進入させ,上記前駆体を上記細孔内に配置することによって得られることを特徴とする触媒担持体にある(請求項1)。
【0010】
上記第1の発明において最も注目すべき点は,超臨界流体を用いて上記触媒微粒子の前駆体を上記多孔質基体の細孔内に配置させて得られた触媒担持体であって,平均細孔径が3.4nm以下でかつ標準偏差が0.2nm以下という微細な細孔を有する多孔質基体の細孔内に触媒微粒子が配置されていることである。
そのため,上記第1の発明の触媒担持体は,同じ平均細孔径の多孔質基体を有するもの同士を比較した場合に,例えば上記液相担持法及び気相担持法にて得られる触媒担持体よりも優れた触媒活性を示すことができる。
【0011】
また,上記多孔質基体は,平均細孔径が3.4nm以下でかつ標準偏差が0.2nm以下という微細な平均細孔径を有している。そのため,表面積が充分に大きく,充分な量の触媒微粒子を担持することができる。
上記第1の発明の触媒担持体は,例えば後述する第2の発明の製造方法により製造することができる。
【0012】
第2の発明は,平均細孔径が3.4nm以下でかつ標準偏差が0.2nm以下の細孔を有する多孔質基体の細孔内に触媒微粒子を担持した触媒担持体の製造方法において,
超臨界流体に触媒微粒子の前駆体を溶解させて,これを上記多孔質基体に接触させて,上記超臨界流体を細孔に進入させ,上記前駆体を上記細孔内に配置する流体進入工程を有することを特徴とする触媒担持体の製造方法にある(請求項5)。
【0013】
上記第2の発明において,最も注目すべき点は超臨界流体に触媒微粒子の前駆体を溶解させて,これを平均細孔径3.4nm以下でかつ標準偏差が0.2nm以下という微細な細孔に進入させ,上記前駆体を上記細孔内に配置することにある。
上記前駆体は,上記多孔質基体の細孔内に導入され,多孔質基体に接すると,そのままの状態または触媒微粒子となって細孔内に担持される。
上記前駆体のまま担持された前駆体は,後述するごとく,必要に応じて焼成,光照射,酸化及び還元等の後処理を行うことにより触媒微粒子とすることができる。
【0014】
上記超臨界流体とは,通常物質の臨界点以上の温度及び圧力下におかれた流体を示す。本発明における超臨界流体とは,少なくとも臨界点の温度以上である流体であり,圧力は上記の定義の範囲である必要はない。この状態の流体は,液体と同等の溶解能力と,気体に近い拡散性,粘性を有する物質である。そのため,上記触媒微粒子の前駆体を溶解した超臨界流体は,平均細孔径3.4nm以下という微細な細孔の内部に,容易且つ迅速に多量の上記前駆体を進入させることができる。
【0015】
また,一般に,上記触媒微粒子は,その粒子径が小さくなると,比表面積,即ち1g当たりの表面積が増大し,触媒反応等の種々の表面反応が活性になる。しかしその反面,粒径が小さすぎても,触媒としての特性を充分に発現できなくなることが知られている。
【0016】
上記第2の発明においては,平均細孔径が3.4nm以下でかつ標準偏差が0.2nm以下の細孔を有する多孔質基体を用いている。
そのため,上記細孔内において,例えば金属粒子等の触媒微粒子が互いに結合して粒成長をするシンタリングが起こったとしても,その粒径は3.4nm以上にはならない。それ故,上記触媒微粒子は,最適な粒子径を形成することができる。また,上記触媒微粒子は均一な大きさで担持され,その粒子径は標準偏差の少ないものとなる。
したがって,上記触媒担持体は,触媒特性に優れたものとなる。
【0017】
このように,上記第2の発明によれば,微細な細孔径を有する多孔質基体の細孔の内部まで充分に触媒微粒子を有し,触媒特性の優れた触媒担持体の製造方法を提供することができる。
【0018】
【発明の実施の形態】
上記第2の発明における上記流体進入工程においては,上記前駆体を上記細孔内に配置する。上記前駆体は,上記多孔質基体の細孔内に導入され,多孔質基体に接すると,上記のように,上記前駆体のままの状態または触媒微粒子となって細孔内に担持される。前駆体のままで上記多孔質基体の細孔内に担持された場合には,次のような処理を行う。
【0019】
即ち,上記流体進入工程後に,上記多孔質基体の細孔内に上記前駆体が残存する場合には,上記流体進入工程後に,上記前駆体を上記細孔内に配置した上記多孔質基体に,焼成,光照射,酸化及び還元等から選ばれる1種以上の後処理を施すことができる(請求項7)。
この場合には,上記多孔質基体に残存する上記前駆体を上記触媒微粒子にすることができる。
【0020】
次に,上記第1の発明(請求項1)及び第2の発明(請求項5)において,上記超臨界流体としては,例えばメタン,エタン,プロパン,ブタン,エチレン,プロピレン等の炭化水素,メタノール,エタノール,プロパノール,iso−プロパノール,ブタノール,iso−ブタノール,sec−ブタノール,tert−ブタノール等のアルコール,アセトン,メチルエチルケトン等のケトン類,二酸化炭素,水,アンモニア,塩素,クロロホルム,フレオン類等を用いることができる。
【0021】
また,上記触媒微粒子の前駆体の上記超臨界流体への溶解度を調整するために,メタノール,エタノール,プロパノール等のアルコール,アセトン,エチルメチルケトン等のケトン類,ベンゼン,トルエン,キシレン等の芳香族炭化水素等をエントレーナーとして用いることができる。
【0022】
また,上記触媒微粒子の前駆体としては,金属又は/及び半金属のアルコキシド,金属又は/及び半金属のアセチルアセトナート,金属又は/及び半金属の有機酸塩,金属又は/及び半金属の硝酸塩,金属又は/及び半金属のオキシ塩化物,金属又は/及び半金属の塩化物等の単独,又は2種以上よりなる混合物を用いることができる。
【0023】
次に,上記多孔質基材としては,例えば活性炭等の多孔質炭素,多孔質アルミや多孔質タンタル等の多孔質金属,多孔質シリカ,多孔質アルミナ,多孔質アルミナシリカ,多孔質酸化ルテニウム,多孔質酸化バナジウム,多孔質酸化インジウム,多孔質酸化錫,多孔質酸化ニッケル等の金属又は/及び半金属の酸化物からなる多孔体,或いはポリオレフィン,ポリウレタン等の高分子発泡体等を用いることができる。また,多孔質シリカとしては,後述するメソ多孔体の1種であるメソポーラスシリカが好ましい。メソポーラスシリカは微細で均一な細孔直径を有するため,上記触媒微粒子を充分に結合することができる。
【0024】
また,上記多孔質基材としては,メソ多孔体が好ましい。
上記メソ多孔体は微細な細孔を有し,このような細孔内においては,細孔壁からのファンデルワールス力が重なって3次元的に作用することによって強いポテンシャル場が形成される。そして,このポテンシャル場によって触媒反応は更に向上する。そのため,この場合には,上記触媒担持体は,より一層触媒反応に優れたものとなる。
さらに上記多孔質基材は,その細孔が1nm以上の間隔で配列した規則的な構造を有することが好ましい。この場合には,上記多孔質基材は,上記触媒微粒子を充分且つ規則的に結合することができる。
【0025】
上記メソ多孔体としては,トンネル状の細孔構造(2次元ヘキサゴナル構造)を有するFSM(或いはFSM−16),MCM−41及びSBA−15,3次元チャネル構造(キュービックIa−3d構造)を有するMCM−48,3次元構造で且つキュービックPm−3n構造のSBA−1,SBA−16及びKIT−1,並びにラメラ構造のMCM−50等がある。
【0026】
これらのうち,例えばFSMは,図6〜図8に示すごとく,以下のようにして作製することができる。
層状シリケート23及び親水基と疎水基とを有する界面活性剤45を混合し,イオン交換を行い層状シリケート23のシートを折り曲げさせることにより,界面活性剤45のミセル4が複数の細孔25を形成し,細孔25内にミセル4を有する多孔質基体2を得る。この多孔質基体2から界面活性剤45を除去することにより,図8に示すごとく,最終的な多孔質基体2を得ることができる。この場合には,上記界面活性剤45が有する有機鎖等の疎水基の分子量(分子長)を変えることにより,上記多孔質基体2の細孔径を制御することができる。
【0027】
また,上記多孔質基体は,多数の細孔を有する基材であり,その平均細孔径は,3.4nm以下である。
上記平均細孔径が3.4nmを越える場合には,超臨界流体を用いて触媒担持体を作製する利点が失われ,上記触媒担持体の触媒活性は,例えば従来の液相担持法によって得られる触媒担持体と同程度のものとなる。
上記多孔質基体の細孔径は,窒素吸着データから細孔分布計算を行うことにより測定することができる。
【0028】
また,上記多孔質基体の細孔径は,2.1nmを越えることが好ましい。
上記多孔質基体の細孔径が2.1nm以下の場合には,上記触媒担持体の触媒活性が充分に得られないおそれがある。
【0029】
次に,上記細孔の細孔径の標準偏差は,0.2nm以下である。
上記細孔の細孔径の標準偏差が0.2nmを越える場合には,細孔内に担持される触媒微粒子の粒径のバラツキが大きくなり,触媒活性の劣る触媒微粒子が細孔内に作製されるおそれがある。
上記細孔径の標準偏差は,細孔径と同様に,窒素吸着データから細孔分布計算を行うことにより測定することができる。
【0030】
また,上記触媒微粒子の平均粒径は,2.9nm未満であることが好ましい(請求項2及び請求項7)
上記触媒微粒子の平均粒径が2.9nm以上の場合には,上記触媒担持体の触媒としての特性が低下するおそれがある。
また,上記触媒微粒子の平均粒径は,1.7nmを越えることが好ましい。
上記触媒微粒子の平均粒径が1.7nm以下の場合には,上記触媒担持体の触媒としての特性が低下するおそれがある。
上記触媒微粒子の平均粒径は,透過型電子顕微鏡(TEM)写真より算出することができる。
【0031】
また,上記触媒微粒子の粒径の標準偏差は,0.2nm以下であることが好ましい(請求項3及び請求項8)。
上記粒径の標準偏差が0.2nmを越える場合には,細孔内に担持される触媒微粒子に,触媒活性の劣る触媒微粒子が多く含まれるおそれがある。
【0032】
また,上記触媒微粒子は,Pt,Pd,Rh,Ir,Ru,Au等の貴金属元素,及びY,La,Ce,Pr,Nd,Eu,Gd,Tb,Dy,Si,Ho,Er,Tm,Yb,Lu,Ca,Mg,Al,K,Ti,Cr,Mn,Fe,Co,Ni,Cu,Ga,Rb,Sr,Zr,Nb,Mo,In,Sn,Cs,Ba,Ta,W等の卑金属元素から選ばれる一種以上の金属又は/及びその酸化物からなる粒子であることが好ましい(請求項4及び請求項9)。
【0033】
この場合には,上記金属又は/及びその酸化物が有する触媒作用を生かすことができる。即ち,このような金属又は/及びその酸化物を担持した上記触媒担持体は,上記金属又は/及びその酸化物が有する優れた触媒作用を発揮することができる。上記金属又は/及びその酸化物が有する触媒作用としては,例えば酸化触媒作用,還元触媒作用,光触媒作用,添加触媒作用,合成触媒作用,分解触媒作用,縮合触媒作用,重合触媒作用,縮重合触媒作用,及び液化触媒作用等がある。
【0034】
【実施例】
(実施例1)
次に,本発明の実施例につき,図1〜図5を用いて説明する。
図1及び図2に示すごとく,本例の触媒担持体1は,平均細孔径が3.4nm以下の細孔25を有する多孔質基体2と,上記細孔25内に配置された触媒微粒子3とよりなる。
【0035】
本例の触媒担持体1の製造に当たっては,超臨界流体に触媒微粒子3の前駆体を溶解させて,これを多孔質基体2に接触させて,上記超臨界流体を細孔25に進入させ,上記前駆体を上記細孔25内に配置する流体進入工程を行う。
【0036】
以下,本例の触媒担持体1の製造方法につき,図1〜図3を用いて,詳細に説明する。
まず,上記触媒微粒子3の前駆体としての白金アセチルアセトナート,及びエントレーナ(助溶剤)としてのアセトンを準備した。また,上記多孔質基体2として,平均細孔径1.6nm,細孔径の標準偏差0.06nmのシリカ多孔体(FSM)を準備した。
【0037】
多孔質基体2への触媒微粒子3の担持は,図3に示すごとく,多孔質基体2を配置して加熱するためのオートクレーブ7と超臨界流体供給部8とからなる担持装置を用いて行われる。
オートクレーブ7は内部を加熱する加熱機能を有すると共に,オートクレーブ7内の圧力を下げるための排気弁71が配設されている。オートクレーブ7の内部の容量は1000mLである。
【0038】
上記超臨界流体供給部8には,同図に示すごとく,超臨界流体の媒体としてのCOを貯蔵するボンベ81,該ボンベ81から送られるCOを冷却するための冷却ユニット83,ボンベ81からオートクレーブ内へCOを圧送するための加圧ポンプ85,さらにオートクレーブ7内に送られるCOの圧力を調整するための圧力調整弁87が設置されている。
【0039】
ボンベ81と送液ポンプ85,及び送液ポンプ85とオートクレーブ7とは,それぞれ配管92,93によって接続されている。また,冷却ユニット83と加圧ポンプ85との間,及び圧力調整弁87とオートクレーブ7との間には,それぞれ弁部84,86が設けられている。
圧力調節弁87と弁部86との間には,配管93を外部から加熱するためのプレヒータ部89が設けられている。
【0040】
次に,オートクレーブ7内の下部に,上記前駆体5gとエントレーナ40mLとの混合物78を入れ,また上記多孔質基体8gを入れた試料バスケット75をオートクレーブ7内の上部に設置し,150℃にて2時間加熱した。
このとき,弁部84,86を解放してボンベからCOをオートクレーブ内に導入した。そのときの圧力は,30MPaであった。またこのとき,オートクレーブ7内に導入されたCOは,超臨界状態となり,オートクレーブ7内の下部に配置された上記触媒微粒子の前駆体を分散させて溶解すると共に,オートクレーブ7の上部に配置された試料バスケット75内の多孔質基体に,上記触媒微粒子を担持させて触媒担持体を得た。
【0041】
続いて,多孔質基体に残存する触媒微粒子の前駆体を完全に触媒微粒子するため,管状炉を用いて還元処理を行った。還元処理は,H及びNをそれぞれ流速100ml/min及び900ml/minで流通させる共に,400℃で1時間保持することにより行った。
ここで得られた触媒担持体を試料E1とする。
【0042】
図1及び図2に示すごとく,試料E1としての触媒担持体1は,多孔質基体2の細孔25の内部に,充分かつ均一に触媒微粒子3が導入されていた。
【0043】
続いて,上記試料E1について,担持された触媒微粒子の平均粒径を測定した。平均粒径は,透過型電子顕微鏡(TEM)写真より触媒微粒子の粒径をランダムに測定し,その平均値をもって平均粒径とした。また,触媒微粒子の標準偏差も同様にして測定した。
その結果を表1に示す。
【0044】
次に,試料E1の触媒としての特性を調べるために,以下のようにしてCOの浄化率から活性化エネルギーを算出した。
触媒担持体(試料E1)5mgを石英管に入れ,この石英管に,石英管内を通過する1時間当たりの処理気体量を石英管内の触媒担持体の容量で除した値としての空間速度が70000h−1という条件で,COを1%,Oを0.5%含むNを3500mL/minで導入した。続いて,石英管の内部を500℃まで12K/minで昇温し,このときのCOの浄化率を測定し,活性化エネルギーを算出した。COの浄化率は,導入前後のCO濃度から算出した。また,活性化エネルギーは,浄化率の温度依存性データのアレニウスプロットから算出した。
その結果を表1に示す。
【0045】
また,本例では,平均細孔径が2.1nm(標準偏差0.04nm)及び2.4nm(標準偏差0.05nm)のFSMを上記多孔質基材として用い,他は上記試料E1と同様にして触媒担持体を作製し,これらをそれぞれ試料E2及び試料E3とした。また,試料E2及び試料E3についても上記試料E1と同様に,触媒微粒子の平均粒径及び標準偏差,並びに活性化エネルギーを測定した。
その結果を表1に示す。
【0046】
さらに,本例においては,本発明に係る触媒担持体の優れた特性を明らかにするため,比較用として,液相担持法により触媒担持体を作製した。
具体的には,まず,上記試料E1〜E3とそれぞれ同様の平均細孔径及び標準偏差を有する,3種類のFSMを上記多孔質基材として準備した。
【0047】
1000mlのオートクレーブに,白金アセチルアセトナート5gとアセトン1000mlをいれ,さらに多孔質基材8gを入れ,150℃にて2時間加熱した。
【0048】
次に,上記試料E1と同様にして,還元処理を行い,細孔径の異なる3種類の触媒担持体を作製した。これらをそれぞれ試料C1〜試料C3とした。
なお,上記試料E1と試料C1,試料E2と試料C2,及び試料E3と試料C3とは,それぞれ互いに同じ平均細孔径のFSMよりなっている。
【0049】
続いて,上記試料C1〜試料C3についても,上記試料E1〜E3と同様に,触媒微粒子の平均粒径及び標準偏差,並びに活性化エネルギーを測定した。
その結果を表1に示す。
【0050】
【表1】

Figure 2004283770
【0051】
表1から知られるごとく,試料E1〜試料E3は,それぞれ同じ平均細孔径の試料C1〜C3と比較すると,活性化エネルギーが低く,触媒としての特性が優れていた。特に,平均細孔径が2.4nm(標準偏差は0.05nm)の多孔質基体を用いて得られた試料E3においては,多孔質基体に担持された触媒微粒子の平均粒径が2.3nm(標準偏差は0.08nm)となっており,この試料E3は活性化エネルギーが23.6kJ/molという特に優れた触媒特性を示した。
【0052】
一方,試料C1〜試料C3においては,図4及び図5に示すごとく,上記多孔質基体2の細孔25の内部には,ほとんど触媒微粒子3が担持されておらず,触媒微粒子3は,多孔質基体2の側面に担持されていた。そして,触媒微粒子3としての白金粒子は,多孔質基体2の側面で互い結合して粒成長を起こしていた。
その結果,試料C1〜C3は,表2により知られるごとく,触媒微粒子の粒径及び標準偏差が非常に大きなものとなり,試料E1〜E3と同じ細孔径のもの同士でそれぞれ比較すると,試料E1〜E3よりも活性化エネルギーが高く,触媒として劣っていた。
【0053】
(実施例2)
本例では,さらに細孔径の異なる多孔質基体を用いて上記触媒担持体を作製した例を示す。
まず,平均細孔径が3.5nm(標準偏差0.06nm)及び4.6nm(標準偏差0.10nm)のFSMを上記多孔質基材として準備した。
次に,これらの多孔質基材を用いて,他は実施例1の試料E1〜試料E3と同様に超臨界流体を用いて触媒担持体を作製し,これらを試料Ea4及び試料Ea5とした。続いて,これらの試料Ea4及び試料Ea5について,実施例1の試料E1〜E3と同様に,触媒微粒子の平均粒径及び標準偏差,並びに活性化エネルギーを測定した。
その結果を表2に示す。
【0054】
さらに,上記試料Ea4及び試料Ea5に用いたものと同様の多孔質基体を用いて,上記液相担持法により触媒担持体を作製し,これらをそれぞれ試料C4及び試料C5とした。続いて,これらの試料C4及び試料C5についても,実施例1と同様に,触媒微粒子の平均粒径及び標準偏差,並びに活性化エネルギーを測定した。液相担持法による触媒担持体の作製方法は,実施例1の上記試料C1〜C3と同様である。
なお,表2には,比較のため,実施例1の試料E1〜E3及び試料C1〜C3の結果を併せて示した。
【0055】
【表2】
Figure 2004283770
【0056】
表2より知られるごとく,3.5nm以上の細孔径を有する多孔質基板を用いて得られた試料Ea4及び試料Ea5を,同じ細孔径を有する試料C4及び試料C5とそれぞれ比較すると,試料Ea4と試料C4,及び試料Ea5と試料C5とは,それぞれ互いに同程度の活性化エネルギーを示した。
また,試料E1〜E3,試料Ea4及び試料Ea5の結果から,本例の触媒担持体は,上記多孔質基体の平均細孔径が2.1nmを越え,かつ3.5nm未満(3.4nm以下)のとき,また上記触媒微粒子の平均粒子径が1.7nmを越え,かつ2.9nm未満のときに,活性化エネルギーが低く,優れた触媒活性を示すことがわかる。
【0057】
これに対し,試料E1〜試料E3においては,同じ細孔径の多孔質基体を有する試料C1〜試料C3とそれぞれ比較しても,試料E1〜試料E3の方が触媒としての活性が優れていた。
【図面の簡単な説明】
【図1】実施例1にかかる,触媒担持体を斜め上方から見た様子を示す説明図。
【図2】図1のA−A線断面矢視図。
【図3】実施例1にかかる,超臨界流体を用いて触媒微粒子を多孔質基体に担持させるための担持装置の概略図。
【図4】実施例1にかかる,多孔質基体の側面に触媒微粒子が担持された試料C1〜試料C3としての触媒担持体を示す説明図。
【図5】図4のB−B線断面矢視図。
【図6】層状シリケート及び界面活性剤のミセルを示す説明図。
【図7】界面活性剤のミセルにより,細孔が形成された多孔質基体を示す説明図。
【図8】多孔質基体を斜め上方から見た様子を示す説明図。
【符号の説明】
1...触媒担持体,
2...多孔質基体,
25...細孔,
3...触媒微粒子,[0001]
【Technical field】
The present invention relates to a catalyst carrier in which fine particles of a catalyst such as a metal are supported in pores of a porous substrate having a fine pore diameter, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a catalyst carrier in which a catalyst fine particle such as a metal is carried on a substrate has been used for applications such as a catalyst.
Such a catalyst carrier can be produced, for example, by supporting catalyst fine particles on a porous substrate. As a method for supporting the catalyst fine particles on the base material, for example, there are a liquid phase supporting method and a gas phase supporting method.
[0003]
In the above-mentioned liquid phase supporting method, the catalyst fine particles are dissolved in a liquid phase solvent such as water and alcohol, and the catalyst is carried out by evaporating to dryness and then carrying out a reduction treatment or the like as necessary. A catalyst carrier carrying fine particles is obtained (see Patent Document 1).
In the vapor-phase supporting method, after a catalyst fine particle precursor is volatilized and supported on a base material, a reduction treatment or the like is performed as necessary to obtain a catalyst supporting body supporting the catalyst fine particles (see Patent Document 2). ).
[0004]
On the other hand, in recent years, the usefulness of a catalyst carrier using a porous body having a fine pore structure as the base material has attracted attention in order to simultaneously impart functions other than the catalyst function such as adsorption of a reactant.
[0005]
[Patent Document 1]
JP-A-11-246901 [Patent Document 2]
JP-A-2002-102694
[Problem to be solved]
However, in the above-mentioned liquid phase supporting method, the high viscosity, low diffusivity, wettability, condensability, and strong solvation structure cause the pores of the porous body having the fine pore structure as described above to be particularly difficult. It was difficult to introduce the precursor of the catalyst particles into the inside. Therefore, there is a problem that the precursor of the catalyst particles is supported only on the surface of the porous body, and the final catalyst carrier cannot sufficiently exhibit the characteristics as a catalyst.
[0007]
Further, in a gas phase supporting method such as CVD, the precursor of the catalyst fine particles is limited to a volatile and stable one at a temperature and an atmosphere condition at the time of supporting the catalyst fine particles. Furthermore, the efficiency is poor because the density of the catalyst particles in the gas phase is low.
In addition, there is a problem that when the temperature is lower than the critical temperature, the particles aggregate in the pores. Therefore, the obtained catalyst carrier could not sufficiently exhibit the characteristics as a catalyst.
[0008]
The present invention has been made in view of such a conventional problem, and has a catalyst carrier having excellent catalyst characteristics, having sufficient catalyst fine particles to the inside of the pores of a porous substrate having a fine pore diameter, and a catalyst carrier having the same. It relates to a manufacturing method.
[0009]
[Means for solving the problem]
The first invention is a catalyst carrier comprising a porous substrate having pores having an average pore diameter of 3.4 nm or less and a standard deviation of 0.2 nm or less, and catalyst fine particles arranged in the pores. So,
The catalyst carrier dissolves a precursor of the catalyst fine particles in a supercritical fluid, and brings the precursor into contact with the porous substrate to allow the supercritical fluid to enter the pores, and to convert the precursor into the fine particles. The catalyst carrier is obtained by disposing the catalyst carrier in a hole (claim 1).
[0010]
The most remarkable point in the first invention is a catalyst carrier obtained by arranging the precursor of the catalyst fine particles in the pores of the porous substrate using a supercritical fluid. That is, the catalyst fine particles are arranged in pores of a porous substrate having fine pores having a pore diameter of 3.4 nm or less and a standard deviation of 0.2 nm or less.
Therefore, the catalyst carrier of the first aspect of the present invention is, for example, a catalyst carrier obtained by the above-described liquid-phase supporting method and gas-phase supporting method when compared with those having a porous substrate having the same average pore diameter. Can also show excellent catalytic activity.
[0011]
Further, the porous substrate has a fine average pore diameter of not more than 3.4 nm and a standard deviation of not more than 0.2 nm. Therefore, the surface area is sufficiently large, and a sufficient amount of catalyst fine particles can be supported.
The catalyst carrier of the first invention can be manufactured, for example, by a manufacturing method of a second invention described later.
[0012]
According to a second aspect of the present invention, there is provided a method for producing a catalyst carrier in which catalyst fine particles are supported in pores of a porous substrate having pores having an average pore diameter of 3.4 nm or less and a standard deviation of 0.2 nm or less,
A fluid entry step of dissolving a precursor of catalyst fine particles in a supercritical fluid, bringing the precursor into contact with the porous substrate, allowing the supercritical fluid to enter the pores, and disposing the precursor in the pores A method for producing a catalyst carrier, characterized by having the following (claim 5).
[0013]
In the above second invention, the most remarkable point is that a precursor of catalyst fine particles is dissolved in a supercritical fluid, and the precursor is finely divided into fine pores having an average pore diameter of 3.4 nm or less and a standard deviation of 0.2 nm or less. , And disposing the precursor in the pores.
The precursor is introduced into the pores of the porous substrate, and when it comes into contact with the porous substrate, it is supported as it is or as fine catalyst particles in the pores.
The precursor supported as described above can be converted into catalyst fine particles by performing post-treatments such as baking, light irradiation, oxidation and reduction, if necessary, as described later.
[0014]
The supercritical fluid is a fluid which is usually placed under a temperature and a pressure higher than a critical point of a substance. The supercritical fluid in the present invention is a fluid having at least a temperature at a critical point, and the pressure does not need to be in the range defined above. The fluid in this state is a substance having the same dissolving power as a liquid, and diffusivity and viscosity similar to a gas. Therefore, the supercritical fluid in which the precursor of the catalyst fine particles is dissolved can easily and quickly enter a large amount of the precursor into the fine pores having an average pore diameter of 3.4 nm or less.
[0015]
In general, when the particle size of the catalyst fine particles is reduced, the specific surface area, that is, the surface area per 1 g, increases, and various surface reactions such as a catalytic reaction become active. However, on the other hand, it is known that if the particle size is too small, the characteristics as a catalyst cannot be sufficiently exhibited.
[0016]
In the second invention, a porous substrate having pores having an average pore diameter of 3.4 nm or less and a standard deviation of 0.2 nm or less is used.
For this reason, even if sintering occurs in which fine particles of catalyst such as metal particles are bonded to each other and grow in the pores, the particle size does not exceed 3.4 nm. Therefore, the catalyst fine particles can form an optimum particle size. In addition, the catalyst fine particles are supported in a uniform size, and the particle diameter has a small standard deviation.
Therefore, the above-mentioned catalyst carrier has excellent catalytic properties.
[0017]
As described above, according to the second aspect of the present invention, there is provided a method for producing a catalyst carrier having excellent catalytic properties, having sufficient fine catalyst particles up to the inside of the pores of a porous substrate having a fine pore diameter. be able to.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the fluid entering step in the second invention, the precursor is disposed in the pore. The precursor is introduced into the pores of the porous substrate, and when it comes into contact with the porous substrate, as described above, the precursor remains as it is or as catalyst fine particles, and is supported in the pores. When the precursor is supported as it is in the pores of the porous substrate, the following treatment is performed.
[0019]
That is, if the precursor remains in the pores of the porous substrate after the fluid entry step, the precursor is placed in the pores after the fluid entry step. One or more post-treatments selected from calcination, light irradiation, oxidation, reduction and the like can be applied (claim 7).
In this case, the precursor remaining on the porous substrate can be used as the catalyst fine particles.
[0020]
Next, in the first invention (Claim 1) and the second invention (Claim 5), the supercritical fluid includes, for example, hydrocarbons such as methane, ethane, propane, butane, ethylene, and propylene; , Ethanol, propanol, iso-propanol, butanol, alcohols such as iso-butanol, sec-butanol, tert-butanol, ketones such as acetone and methyl ethyl ketone, carbon dioxide, water, ammonia, chlorine, chloroform, freons, etc. be able to.
[0021]
Further, in order to adjust the solubility of the precursor of the catalyst fine particles in the supercritical fluid, alcohols such as methanol, ethanol and propanol, ketones such as acetone and ethyl methyl ketone, and aromatics such as benzene, toluene and xylene are used. Hydrocarbons and the like can be used as the entrainer.
[0022]
Examples of the precursor of the catalyst fine particles include metal or metalloid alkoxide, metal metalloid metalloid acetylacetonate, metal acid salt metalloid organic acid salt, metal metalloid salt metalloid nitrate. , Metal or / and metalloid oxychloride, metal or / and / or metalloid chloride, or a mixture of two or more thereof.
[0023]
Next, examples of the porous substrate include porous carbon such as activated carbon, porous metal such as porous aluminum and porous tantalum, porous silica, porous alumina, porous alumina silica, porous ruthenium oxide, and the like. It is possible to use a porous body made of a metal or metalloid oxide such as porous vanadium oxide, porous indium oxide, porous tin oxide, and porous nickel oxide, or a polymer foam such as polyolefin or polyurethane. it can. Further, as the porous silica, mesoporous silica, which is one type of a mesoporous body described later, is preferable. Since mesoporous silica has a fine and uniform pore diameter, the catalyst fine particles can be sufficiently bonded.
[0024]
Further, as the porous substrate, a mesoporous body is preferable.
The mesoporous body has fine pores, and in such pores, a strong potential field is formed by the action of the van der Waals force from the pore walls overlapping and acting three-dimensionally. And the catalytic reaction is further improved by this potential field. Therefore, in this case, the catalyst carrier becomes more excellent in the catalytic reaction.
Further, the porous substrate preferably has a regular structure in which the pores are arranged at intervals of 1 nm or more. In this case, the porous substrate can sufficiently and regularly bind the catalyst fine particles.
[0025]
The mesoporous material has FSM (or FSM-16), MCM-41 and SBA-15 having a tunnel-like pore structure (two-dimensional hexagonal structure), three-dimensional channel structure (cubic Ia-3d structure). Examples include MCM-48, SBA-1, SBA-16 and KIT-1 having a three-dimensional structure and a cubic Pm-3n structure, and MCM-50 having a lamella structure.
[0026]
Among them, for example, the FSM can be manufactured as follows, as shown in FIGS.
The layered silicate 23 and the surfactant 45 having a hydrophilic group and a hydrophobic group are mixed, ion exchange is performed, and the sheet of the layered silicate 23 is bent, so that the micelles 4 of the surfactant 45 form a plurality of pores 25. Thus, the porous substrate 2 having the micelles 4 in the pores 25 is obtained. By removing the surfactant 45 from the porous substrate 2, a final porous substrate 2 can be obtained as shown in FIG. In this case, the pore size of the porous substrate 2 can be controlled by changing the molecular weight (molecular length) of a hydrophobic group such as an organic chain of the surfactant 45.
[0027]
The porous substrate is a substrate having a large number of pores, and the average pore diameter is 3.4 nm or less.
When the average pore diameter exceeds 3.4 nm, the advantage of preparing a catalyst carrier using a supercritical fluid is lost, and the catalyst activity of the catalyst carrier can be obtained by, for example, a conventional liquid phase supporting method. It is about the same as the catalyst carrier.
The pore diameter of the porous substrate can be measured by calculating the pore distribution from the nitrogen adsorption data.
[0028]
Further, the pore diameter of the porous substrate preferably exceeds 2.1 nm.
When the pore diameter of the porous substrate is 2.1 nm or less, there is a possibility that the catalytic activity of the catalyst carrier may not be sufficiently obtained.
[0029]
Next, the standard deviation of the pore diameter of the above pores is 0.2 nm or less.
When the standard deviation of the pore diameter of the above pores exceeds 0.2 nm, the dispersion of the particle diameter of the catalyst fine particles carried in the pores becomes large, and the catalyst fine particles having poor catalytic activity are produced in the pores. May be present.
The standard deviation of the pore diameter can be measured by calculating the pore distribution from the nitrogen adsorption data in the same manner as the pore diameter.
[0030]
The average particle diameter of the catalyst fine particles is preferably less than 2.9 nm (claims 2 and 7).
When the average particle diameter of the catalyst fine particles is 2.9 nm or more, the catalyst characteristics of the catalyst carrier may be deteriorated.
The average particle size of the catalyst fine particles preferably exceeds 1.7 nm.
If the average particle size of the catalyst fine particles is 1.7 nm or less, the catalyst characteristics of the catalyst carrier may be deteriorated.
The average particle diameter of the catalyst fine particles can be calculated from a transmission electron microscope (TEM) photograph.
[0031]
The standard deviation of the particle diameter of the catalyst fine particles is preferably 0.2 nm or less (claims 3 and 8).
If the standard deviation of the particle diameter exceeds 0.2 nm, the catalyst fine particles supported in the pores may contain many catalyst fine particles having poor catalytic activity.
[0032]
The catalyst fine particles include noble metal elements such as Pt, Pd, Rh, Ir, Ru, and Au, and Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Si, Ho, Er, Tm, Yb, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba, Ta, W, etc. It is preferable that the particles are made of one or more metals selected from the base metal elements described above and / or oxides thereof (claims 4 and 9).
[0033]
In this case, the catalytic action of the metal and / or oxide thereof can be utilized. That is, the above-mentioned catalyst carrier supporting such a metal or / and its oxide can exert an excellent catalytic action of the above-mentioned metal or / and its oxide. Examples of the catalytic action of the metal and / or its oxide include oxidation catalyst action, reduction catalyst action, photocatalysis, addition catalyst action, synthesis catalyst action, decomposition catalyst action, condensation catalyst action, polymerization catalyst action, condensation polymerization catalyst. Action, and liquefaction catalytic action.
[0034]
【Example】
(Example 1)
Next, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the catalyst carrier 1 of the present example comprises a porous substrate 2 having pores 25 having an average pore diameter of 3.4 nm or less, and catalyst fine particles 3 arranged in the pores 25. And
[0035]
In the production of the catalyst carrier 1 of this example, a precursor of the catalyst fine particles 3 is dissolved in a supercritical fluid, and this is brought into contact with the porous substrate 2 to allow the supercritical fluid to enter the pores 25. A fluid entry step of placing the precursor in the pores 25 is performed.
[0036]
Hereinafter, a method for manufacturing the catalyst carrier 1 of the present embodiment will be described in detail with reference to FIGS.
First, platinum acetylacetonate as a precursor of the catalyst fine particles 3 and acetone as an entrainer (cosolvent) were prepared. Further, as the porous substrate 2, a porous silica material (FSM) having an average pore diameter of 1.6 nm and a standard deviation of the pore diameter of 0.06 nm was prepared.
[0037]
As shown in FIG. 3, the loading of the catalyst fine particles 3 on the porous substrate 2 is performed using a supporting device including an autoclave 7 for arranging and heating the porous substrate 2 and a supercritical fluid supply unit 8. .
The autoclave 7 has a heating function of heating the inside, and is provided with an exhaust valve 71 for reducing the pressure in the autoclave 7. The internal volume of the autoclave 7 is 1000 mL.
[0038]
As shown in the figure, the supercritical fluid supply unit 8 includes a cylinder 81 for storing CO 2 as a medium for the supercritical fluid, a cooling unit 83 for cooling CO 2 sent from the cylinder 81, and a cylinder 81. A pressurizing pump 85 for pressure-feeding CO 2 from the autoclave into the autoclave, and a pressure adjusting valve 87 for adjusting the pressure of CO 2 sent into the autoclave 7 are provided.
[0039]
The cylinder 81 and the liquid pump 85, and the liquid pump 85 and the autoclave 7, are connected by pipes 92 and 93, respectively. Further, valve portions 84 and 86 are provided between the cooling unit 83 and the pressurizing pump 85 and between the pressure regulating valve 87 and the autoclave 7, respectively.
A pre-heater section 89 for heating the pipe 93 from outside is provided between the pressure control valve 87 and the valve section 86.
[0040]
Next, a mixture 78 of 5 g of the precursor and 40 mL of the entrainer is placed in the lower part of the autoclave 7, and a sample basket 75 containing 8 g of the porous substrate is placed in the upper part of the autoclave 7. Heat for 2 hours.
At this time, the valves 84 and 86 were released, and CO 2 was introduced into the autoclave from the cylinder. The pressure at that time was 30 MPa. At this time, the CO 2 introduced into the autoclave 7 is in a supercritical state, and the precursor of the catalyst fine particles arranged in the lower part of the autoclave 7 is dispersed and dissolved, and the CO 2 is arranged in the upper part of the autoclave 7. The catalyst fine particles were carried on the porous substrate in the sample basket 75 to obtain a catalyst carrier.
[0041]
Subsequently, a reduction treatment was performed using a tubular furnace in order to completely convert the precursor of the catalyst fine particles remaining on the porous substrate into fine catalyst particles. The reduction treatment was carried out by flowing H 2 and N 2 at flow rates of 100 ml / min and 900 ml / min, respectively, and maintaining the mixture at 400 ° C. for 1 hour.
The catalyst carrier obtained here is designated as sample E1.
[0042]
As shown in FIGS. 1 and 2, in the catalyst carrier 1 as the sample E1, the catalyst fine particles 3 were sufficiently and uniformly introduced into the pores 25 of the porous substrate 2.
[0043]
Subsequently, for the sample E1, the average particle size of the supported catalyst fine particles was measured. The average particle size was determined by randomly measuring the particle size of the catalyst fine particles from a transmission electron microscope (TEM) photograph, and the average value was used as the average particle size. The standard deviation of the catalyst fine particles was measured in the same manner.
Table 1 shows the results.
[0044]
Next, in order to examine the characteristics of the sample E1 as a catalyst, the activation energy was calculated from the CO purification rate as follows.
A catalyst support (sample E1) (5 mg) was placed in a quartz tube, and the space velocity as a value obtained by dividing the processing gas volume per hour passing through the quartz tube by the capacity of the catalyst support in the quartz tube was 70000 h. Under the condition of −1, N 2 containing 1% of CO and 0.5% of O 2 was introduced at 3500 mL / min. Subsequently, the inside of the quartz tube was heated to 500 ° C. at a rate of 12 K / min, the CO purification rate at this time was measured, and the activation energy was calculated. The CO purification rate was calculated from the CO concentration before and after the introduction. The activation energy was calculated from the Arrhenius plot of the temperature dependence data of the purification rate.
Table 1 shows the results.
[0045]
In this example, FSM having an average pore diameter of 2.1 nm (standard deviation 0.04 nm) and 2.4 nm (standard deviation 0.05 nm) was used as the porous substrate, and the other conditions were the same as those of the sample E1. Thus, a catalyst carrier was prepared, and these were designated as Sample E2 and Sample E3, respectively. The average particle diameter and standard deviation of the catalyst fine particles and the activation energy of the sample E2 and the sample E3 were measured in the same manner as the sample E1.
Table 1 shows the results.
[0046]
Further, in this example, in order to clarify the excellent characteristics of the catalyst carrier according to the present invention, a catalyst carrier was produced by a liquid phase carrier method for comparison.
Specifically, first, three types of FSMs having the same average pore diameter and standard deviation as those of the samples E1 to E3 were prepared as the porous base material.
[0047]
5 g of platinum acetylacetonate and 1000 ml of acetone were put into a 1000 ml autoclave, and 8 g of a porous substrate was further put therein, and heated at 150 ° C. for 2 hours.
[0048]
Next, a reduction treatment was performed in the same manner as in the sample E1, to prepare three types of catalyst carriers having different pore diameters. These were designated as Sample C1 to Sample C3, respectively.
The sample E1 and the sample C1, the sample E2 and the sample C2, and the sample E3 and the sample C3 are made of FSMs having the same average pore diameter.
[0049]
Subsequently, for the samples C1 to C3, the average particle diameter and the standard deviation of the catalyst fine particles and the activation energy were measured in the same manner as the samples E1 to E3.
Table 1 shows the results.
[0050]
[Table 1]
Figure 2004283770
[0051]
As can be seen from Table 1, Samples E1 to E3 had lower activation energy and better catalyst properties as compared with Samples C1 to C3 having the same average pore diameter. In particular, in sample E3 obtained using a porous substrate having an average pore diameter of 2.4 nm (standard deviation is 0.05 nm), the average particle diameter of the catalyst fine particles supported on the porous substrate was 2.3 nm ( The standard deviation was 0.08 nm), and this sample E3 showed particularly excellent catalytic properties with an activation energy of 23.6 kJ / mol.
[0052]
On the other hand, in the samples C1 to C3, as shown in FIGS. 4 and 5, the catalyst fine particles 3 are hardly supported inside the pores 25 of the porous substrate 2, and the catalyst fine particles 3 Supported on the side surface of the porous substrate 2. The platinum particles serving as the catalyst fine particles 3 were bonded to each other on the side surface of the porous substrate 2 to cause grain growth.
As a result, as can be seen from Table 2, the samples C1 to C3 have very large catalyst fine particle diameters and standard deviations. The activation energy was higher than that of E3, and the catalyst was inferior.
[0053]
(Example 2)
In this example, an example is shown in which the above-mentioned catalyst carrier is manufactured using a porous substrate having a different pore diameter.
First, FSM having an average pore diameter of 3.5 nm (standard deviation 0.06 nm) and 4.6 nm (standard deviation 0.10 nm) was prepared as the porous substrate.
Next, using these porous substrates, a catalyst carrier was prepared using a supercritical fluid in the same manner as in Samples E1 to E3 of Example 1 and used as Samples Ea4 and Ea5. Subsequently, for these samples Ea4 and Ea5, similarly to the samples E1 to E3 of Example 1, the average particle diameter and the standard deviation of the catalyst fine particles, and the activation energy were measured.
Table 2 shows the results.
[0054]
Further, using the same porous substrate as that used for Samples Ea4 and Ea5, catalyst carriers were produced by the liquid phase supporting method, and these were designated as Samples C4 and C5, respectively. Subsequently, for these samples C4 and C5, the average particle diameter and standard deviation of the catalyst fine particles and the activation energy were measured in the same manner as in Example 1. The method for producing the catalyst carrier by the liquid phase carrier method is the same as that for the samples C1 to C3 in Example 1.
Table 2 also shows the results of samples E1 to E3 and samples C1 to C3 of Example 1 for comparison.
[0055]
[Table 2]
Figure 2004283770
[0056]
As is known from Table 2, when the samples Ea4 and Ea5 obtained using the porous substrate having a pore diameter of 3.5 nm or more are compared with the samples C4 and C5 having the same pore diameter, respectively, Sample C4, Sample Ea5, and Sample C5 each showed the same level of activation energy.
Further, from the results of Samples E1 to E3, Sample Ea4 and Sample Ea5, in the catalyst carrier of this example, the average pore diameter of the porous substrate exceeded 2.1 nm and was less than 3.5 nm (3.4 nm or less). In addition, when the average particle diameter of the catalyst fine particles exceeds 1.7 nm and is less than 2.9 nm, the activation energy is low and the catalyst exhibits excellent catalytic activity.
[0057]
On the other hand, in Samples E1 to E3, even when compared to Samples C1 to C3 having the same porous diameter of the porous substrate, Samples E1 to E3 had better activity as a catalyst.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a state in which a catalyst carrier according to a first embodiment is viewed obliquely from above.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a schematic view of a supporting device for supporting catalyst fine particles on a porous substrate using a supercritical fluid according to the first embodiment.
FIG. 4 is an explanatory view showing catalyst carriers as samples C1 to C3 in which catalyst fine particles are carried on the side surface of a porous substrate according to Example 1.
FIG. 5 is a sectional view taken along line BB of FIG. 4;
FIG. 6 is an explanatory view showing micelles of a layered silicate and a surfactant.
FIG. 7 is an explanatory view showing a porous substrate in which pores are formed by micelles of a surfactant.
FIG. 8 is an explanatory view showing a state where a porous substrate is viewed obliquely from above.
[Explanation of symbols]
1. . . Catalyst carrier,
2. . . Porous substrate,
25. . . pore,
3. . . Catalyst particles,

Claims (9)

平均細孔径が3.4nm以下でかつ標準偏差が0.2nm以下の細孔を有する多孔質基体と,上記細孔内に配置された触媒微粒子とよりなる触媒担持体であって,
該触媒担持体は,超臨界流体に上記触媒微粒子の前駆体を溶解させて,これを上記多孔質基体に接触させて,上記超臨界流体を上記細孔に進入させ,上記前駆体を上記細孔内に配置することによって得られることを特徴とする触媒担持体。
A catalyst carrier comprising a porous substrate having pores having an average pore diameter of 3.4 nm or less and a standard deviation of 0.2 nm or less, and catalyst fine particles arranged in the pores,
The catalyst carrier dissolves the precursor of the catalyst fine particles in a supercritical fluid, and brings the precursor into contact with the porous substrate to allow the supercritical fluid to enter the fine pores, and convert the precursor into the fine pores. A catalyst carrier obtained by disposing in a hole.
請求項1において,上記触媒微粒子の平均粒径は,2.9nm未満であることを特徴とする触媒担持体。2. The catalyst carrier according to claim 1, wherein the average particle size of the catalyst fine particles is less than 2.9 nm. 請求項1または2において,上記触媒微粒子の粒径の標準偏差は,0.2nm以下であることを特徴とする触媒担持体。3. The catalyst carrier according to claim 1, wherein a standard deviation of a particle diameter of the catalyst fine particles is 0.2 nm or less. 請求項1〜3のいずれか一項において,上記触媒微粒子は,Pt,Pd,Rh,Ir,Ru,Au,Y,La,Ce,Pr,Nd,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Mg,Al,K,Ti,Cr,Mn,Ge,Co,Ni,Cu,Ga,Rb,Sr,Zr,Nb,Mo,In,Si,Sn,Sn,Cs,Ba,Ta,Wから選ばれる一種以上の金属又は/及びその酸化物からなる粒子であることを特徴とする触媒担持体。The catalyst fine particles according to any one of claims 1 to 3, wherein the catalyst fine particles are Pt, Pd, Rh, Ir, Ru, Au, Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er. , Tm, Yb, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Ge, Co, Ni, Cu, Ga, Rb, Sr, Zr, Nb, Mo, In, Si, Sn, Sn, Cs , Ba, Ta, W, or a catalyst support, characterized in that the support is particles of at least one metal selected from the group consisting of metals and / or oxides thereof. 平均細孔径が3.4nm以下でかつ標準偏差が0.2nm以下の細孔を有する多孔質基体の細孔内に触媒微粒子を担持した触媒担持体の製造方法において,
超臨界流体に触媒微粒子の前駆体を溶解させて,これを上記多孔質基体に接触させて,上記超臨界流体を細孔に進入させ,上記前駆体を上記細孔内に配置する流体進入工程を有することを特徴とする触媒担持体の製造方法。
In a method for producing a catalyst carrier in which catalyst fine particles are supported in pores of a porous substrate having pores having an average pore diameter of 3.4 nm or less and a standard deviation of 0.2 nm or less,
A fluid entry step of dissolving a precursor of catalyst fine particles in a supercritical fluid, bringing the precursor into contact with the porous substrate, allowing the supercritical fluid to enter the pores, and disposing the precursor in the pores; A method for producing a catalyst carrier, comprising:
請求項5において,上記流体進入工程後に,上記前駆体を上記細孔内に配置した上記多孔質基体に,焼成,光照射,酸化及び還元から選ばれる1種以上の後処理を施すことを特徴とする触媒担持体の製造方法。6. The method according to claim 5, wherein after the fluid inflow step, the porous substrate having the precursor disposed in the pores is subjected to one or more post-treatments selected from baking, light irradiation, oxidation and reduction. A method for producing a catalyst carrier. 請求項5または6において,上記触媒微粒子の平均粒径は,2.9nm未満であることを特徴とする触媒担持体の製造方法。7. The method for producing a catalyst carrier according to claim 5, wherein the average particle size of the catalyst fine particles is less than 2.9 nm. 請求項5〜7のいずれか一項において,上記触媒微粒子の粒径の標準偏差は,0.2nm以下であることを特徴とする触媒担持体の製造方法。The method according to any one of claims 5 to 7, wherein a standard deviation of a particle diameter of the catalyst fine particles is 0.2 nm or less. 請求項5〜8のいずれか一項において,上記触媒微粒子は,Pt,Pd,Rh,Ir,Ru,Au,Y,La,Ce,Pr,Nd,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Mg,Al,K,Ti,Cr,Si,Mn,Fe,Co,Ni,Cu,Ga,Rb,Sr,Zr,Nb,Mo,In,Sn,Cs,Ba,Ta,Wから選ばれる一種以上の金属又は/及びその酸化物からなる粒子であることを特徴とする触媒担持体の製造方法。The method according to any one of claims 5 to 8, wherein the catalyst fine particles are Pt, Pd, Rh, Ir, Ru, Au, Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er. , Tm, Yb, Lu, Ca, Mg, Al, K, Ti, Cr, Si, Mn, Fe, Co, Ni, Cu, Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba A method for producing a catalyst carrier, comprising particles comprising one or more metals selected from the group consisting of, Ta and W and / or oxides thereof.
JP2003080883A 2003-03-24 2003-03-24 Catalyst-deposited carrier and manufacturing method therefor Pending JP2004283770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080883A JP2004283770A (en) 2003-03-24 2003-03-24 Catalyst-deposited carrier and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080883A JP2004283770A (en) 2003-03-24 2003-03-24 Catalyst-deposited carrier and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004283770A true JP2004283770A (en) 2004-10-14

Family

ID=33294618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080883A Pending JP2004283770A (en) 2003-03-24 2003-03-24 Catalyst-deposited carrier and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004283770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170428A (en) * 2016-02-17 2017-09-28 韓国エネルギー技術研究院Korea Institute Of Energy Research Direct synthesis method of nanostructured catalyst particle on surface of various support, catalyst structure produced by the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170428A (en) * 2016-02-17 2017-09-28 韓国エネルギー技術研究院Korea Institute Of Energy Research Direct synthesis method of nanostructured catalyst particle on surface of various support, catalyst structure produced by the same

Similar Documents

Publication Publication Date Title
Zhu et al. Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis
US7799726B2 (en) Composites based on carbon nanotubes or nanofibers deposited on an activated support for use in catalysis
Ren et al. Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co 3 O 4 nano-arrays for high performance nitric oxide oxidation
JP2008540309A (en) Material production method
García‐Bordejé et al. Carbon Nanofibers Uniformly Grown on γ‐Alumina Washcoated Cordierite Monoliths
EP2893977B1 (en) Co-selective methanation catalyst
Wu et al. Interfacial activation of catalytically inert Au (6.7 nm)-Fe 3 O 4 dumbbell nanoparticles for CO oxidation
US20110105310A1 (en) Mesoporous oxide-catalyst complex and method of preparing the mesoporous oxide-catalyst complex
JP2004002182A (en) Oriented carbon nanotube film and its manufacturing method
Liu et al. Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks
JP2003201108A (en) Carbon material
Philippov et al. High-loaded Ni-based catalysts obtained via supercritical antisolvent coprecipitation in transfer hydrogenation of anisole: Influence of the support
Zawadzki Pd and ZnAl2O4 nanoparticles prepared by microwave-solvothermal method as catalyst precursors
Sun et al. Controllable integration of ultrasmall noble metal nanoparticles into mesoporous silica matrixes by a self-assembly method
Chen et al. Study on the selective oxidation of methane over highly dispersed molybdenum-incorporated KIT-6 catalysts
JP2005152725A (en) Catalyst body and its producing method
JP4063807B2 (en) Exhaust gas purification catalyst
KR102472412B1 (en) A Catalyst for dehydrogenation of liquid organic hydrogen carriers and method for producing the same
JP2006305406A (en) CATALYST FOR REMOVING NOx IN EXHAUST GAS
JP2004283770A (en) Catalyst-deposited carrier and manufacturing method therefor
JP4749093B2 (en) NOx purification catalyst carrier
Shimizu et al. Effect of impregnation conditions of cobalt nano particles in mesoporous silica using supercritical fluid solvent
JP5025148B2 (en) Exhaust gas purification catalyst
Gheorghiu et al. Structured carbons as supports for hydrogenation hybrid catalysts prepared by the immobilization of a Rh diamine complex
Erkey et al. Synthesis of nanostructured composites of metals by supercritical deposition (SCD)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317