JP2004283571A - Method for preparing peritoneal dialysate solution by tripartite method - Google Patents

Method for preparing peritoneal dialysate solution by tripartite method Download PDF

Info

Publication number
JP2004283571A
JP2004283571A JP2004059813A JP2004059813A JP2004283571A JP 2004283571 A JP2004283571 A JP 2004283571A JP 2004059813 A JP2004059813 A JP 2004059813A JP 2004059813 A JP2004059813 A JP 2004059813A JP 2004283571 A JP2004283571 A JP 2004283571A
Authority
JP
Japan
Prior art keywords
container
solution
glucose
peritoneal dialysate
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004059813A
Other languages
Japanese (ja)
Inventor
Akira Sakai
旭 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004059813A priority Critical patent/JP2004283571A/en
Publication of JP2004283571A publication Critical patent/JP2004283571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • External Artificial Organs (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a preservation method for sterilization processing when an antioxidant or a reductant component is added in order to suppress the crosslinking reaction of protein by glucose to be used as an osmotic pressure agent in a peritoneal dialysis method. <P>SOLUTION: In a peritoneal dialysate solution preparing method, an acidic solution containing a saccharide osmotic pressure agent is stored in a first vessel, a solution containing the antioxidant or the reductant is stored in a second vessel, and a solution containing an electrolytic salt is stored in a third vessel. After the sterilization processing, they are mixed before usage, so as to prepare the peritoneal dialysate solution. Thus, an oxidation product by high temperature sterilization processing is prevented from being generated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、腎腹膜機能不全疾患の治療に用いられる腹膜透析液に関する。更に詳しくは、上記腹膜透析液に添加されるグルコース等の糖類浸透圧剤による蛋白架橋結合を起こさない腹膜透析液に関する。   The present invention relates to a peritoneal dialysate used for treating renal peritoneal dysfunction. More specifically, the present invention relates to a peritoneal dialysate which does not cause protein cross-linking by a sugar osmotic agent such as glucose added to the peritoneal dialysate.

腎不全疾患の患者に対する有効な治療法の一つとして腹膜透析法がある。腹膜透析法においては、腎不全患者の腹腔内へカテーテルを留置し、これを通じ透析液バッグより腹膜透析液を腹腔内へ注入し、一定時間貯留した後、同カテーテルを通じ体外へ排出する操作を一日数回繰り返す。   Peritoneal dialysis is one of the effective treatments for patients with renal failure. In the peritoneal dialysis method, a catheter is placed in the peritoneal cavity of a patient with renal insufficiency, peritoneal dialysate is infused into the peritoneal cavity from the dialysate bag through the peritoneal cavity, stored for a certain period of time, and then discharged out of the body through the catheter. Repeat several times a day.

この腹膜透析法は人工膜による血液透析法とは異なり、患者自身の生体膜である腹膜を通して、常時連続的に血液浄化ができるので、血液透析法よりも生理的にすぐれ、患者の社会活動も容易であるという利点があり、広く用いられている。   Unlike the hemodialysis method using an artificial membrane, the peritoneal dialysis method can continuously and continuously purify blood through the peritoneum, which is the patient's own biological membrane. It has the advantage of being easy and is widely used.

しかし、腹膜透析法においては、健常者が尿として排出している血液中の過剰な水分を血液透析法のように、体外血液循環回路と半透膜を介した膜外部との間に圧力差を与える方法で除去することができない。そこで腹膜透析法においては腹腔内に注入する透析液に浸透圧剤を加えて、透析液の浸透圧を血液の浸透圧よりも高くし、限外濾過により除水する方法を採用している。浸透圧を高める手段として、電解質塩濃度を増加することはできないため、浸透圧剤として、これまで専らグルコースが用いられてきた。   However, in the case of peritoneal dialysis, the excess water in the blood excreted by a healthy person as urine is removed by a pressure difference between the extracorporeal blood circulation circuit and the outside of the membrane through a semipermeable membrane, as in hemodialysis. Can not be removed in a way that gives Therefore, in the peritoneal dialysis method, an osmotic agent is added to the dialysate to be injected into the peritoneal cavity to make the osmotic pressure of the dialysate higher than the osmotic pressure of blood, and water is removed by ultrafiltration. As a means for increasing the osmotic pressure, the electrolyte salt concentration cannot be increased, and thus glucose has been exclusively used as an osmotic agent.

これまでグルコースは、生理的に最も安全で、体内に吸収されても代謝的に問題ないとされていた。しかしグルコースを含有する透析液を用いて、腹膜透析を長期間継続していると、グルコースが大量体内吸収され、体内のアミノ酸、ペプチド、蛋白と反応して蛋白分子間に架橋結合を起こし、腹膜の硬化・肥厚化を進行させ、腹膜透析を中止せざるを得なくなることが判明した。
グルコースによる蛋白分子間の架橋結合のメカニズムは下記のごとき反応によるものと推定される。
Until now, glucose was considered to be the safest physiologically and had no metabolic problems even if it was absorbed into the body. However, if peritoneal dialysis is continued for a long time using a dialysate containing glucose, a large amount of glucose is absorbed into the body and reacts with amino acids, peptides and proteins in the body to cause cross-linking between protein molecules, resulting in peritoneal dialysis. It became clear that the peritoneal dialysis had to be stopped due to the progression of hardening and thickening of the peritoneal dialysis.
The mechanism of the cross-linking between protein molecules by glucose is presumed to be due to the following reaction.

グルコース等、カルボニル基を有する糖類(I)は、アミノ酸、ペプチド、蛋白質等(II)と反応し、式(1)のごとく、シッフベース(III)、アマドリ化合物(IV)の中間体を経て、アドバンスト グライケーション プロダクツ(Advanced Glycation End Products:以下AGEと呼ぶ)と呼ばれる化合物となる。   The sugar (I) having a carbonyl group, such as glucose, reacts with the amino acid, peptide, protein or the like (II) and, as shown in the formula (1), undergoes an intermediate of the Schiff base (III) and the Amadori compound (IV) to form an advanced It becomes a compound called Glycation Products (Advanced Glycation End Products: hereinafter referred to as AGE).

Figure 2004283571
Figure 2004283571

また透析液の使用に当たっては、高温高圧による滅菌処理が行なわれるが、この滅菌処理の際にグルコースが一部変性し、下記のごとき各種グルコース変性物(Glucose Degradation Products:以下GDPと呼ぶ)が生成する。
グリオキザール(Glyoxal)
メチルグリオキザール(Methylglyoxal)
3−デオキシグルコソーン(3-Deoxyglucosone)
In using the dialysate, sterilization treatment is performed at high temperature and high pressure. During the sterilization treatment, glucose is partially denatured, and various glucose denatured products (Glucose Degradation Products: hereinafter referred to as GDP) are generated as follows. I do.
Glyoxal
Methylglyoxal
3-deoxyglucosone

上記グルコース変性物は糖類に比べて更にAGE化反応性の強い物質であり、透析液中にこのようなグルコース変性物が含まれていると、グルコース単独の場合の数十倍から数千倍の速度で架橋結合が進行する。
これらのGDPあるいは糖類自体のカルボニル基と蛋白質と蛋白質構成成分のリジンやアルギニン等のアミノ基と結合して架橋した蛋白質同士の架橋物の例を下記式(2)に示す。
The above-mentioned glucose-modified product is a substance having a higher AGE-forming reactivity than saccharides. When such a glucose-modified product is contained in the dialysate, it is several tens to several thousand times that of glucose alone. Crosslinking proceeds at a rate.
The following formula (2) shows an example of a cross-linked product of proteins that are cross-linked by bonding the carbonyl group of GDP or the saccharide itself to a protein and an amino group such as lysine or arginine of a protein component.

Figure 2004283571
Figure 2004283571

この問題を解決するための一つの方法として、透析液の滅菌処理工程の改善によりGDP含有量を減少させる方法も提案されているが、GDPの生成を完全に抑制することはできず、またグルコース自身の反応による蛋白質の架橋反応も無視できないので、グルコースを浸透圧剤として用いる腹膜透析法においては、架橋反応を抑制する有効な方法が必要である。   As one method for solving this problem, a method of reducing the GDP content by improving the sterilization treatment process of the dialysate has been proposed, but it cannot completely suppress the production of GDP, and furthermore, glucose Since the cross-linking reaction of the protein by its own reaction cannot be ignored, an effective method for suppressing the cross-linking reaction is required in the peritoneal dialysis method using glucose as an osmotic agent.

また本発明の発明者は、浸透圧剤として、腹膜透析排液中に溶出した患者自身の血漿蛋白を回収・濃縮し、これをグルコースの全部または一部分と代替して浸透圧剤として使用する方法を提案した(特開平9−32751号、特開平11−137672号)。しかしこの方法においても、グルコースを一部使用する場合には同様に蛋白の架橋結合の問題が生ずる。   In addition, the inventors of the present invention provide a method of recovering and concentrating a patient's own plasma protein eluted in peritoneal dialysis effluent as an osmotic agent and using it as an osmotic agent instead of all or a part of glucose. (JP-A-9-32751 and JP-A-11-137672). However, also in this method, when glucose is partially used, the problem of cross-linking of proteins similarly occurs.

本発明の発明者らは、グルコースおよびグルコース変性物による蛋白質の架橋結合反応が上記メカニズムにより進行することから、この反応を阻害する化合物を添加することにより架橋反応を抑制できると考え、そのための各種添加剤を探索した結果、架橋反応を抑制する多数の化合物を見出し、結合抑制剤としては一般的に還元剤あるいは抗酸化剤が有効であり、特に還元性を有する硫黄の酸素酸塩が有効であることを見出した(特開2002−315825号)。   The inventors of the present invention believe that since the cross-linking reaction of protein by glucose and a denatured glucose proceeds by the above mechanism, it is possible to suppress the cross-linking reaction by adding a compound that inhibits this reaction. As a result of searching for additives, a large number of compounds that suppress the cross-linking reaction were found, and as a bond inhibitor, a reducing agent or an antioxidant is generally effective, and in particular, a reducing oxygen oxyacid salt is effective. It was found that this was the case (Japanese Patent Application Laid-Open No. 2002-315825).

更に、アミノ酸やアミノ酸のオリゴマーであるグルタチオンなどを透析液へ添加する事を提案した(特開2000−107286号)   Furthermore, it has been proposed to add an amino acid or an oligomer of the amino acid, such as glutathione, to the dialysate (Japanese Patent Laid-Open No. 2000-107286).

特開平9−32751号JP-A-9-32751 特開平11−137672号JP-A-11-137672 特開平11−137672号JP-A-11-137672 特開2002−315825号JP-A-2002-315825

透析液は病原菌を含む原料を溶解し製造するが、製品中に菌が残存することは許されない。そのため、120℃以上の高温で数十分間滅菌処理を行なう。   The dialysate is produced by dissolving the raw material containing the pathogenic bacteria, but the bacteria are not allowed to remain in the product. Therefore, sterilization is performed at a high temperature of 120 ° C. or more for several tens minutes.

滅菌の方法について、還元剤をグルコースとともに滅菌すると、グルコースの変性反応を抑制できるという観点から、上記特開2002−315825号において、架橋抑制剤が高温で安定な還元剤の場合には、電解質塩溶液のみを別にして、還元剤をグルコースに添加し滅菌する、透析液の2分割滅菌方式が使用できることを提案した。 Regarding the method of sterilization, from the viewpoint that when a reducing agent is sterilized together with glucose, a denaturation reaction of glucose can be suppressed, in the above-mentioned JP-A-2002-315825, when the crosslinking inhibitor is a reducing agent that is stable at a high temperature, the electrolyte salt It has been proposed that a two-part sterilization method for a dialysate, in which a reducing agent is added to glucose and sterilized separately from the solution, can be used.

しかしこの[電解質塩+グルコース]と[抑制剤]を別々に収納する二分割法および[糖+還元剤]と[電解質塩]を別々に収納した二分割法(後述の比較例2および3)では、酸化成分をゼロにするために必要な添加量が十分低くならないことがその後判明した。 However, the two-split method in which [electrolyte salt + glucose] and [inhibitor] are separately stored and the two-split method in which [sugar + reducing agent] and [electrolyte salt] are separately stored (Comparative Examples 2 and 3 described later) It has since been found that the amount of addition required to reduce the oxidation component to zero does not become sufficiently low.

また、前記したようなアミノ基を有する化合物を添加した透析液を高温滅菌する時、糖類と混合された状態では、AGE反応が進行し、生成した縮合物により黄褐色味を帯び、好ましくない。   In addition, when the dialysate containing the compound having an amino group as described above is sterilized at a high temperature, the AGE reaction proceeds in a state where it is mixed with a saccharide, and the condensate produced has a yellowish brown tint, which is not preferable.

そこで本発明者は、糖類浸透圧剤を含む酸性溶液、抗酸化剤もしくは還元剤を含む溶液、および電解質塩を含む溶液をすべて別の容器に分割収納し、これらを別個に滅菌処理した後、混合することにより、糖類のAGE化反応の進行を抑え、これによって蛋白質の架橋反応を抑制し、腹膜透析治療を長期間に亘り行なうことができることを見出し、本発明に到達した。   Therefore, the present inventor, the acidic solution containing the saccharide osmotic agent, the solution containing the antioxidant or reducing agent, and the solution containing the electrolyte salt are all separately stored in separate containers, and after sterilizing these separately, By mixing, it has been found that the progress of the AGE conversion reaction of saccharides is suppressed, whereby the protein cross-linking reaction is suppressed, and peritoneal dialysis treatment can be performed over a long period of time, and the present invention has been achieved.

すなわち本発明は、第一容器に糖類浸透圧剤を含む酸性溶液、第二容器に抗酸化剤もしくは還元剤を含む溶液、第三容器に電解質塩を含む溶液を収納し、滅菌処理後、使用前に混合して透析液を調製する方法である。   That is, the present invention contains an acidic solution containing a saccharide osmotic agent in a first container, a solution containing an antioxidant or a reducing agent in a second container, and a solution containing an electrolyte salt in a third container. This is a method of preparing a dialysate by mixing beforehand.

透析液の上記各成分液はそれぞれ別個に滅菌処理された後、オートクレーブから取り出し冷却した後に混合するか、または透析に使用する直前に混合使用することができる。いずれにしても、治療に使われるまで、室温で数ヶ月〜数年間、貯蔵されるが、その間の糖の変性、ジカルボニル化合物の生成量は滅菌処理中の生成量に比べると遥かに少ない。そのため、滅菌に際し、分別収納することは重要である。   After the above-mentioned respective component solutions of the dialysate are sterilized separately, they are taken out of the autoclave and cooled, and then mixed, or mixed immediately before use in dialysis. In any case, it is stored for several months to several years at room temperature until it is used for treatment, during which the amount of sugar denaturation and the amount of dicarbonyl compound produced is far less than that produced during sterilization. For this reason, it is important to store them separately for sterilization.

腹膜透析法において浸透圧剤として用いられるグルコースやグルコース変性物により蛋白質の架橋反応が起り、腹膜の硬化等により腹膜透析が続行できなくなるという問題があり、抗酸化剤もしくは還元剤を腹膜透析液に添加することにより、この問題を解決するに当たり、本発明においては糖類浸透圧剤、抗酸化剤もしくは還元剤、電解質塩の各成分を別々に収納して滅菌処理した後、混合することによって、酸化成分が生成せず、蛋白質架橋結合を起こしにくい腹膜透析液が得られる。   In the peritoneal dialysis method, glucose or a denatured glucose used as an osmotic agent causes a protein cross-linking reaction, and the peritoneal dialysis cannot be continued due to hardening of the peritoneum. In order to solve this problem by adding, in the present invention, each component of the saccharide osmotic agent, antioxidant or reducing agent, and electrolyte salt is separately stored, sterilized, and then mixed to form an oxidizing agent. A peritoneal dialysis solution is obtained in which no components are generated and protein cross-linking is unlikely to occur.

本発明の腹膜透析液の浸透圧剤として用いられる糖類としては、グルコース、マンノース等の単糖類、蔗糖、果糖等の二糖類、あるいはオリゴマー、およびデキストラン、デキストリン等のポリマーを挙げる事が出来る。   Examples of the saccharide used as the osmotic agent in the peritoneal dialysate of the present invention include monosaccharides such as glucose and mannose, disaccharides such as sucrose and fructose, and oligomers, and polymers such as dextran and dextrin.

電解質塩は塩化ナトリウム、塩化マグネシウム、塩化カルシウム、乳酸ナトリウム、重炭酸ナトリウム等の混合物で、血清中の組成,濃度に近いものが望ましく、患者が併発している疾患のため薬剤を服用していることにより、血中カルシウムやマグネシウム濃度が正常値より逸脱している場合には透析液中のこれらの濃度を加減したものを使用する事が好ましい。 Electrolyte salt is a mixture of sodium chloride, magnesium chloride, calcium chloride, sodium lactate, sodium bicarbonate, etc., preferably with a composition and concentration close to serum. Therefore, when the blood calcium and magnesium concentrations deviate from the normal values, it is preferable to use a dialysate in which these concentrations are adjusted.

また透析液は糖類以外の浸透圧剤として、アミノ酸、ペプチド,蛋白質などを添加し、糖類の負荷を減らす事が好ましい。
ただし前記の課題を解消するには、この相互反応を起こし易い2成分を別個に収納して滅菌する必要がある。そのため上記のような非糖類浸透圧剤を用いる場合は第二容器に添加するのが望ましい。
さらに糖類の分解変性反応を最小限に抑制するpH,塩濃度などの条件を満足することが重要である。
In addition, it is preferable to add amino acids, peptides, proteins, and the like as osmotic agents other than sugars to the dialysate to reduce the load of sugars.
However, in order to solve the above-mentioned problem, it is necessary to separately store and sterilize the two components that easily cause the mutual reaction. Therefore, when the above-mentioned non-saccharide osmotic agent is used, it is desirable to add it to the second container.
Furthermore, it is important to satisfy conditions such as pH and salt concentration that minimize the degradation and denaturation of saccharides.

他方使用時の透析液は生理的pHに調整することが望ましい。そのため中和用の成分を別に収納し、滅菌度使用前に混合することにより、問題を解決し得る。   On the other hand, it is desirable that the dialysate at the time of use be adjusted to a physiological pH. Therefore, the problem can be solved by separately storing the components for neutralization and mixing them before using the sterilization degree.

蛋白架橋結合抑制剤として透析液に添加される抗酸化剤または還元剤は、AGE化反応のいずれかの段階で阻止し得るもので、生理的に無害なものであればいずれも使用できる。また蛋白架橋結合解離剤は蛋白架橋結合を生理的な環境で解離し、その生成物が無害なものであれば使用できる。   The antioxidant or reducing agent added to the dialysate as a protein cross-linking inhibitor can be inhibited at any stage of the AGE-forming reaction, and any physiologically harmless agent can be used. The protein cross-linking dissociation agent can be used as long as it dissociates the protein cross-linking in a physiological environment and its product is harmless.

上記抗酸化剤または還元剤としては、メルカプト化合物、硫化物、水硫化物、還元性を有する硫黄の酸素酸塩、チオウレア及びその誘導体、ヒドロキシル基及び/またはカルボキシル基を有する環状化合物、フラボノイド化合物、窒素含有複素環化合物、ヒドラジル基化合物またはウロン酸基を有するムコ多糖類などが挙げられるが、特に還元性を有する硫黄の酸素酸塩が有効である。   Examples of the antioxidant or reducing agent include mercapto compounds, sulfides, hydrosulfides, reducing oxygen oxyacid salts, thiourea and its derivatives, cyclic compounds having a hydroxyl group and / or a carboxyl group, flavonoid compounds, Examples thereof include a nitrogen-containing heterocyclic compound, a hydrazyl group compound, and a mucopolysaccharide having a uronic acid group. Particularly, a reducing oxygen oxyacid salt is effective.

還元性を有する硫黄の酸素酸塩としては、亜硫酸、重亜硫酸、チオ硫酸、メタ重亜硫酸、または亜二チオン酸のナトリウム塩、カリウム塩あるいは他の生理的に安全な塩が挙げられる。これらの塩は酸性亜硫酸塩(重亜硫酸塩)であってもよい。   Reducing sulfur oxyacid salts include the sodium, potassium, or other physiologically safe salts of sulfurous acid, bisulfite, thiosulfate, metabisulfite, or dithionite. These salts may be acidic sulphite (bisulphite).

また市販のアミノ酸輸液にはアミノ酸に、還元剤である酸性亜硫酸ナトリウムが配合されているので、糖類以外の浸透圧剤としてこのようなアミノ酸輸液をそのまま、あるいは更に蛋白架橋結合抑制剤を添加して用いることもできる。   In addition, since amino acid is mixed with sodium acid sulfite as a reducing agent in a commercially available amino acid infusion, such an amino acid infusion as such is an osmotic agent other than saccharides, or a protein cross-linking inhibitor is further added. It can also be used.

還元剤としては、酸化還元電位が低いものが有効であり、特に生理食塩水の酸化還元電位(+160mVから+180mV)より低い電位を有する還元剤が有効である。   As the reducing agent, one having a low oxidation-reduction potential is effective, and in particular, a reducing agent having a potential lower than the oxidation-reduction potential (+160 mV to +180 mV) of physiological saline is effective.

本発明においては第一〜第三の3個の容器を有することが必須であるが、必要に応じて更に容器を付加することもできる。容器の数を増すことにより、耐熱性の弱い抑制剤の場合は滅菌条件の異なる滅菌を別個に行なうことができる。また、アミノ酸、ペプチド、蛋白あるいはその他の非糖類浸透圧物質を含む溶液を第四容器に収納して、第一〜第三容器より温和な条件で滅菌するのが好ましい。   In the present invention, it is essential to have first to third three containers, but further containers can be added as necessary. By increasing the number of containers, sterilizers having different sterilization conditions can be separately performed in the case of an inhibitor having low heat resistance. Further, it is preferable that a solution containing an amino acid, a peptide, a protein or other non-saccharide osmotic substances be contained in a fourth container and sterilized under milder conditions than the first to third containers.

各成分の保存、滅菌用に使用する容器はそれぞれ別個のものでも良いが、図1に示すように、第一容器と第二容器が容易に貫通できる隔壁で隣接し、両者を混合した後、第三容器の溶液と混合できる構造の容器に収納すれば、糖類浸透圧剤と抗酸化剤もしくは還元剤との混合が容易に行なわれるので有利である。   The containers used for storage and sterilization of each component may be separate ones, but as shown in FIG. 1, the first container and the second container are adjacent by a partition that can easily penetrate, and after mixing both, It is advantageous that the saccharide osmotic agent and the antioxidant or the reducing agent are easily mixed when housed in a container having a structure that can be mixed with the solution in the third container.

[実施例1]
第1室にグルコース(20g/dl)を含む希塩酸溶液(pH3.5)を400ml、
第2室に
塩化ナトリウム:132mM/l
塩化マグネシウム:0.75mM/l
塩化カルシウム:1.25mM/l
乳酸ナトリウム:35mM/l
を含む溶液(pH8)を1500ml
第3室に亜硫酸水素ナトリウム溶液(500ml)
を別個に収納したバッグをオートクレーブ内で最高温度121℃、最高温度維持時間30分間高圧蒸気滅菌処理を行った、室温まで冷却後、3種の溶液を混合し、酸化還元電位計(東亜電波社製)を用いて、一定量の過剰なチオ硫酸ナトリウム(NaSO)を加えた後、メチルグリオキサールを滴下する逆滴定法で、滴定分析を行い、酸化成分の定量を行なった。
この中で亜硫酸水素ナトリウム溶液(500ml)の濃度を1〜10mM/lの範囲で変化させた10通りの実験を行い、上記の酸化成分定量値を亜硫酸水素ナトリウム添加量に対しプロットし、酸化力を示す成分がゼロになるために要する亜硫酸水素ナトリウムの添加量をもとめた。その結果を表1に記す。
[Example 1]
400 ml of dilute hydrochloric acid solution (pH 3.5) containing glucose (20 g / dl) in the first chamber,
Sodium chloride in the second room: 132 mM / l
Magnesium chloride: 0.75 mM / l
Calcium chloride: 1.25 mM / l
Sodium lactate: 35mM / l
Solution (pH 8) containing 1500 ml
Sodium bisulfite solution (500ml) in room 3
Were separately sterilized in an autoclave at a maximum temperature of 121 ° C. and a maximum temperature maintenance time of 30 minutes. After cooling to room temperature, the three solutions were mixed, and an oxidation-reduction potentiometer (Toa Denpasha Co., Ltd.) , A fixed amount of excess sodium thiosulfate (Na 2 S 2 O 3 ) was added thereto, and titration analysis was performed by a reverse titration method in which methylglyoxal was added dropwise to quantify the oxidized components.
In this, ten experiments were conducted in which the concentration of the sodium bisulfite solution (500 ml) was changed in the range of 1 to 10 mM / l. The addition amount of sodium bisulfite required for the component showing the value to become zero was determined. Table 1 shows the results.

Figure 2004283571
Figure 2004283571

[比較例1]
実施例に用いた各室の溶液を混合したものを、1個のバッグに収納し、実施例1と同じ条件で高温滅菌処理を行い、酸化還元滴定分析を行なった。結果を表1に示す。
[Comparative Example 1]
The mixture of the solutions in the respective chambers used in the examples was stored in one bag, subjected to high-temperature sterilization under the same conditions as in Example 1, and subjected to redox titration analysis. Table 1 shows the results.

[比較例2]
第1室に比較例1で用いたグルコースおよび電解質塩、1500ml 第2室に亜硫酸水素ナトリウム溶液(500ml)の濃度を1〜10mM/lの範囲で変化させた一連の実験をオートクレーブ内で最高温度121℃、最高温度維持時間30分間高圧蒸気滅菌処理を行い、室温まで冷却後、2種の溶液を混合し、実施例1と同じ条件で酸化還元滴定分析を行なった。結果を表1に示す。
[Comparative Example 2]
In the first chamber, the glucose and the electrolyte salt used in Comparative Example 1 were 1500 ml. In the second chamber, a series of experiments in which the concentration of the sodium bisulfite solution (500 ml) was changed in the range of 1 to 10 mM / l was performed at the highest temperature in the autoclave. A high-pressure steam sterilization treatment was performed at 121 ° C. and a maximum temperature maintenance time of 30 minutes, and after cooling to room temperature, the two solutions were mixed, and redox titration analysis was performed under the same conditions as in Example 1. Table 1 shows the results.

[比較例3]
第1室にグルコースおよび亜硫酸水素ナトリウムの溶液(500ml)第2室に電解質塩溶液(1500ml)を収納した透析液バッグをオートクレーブ内で最高温度
121℃、最高温度維持時間30分間高圧蒸気滅菌処理を行なう実験において、亜硫酸水素ナトリウムの濃度を1〜10mM/lの範囲で変化させた一連の実験を行なった。室温まで冷却後、2種の溶液を混合し実施例1と同じ条件で酸化還元滴定分析を行なった。結果を表1に示す。
[Comparative Example 3]
A dialysate bag containing a solution of glucose and sodium bisulfite (500 ml) in the first chamber and an electrolyte salt solution (1500 ml) in the second chamber is subjected to high-pressure steam sterilization in an autoclave at a maximum temperature of 121 ° C. and a maximum temperature maintenance time of 30 minutes. In the experiments to be performed, a series of experiments in which the concentration of sodium bisulfite was changed in the range of 1 to 10 mM / l was performed. After cooling to room temperature, the two solutions were mixed and subjected to redox titration analysis under the same conditions as in Example 1. Table 1 shows the results.

[実施例2]
実施例1において、第3室に亜硫酸水素ナトリウム溶液の代わりに、アミノ酸輸液(大塚製薬製キドミン)を200ml収納し、他の条件は実施例1と同様にして、高温滅菌処理を行なった。結果を表1に示す。
アミノ酸輸液(大塚製薬製キドミン)の組成は
総アミノ酸 14.41g/200ml
亜硫酸水素ナトリウム 40mg/200ml(0.2g/l =1,92mM/l)
である。
[Example 2]
In Example 1, 200 ml of an amino acid infusion (Kidmin manufactured by Otsuka Pharmaceutical Co., Ltd.) was stored in the third chamber in place of the sodium bisulfite solution, and high-temperature sterilization was performed in the same manner as in Example 1 except for the other conditions. Table 1 shows the results.
Amino acid transfusion (Kidmin manufactured by Otsuka Pharmaceutical Co., Ltd.) consists of total amino acids 14.41g / 200ml
Sodium bisulfite 40mg / 200ml (0.2g / l = 1,92mM / l)
It is.

[実施例3]
第1室にグルコース( 20g/dl)を含む希塩酸溶液(pH3.5)を400ml、
第2室にNaCl :132mM/l
MgCl :0.75mM/l
CaCl :1.25mM/l
Na lactate:35mM/l
を含む溶液(pH8)を1800ml
第3室にアミノ酸混合液
第4室にNaHSO溶液(100ml)を収納し、濃度を1〜10mM/lの範囲で変化させた一連の実験を実施例1と同一の条件で高温滅菌処理を行なった。
[Example 3]
400 ml of dilute hydrochloric acid solution (pH 3.5) containing glucose (20 g / dl) in the first chamber,
NaCl: 132 mM / l in the second chamber
MgCl 2 : 0.75 mM / l
CaCl 2 : 1.25 mM / l
Na lactate: 35mM / l
Solution (pH 8) containing 1800 ml
A series of experiments in which the amino acid mixture was stored in the third chamber, the NaHSO solution (100 ml) was stored in the fourth chamber, and the concentration was changed in the range of 1 to 10 mM / l, were subjected to high-temperature sterilization under the same conditions as in Example 1. Was.

表1の結果から明らかなように、糖類浸透圧剤、還元剤および電解質塩を含む各成分溶液を混合して高温滅菌処理を行うと、酸化成分が多量に生成するのに対し、これらを別々に収納して滅菌処理した後、混合した液には酸化成分が生成せず、このようにして滅菌処理することによって、蛋白質架橋結合を起こしにくい腹膜透析液が得られることが期待される。   As is clear from the results in Table 1, when component solutions containing a saccharide osmotic agent, a reducing agent, and an electrolyte salt are mixed and subjected to high-temperature sterilization, a large amount of oxidized components is generated. After the solution is stored and sterilized, no oxidized component is generated in the mixed solution. By performing the sterilization in this way, it is expected that a peritoneal dialysis solution that does not easily cause protein cross-linking will be obtained.

また、表1の結果から明らかなように(特開2002−315825号)の二分割法に比べ、本発明の三分割法および四分割法は添加する還元剤、抗酸化剤の必要量を大幅に低減できる。   Further, as is apparent from the results in Table 1, the three-split method and the four-split method of the present invention greatly increase the required amounts of reducing agents and antioxidants to be added, as compared with the two-split method of JP-A-2002-315825. Can be reduced.

このような腹膜透析液を用いることにより、腹膜硬化症を起こすことなく腹膜透析治療を長期間に亘り行なうことができ、除水能を維持する透析液を供給できる。よって本発明は腹膜透析による治療を支障なく継続的に行うための手段として極めて有用である。   By using such a peritoneal dialysis solution, it is possible to perform peritoneal dialysis treatment for a long period of time without causing peritoneal sclerosis, and it is possible to supply a dialysis solution that maintains the water removal ability. Therefore, the present invention is extremely useful as a means for continuously performing treatment by peritoneal dialysis without any trouble.

本発明の腹膜透析液の各成分を貯蔵する容器の構造の一例を示す。1 shows an example of the structure of a container for storing each component of the peritoneal dialysate of the present invention.

Claims (5)

第一容器に糖類浸透圧剤を含む酸性溶液、第二容器に抗酸化剤もしくは還元剤を含む溶液、第三容器に電解質塩を含む溶液を収納し、滅菌処理後、使用前に混合して腹膜透析液を調製する方法。 An acidic solution containing a saccharide osmotic agent in the first container, a solution containing an antioxidant or a reducing agent in the second container, a solution containing an electrolyte salt in the third container, and after sterilization, mixed before use. A method for preparing a peritoneal dialysate. 第二容器に非糖類浸透圧剤を添加する事を特徴とする請求項1に記載の腹膜透析液を調製する方法。 The method for preparing a peritoneal dialysate according to claim 1, wherein a non-saccharide osmotic agent is added to the second container. 非糖類浸透圧剤がアミノ酸、ペプチド、もしくは蛋白のいずれかまたは混合物である請求項2に記載の腹膜透析液を調製する方法。 The method for preparing a peritoneal dialysate according to claim 2, wherein the non-saccharide osmotic agent is any one of amino acids, peptides, or proteins or a mixture thereof. 第四容器にアミノ酸、ペプチド、蛋白あるいはその他の非糖類浸透圧物質を含む溶液を収納する事を特徴とする請求項1〜3のいずれかに記載の腹膜透析液を調製する方法。 The method for preparing a peritoneal dialysate according to any one of claims 1 to 3, wherein a solution containing an amino acid, a peptide, a protein, or another non-saccharide osmotic substance is stored in the fourth container. 第一容器と第二容器が容易に貫通できる隔壁で隣接し、両者を混合した後、第三容器の溶液と混合できる構造の容器に収納することを特徴とする請求項1〜3に記載の腹膜透析液を調製する方法。 The first container and the second container are adjacent to each other with a partition that can easily penetrate, and after mixing both, the container is housed in a container having a structure that can be mixed with the solution of the third container. A method for preparing a peritoneal dialysate.
JP2004059813A 2003-03-03 2004-03-03 Method for preparing peritoneal dialysate solution by tripartite method Pending JP2004283571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059813A JP2004283571A (en) 2003-03-03 2004-03-03 Method for preparing peritoneal dialysate solution by tripartite method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003056356 2003-03-03
JP2004059813A JP2004283571A (en) 2003-03-03 2004-03-03 Method for preparing peritoneal dialysate solution by tripartite method

Publications (1)

Publication Number Publication Date
JP2004283571A true JP2004283571A (en) 2004-10-14

Family

ID=33302019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059813A Pending JP2004283571A (en) 2003-03-03 2004-03-03 Method for preparing peritoneal dialysate solution by tripartite method

Country Status (1)

Country Link
JP (1) JP2004283571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878430A4 (en) * 2005-04-20 2010-09-29 Hayashibara Biochem Lab Peritoneal dialysis fluid
CN109310778A (en) * 2016-06-09 2019-02-05 泰尔茂株式会社 Biocompatibility peritoneal dialysis solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878430A4 (en) * 2005-04-20 2010-09-29 Hayashibara Biochem Lab Peritoneal dialysis fluid
US9066968B2 (en) 2005-04-20 2015-06-30 Hayashibara Co. Ltd Fluid for peritoneal dialysis
CN109310778A (en) * 2016-06-09 2019-02-05 泰尔茂株式会社 Biocompatibility peritoneal dialysis solution

Similar Documents

Publication Publication Date Title
JP4882054B2 (en) Peritoneal dialysate and preparation method thereof
JP5690040B2 (en) Bicarbonate-based peritoneal dialysis solution
KR0145289B1 (en) Hestidine buffered peritoneal dialysis solution
JP2002315825A5 (en)
JP5947334B2 (en) Biocompatible dialysate containing icodextrin
EP1465688B9 (en) Bicarbonate-based solutions for dialysis therapies
US7053059B2 (en) Dialysis solutions with reduced levels of glucose degradation products
KR101548027B1 (en) Sterilised dialysis solutions containing pyrophosphates
EP1890686B1 (en) Peritoneal dialysis fluid
EP0078832A1 (en) Dialysis solution containing glycerol.
JP2004283571A (en) Method for preparing peritoneal dialysate solution by tripartite method
JP2010042312A (en) Solution set for preparation of peritoneal dialysis fluid
JP2008119509A (en) Solution set for preparation of peritoneal dialysis fluid
RU2567043C1 (en) Solution for peritoneal dialysis
Donald Caring for the renal system
CN107281196A (en) A kind of low calcium lactate peritoneal dialysat pharmaceutical composition containing Azulene sulfonic acid and its salt
CN107281197A (en) A kind of lactate peritoneal dialysat pharmaceutical composition containing Azulene sulfonic acid and its salt
JP4625657B2 (en) Solution set for peritoneal dialysate preparation
Lo Effect of PD solutions on patient outcome
Blowey et al. Dialysis principles for primary health-care providers
KR20220028198A (en) dialysis fluid and its manufacturing method
KR100993178B1 (en) Concentrate containing citric acid and low level acetic acid
Davenport Acute renal replacement therapy
Trevino-Becerra et al. CAPD on Alternate Days
MXPA96001855A (en) Hyperoncotic-hypertonic solution for periton dialysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090202