JP2004281292A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004281292A
JP2004281292A JP2003073170A JP2003073170A JP2004281292A JP 2004281292 A JP2004281292 A JP 2004281292A JP 2003073170 A JP2003073170 A JP 2003073170A JP 2003073170 A JP2003073170 A JP 2003073170A JP 2004281292 A JP2004281292 A JP 2004281292A
Authority
JP
Japan
Prior art keywords
separator
battery
electrolyte secondary
positive electrode
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073170A
Other languages
Japanese (ja)
Inventor
Takuya Morimoto
卓弥 森本
Kikuzo Miyamoto
吉久三 宮本
Ryuji Oshita
竜司 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003073170A priority Critical patent/JP2004281292A/en
Publication of JP2004281292A publication Critical patent/JP2004281292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having improved safety with no burst and smoking even in internal short-circuit when the battery is deformed with mechanical outer force to cause the breakage of a separator, while specifying a property value for the separator. <P>SOLUTION: The band separator used for the nonaqueous electrolyte secondary battery is specified that it has a vertical tensile break strength (tensile break width strength (N/cm)=tensile break strength (N/cm<SP>2</SP>)×film thickness (cm)) of 2.0N/cm or more and 10.0N/cm or less and a break elongation of 40% or more and 200% or less in the winding direction of the separator. In this specification, when the battery is deformed with mechanical outer force applied thereto, the separator is readily broken and has a larger break area, preventing local concentration of a short-circuit current. Thus, the battery has improved safety with no burst and smoking even in internal short-circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は負極合剤が負極集電体に塗布された帯状負極と、正極合剤が正極集電体に塗布された帯状正極が帯状セパレータを介して相対向して渦巻状に巻回された渦巻状電極群を備えた非水電解質二次電池に係わり、特に、電池が変形しても安全性に優れた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、携帯電話、ノートパソコン、小型ビデオカメラ等の携帯用電子・通信機器等に用いられる電池として、リチウムイオンの吸蔵・放出が可能な負極活物質(例えば、黒鉛、炭素等)と正極活物質(例えば、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)等のリチウム含有遷移金属酸化物)を備えた非水電解質二次電池が、小型軽量でかつ高容量な電池として広く使用されるようになった。
【0003】
この種の非水電解質二次電池は以下のようにして作製されるのが一般的である。即ち、まず、負極集電体に負極活物質を含有する負極合剤を塗布して帯状負極を作製するとともに、正極集電体に正極活物質を含有する正極合剤を塗布して帯状正極を作製する。この後、得られた帯状負極と帯状正極を帯状セパレータを介して相対向させて積層した後、これらを渦巻状に巻回して横断面形状が真円形状の渦巻状電極群とする。ついで、これを円筒状外装缶に収容したり、あるいは真円形状の渦巻状電極群を加圧成形して横断面形状が扁平な楕円形状とし、これを角筒状外装缶に収容して、非水電解液を注液して非水電解質二次電池としている。
【0004】
ところで、正極と負極との間を隔離するセパレータの機能としては、基本的には、正極と負極が直接短絡するのを防止する短絡防止機能を有するとともに、その微多孔構造によりイオンを透過させて電池反応が可能となるようなイオン透過機能を有することが必要条件となる。しかしながら、この種の非水電解質二次電池に用いられるセパレータとしては、安全性向上の観点からシャットダウン機能(SD機能)を有するものが採用されるようになってきている。このSD機能とは、誤接続などにより異常電流が発生した場合に、電池内部温度の上昇に伴ってセパレータ材料の合成樹脂が溶融変形して微多孔を塞ぎ、電池反応を停止させる機能を有することを意味する。
【0005】
ところが、電池を落下させた場合のように、機械的な外力が電池に付与されて電池が変形した場合においては、セパレータが破断して、正、負極が接触することによる内部短絡は阻止でないという問題があった。そこで、機械的外力による電池の変形によってセパレータが破断し、内部短絡が生じたとしても、電池温度の急激な上昇を抑えて、電池の破壊までには至らないようにした電池が、特許文献1(特公平5−51143号公報)にて提案されるようになった。
【0006】
上述した特許文献1においては、セパレータの巻回方向に対して垂直方向の破断強度と破断伸びの積と、水平方向の破断強度と破断伸びの積との比率が、0.67以上1.5以下である絶縁性の微多孔膜をセパレータとして用いている。これにより、このセパレータに機械的外力が加わると、巻回方向と水平の方向あるいは垂直の方向に限定されずに、ほぼ同時に破壊されるため、破断部分の面積は大となり、短絡電流が局部に集中することがないので温度の異常上昇が抑制されるといわれている。
【特許文献1】
特公平5−51143号公報
【0007】
【発明が解決しようとする課題】
ところが、上述した特公平5−51143号公報にて提案されたセパレータにおいては、セパレータの巻回方向に対して、垂直方向の引張り破断幅強度(但し、引張り破断幅強度(N/cm)=引張り破断強度(N/cm)×膜厚(cm)である)が2〜8N/cmで、水平方向の引張り破断幅強度が9〜26N/cmあるが、垂直方向の破断強度(引張り破断伸度)は300%以上である。
【0008】
このため、このセパレータに機械的外力が加わると、垂直方向にまず破断されることとなるが、引張り破断伸度が200%を超える場合は、大きく破断されにくく、正、負極が直接接触する部分の面積が小さくなる。このため、この部分に短絡電流が集中して、局部的に温度が異常上昇し、やがては、電池が破裂、発煙に至るようになるという問題点があった。
【0009】
そこで、本発明は上記問題点を解消するためになされたものであって、セパレータの物性値を規定して、機械的外力により電池が変形してセパレータが破断し、内部短絡が生じたとしても、電池が破裂、発煙に至らないように安全性が向上した非水電解質二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の非水電解質二次電池に用いられる帯状セパレータは、このセパレータの巻回方向に対して、垂直方向の引張り破断幅強度(但し、引張り破断幅強度(N/cm)=引張り破断強度(N/cm)×膜厚(cm)である)が2.0N/cm以上で、10.0N/cm以下で、同垂直方向の引張り破断伸度が40%以上で、200%以下になるように規定している。このように、垂直方向の引張り破断幅強度が10.0N/cm以下であり、かつ、引張り破断伸度が40%以上で、200%以下であれば、この電池に機械的外力が加わって電池が変形すると、セパレータが容易に破断して、かつ破断面積も大きくなるため、短絡電流が局部に集中することが防止できるようになる。これにより、内部短絡が生じたとしても、電池が破裂、発煙に至らないように安全性が向上する。
【0011】
この場合、垂直方向の引張り破断幅強度が2.0N/cm未満のセパレータを均一に成膜することは困難であるため、垂直方向の引張り破断幅強度の下限値は2.0N/cmとするのが望ましい。また、セパレータの垂直方向の引張り破断伸度が40%未満ではセパレータを均一に製膜することが困難であり、200%を越えるようになると、伸びによりセパレータが大きく破断されにくくなって、正、負極が接触する面積が小さくなる。このため、短絡電流が集中して局部的に温度が異常上昇し、電池が破裂・発煙に至るようになる。したがって、セパレータの垂直方向の引張り破断伸度は40%以上で、200%以下になるようにするのが望ましい。
【0012】
【発明の実施の形態】
ついで、本発明の実施の形態を以下の図1及び図2に基づいて説明するが、本発明はこの実施の形態に何ら限定されるものでなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1は本発明の非水電解液二次電池を模式的に示す断面図であり、図1(a)は、図1(b)のB−B断面を示しており、図1(b)は、図1(a)のA−A断面を示している。また、図2はセパレータの巻回方向に対して垂直方向に加圧力を加える状態を模式的に示す正面図であり、図2(a)は加圧前の状態を示し、図2(b)は加圧後の状態を示す。
【0013】
1.負極の作製
まず、(002)面の面間隔(d002)が0.336nmで、c軸方向の結晶子の大きさ(Lc)が200nmで平均粒径が20μmの塊状黒鉛(2950℃で焼成した人造黒鉛)の粉末を用意した。ついで、この黒鉛粉末と、結着剤としてのスチレン−ブタジエンゴム(SBR)とのディスパージョン(固形分は48質量%)を水に分散させた後、増粘剤となるカルボキシメチルセルロース(CMC)を添加、混合して負極スラリーを調製した。なお、塊状黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒鉛:SBR:CMC=95:3:2となるように調製した。
【0014】
ついで、銅箔からなる負極集電体を用意し、上述のように作製した負極スラリーをこの負極集電体の両面に、負極集電体の単位面積当たり100g/mをドクターブレード法により塗布して、負極活物質層を形成した。この後、100℃で2時間真空乾燥させた後、黒鉛材料の充填密度が1.6g/cmになるように圧延し、所定の形状に切断して帯状の負極板11を作製した。なお、負極板11の一端部から延出して負極リード11aが形成されている。
【0015】
2.正極の作製
平均粒径5μmのコバルト酸リチウム(LiCoO)粉末と導電剤としての人造黒鉛粉末を質量比で9:1の割合で混合して正極合剤を調製した。この正極合剤と、N−メチル−2−ピロリドン(NMP)にポリフッ化ビニリデン(PVdF)を5質量%溶解した結着剤溶液とを固形分の質量比で95:5となるように混練して、正極スラリーを調製した。
【0016】
ついで、アルミニウム箔からなる正極集電体を用意し、上述のように作製した正極スラリーを正極集電体の両面に、正極集電体の単位面積当たり240g/mをドクターブレード法により塗布して、正極合剤層を形成した。この後、150℃で2時間真空乾燥させた後、正極合剤の充填密度が3.2g/cmになるように圧延し、所定の形状に切断して帯状の正極板12を作製した。なお、正極板12においては、巻回時に最外周に配置される部分には正極スラリーを塗布せず、アルミニウム箔を切り起こして正極リード(図示せず)を形成している。
【0017】
3.セパレータの調製
ポリエチレン(PE)の含有量が99質量%の8種類の微多孔膜(厚みが20μmのもの)を用い、これらの微多孔膜の垂直方向(この場合の垂直方向は後述の電極群の巻回方向と垂直の方向を意味し、以下ではTDと表記する)の引張り破断幅強度PTD(N/cm)と破断伸度STD(%)、および水平方向(この場合の水平方向は後述の電極群の巻回方向と水平の方向を意味、以下ではMDと表記する)の破断幅強度PMD(N/cm)と引張り破断伸度SMD(%)、並びに膜厚(cm)を後述のようにして測定して、8種類の微多孔膜セパレータ13(a,b,c,d,e,f,g,h)を調製した。
【0018】
ここで、破断強度および破断伸度の計測方法は、JISK−7127に準じて、幅10mm、長さ50mmのサンプルを作製して、チャック部分の試験片の長さは2.5cmとし、その両面にチャックによるノッチ破断防止の為のセロハンテープを貼り、これを試験片とした。この試験片を温度23±2℃、引張り速度200mm/minの条件で、引張り破断強度P1TD(N/cm)及びP1MD(N/cm)を測定すると共に、引張り破断伸度STD(%)及びSMD(%)を測定した。そして、PTD(N/cm)=P1TD(N/cm)×膜厚(cm)に基づいてPTD(N/cm)を求めるとともに、PMD(N/cm)=P1MD(N/cm)×膜厚(cm)に基づいてPMD(N/cm)を求めた。
【0019】
この場合、PTDが3.0N/cm、STDが80%で、PMDが20.0N/cm、SMDが30%で、膜厚が20μmのものをセパレータaとした。PTDが7.0N/cm、STDが110%で、PMDが22.0N/cm、SMDが40%で、膜厚が18μmのものをセパレータbとした。PTDが10.0N/cm、STDが120%で、PMDが17.0N/cm、SMDが30%で、膜厚が19μmのものをセパレータcとした。PTDが10.0N/cm、STDが110%で、PMDが30.0N/cm、SMDが20%で、膜厚が18μmのものをセパレータdとした。
【0020】
また、PTDが9.0N/cm、STDが180%で、PMDが22.0N/cm、SMDが30%で、膜厚が20μmのものをセパレータeとした。PTDが14.0N/cm、STDが60%で、PMDが20.0N/cm、SMDが40%で、膜厚が20μmのものをセパレータfとした。PTDが6.0N/cm、STDが220%で、PMDが23.0N/cm、SMDが40%で、膜厚が19μmのものをセパレータgとした。PTDが6.0N/cm、STDが400%で、PMDが40.0N/cm、SMDが60%で、膜厚が20μmのものをセパレータhとした。
【0021】
4.非水電解液二次電池の作製
ついで、上述のようにして作製した負極板11と正極板12とを用意し、これらの間に上述のように調製したセパレータ13(a,b,c,d,e,f,g,h)を介在させて重ね合わせて渦巻状に巻回した。ついで、これを横断面形状が扁平な楕円状になるように押しつぶして扁平状の電極群を作製した後、この扁平状の電極群を扁平角筒状の外装缶14の開口部より挿入した。ついで、電極群の上部にスペーサ16を配置した後、電極群の負極板11より延出する負極集電タブ11aを封口体15に設けられた端子板15cの内底部に溶接した。一方、電極群の正極板12より延出する正極リードを外装缶14と封口体15との間に挟み込むようにして、封口体15を外装缶14の開口部に配置した。ついで、外装缶14の開口部の周壁と封口体15との間をレーザ溶接した。
【0022】
そして、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)からなる混合溶媒(EC:MEC=30:70:体積比)にLiPFを1モル/リットル溶解して有機電解液を調製した。このように調製した有機電解液を各端子板15cに設けられた透孔を通して、外装缶14内に注入した後、各負極端子15aを各端子板15cに溶接して封止した。これにより、設計容量が700mAhで角形(厚み:5mm、幅:30mm、高さ:48mm)の非水電解質二次電池10(A,B,C,D,E,F,G,H)を作製した。なお、この封口体15には、図示しない安全弁が設けられていて、電池内にガスが発生して内圧が上昇すると、発生したガスを電池外に放出するようになされている。
【0023】
ここで、セパレータaを用いたものを電池Aとし、セパレータbを用いたものを電池Bとし、セパレータcを用いたものを電池Cとし、セパレータdを用いたものを電池Dとし、セパレータeを用いたものを電池Eとし、セパレータfを用いたものを電池Fとし、セパレータgを用いたものを電池Gとし、セパレータhを用いたものを電池Hとした。
【0024】
5.試験
ついで、これらの電池10(A,B,C,D,E,F,G,H)を用いて、まず、図2(a)に示すように、各電池10(A,B,C,D,E,F,G,H)の上に治具20を押し当てた後、図2(b)に示すように、この治具20を各電池(A,B,C,D,E,F,G,H)の厚みの1/2の深さになるまで押圧した。その結果、表1に示すような結果が得られた。
【0025】
【表1】

Figure 2004281292
【0026】
上記表1の結果から明らかなように、電池A,B,C,D,Eにおいては、外部から押し潰しのような機械的外力が加わった場合に非常に優れた安全性が得られることが分かる。これは、セパレータの巻回方向に対して垂直方向の引張り破断幅強度が10.0N/cm以下で、且つ、破断伸度が40%以上で、200%以下であれば、機械的外力が加わった場合に、セパレータが容易に破断し、破断部分の面積が即大となったためと考えられる。これにより、短絡電流が局部に集中することがなくなって、温度の異常上昇が抑制されて、安全性が向上したと考えられる。
【0027】
一方、電池G,Hにおいては、セパレータの巻回方向に対して垂直方向の引張り破断幅強度は10.0N/cm以下であるが、垂直方向の破断伸度が220%および400%と大きくなっている。このため、伸びによりセパレータが大きく破断されにくく、正極と負極が接触する部分の面積が小さくなる。このため、短絡電流が集中して局部的に温度が異常上昇し電池が破裂・発煙に至ったと考えられる。さらに、電池Fにおいては、セパレータの巻回方向に対して垂直方向の引張り破断幅強度14.0N/cmと大きいために、セパレータが大きく破断されにくく、正極と負極が接触する部分の面積が小さくなる。このため、短絡電流が集中して局部的に温度が異常上昇し電池が破裂・発煙に至ったと考えられる。
【0028】
【発明の効果】
上述したように、本発明の非水電解質二次電池に用いられる帯状セパレータは、このセパレータの巻回方向に対して、垂直方向の引張り破断幅強度が2.0N/cm以上で、10.0N/cm以下で、且つ、セパレータの垂直方向の引張り破断伸度が40%以上で、200%以下になるように規定しているので、この電池に機械的外力が加わって電池が変形すると、セパレータが容易に破断して、かつ破断面積も大きくなる。このため、短絡電流が局部に集中することが防止できるようになる。これにより、内部短絡が生じたとしても、電池が破裂、発煙に至らないように安全性が向上することとなる。
【0029】
なお、上述した実施の形態においては、負極活物質として天然黒鉛を用いる例について説明したが、天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得るカーボン系材料、例えば、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等を用いてもよいし、金属リチウム、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金、SnO、SnO、TiO、Nb等の電位が正極活物質に比べて卑な金属酸化物を用いてもよい。
【0030】
さらに、上述した実施の形態においては、正極活物質としてコバルト酸リチウム(LiCoO)を用いる例について説明したが、コバルト酸リチウムに代えて、スピネル型マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、あるいはこれらの混合物を用いるようにしてもよい。
【図面の簡単な説明】
【図1】本発明の非水電解液二次電池を模式的に示す断面図であり、図1(a)は、図1(b)のB−B断面を示しており、図1(b)は、図1(a)のA−A断面を示している。
【図2】セパレータの巻回方向に対して垂直方向に加圧力を加える状態を模式的に示す正面図であり、図2(a)は加圧前の状態を示し、図2(b)は加圧後の状態を示す。
【符号の説明】
10…非水電解液二次電池、11…負極板、11a…負極リード、12…正極板、13…セパレータ、14…外装缶(正極端子)、15…封口体、15a…負極端子、15b…絶縁体、15c…端子板、16…スペーサ[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, a band-shaped negative electrode in which a negative electrode mixture is applied to a negative electrode current collector, and a band-shaped positive electrode in which a positive electrode mixture is applied to a positive electrode current collector are spirally wound opposite to each other via a band-shaped separator. The present invention relates to a non-aqueous electrolyte secondary battery having a spiral electrode group, and more particularly to a non-aqueous electrolyte secondary battery having excellent safety even when the battery is deformed.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as a battery used in portable electronic and communication devices such as a mobile phone, a notebook computer, and a small video camera, a negative electrode active material (eg, graphite, carbon, etc.) and a positive electrode active material capable of inserting and extracting lithium ions. (For example, non-aqueous electrolyte secondary batteries provided with lithium-containing transition metal oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 )) are widely used as small, lightweight, and high-capacity batteries. Became used.
[0003]
This type of non-aqueous electrolyte secondary battery is generally manufactured as follows. That is, first, a negative electrode mixture containing a negative electrode active material is applied to a negative electrode current collector to prepare a band-shaped negative electrode, and a positive electrode mixture containing a positive electrode active material is applied to a positive electrode current collector to form a band-shaped positive electrode. Make it. Thereafter, the obtained strip-shaped negative electrode and strip-shaped positive electrode are laminated to face each other with a strip-shaped separator interposed therebetween, and they are spirally wound to form a spiral electrode group having a perfect circular cross section. Then, this is housed in a cylindrical outer can, or a perfect circular spiral electrode group is pressed and formed into a flat elliptical cross-sectional shape, which is housed in a rectangular cylindrical outer can, A non-aqueous electrolyte is injected to form a non-aqueous electrolyte secondary battery.
[0004]
By the way, as a function of the separator for separating the positive electrode and the negative electrode, basically, it has a short-circuit preventing function of preventing a direct short-circuit between the positive electrode and the negative electrode, and has a microporous structure that allows ions to pass therethrough. A necessary condition is to have an ion transmission function that enables a battery reaction. However, as a separator used in this type of nonaqueous electrolyte secondary battery, a separator having a shutdown function (SD function) has been used from the viewpoint of improving safety. The SD function has a function to stop the battery reaction when the abnormal internal current occurs due to incorrect connection, etc., as the synthetic resin of the separator material melts and deforms as the battery internal temperature rises to close the micropores. Means
[0005]
However, when a battery is deformed by applying a mechanical external force to the battery, such as when the battery is dropped, the separator is broken, and an internal short circuit caused by contact between the positive electrode and the negative electrode is not prevented. There was a problem. Therefore, even if the separator is broken due to deformation of the battery due to a mechanical external force and an internal short circuit occurs, a battery in which the battery temperature is prevented from suddenly rising to prevent the battery from being destroyed has been disclosed in Japanese Patent Application Laid-Open No. H10-163,897. (Japanese Patent Publication No. 5-51143).
[0006]
In Patent Document 1 described above, the ratio of the product of the breaking strength and the breaking elongation in the vertical direction to the winding direction of the separator and the product of the breaking strength and the breaking elongation in the horizontal direction is 0.67 or more and 1.5 or more. The following insulating microporous film is used as a separator. Thus, when a mechanical external force is applied to the separator, the separator is destroyed almost simultaneously, without being limited to the winding direction and the horizontal direction or the vertical direction, so that the area of the broken portion becomes large, and the short-circuit current is locally generated. It is said that since there is no concentration, abnormal rise in temperature is suppressed.
[Patent Document 1]
Japanese Patent Publication No. 5-51143
[Problems to be solved by the invention]
However, in the separator proposed in Japanese Patent Publication No. 5-511143, the tensile breaking width strength in the direction perpendicular to the winding direction of the separator (however, the tensile breaking width strength (N / cm) = tensile) The breaking strength (N / cm 2 ) × film thickness (cm)) is 2 to 8 N / cm, the horizontal tensile breaking width strength is 9 to 26 N / cm, but the vertical breaking strength (tensile breaking elongation) is Degree) is 300% or more.
[0008]
Therefore, when a mechanical external force is applied to the separator, the separator is first broken in the vertical direction. However, when the tensile elongation at break exceeds 200%, the separator is hardly broken, and the positive and negative electrodes are in direct contact. Area becomes smaller. For this reason, there is a problem that the short-circuit current concentrates on this portion, the temperature rises locally locally, and eventually the battery explodes and smokes.
[0009]
Therefore, the present invention has been made in order to solve the above problems, the physical properties of the separator is defined, the battery is deformed by mechanical external force, the separator is broken, and even if an internal short circuit occurs. It is another object of the present invention to provide a non-aqueous electrolyte secondary battery having improved safety so that the battery does not burst or emit smoke.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the belt-like separator used in the nonaqueous electrolyte secondary battery of the present invention has a tensile breaking width strength in a direction perpendicular to the winding direction of the separator (however, the tensile breaking width strength (N / cm) = tensile breaking strength (N / cm 2 ) × film thickness (cm)) is 2.0 N / cm or more, 10.0 N / cm or less, and the tensile breaking elongation in the same vertical direction is 40% or more. Stipulates that it be 200% or less. As described above, when the tensile strength at break in the vertical direction is 10.0 N / cm or less and the tensile elongation at break is 40% or more and 200% or less, a mechanical external force is applied to this battery to make the battery When the is deformed, the separator is easily broken and the broken area is increased, so that it is possible to prevent the short-circuit current from being concentrated on a local portion. Thereby, even if an internal short circuit occurs, the safety is improved so that the battery does not burst or smoke.
[0011]
In this case, since it is difficult to uniformly form a separator having a tensile strength at break in the vertical direction of less than 2.0 N / cm, the lower limit of the tensile strength at break in the vertical direction is 2.0 N / cm. It is desirable. When the tensile elongation at break in the vertical direction of the separator is less than 40%, it is difficult to form a uniform film of the separator. When the elongation exceeds 200%, the separator is hardly broken due to elongation. The area where the negative electrode contacts is reduced. As a result, the short-circuit current is concentrated and the temperature rises abnormally locally, causing the battery to burst or smoke. Therefore, the tensile elongation at break in the vertical direction of the separator is desirably 40% or more and 200% or less.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2 below. However, the present invention is not limited to this embodiment at all and may be appropriately changed without changing the object of the present invention. It is possible to implement. FIG. 1 is a cross-sectional view schematically showing the non-aqueous electrolyte secondary battery of the present invention, and FIG. 1A shows a BB cross section of FIG. 1B, and FIG. (b) shows an AA cross section of FIG. 1 (a). FIG. 2 is a front view schematically showing a state in which a pressing force is applied in a direction perpendicular to the winding direction of the separator, and FIG. 2A shows a state before pressing, and FIG. Indicates a state after pressurization.
[0013]
1. Preparation of Negative Electrode First, massive graphite (calcination at 2950 ° C.) having a ( 002 ) plane spacing (d 002 ) of 0.336 nm, a crystallite size (Lc) in the c-axis direction of 200 nm, and an average particle size of 20 μm Prepared artificial graphite) powder was prepared. Next, a dispersion (solid content: 48% by mass) of this graphite powder and styrene-butadiene rubber (SBR) as a binder is dispersed in water, and carboxymethyl cellulose (CMC) as a thickener is dispersed. The mixture was added and mixed to prepare a negative electrode slurry. In addition, the mass composition ratio after drying of massive graphite, SBR, and CMC was adjusted so that massive graphite: SBR: CMC = 95: 3: 2.
[0014]
Next, a negative electrode current collector made of copper foil was prepared, and the negative electrode slurry prepared as described above was applied to both surfaces of the negative electrode current collector at a rate of 100 g / m 2 per unit area of the negative electrode current collector by a doctor blade method. Thus, a negative electrode active material layer was formed. Then, after vacuum drying at 100 ° C. for 2 hours, it was rolled so that the filling density of the graphite material became 1.6 g / cm 3 , and cut into a predetermined shape to produce a strip-shaped negative electrode plate 11. In addition, a negative electrode lead 11 a is formed to extend from one end of the negative electrode plate 11.
[0015]
2. Preparation of Positive Electrode Lithium cobaltate (LiCoO 2 ) powder having an average particle diameter of 5 μm and artificial graphite powder as a conductive agent were mixed at a mass ratio of 9: 1 to prepare a positive electrode mixture. This positive electrode mixture and a binder solution obtained by dissolving 5% by mass of polyvinylidene fluoride (PVdF) in N-methyl-2-pyrrolidone (NMP) are kneaded so that the mass ratio of the solid content becomes 95: 5. Thus, a positive electrode slurry was prepared.
[0016]
Next, a positive electrode current collector made of an aluminum foil is prepared, and the positive electrode slurry prepared as described above is applied to both surfaces of the positive electrode current collector at 240 g / m 2 per unit area of the positive electrode current collector by a doctor blade method. Thus, a positive electrode mixture layer was formed. Then, after vacuum drying at 150 ° C. for 2 hours, it was rolled so that the packing density of the positive electrode mixture became 3.2 g / cm 3 , and cut into a predetermined shape to produce a belt-shaped positive electrode plate 12. In the positive electrode plate 12, a positive electrode slurry (not shown) is formed by cutting and raising an aluminum foil without applying a positive electrode slurry to a portion arranged on the outermost periphery at the time of winding.
[0017]
3. Preparation of Separator Eight types of microporous membranes (thickness: 20 μm) having a polyethylene (PE) content of 99% by mass were used, and the vertical directions of these microporous membranes (the vertical direction in this case was an electrode group described later) TD (N / cm) and the elongation at break S TD (%), and the horizontal direction (in this case, the horizontal direction). Means the winding direction and the horizontal direction of the electrode group described later, and is hereinafter referred to as MD). The breaking width strength P MD (N / cm), the tensile breaking elongation S MD (%), and the film thickness (cm) ) Was measured as described below, and eight types of microporous membrane separators 13 (a, b, c, d, e, f, g, h) were prepared.
[0018]
Here, the measurement method of the breaking strength and the breaking elongation is as follows, according to JIS K-7127, by preparing a sample having a width of 10 mm and a length of 50 mm, setting the length of the test piece of the chuck portion to 2.5 cm, A cellophane tape was applied to the notch to prevent notch breakage by the chuck, and this was used as a test piece. The tensile strength at break P1 TD (N / cm 2 ) and P1 MD (N / cm 2 ) of the test piece were measured at a temperature of 23 ± 2 ° C. and a tensile speed of 200 mm / min, and the tensile elongation at break S TD was measured. (%) And S MD (%) were measured. Then, P TD (N / cm) = P1 TD with obtaining the P TD (N / cm) on the basis of the (N / cm 2) × thickness (cm), P MD (N / cm) = P1 MD (N / Cm 2 ) × film thickness (cm) to determine P MD (N / cm).
[0019]
In this case, P TD is 3.0 N / cm, in S TD is 80% P MD is 20.0N / cm, at S MD 30%, thickness was separator a those 20 [mu] m. P TD is 7.0 N / cm, in S TD is 110% P MD is 22.0N / cm, at S MD is 40%, the film thickness was those 18μm separator b. P TD is 10.0 N / cm, in S TD is 120% P MD is 17.0 N / cm, in S MD 30%, thickness was separators c ones 19 .mu.m. P TD is 10.0 N / cm, in S TD is 110% P MD is 30.0 N / cm, in S MD 20%, thickness was those 18μm separator d.
[0020]
Also, P TD is 9.0 N / cm, in S TD is 180% P MD is 22.0N / cm, at S MD 30%, thickness was separators e those 20 [mu] m. P TD is 14.0 N / cm, in S TD is 60% P MD is 20.0N / cm, at S MD is 40%, the film thickness was those 20μm separator f. P TD is 6.0 N / cm, in S TD is 220% P MD is 23.0N / cm, at S MD is 40%, the film thickness was those 19μm separator g. P TD is 6.0 N / cm, in S TD is 400% P MD is 40.0N / cm, at S MD 60%, thickness was separators h ones 20 [mu] m.
[0021]
4. Preparation of Nonaqueous Electrolyte Secondary Battery Next, the negative electrode plate 11 and the positive electrode plate 12 prepared as described above are prepared, and the separator 13 (a, b, c, d) prepared as described above is interposed therebetween. , E, f, g, and h) are interposed and spirally wound. Next, this was crushed so that the cross-sectional shape became a flat elliptical shape to produce a flat electrode group, and this flat electrode group was inserted through the opening of the flat rectangular cylindrical outer can 14. Next, after disposing the spacer 16 on the upper part of the electrode group, the negative electrode current collecting tab 11 a extending from the negative electrode plate 11 of the electrode group was welded to the inner bottom of the terminal plate 15 c provided on the sealing body 15. On the other hand, the sealing body 15 was arranged at the opening of the outer can 14 so that the positive electrode lead extending from the positive electrode plate 12 of the electrode group was sandwiched between the outer can 14 and the sealing body 15. Next, laser welding was performed between the peripheral wall of the opening of the outer can 14 and the sealing body 15.
[0022]
Then, 1 mol / liter of LiPF 6 was dissolved in a mixed solvent (EC: MEC = 30: 70: volume ratio) composed of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) to prepare an organic electrolyte. The thus prepared organic electrolytic solution was injected into the outer can 14 through a through hole provided in each terminal plate 15c, and then each negative electrode terminal 15a was welded and sealed to each terminal plate 15c. Thus, a square (thickness: 5 mm, width: 30 mm, height: 48 mm) non-aqueous electrolyte secondary battery 10 (A, B, C, D, E, F, G, H) having a design capacity of 700 mAh is manufactured. did. The sealing member 15 is provided with a safety valve (not shown) so that when a gas is generated in the battery and the internal pressure increases, the generated gas is discharged to the outside of the battery.
[0023]
Here, the battery A using the separator a, the battery B using the separator b, the battery C using the separator c, the battery D using the separator d, and the separator e The battery used was battery E, the battery using separator f was battery F, the battery using separator g was battery G, and the battery using separator h was battery H.
[0024]
5. Test Then, using these batteries 10 (A, B, C, D, E, F, G, H), first, as shown in FIG. 2A, each battery 10 (A, B, C, D, E, F, G, H), the jig 20 is pressed onto each of the batteries (A, B, C, D, E, E) as shown in FIG. (F, G, H). As a result, the results shown in Table 1 were obtained.
[0025]
[Table 1]
Figure 2004281292
[0026]
As is clear from the results in Table 1, in the batteries A, B, C, D, and E, very excellent safety can be obtained when a mechanical external force such as crushing is applied from the outside. I understand. This is because if the tensile breaking width in the direction perpendicular to the winding direction of the separator is 10.0 N / cm or less, and the breaking elongation is 40% or more and 200% or less, a mechanical external force is applied. In this case, it is considered that the separator was easily broken, and the area of the broken portion became large immediately. Thus, it is considered that the short-circuit current does not concentrate on the local part, the abnormal rise in temperature is suppressed, and the safety is improved.
[0027]
On the other hand, in the batteries G and H, the tensile breaking width strength in the direction perpendicular to the winding direction of the separator is 10.0 N / cm or less, but the breaking elongation in the vertical direction increases to 220% and 400%. ing. For this reason, the separator is unlikely to be greatly broken due to elongation, and the area of the portion where the positive electrode and the negative electrode are in contact is reduced. For this reason, it is considered that the short-circuit current was concentrated, the temperature was abnormally increased locally, and the battery exploded or smoked. Further, in the battery F, since the tensile breaking width strength in the direction perpendicular to the winding direction of the separator is as large as 14.0 N / cm, the separator is hardly broken and the area of the contact portion between the positive electrode and the negative electrode is small. Become. For this reason, it is considered that the short-circuit current was concentrated, the temperature was abnormally increased locally, and the battery exploded or smoked.
[0028]
【The invention's effect】
As described above, the belt-shaped separator used in the nonaqueous electrolyte secondary battery of the present invention has a tensile breaking width strength of 2.0 N / cm or more in the vertical direction with respect to the winding direction of the separator and 10.0 N / cm. / Cm or less, and the tensile elongation at break of the separator in the vertical direction is specified to be 40% or more and 200% or less. Therefore, when a mechanical external force is applied to the battery and the battery is deformed, the separator Easily breaks, and the breaking area increases. For this reason, it becomes possible to prevent the short-circuit current from being concentrated on a local area. As a result, even if an internal short circuit occurs, safety is improved so that the battery does not burst or smoke.
[0029]
Note that, in the above-described embodiment, an example in which natural graphite is used as the negative electrode active material has been described. In addition to natural graphite, a carbon-based material capable of inserting and extracting lithium ions, such as artificial graphite, carbon black, and coke , Glassy carbon, carbon fiber, or a fired body thereof, or a lithium alloy such as lithium metal, lithium-aluminum alloy, lithium-lead alloy, lithium-tin alloy, SnO 2 , SnO, TiO 2 , Nb 2 O 3 or other metal oxide having a lower potential than the positive electrode active material may be used.
[0030]
Furthermore, in the above-described embodiment, an example in which lithium cobalt oxide (LiCoO 2 ) is used as the positive electrode active material has been described. Instead of lithium cobalt oxide, spinel-type lithium manganate (LiMn 2 O 4 ) and nickel oxide Lithium (LiNiO 2 ) or a mixture thereof may be used.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a non-aqueous electrolyte secondary battery of the present invention. FIG. 1A is a cross-sectional view taken along a line BB of FIG. ) Shows an AA cross section of FIG.
FIG. 2 is a front view schematically showing a state in which a pressing force is applied in a direction perpendicular to a winding direction of a separator, FIG. 2 (a) shows a state before pressing, and FIG. The state after pressurization is shown.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Nonaqueous electrolyte secondary battery, 11 ... Negative electrode plate, 11a ... Negative electrode lead, 12 ... Positive electrode plate, 13 ... Separator, 14 ... Outer can (positive electrode terminal), 15 ... Sealing body, 15a ... Negative electrode terminal, 15b ... Insulator, 15c terminal board, 16 spacer

Claims (1)

帯状負極と帯状正極が帯状セパレータを介して相対向して渦巻状に巻回された渦巻状電極群を備えた非水電解質二次電池であって、
前記帯状セパレータは、該セパレータの巻回方向に対して垂直方向の引張り破断幅強度(但し、引張り破断幅強度(N/cm)=引張り破断強度(N/cm)×膜厚(cm)である)が2.0N/cm以上で、10.0N/cm以下であり、かつ、同垂直方向の引張り破断伸度が40%以上で、200%以下であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery including a spirally wound electrode group in which a strip-shaped negative electrode and a strip-shaped positive electrode are spirally wound facing each other via a strip-shaped separator,
The strip-shaped separator has a tensile breaking width strength in a direction perpendicular to the winding direction of the separator (however, tensile breaking width strength (N / cm) = tensile breaking strength (N / cm 2 ) × film thickness (cm)). Is 2.0 N / cm or more and 10.0 N / cm or less, and the tensile elongation at break in the vertical direction is 40% or more and 200% or less. Next battery.
JP2003073170A 2003-03-18 2003-03-18 Nonaqueous electrolyte secondary battery Pending JP2004281292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073170A JP2004281292A (en) 2003-03-18 2003-03-18 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073170A JP2004281292A (en) 2003-03-18 2003-03-18 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004281292A true JP2004281292A (en) 2004-10-07

Family

ID=33289134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073170A Pending JP2004281292A (en) 2003-03-18 2003-03-18 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004281292A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072456A1 (en) * 2006-12-15 2008-06-19 Panasonic Corporation Method for evaluating internal short circuit of battery, device for evaluating internal short circuit of battery, battery, battery pack and their manufacturing methods
WO2008132837A1 (en) * 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
KR100962819B1 (en) 2007-02-06 2010-06-10 파나소닉 주식회사 Method for evaluating battery safety under internal short-circuit condition, method for producing battery, and method for producing battery pack
KR100985943B1 (en) 2007-02-06 2010-10-06 파나소닉 주식회사 Evaluation method for evaluating battery safety in the event of internal short circuit and evaluation apparatus used therefor
CN104078717A (en) * 2014-06-24 2014-10-01 清华大学 Test device for short circuit in battery and triggering method
JP2018041726A (en) * 2016-08-31 2018-03-15 旭化成株式会社 Separator for power storage device
JP2018195564A (en) * 2017-05-15 2018-12-06 旭化成株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2019046633A (en) * 2017-08-31 2019-03-22 旭化成株式会社 Separator for power storage device
WO2022008745A1 (en) * 2020-07-10 2022-01-13 Sabic Global Technologies B.V. Breakable separator for battery
US20220037742A1 (en) * 2019-02-28 2022-02-03 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2024143221A1 (en) * 2022-12-27 2024-07-04 パナソニックIpマネジメント株式会社 Lithium secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072456A1 (en) * 2006-12-15 2008-06-19 Panasonic Corporation Method for evaluating internal short circuit of battery, device for evaluating internal short circuit of battery, battery, battery pack and their manufacturing methods
US8168314B2 (en) 2006-12-15 2012-05-01 Panasonic Corporation Method for evaluating internal short-circuit of battery, device for evaluating internal short-circuit of battery, battery, battery pack and their manufacturing methods
KR100962819B1 (en) 2007-02-06 2010-06-10 파나소닉 주식회사 Method for evaluating battery safety under internal short-circuit condition, method for producing battery, and method for producing battery pack
KR100985943B1 (en) 2007-02-06 2010-10-06 파나소닉 주식회사 Evaluation method for evaluating battery safety in the event of internal short circuit and evaluation apparatus used therefor
WO2008132837A1 (en) * 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
US8444717B2 (en) 2007-04-24 2013-05-21 Panasonic Corporation Method for evaluating battery safety under internal short-circuit condition, battery and battery pack whose safety is identified by internal short-circuit safety evaluation method, and method for producing the same
CN104078717A (en) * 2014-06-24 2014-10-01 清华大学 Test device for short circuit in battery and triggering method
JP2018041726A (en) * 2016-08-31 2018-03-15 旭化成株式会社 Separator for power storage device
JP7017344B2 (en) 2016-08-31 2022-02-08 旭化成株式会社 Separator for power storage device
JP2018195564A (en) * 2017-05-15 2018-12-06 旭化成株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2019046633A (en) * 2017-08-31 2019-03-22 旭化成株式会社 Separator for power storage device
JP7017345B2 (en) 2017-08-31 2022-02-08 旭化成株式会社 Separator for power storage device
US20220037742A1 (en) * 2019-02-28 2022-02-03 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2022008745A1 (en) * 2020-07-10 2022-01-13 Sabic Global Technologies B.V. Breakable separator for battery
WO2024143221A1 (en) * 2022-12-27 2024-07-04 パナソニックIpマネジメント株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP5260838B2 (en) Non-aqueous secondary battery
JP4984892B2 (en) Battery and center pin
US7972717B2 (en) Battery
WO2018180828A1 (en) Cylindrical battery
JP2004319465A (en) Nonaqueous electrolyte secondary battery
JP5465755B2 (en) Non-aqueous secondary battery
JP4097443B2 (en) Lithium secondary battery
JP2002042867A (en) Lithium ion secondary battery
JP2004281292A (en) Nonaqueous electrolyte secondary battery
JP2010108679A (en) Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP5337418B2 (en) Non-aqueous electrolyte secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2019016482A (en) Nonaqueous electrolyte secondary battery
JP2003168404A (en) Nonaqueous electrolyte battery
JP4404612B2 (en) Nonaqueous electrolyte secondary battery
JP2017130320A (en) Secondary battery
JP2007188859A (en) Battery and center pin
JP2004228019A (en) Nonaqueous electrolyte secondary battery
WO2021241195A1 (en) Non-aqueous electrolyte cell
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP2007200756A (en) Battery and center plate
JP2005310619A (en) Lithium-ion secondary battery
JP4045627B2 (en) Explosion-proof non-aqueous secondary battery
JP2000195483A (en) Nonaqueous electrolyte battery
JP2002246023A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224