JP2004281319A - High-frequency heating power supply device - Google Patents

High-frequency heating power supply device Download PDF

Info

Publication number
JP2004281319A
JP2004281319A JP2003073849A JP2003073849A JP2004281319A JP 2004281319 A JP2004281319 A JP 2004281319A JP 2003073849 A JP2003073849 A JP 2003073849A JP 2003073849 A JP2003073849 A JP 2003073849A JP 2004281319 A JP2004281319 A JP 2004281319A
Authority
JP
Japan
Prior art keywords
power supply
discharge resistor
magnetron
resistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073849A
Other languages
Japanese (ja)
Inventor
Hideaki Moriya
英明 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003073849A priority Critical patent/JP2004281319A/en
Publication of JP2004281319A publication Critical patent/JP2004281319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost and size of a substrate by a construction method of a discharge resistor for discharging a capacity C accumulated in a high-voltage capacitor of a secondary-side high-voltage rectification circuit in the case a magnetron has stopped oscillation due to a failure or the like, in a high-pressure heating power supply device driving the magnetron such as a microwave oven. <P>SOLUTION: As for the discharge resistor 15 for electric shock prevention of the secondary-side high-voltage rectification circuit 7, a construction method is adopted by generating a resistance value by glow branding on the pattern wiring of the substrate. By this construction, the direct material cost of the discharge resistor itself can be reduced, and since a work process can be performed simultaneously with other process, a time required for conventional component insertion can be reduced, achieving low cost. Furthermore, a space for component arrangement is not required, and the downsizing of an inverter power supply 20 is achieved by space saving. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子レンジのようにマグネトロンを用いて誘電加熱を行う高周波加熱電源装置の分野で、マグネトロンを駆動するインバータ電源部の二次側高圧整流回路部に配置する感電防止の放電抵抗に関するものである。
【0002】
【従来の技術】
従来この種のマグネトロン駆動用電源に用いられるインバータ電源20においてはマグネトロン8の不良、あるいは故障、劣化により発振が行われずに二次側高圧整流回路部7により発生させた高電圧が行き場をなくして高圧コンデンサ18,19が電位を保持したままの状態となったとしても、サービスマンが高圧部に触れても感電しないようにあらかじめマグネトロンのアノード部17とカソード部16の間に相当する電位部分に放電抵抗15が配置されている。この放電抵抗15により、もしもの際に高圧コンデンサ18,19に容量Cが溜まったとしても瞬時に放電抵抗15により電位を放電させ、感電の恐れを回避している。
【0003】
インバータ電源20の一例を図4に示す回路図を用いて説明すると、商用電源1は整流器2で整流され直流電圧に変換され、商用電源1から電力が供給される。直流電圧はチョークコイル9とコンデンサ10よりなるフィルタ回路11を介してコンデンサ4とインダクタ13、半導体スイッチング素子3のインバータ共振回路5に印加される。インバータ共振回路5では半導体スイッチング素子3が20〜40キロヘルツの周波数でスイッチングし、高周波交流を作り出す。インダクタ13は高圧トランス6の一次巻線を兼ねているのでインダクタ13に発生した高周波交流は高圧トランス6で高電圧に昇圧される。また高圧トランス6で昇圧された高電圧は二次側高圧整流回路部7で直流高電圧に整流される。制御回路部14はカレントトランス12より得た入力電流情報を反映した形で半導体スイッチング素子3に所望の高周波出力を得るための信号を与え、これを駆動する。これらの電気要素部品が、インバータ電源20を構成する。二次側高圧整流回路部7で整流された直流高電圧はマグネトロン8のアノード部17とカソード部16間に印加される。高圧トランス6にはもう一つの補助二次巻線が設けられており、この補助二次巻線はマグネトロン8のカソード部16に加熱電流として電力供給を行う加熱電流供給線路を構成している。マグネトロン8はカソード部16に電力供給を受け、カソード温度が上昇し、かつアノード部17とカソード部16間に高電圧が印加されると発振しマイクロ波を発生する。マグネトロン8で発生されたマイクロ波は加熱室に入れられた食品などの被加熱物に照射され誘電加熱調理を行う。
【0004】
このようにインバータ電源20における放電抵抗15は一連のマグネトロン発振の動作には寄与していないことがわかる。また、マグネトロンのアノード部17とカソード部16の間には動作中常時4KVの電圧がかかるため、100MΩ以上の抵抗値が必要となる。この放電抵抗15を含む二次側高圧整流回路部7の実際の部品配置と配線パターンの一例を図5に示す。図5に示す通り放電抵抗15の部品スペースとして基板上に余分に配線が必要となっていることが分かる。この感電防止のために放電抵抗を配置するという構成は周知の事実として広く知られている技術である。(例えば、特許文献1及び特許文献2参照)。
【0005】
【特許文献1】
特開平09−245960号公報(図1)
【特許文献2】
実開平05−017994号公報(図1)
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような構成では下記の課題があった。
【0007】
すなわち、インバータ電源20における放電抵抗15は一連のマグネトロン発振の動作には寄与していないがゆえに低コスト化が進む昨今ではいかに安全に低コストで放電抵抗15を配置、形成するかという課題を有していた。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、まず直接材料となる抵抗体を廃止し、加工という形で抵抗体を作り出す構成とした。
【0009】
上記のような構成において本発明は、直接材料費となる部分を削減でき、低コスト化が実現できる。また、あらかじめ回路基板上に印刷すれば加工する手間も省けさらなる低コスト化が期待できる。
【0010】
【発明の実施の形態】
請求項1の発明は、マグネトロンを駆動するインバータ電源と、前記インバータ電源の二次側高圧整流回路部に感電防止の放電抵抗を備え、前記放電抵抗は焼刻印による抵抗体を使用することを特徴とする構成とした。
【0011】
請求項2の発明は、マグネトロンを駆動するインバータ電源と、前記インバータ電源の二次側高圧整流回路部に感電防止の放電抵抗を備え、前記放電抵抗はレーザー印字による抵抗体を使用することを特徴とする構成とした。
【0012】
請求項3の発明は、マグネトロンを駆動するインバータ電源と、前記インバータ電源の二次側高圧整流回路部に感電防止の放電抵抗を備え、前記放電抵抗は基板部の印刷による抵抗体を使用することを特徴とする構成とした。
【0013】
上記の構成により、感電防止のみに配置されている放電抵抗の抵抗体の直接材料費を削減することができ、低コスト化が実現できる。また、基板面に抵抗体が存在するため、部品としてのスペースをとる必要がなく二次側高圧整流回路部7の省スペース化も実現できる。
【0014】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0015】
(実施例1)
図2はマグネトロン8のアノード部17とカソード部16に相当する電位の間に放電抵抗15を配置するために、加工により抵抗体を作成するための構成図であり、本実施例では焼刻印装置24により基板23に押し当てた際にできる炭素体で抵抗値を得ることを試みている。インバータ電源20の基板23において半田ディップ面に属する放電抵抗配置部の回路パターン部は絶縁距離を考慮した形で設計されている。この部分に焼刻印装置24により焼刻印を図2の矢印の通り一定時間押し当てて刻印する。そして再度基板23より離して抵抗体としての焼刻印が完成する。また工数の兼ね合いから、実装している電子部品のインサーキット検査時に焼刻印も共に行えば工数増もなくなる。本実施例においても組立てを行い半田ディップ後の状態で焼刻印することを想定している。焼刻印後の半田ディップ面の二次側高圧整流回路部7を図1に示す。図1に示す通り、カソード電位パターン21とアノード電位パターン22の間に焼刻印による抵抗体である放電抵抗15が刻まれている。
【0016】
この構成により放電抵抗の直接材料費のコストダウンが可能となる。工数的には部品としての放電抵抗を挿入していた時間と本実施例の焼刻印時間とは同じであり、直接材料費を丸々低コスト化できる。さらに本実施例のようにインサーキット検査工程と共に焼刻印すれば工数減となり、さらなる低コスト化が期待できる。また図1に示す二次側高圧整流回路部7と従来の二次側高圧整流回路部7を示す図5とを比較するとわかる通り部品としてのスペースを得るために余分にパターン配線を延長することもなく基板サイズの小型化も望める。
【0017】
(実施例2)
図3はマグネトロン8のアノード部17とカソード部16に相当する電位の間に放電抵抗15を配置するために、加工により抵抗体を作成するための構成図であり、本実施例ではレーザー印字装置25によりレーザー照射時にできる炭素体で抵抗値を得ることを試みている。インバータ電源20の基板23において半田ディップ面に属する放電抵抗配置部の回路パターン部は絶縁距離を考慮した形で設計されている。この部分にレーザー印字装置25により照射されるレーザーにて基板23の半田ディップ面を焦がしその炭素体にて抵抗値を得て放電抵抗15を形成する。実施例1同様、工数の兼ね合いから実装している電子部品のインサーキット検査時にレーザー印字も共に行えば工数増もなくなる。本実施例においても組立てを行い半田ディップ後の状態でレーザー印字することを想定している。レーザー印字後の半田ディップ面の二次側高圧整流回路部7は実施例1と同様に図1に示す通り、カソード電位パターン21とアノード電位パターン22の間にレーザー印字による抵抗体である放電抵抗15が刻まれている。
【0018】
この構成により放電抵抗の直接材料費のコストダウンが可能となる。工数的には部品としての放電抵抗を挿入していた時間と本実施例のレーザー印字の時間とは同じであり、直接材料費を丸々低コスト化できる。さらに本実施例のようにインサーキット検査工程と共にレーザー印字すれば工数減となり、さらなる低コスト化が期待できる。また図1に示す二次側高圧整流回路部7と従来の二次側高圧整流回路部7を示す図5とを比較するとわかる通り部品としてのスペースを得るために余分にパターン配線を延長することもなく基板サイズの小型化も望める
(実施例3)
本実施例においてはマグネトロン8のアノード部17とカソード部16に相当する電位の間に放電抵抗15を配置するために、インバータ電源20の基板23の半田ディップ面において印刷によるカーボンの抵抗体を基板自体に当初より持たせる構成とした。
【0019】
この構成により図1に示す通りにカソード電位パターン21とアノード電位パターン22の間は印刷による抵抗体で放電抵抗15が形成される。そして放電抵抗自体の直接材料費としては変化ないものの従来の部品挿入という工数を省略することができる。また二次側高圧整流回路部7においては従来の二次側高圧整流回路部7を示す図5とを比較するとわかる通り部品としてのスペースを得るために余分にパターン配線を延長することもなく基板サイズの小型化も望める。
【0020】
【発明の効果】
以上のように本発明の高周波加熱電源装置によれば、感電防止に必要な二次側高圧整流回路部に存在する放電抵抗の直接材料費を削減し、なおかつインサーキット検査と共に加工することにより実装の工数も削減して従来と同様な放電抵抗を構成することが可能となる(実施例1,2)。また、インバータ電源の基板自体に最初から抵抗体を印刷することにより、組立てにかかる工数を省略することも可能となる(実施例3)。さらに、部品挿入のために基板上に余分なスペースを空けてパターン配線を延長することもなく、基板サイズの小型化も可能となる(実施例1、2、3)。
【図面の簡単な説明】
【図1】本発明の実施例1、2、3における二次側高圧整流回路部の構成図
【図2】本発明の実施例1におけるインバータ電源への加工構成図
【図3】本発明の実施例2におけるインバータ電源への加工構成図
【図4】従来のインバータ電源回路構成図
【図5】従来の二次側高圧整流回路部の構成図
【符号の説明】
6 高圧トランス
15 放電抵抗
18 高圧コンデンサ
19 高圧コンデンサ
20 インバータ電源
21 カソード電位パターン
22 アノード電位パターン
23 基板
24 焼刻印装置
25 レーザー印字装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the field of a high-frequency heating power supply device for performing dielectric heating using a magnetron, such as a microwave oven, and relates to a discharge resistor for preventing electric shock to be disposed in a secondary high-voltage rectifying circuit section of an inverter power supply section for driving a magnetron. is there.
[0002]
[Prior art]
Conventionally, in the inverter power supply 20 used for this type of magnetron driving power supply, the magnetron 8 does not oscillate due to a defect, failure, or deterioration of the magnetron 8 and the high voltage generated by the secondary high-voltage rectifier circuit unit 7 loses its place. Even if the high-voltage capacitors 18 and 19 remain in the state of holding the electric potential, a potential difference between the anode part 17 and the cathode part 16 of the magnetron is set in advance so that a service person does not get an electric shock even if the high-voltage part is touched. A discharge resistor 15 is provided. With this discharge resistor 15, even if the capacitance C is accumulated in the high-voltage capacitors 18 and 19, the potential is instantaneously discharged by the discharge resistor 15 to avoid the risk of electric shock.
[0003]
An example of the inverter power supply 20 will be described with reference to a circuit diagram shown in FIG. 4. The commercial power supply 1 is rectified by the rectifier 2 and converted into a DC voltage, and power is supplied from the commercial power supply 1. The DC voltage is applied to the capacitor 4, the inductor 13, and the inverter resonance circuit 5 of the semiconductor switching element 3 via the filter circuit 11 including the choke coil 9 and the capacitor 10. In the inverter resonance circuit 5, the semiconductor switching element 3 switches at a frequency of 20 to 40 kilohertz to generate a high-frequency alternating current. Since the inductor 13 also serves as the primary winding of the high-voltage transformer 6, the high-frequency AC generated in the inductor 13 is boosted to a high voltage by the high-voltage transformer 6. The high voltage boosted by the high voltage transformer 6 is rectified by the secondary high voltage rectification circuit 7 into a DC high voltage. The control circuit section 14 supplies a signal for obtaining a desired high-frequency output to the semiconductor switching element 3 in a form reflecting the input current information obtained from the current transformer 12 and drives the semiconductor switching element 3. These electric components constitute the inverter power supply 20. The DC high voltage rectified by the secondary-side high-voltage rectification circuit unit 7 is applied between the anode unit 17 and the cathode unit 16 of the magnetron 8. The high-voltage transformer 6 is provided with another auxiliary secondary winding, and this auxiliary secondary winding constitutes a heating current supply line for supplying power to the cathode section 16 of the magnetron 8 as a heating current. The magnetron 8 receives power supply from the cathode unit 16, oscillates and generates microwaves when the cathode temperature rises and a high voltage is applied between the anode unit 17 and the cathode unit 16. The microwave generated by the magnetron 8 is irradiated on an object to be heated such as food placed in a heating chamber to perform dielectric heating cooking.
[0004]
Thus, it can be seen that the discharge resistor 15 in the inverter power supply 20 does not contribute to a series of magnetron oscillation operations. Further, since a voltage of 4 KV is constantly applied between the anode unit 17 and the cathode unit 16 of the magnetron during operation, a resistance value of 100 MΩ or more is required. FIG. 5 shows an example of the actual component arrangement and wiring pattern of the secondary-side high-voltage rectifier circuit unit 7 including the discharge resistor 15. As shown in FIG. 5, it can be seen that extra wiring is required on the substrate as a component space for the discharge resistor 15. This configuration of disposing a discharge resistor to prevent electric shock is a technique widely known as a well-known fact. (See, for example, Patent Documents 1 and 2).
[0005]
[Patent Document 1]
JP-A-09-245960 (FIG. 1)
[Patent Document 2]
Japanese Utility Model Publication No. 05-017994 (FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the above configuration has the following problems.
[0007]
That is, since the discharge resistor 15 in the inverter power supply 20 does not contribute to a series of operations of magnetron oscillation, cost reduction is progressing. In recent years, there is a problem how to safely arrange and form the discharge resistor 15 at low cost. Was.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a configuration in which a resistor which is directly made of a material is abolished, and the resistor is formed by processing.
[0009]
In the configuration described above, the present invention can directly reduce the material cost, and can realize cost reduction. In addition, if printing is performed on a circuit board in advance, it is possible to save time and effort for processing, and a further reduction in cost can be expected.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is characterized in that an inverter power supply for driving a magnetron and a discharge resistor for preventing electric shock are provided on a secondary high-voltage rectifier circuit portion of the inverter power supply, and the discharge resistor uses a resistor formed by engraving. Was adopted.
[0011]
The invention according to claim 2 is characterized in that an inverter power supply for driving a magnetron and a discharge resistor for preventing electric shock are provided on a secondary high-voltage rectifier circuit of the inverter power supply, and the discharge resistor uses a laser-printed resistor. Was adopted.
[0012]
According to a third aspect of the present invention, there is provided an inverter power supply for driving a magnetron, and a discharge resistor for preventing electric shock is provided in a secondary high-voltage rectifier circuit of the inverter power supply, wherein the discharge resistor uses a resistor formed by printing a substrate. .
[0013]
According to the above configuration, it is possible to reduce the direct material cost of the resistor of the discharge resistor arranged only for preventing electric shock, and to realize a reduction in cost. Further, since the resistor exists on the substrate surface, it is not necessary to take up space as a component, and the space saving of the secondary high-voltage rectifier circuit unit 7 can be realized.
[0014]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
(Example 1)
FIG. 2 is a configuration diagram for forming a resistor by processing in order to arrange the discharge resistor 15 between potentials corresponding to the anode section 17 and the cathode section 16 of the magnetron 8, and in the present embodiment, an engraving apparatus is used. 24, an attempt is made to obtain a resistance value with a carbon body formed when pressed against the substrate 23. In the substrate 23 of the inverter power supply 20, the circuit pattern portion of the discharge resistor placement portion belonging to the solder dip surface is designed in consideration of the insulation distance. The engraving stamp is applied to this portion by the engraving device 24 for a predetermined time as shown by the arrow in FIG. Then, it is separated from the substrate 23 again to complete the engraving mark as a resistor. Also, from the viewpoint of the man-hour, if the engraving is performed together with the in-circuit inspection of the mounted electronic component, the man-hour does not increase. Also in the present embodiment, it is assumed that assembling is performed and engraving is performed after the solder dip. FIG. 1 shows the secondary high-voltage rectifier circuit section 7 on the solder dip surface after the engraving. As shown in FIG. 1, a discharge resistor 15 as a resistor is formed between a cathode potential pattern 21 and an anode potential pattern 22 by engraving.
[0016]
With this configuration, it is possible to reduce the direct material cost of the discharge resistor. In terms of man-hours, the time for inserting the discharge resistor as a part is the same as the time for engraving in this embodiment, and the direct material cost can be reduced entirely. Further, if the engraving is performed together with the in-circuit inspection step as in the present embodiment, the number of steps is reduced, and further cost reduction can be expected. Further, as can be seen by comparing the secondary side high voltage rectifier circuit section 7 shown in FIG. 1 with FIG. 5 showing the conventional secondary side high voltage rectifier circuit section 7, extra pattern wiring is required to obtain extra space as parts. It is possible to reduce the substrate size.
[0017]
(Example 2)
FIG. 3 is a configuration diagram for forming a resistor by processing in order to dispose the discharge resistor 15 between potentials corresponding to the anode section 17 and the cathode section 16 of the magnetron 8. In this embodiment, a laser printing apparatus is used. 25 attempts to obtain a resistance value with a carbon body formed during laser irradiation. In the substrate 23 of the inverter power supply 20, the circuit pattern portion of the discharge resistor placement portion belonging to the solder dip surface is designed in consideration of the insulation distance. A laser irradiating the laser printing device 25 irradiates this portion with the solder dip surface of the substrate 23 and obtains a resistance value with the carbon body to form a discharge resistor 15. As in the first embodiment, if laser printing is also performed at the time of in-circuit inspection of the mounted electronic component in view of the number of man-hours, the man-hour does not increase. Also in this embodiment, it is assumed that laser printing is performed after assembly and after solder dip. As shown in FIG. 1, the secondary high-voltage rectifier circuit portion 7 on the solder dip surface after laser printing has a discharge resistor, which is a resistor formed by laser printing between a cathode potential pattern 21 and an anode potential pattern 22 as shown in FIG. 15 is engraved.
[0018]
With this configuration, it is possible to reduce the direct material cost of the discharge resistor. In terms of man-hours, the time for inserting the discharge resistor as a part is the same as the time for laser printing in this embodiment, and the direct material cost can be reduced entirely. Further, if laser printing is performed together with the in-circuit inspection step as in this embodiment, the number of steps can be reduced, and further cost reduction can be expected. Further, as can be seen by comparing the secondary side high voltage rectifier circuit section 7 shown in FIG. 1 with FIG. 5 showing the conventional secondary side high voltage rectifier circuit section 7, extra pattern wiring is required to obtain extra space as parts. And a smaller substrate size can be expected (Example 3)
In this embodiment, in order to dispose the discharge resistor 15 between the potential corresponding to the anode section 17 and the cathode section 16 of the magnetron 8, a printed carbon resistor is mounted on the solder dip surface of the substrate 23 of the inverter power supply 20. It was designed to have it from the beginning.
[0019]
With this configuration, a discharge resistor 15 is formed by a printed resistor between the cathode potential pattern 21 and the anode potential pattern 22, as shown in FIG. Although the direct material cost of the discharge resistor itself does not change, the man-hour for inserting a conventional component can be omitted. Further, in the secondary high-voltage rectification circuit section 7, as can be seen from comparison with FIG. 5 showing the conventional secondary high-voltage rectification circuit section 7, there is no need to extend the pattern wiring in order to obtain a space as a component. Size reduction can also be expected.
[0020]
【The invention's effect】
As described above, according to the high-frequency heating power supply device of the present invention, the direct material cost of the discharge resistor existing in the secondary high-voltage rectifier circuit required for electric shock prevention is reduced, and the processing is performed together with the in-circuit inspection. It is also possible to reduce the number of steps and configure a discharge resistor similar to the conventional one (Examples 1 and 2). Further, by printing a resistor from the beginning on the substrate of the inverter power supply itself, it is possible to reduce the number of steps required for assembly (Example 3). Further, the size of the substrate can be reduced without extending the pattern wiring by leaving an extra space on the substrate for inserting components (Examples 1, 2, and 3).
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a secondary-side high-voltage rectifier circuit unit in Embodiments 1, 2, and 3 of the present invention. FIG. FIG. 4 is a configuration diagram of a conventional inverter power supply circuit in Embodiment 2. FIG. 5 is a configuration diagram of a conventional secondary-side high-voltage rectification circuit unit.
6 High-voltage transformer 15 Discharge resistor 18 High-voltage capacitor 19 High-voltage capacitor 20 Inverter power supply 21 Cathode potential pattern 22 Anode potential pattern 23 Substrate 24 Burning device 25 Laser printing device

Claims (3)

マグネトロンを駆動するインバータ電源と、前記インバータ電源の二次側高圧整流回路部に感電防止の放電抵抗を備え、前記放電抵抗は焼刻印による抵抗体を使用することを特徴とした高周波加熱電源装置。A high-frequency heating power supply apparatus comprising: an inverter power supply for driving a magnetron; and a discharge resistor for preventing electric shock in a secondary high-voltage rectifier circuit of the inverter power supply, wherein the discharge resistor uses a resistor formed by engraving. マグネトロンを駆動するインバータ電源と、前記インバータ電源の二次側高圧整流回路部に感電防止の放電抵抗を備え、前記放電抵抗はレーザー印字による抵抗体を使用することを特徴とした高周波加熱電源装置。A high frequency heating power supply apparatus comprising: an inverter power supply for driving a magnetron; and a discharge resistor for preventing electric shock in a secondary high voltage rectifier circuit of the inverter power supply, wherein the discharge resistor uses a resistor printed by laser. マグネトロンを駆動するインバータ電源と、前記インバータ電源の二次側高圧整流回路部に感電防止の放電抵抗を備え、前記放電抵抗は基板部の印刷による抵抗体を使用することを特徴とした高周波加熱電源装置。A high-frequency heating power supply comprising: an inverter power supply for driving a magnetron; and a discharge resistor for preventing electric shock in a secondary high-voltage rectifier circuit of the inverter power supply, wherein the discharge resistor uses a resistor printed on a substrate. apparatus.
JP2003073849A 2003-03-18 2003-03-18 High-frequency heating power supply device Pending JP2004281319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073849A JP2004281319A (en) 2003-03-18 2003-03-18 High-frequency heating power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073849A JP2004281319A (en) 2003-03-18 2003-03-18 High-frequency heating power supply device

Publications (1)

Publication Number Publication Date
JP2004281319A true JP2004281319A (en) 2004-10-07

Family

ID=33289645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073849A Pending JP2004281319A (en) 2003-03-18 2003-03-18 High-frequency heating power supply device

Country Status (1)

Country Link
JP (1) JP2004281319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204426A (en) * 2010-03-25 2011-10-13 Panasonic Corp Power supply for driving magnetron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204426A (en) * 2010-03-25 2011-10-13 Panasonic Corp Power supply for driving magnetron

Similar Documents

Publication Publication Date Title
Reatti Low-cost high power-density electronic ballast for automotive HID lamp
EP1880584B1 (en) Electronic ballast having a flyback cat-ear power supply
US5854538A (en) Circuit arrangement for electrode pre-heating of a fluorescent lamp
AU772157B2 (en) Magnetron drive step-up transformer and transformer of magnetron drive power supply
JP2007535101A (en) Circuit device for operating high-pressure discharge lamp and method for operating high-pressure discharge lamp
Alonso et al. High-voltage power supply for ozone generation based on piezoelectric transformer
US6670778B2 (en) AC power generating apparatus having electrolytic capacitor and ceramic capacitor
JP5464328B2 (en) Power supply and lighting fixture
JP2004281319A (en) High-frequency heating power supply device
JP4045138B2 (en) Induction heating cooker
KR100436148B1 (en) Microwave oven
AU777106B2 (en) Ballast for gas discharge lamps with shutdown of the filament heating
KR100729875B1 (en) Switching ballast device
KR100735098B1 (en) Microwave oven and method for controlling voltage thereof
US6747423B2 (en) Circuit configuration to operate a gas discharge lamp
JP3159000B2 (en) Power supply for magnetron drive
Ribarich et al. A new model for high-frequency electronic ballast design
US20050184678A1 (en) Starting device for a high-pressure discharge lamp, and an illuminating system
JP3404894B2 (en) Induction heating cooker
JPH0272583A (en) High frequency heater
JPS62198083A (en) Cooker
JP2000184754A (en) Magnetron driver
JPH01146282A (en) High frequency heater
JP2011030296A (en) Power supply unit
JPH01258389A (en) Magnetron feeder device