JP2004279930A - Reflective liquid crystal display device - Google Patents

Reflective liquid crystal display device Download PDF

Info

Publication number
JP2004279930A
JP2004279930A JP2003073955A JP2003073955A JP2004279930A JP 2004279930 A JP2004279930 A JP 2004279930A JP 2003073955 A JP2003073955 A JP 2003073955A JP 2003073955 A JP2003073955 A JP 2003073955A JP 2004279930 A JP2004279930 A JP 2004279930A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
polarizing plate
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003073955A
Other languages
Japanese (ja)
Other versions
JP4336128B2 (en
Inventor
Kiyoshi Miyashita
喜好 宮下
Tatsuo Uchida
龍男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003073955A priority Critical patent/JP4336128B2/en
Publication of JP2004279930A publication Critical patent/JP2004279930A/en
Application granted granted Critical
Publication of JP4336128B2 publication Critical patent/JP4336128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflective liquid crystal display device which is constituted of a reflective liquid crystal display panel of a single polarizing plate type composed of a liquid crystal layer formed with a reflection electrode within a liquid crystal cell and subjected to homogeneous alignment treatment, a phase compensation plate and a polarization plate and which makes contrast higher by realizing an ideal black display state at the time of black gradation, is free of coloring, light, and wide in an angle of visibility and is high speed on response. <P>SOLUTION: Positive uniaxial or biaxial phase compensation plates are successively laminated between the liquid crystal cell and a polarizing plate and the phase differences and slow axis azimuths of the phase compensation plates are so regulated that external light passes the liquid crystal cell and thereafter the reflected light thereof is modulated to linearly polarized light after successively passing the respective phase compensation plates. Also, the constitution to arrange the axes of polarization of the polarizing plate at the azimuth of -45° or +45° in relation to the optical axis azimuth of the liquid crystal layer is employed and the physical property parameters of the liquid crystal are specified to a prescribed range. Further, a cell gap is regulated to 3.0 to 3.5 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜トランジスタを用いた反射型液晶表示装置に関する。
【0002】
【従来の技術】
液晶表示装置は、薄型・軽量、低消費電力化が可能という特長があり、他の表示ディスプレイに比べ、実用的かつ高性能な表示デバイスであり、現在急成長を遂げている情報通信端末や携帯用途の情報携帯端末・ネットワークPCなどに応用されている。しかし、液晶表示装置は、もともと非発光型表示デバイスであるためにパネル背面に高輝度なバックライトを配置しなければならず、現時点では本来のあるべき特長を必ずしも活かし切れていない。
【0003】
そこで、この解決手段として反射型液晶表示装置がある。反射型液晶表示装置は外光による反射を利用して画像を表示するために、透過型に比べてより薄型で軽量化を図ることができ、特に低消費電力である点で優れている。また、昼光下での優れた画像視認性が得られるという特長がある。更に部品点数が透過型と比べて削減でき、取り替え部品がなく、環境に与える影響が少ないという利点がある。(特許文献1)
【0004】
これまでの反射型液晶表示装置は、主にモノクロあるいは多色カラー(4〜16色)の携帯端末の用途に用いられている。そのなかでもカラー化は大きく2つに大別でき、マイクロカラーフィルタを用いてRGB3ドットでカラー表示する加法混色型と、液晶の複屈折による干渉色を利用する光干渉型とがある。
【0005】
それぞれの構成及び特長は、以下の通りである。マイクロカラーフィルタを用いてカラー表示する加法混色型では、図12に示すように、液晶パネルとして従来の透過型TNセルやSTNセルを用い、その両面に偏光板14を設けると共に、セル背面に拡散反射板17を配置する構成や、液晶セルの内部に反射電極もしくはセルの外部に反射板を設け、液晶(ホスト)に2色性色素(ゲスト)を混ぜ、電圧制御により光の透過・吸収で表示する構成などが挙げられる。この方式の液晶表示装置は優れた階調表示性や高コントラスト化を実現できる。一方、後者の光干渉型では、偏光板が不要であるために明るく、さらに広視野角な表示が実現できる。また、光干渉型では、一般的に外付け反射板タイプでSTNセルが用いられており、1ドット1画素のマルチカラー表示で光効率性が高く、明るい表示が実現できる。
【0006】
【特許文献1】
特開平9−218403号公報
【0007】
【発明が解決しようとする課題】
近年、高度情報通信技術の発達やインフラ整備によって映像及び情報ディスプレイの表示容量が飛躍的に増大し、オフィス内だけでなく、アウトドアでも情報受信、伝達可能な高度情報ネットワークシステムが構築されてきている。将来のマルチメディア端末を想定した場合、携帯端末用途の表示デバイスとして高解像度、フルカラー対応の反射型カラー液晶表示装置が要望される。
【0008】
しかし、従来の反射型液晶表示装置の構成では、多くの表示性能上の課題が多い。例えばマイクロカラーフィルタ方式では、もともとのカラーフィルタの透過光ロスの問題がある。又透過型TNあるいはSTNセルを用いた場合、図12に示すように偏光板を2枚使用するために明るさが低下し、かつ液晶層−反射板間のパララックスによる文字ぼけが生じており、高解像度に至ってはますます視認性を損ねてしまう。また、ゲストホスト方式では、電気光学特性にヒステリシスが生じるために階調表示性が難しく、高電圧駆動の問題がある。一方、光干渉型でもSTNセル同様、偏光板による明るさロスの問題や干渉色による表示色数の制限、更に使用温度範囲が狭いなどの問題がある。以上の理由から従来の表示方式では、高解像度、フルカラー対応の反射型液晶表示装置を実現することができない。
【0009】
本発明は上記のような問題を解決し、高コントラスト、広視野角、高速応答、高反射率の反射型カラー液晶表示パネルを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、画素毎に形成された薄膜トランジスタ及び反射電極を有する薄膜トランジスタアレイ基板と、対向電極が形成された対向電極基板と、前記薄膜トランジスタアレイ基板と対向基板との間に挟持され、ホモジニアスに配向処理された液晶層と、からなる液晶セルと、前記対向電極基板側に積層された正の1軸性または2軸性の位相補償板と、前記位相補償板上に積層された1枚の偏光板と、を具備し、前記位相補償板の位相差及び遅相軸方位は、前記液晶セルを通過した反射光が前記位相補償板を順次通過した後、直線偏光に変調されるよう調整されており、前記偏光板は、その偏光軸が、前記液晶層の光軸方位に対して−45°または+45°の方位となるよう配置され、前記液晶層の液晶は、その誘電率異方性△εが6.5≦△ε≦8.0、屈折率異方性△nが0.07≦△n≦0.09及び弾性定数比K33/K11が1.0≦K33/K11≦2.0の範囲であり、前記液晶セルのセルギャップdは、3.0μm≦d≦3.5μmの範囲であり、前記液晶層に閾値電圧以上の電圧を印加し、表示駆動することを特徴とする。
【0011】
また、本発明の反射型液晶表示装置においては、対向電極基板側に積層された正の1軸性または2軸性の位相補償板を少なくとも3枚以上備えることが好ましい。
【0012】
この位相補償板を3枚として構成した場合、第1の位相補償板の遅相軸を液晶の光軸方位に垂直に配置して、反射電極上で反射された反射光が液晶セル及び第1の位相補償板を順次通過後、円偏光に変調されるよう、第1の位相補償板の位相差を調整する。また、第2及び第3の位相補償板を通過後に直線偏光に変調されるよう、第2及び第3の位相補償板の位相差及び遅相軸方位を調整する。さらに、偏光板の偏光軸は、液晶の光軸方位に対して−45°又は+45°に配置する。
【0013】
本発明の反射型液晶表示装置によれば、黒表示において波長依存のない低い反射率特性を広い視野角範囲で得ることができるため、画像の高コントラスト化及び広視野角化を実現できる。また、階調表示間で階調反転のない広視野角化も実現することができる。一方、白表示においても高い反射率特性を広い視野角範囲で得ることができ、明るい画像表示を実現できる。また、液晶の配向形態をホモジニアス配向で形成しており、閾値電圧以上で駆動表示するために、階調レベルに関係なく、高速で応答する表示画像を実現することができる。さらに、動作温度に対して黒表示の反射率特性の変化が非常に小さいため、温度変化による画像劣化がなく、高品質な画像表示を実現できる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図6に基づいて説明する。図1は、反射電極を鏡面体とし、正の2軸性の位相補償板を3枚使用するホモジニアス配向反射型液晶パネルの構成及び白黒動作時の光の偏光状態を示す。図1(a)は表示状態が黒表示の場合、図1(b)は白表示の場合を示す。また、図2に、本実施の形態の反射型液晶表示装置に用いられる反射型液晶パネルのパネル構成を、その断面図を用いて示す。
【0015】
この反射型液晶パネルは、反射電極1を含む液晶セル16の上面に、第3の位相補償板13、拡散フィルム15、第1の位相補償板11、第2の位相補償板12、偏光板14を順に積層して構成される。液晶セル16は、図2に示すように、TFTガラス基板3及びその上のアレイチップ2上に反射電極1が形成された薄膜トランジスタアレイ基板と、CFガラス基板4及びその上にカラーフィルタ層9及び対向電極8が形成された対向電極基板と、両電極間でホモジニアス型に配向処理された液晶層7とから構成される。
【0016】
ここで、第1及び第2の位相補償板11、12としては、ポリカーボネート製の高分子フィルムを用い、偏光板14には、外光反射防止のための低反射表面処理が施された材料を使用する。
【0017】
ここで、図1を用いて偏光板14、第2、第1及び第3の位相補償板12、11、13、液晶セル16の液晶層7を通過する光の偏光状態を説明する。黒表示の場合、図1(a)に示すように、直線偏光→楕円偏光→円偏光→円偏光→楕円偏光→円偏光に変化する。帰路は逆に、円偏光から出発して、楕円偏光→円偏光→円偏光→楕円偏光→直線偏光となる。ただし、行路の偏光板14を通過した後の直線偏光と、帰路で第2の位相補償板を通過した後の直線偏光とは直交するため、黒表示となる。
【0018】
一方、白表示の場合、図1(b)に示すように行路の偏光状態は、順に直線偏光→楕円偏光→円偏光→円偏光→楕円偏光→楕円偏光となる。帰路は反射電極上の楕円偏光から出発して順次、楕円偏光→楕円偏光→楕円偏光→楕円偏光→楕円偏光となるが、偏光板通過の際、透過成分が生じることで明状態となる。
【0019】
また、液晶の光軸方向及びそれに垂直方向の屈折率をそれぞれ、n、nとし、また、液晶セルのセル厚をd、液晶分子の傾斜角をα、及び、第3の位相補償板13の遅相軸、進相軸及び厚み方向の屈折率をそれぞれ、n(3)、n(3)、n(3)、それらのフィルム膜厚をDとすると、n(3)、n(3)、n(3)及びDは、以下のとおりに設計される。
(3)=[(n×cosα)+(n×sinα)]/n
(3)=[(n×cosα)+(n×sinα)1/2
(3)=n
D=n×n/[(n×cosα)+(n×sinα)]×d
また、その遅相軸方位は、液晶光軸に対して垂直な方位に配置される。
【0020】
第2の位相補償板12の光学設計は、その遅相軸を液晶の光軸方位に対して+30゜または−30゜の方位に配置され、遅相軸、進相軸及び厚み方向の屈折率をn(4)、n(4)、n(4)とすると、
[n(4)−n(4)]/[n(4)−n(4)]=0.5
を満足するよう作成される。
【0021】
また、第1の位相補償板11の光学設計は、その遅相軸を液晶の光軸方位に対して−30゜(この場合の第2の位相補償板12の遅相軸方位は+30゜とする)または+30゜(この場合の第2の位相補償板12の遅相軸方位は−30゜とする)の方位に配置される。遅相軸、進相軸及び厚み方向の屈折率をn(5)、n(5)、n(5)とすると、
[n(5)−n(5)]/[n(5)−n(5)]=0.5
を満足するよう作成される。
【0022】
一方、偏光板14の偏光軸は、液晶の光軸方位に対して、+45゜または−45゜の方位に配置される。
【0023】
次に液晶セルの膜厚dと黒電圧及び視角特性について説明する。図3(a)は正面を基準として反射率Rが50%となる視角の角度の黒電圧(V)に対する変化を示し、膜厚dとして3.0μm,4.0μm及び5.0μmについてのグラフを示す。図3(b)は黒電圧に対するコントラストCRが10以上の角度を示している。反射率及びコントラストの良好な視角特性を得るためには黒電圧の設定が重要となる。黒電圧はパネル消費電力を下げる点からも小さくすることが望ましいが、液晶の閾値電圧よりも大きくする必要がある。そして反射率の視角特性を50°以上、コントラストの視角特性を60°以上とするために、液晶セルの膜厚dを3.0〜3.5μmとする。ここで用いた液晶の物理定数はΔε=3.5、Δn=0.0090、K33/K11=1.5である。尚、K33は液晶物性のベンド弾性定数、K11はスプレイ弾性定数を示す。
【0024】
図4(a),(b)は屈折率異方性Δnを0.07〜0.15に変えたときの反射率の視角特性及びコントラストの視角特性を示している。この場合も反射率の視角特性を50°以上、コントラストの視角特性を60°以上とするために、Δnを0.07〜0.09とする。
【0025】
図5(a),(b)は誘電率異方性Δεを3.5〜8.0に変えたときの反射率の視角特性及びコントラストの視角特性を示している。この場合も反射率の視角特性を50°以上、コントラストの視角特性を60°以上とするために、誘電率異方性Δεを6.5〜8.0とする。
【0026】
又弾性定数の比K33/K11についても図6(a),(b)に反射率の視角特性、図6(b)にコントラストの視角特性を示す。これらの図において反射率の視角特性を50°以上、コントラストの視角特性を60°以上とするために、弾性定数の比K33/K11を1.0〜2.0の範囲としている。
【0027】
本実施の形態の反射型液晶パネルによれば、黒表示電圧の印加時におけるパネル正面方向の反射率を極力小さくし、波長に対してフラットな特性を得ることができるため、高コントラストな画像を提供することができる。また、液晶の光軸方位に対して視角を傾斜しても液晶パネル全体の位相差がほとんど変化しないために各階調間での反転が生じず、広視野角な画像表示を実現できる。また、液晶パネルの駆動電圧を液晶の閾値電圧以上で使用するために中間調を含む各階調間で高速の応答特性が得られる。一方、高温下においても液晶層のリタデーション変化を最小限に抑えるため、適正な液晶物性値の選択を図り、かつ、黒表示電圧を最適化することでコントラスト、視野角、反射率等の表示品質で温度変化による劣化の影響が小さい画像を実現することができる。
【0028】
【実施例】
ここで本発明の実施例について説明する。液晶層7として、誘電率異方性△ε=7.8、屈折率異方性△n=0.074、弾性定数比K33/K11=2.0、波長分散比△nd(α)/△nd(550nm)を1.15≦△nd(α)/△nd(550nm)≦0.95の物性値を有する液晶材料を使用し、液晶セルのセル厚dをd=3μmに形成した。また、第3の位相補償板13の位相差を△nd(3)、遅相軸をθ(3)とし、第2の位相補償板12の位相差を△nd(4)、遅相軸をθ(4)とし、第1の位相補償板11の位相差を△nd(5)、遅相軸をθ(5)とし、偏光板の偏光軸をθp(2)とし、これらを夫々以下のようにした。
△nd(3)=180nm
θ(3)=+90゜または−90゜
△nd(4)=137.5nm
θ(4)=+30゜または−30゜
△nd(5)=265nm
θ(5)=+30゜(遅相軸θ(4)=−30゜の場合)または
=−30゜(遅相軸θ(4)=+30゜の場合)
θp(2)=+45゜または−45゜
【0029】
図7に、この実施例に係る反射型液晶表示パネルの電圧−反射率特性を示す。この電圧−反射特性の測定に関しては、図13に示す測定系を用い、正面方向でMgOをリファレンスとして測定した。但し、各画素の電圧−反射率特性が一致するように、黒階調の印加電圧VcをRGB画素でVc=1.5(V)に固定した後、他の階調の電圧−反射率特性がRGB画素で一致するようにそれぞれ電圧補正を行った。この図7の特性から明らかな様に、電圧補正を行うことで全階調レベルで色付きのない高品質な画像表示を実現できた。
【0030】
また、図8に、60℃の高温下における反射型液晶パネルの電圧−リタデーション比の特性を示す。ここでは、リタデーション比を、25℃のリタデーションと60℃のリタデーション比で表している。曲線Aは本実施例に係る温度特性を改善したホモジニアス型の液晶、Bは従来例のホモジニアス型の液晶である。図8より、電圧を上昇させるに伴い、閾値電圧を境に一旦急激にリタデーション比が小さい方向へ変化するが、高電圧側にシフトするにつれて大きくなる。従って、本反射型液晶パネルの黒階調電圧の選択として、(1)閾値電圧より大きいこと、(2)白黒変調率100%を確保できること(すなわち、液晶セルのリタデーション△nd≧175nm)、(3)リタデーション比の影響が小さいことを条件に、Vc=1.5(V)とした。
【0031】
また、図9は視角−コントラスト特性を示す図であり、Aは本実施例に係る温度特性を改善した型の液晶、Bは従来の液晶の夫々25℃と60℃におけるグラフである。測定系としては、図13に示すものを用いた。図9より、60℃の条件下では、正面方向に限らず視角範囲全域において、本実施例の液晶は従来例に比べて高いコントラスト特性が得られることがわかる。
【0032】
図10は、本実施例の液晶を備える反射型液晶パネルの25℃における視角−階調特性を示す図である。測定系としては、図13に示すものを用いた。図中のR4(1.6V)、R26(2.1V)、R54(2.5V)、R75(2.9V)、R96(4.2V)は、図7と同様に各中間調を示しており、括弧内の電圧値はその中間調表示の際に印加される電圧値を示している。図10より、本実施例に係る反射型液晶パネルでは、正反射方位を除く視角範囲でも高い反射率特性が得られるとともに、階調間で反射率特性が反転しない広視野角特性を実現できることがわかる。
【0033】
図11は、本実施例の液晶を備える反射型液晶パネルの25℃における応答特性を示す図である。図11より、本実施例の反射型液晶パネルでは、中間調を含む各階調間で高速で応答する表示画像が得られることがわかる。
【0034】
【発明の効果】
本発明の反射型液晶表示装置によれば、黒表示において波長依存のない低い反射率特性を広い視野角範囲で得ることができ、画像の高コントラスト化及び広視野角化を実現できる。また、階調表示間で階調反転のない広視野角化も実現することができる。一方、白表示においても高い反射率特性を広い視野角範囲で得ることができ、明るい画像表示を実現できる。また、液晶層の液晶物性パラメータを6.5≦△ε≦8.0、0.07≦△n≦0.09、1.0≦K33/K11≦2.0の範囲で調整し、かつ、液晶セルのセルギャップを3.0μm≦d≦3.5μmの範囲で作製しており、しかも、液晶層への印加電圧を閾値電圧以上で表示駆動させるため、白黒階調間に限らず、中間調間においても高速で応答する表示画像を実現することができる。さらに、動作温度に対して黒表示の反射率特性の変化を最小限に設計できるために、温度変化に対する画像劣化が少なく、高品質な画像表示が実現できる。
【図面の簡単な説明】
【図1】本実施の形態の反射型液晶表示パネルのパネル構成、及び、光の偏光状態を示す図
【図2】本実施の形態の反射型液晶表示パネルのパネル断面を示す図
【図3】(a)は液晶セルの膜厚dを変化させたときの視角特性、(b)は視角(コントラスト)特性を示す図
【図4】(a)は屈折率異方性Δnを変化させたときの反射率、(b)はコントラストの視角特性を示す図
【図5】(a)は誘電率異方性Δεを変化させたときの反射率、(b)はコントラストの視角特性を示す図
【図6】(a)は弾性定数比K33/K11を変化させたときの反射率、(b)はコントラストの視角特性を示す図
【図7】本実施の形態の反射型液晶表示パネルの電圧−反射率特性を示す図
【図8】本実施の形態の反射型液晶表示パネルの電圧−リタデーション比特性を示す図
【図9】本実施の形態の反射型液晶表示パネルの視角−コントラスト特性を示す図
【図10】本実施の形態の反射型液晶表示パネルの視角−階調特性を示す図
【図11】本実施の形態の反射型液晶表示パネルの応答特性を示す図
【図12】従来の反射型液晶表示パネルのパネル構成図
【図13】本実施の形態の反射型液晶パネルの光学特性を測定する測定系を示す図
【符号の説明】
1 反射電極
2 アレイチップ
3 TFTガラス基板
4 CFガラス基板
5 有機絶縁膜
6 配向膜
7 液晶層
8 対向電極
9 カラーフィルタ層
10 遮光層
11 第1の位相補償板
12 第2の位相補償板
13 第3の位相補償板
14 偏光板
15 拡散フィルム
16 液晶セル
17 拡散反射板
18 光源
19 検出器
20 液晶パネル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reflection type liquid crystal display device using a thin film transistor.
[0002]
[Prior art]
Liquid crystal display devices are characterized by being thin and light, and capable of reducing power consumption. They are practical and high-performance display devices compared to other display devices. It is applied to portable information terminals, network PCs, and the like. However, since the liquid crystal display device is originally a non-light emitting display device, a high-luminance backlight must be disposed on the back of the panel, and at present, the liquid crystal display device does not always make full use of its essential features.
[0003]
In order to solve this problem, there is a reflection type liquid crystal display device. Since a reflection type liquid crystal display device displays an image using reflection by external light, it can be made thinner and lighter than a transmission type liquid crystal display device, and is particularly excellent in low power consumption. Another feature is that excellent image visibility under daylight can be obtained. Further, there is an advantage that the number of parts can be reduced as compared with the transmission type, there is no replacement part, and the influence on the environment is small. (Patent Document 1)
[0004]
Conventional reflection type liquid crystal display devices are mainly used for portable terminals of monochrome or multicolor (4 to 16 colors). Among them, colorization can be roughly classified into two types, and there are an additive color mixture type in which color display is performed using RGB three dots using a micro color filter, and a light interference type in which an interference color due to birefringence of liquid crystal is used.
[0005]
The respective configurations and features are as follows. In the additive color mixing type in which color display is performed using a micro color filter, as shown in FIG. 12, a conventional transmissive TN cell or STN cell is used as a liquid crystal panel, polarizing plates 14 are provided on both sides thereof, and diffusion is performed on the back surface of the cell. A configuration in which the reflection plate 17 is disposed, a reflection electrode inside the liquid crystal cell or a reflection plate outside the cell, a dichroic dye (guest) mixed with the liquid crystal (host), and transmission and absorption of light by voltage control. There is a configuration for displaying. This type of liquid crystal display device can realize excellent gradation display and high contrast. On the other hand, the latter optical interference type does not require a polarizing plate, so that a bright display with a wider viewing angle can be realized. In the light interference type, generally, an STN cell of an external reflector type is used, and a multi-color display of one dot and one pixel has high light efficiency and can realize a bright display.
[0006]
[Patent Document 1]
JP-A-9-218403
[Problems to be solved by the invention]
In recent years, the display capacity of video and information displays has dramatically increased due to the development of advanced information communication technology and infrastructure development, and advanced information network systems capable of receiving and transmitting information not only in offices but also outdoors have been constructed. . Assuming a future multimedia terminal, a high-resolution, full-color reflective color liquid crystal display device is demanded as a display device for a portable terminal.
[0008]
However, the configuration of the conventional reflective liquid crystal display device has many display performance issues. For example, the micro color filter method has a problem of loss of transmitted light of the original color filter. When a transmission type TN or STN cell is used, the brightness is reduced due to the use of two polarizing plates as shown in FIG. 12, and character blur occurs due to parallax between the liquid crystal layer and the reflecting plate. However, at higher resolutions, visibility is further impaired. Further, in the guest-host system, since hysteresis occurs in electro-optical characteristics, gradation display is difficult, and there is a problem of high voltage driving. On the other hand, the optical interference type has the same problems as the STN cell, such as a problem of brightness loss due to the polarizing plate, a limitation of the number of display colors due to interference colors, and a narrower operating temperature range. For the above reasons, the conventional display method cannot realize a high-resolution, full-color reflective liquid crystal display device.
[0009]
An object of the present invention is to solve the above-mentioned problems and to provide a reflective color liquid crystal display panel having high contrast, a wide viewing angle, high-speed response, and high reflectance.
[0010]
[Means for Solving the Problems]
The present invention provides a thin film transistor array substrate having a thin film transistor and a reflective electrode formed for each pixel, a counter electrode substrate formed with a counter electrode, and a homogeneous alignment treatment sandwiched between the thin film transistor array substrate and the counter substrate. Liquid crystal cell, a positive uniaxial or biaxial phase compensator laminated on the counter electrode substrate side, and one polarizing plate laminated on the phase compensator The phase difference and the slow axis azimuth of the phase compensator are adjusted so that the reflected light passing through the liquid crystal cell sequentially passes through the phase compensator and is then modulated into linearly polarized light. The polarizing plate is arranged such that its polarization axis is at an angle of -45 ° or + 45 ° with respect to the optical axis direction of the liquid crystal layer, and the liquid crystal of the liquid crystal layer has a dielectric anisotropy Δε. Is 6.5 ≦ △ ε 8.0, the refractive index anisotropy Δn is in the range of 0.07 ≦ Δn ≦ 0.09, and the elastic constant ratio K33 / K11 is in the range of 1.0 ≦ K33 / K11 ≦ 2.0. The cell gap d is in the range of 3.0 μm ≦ d ≦ 3.5 μm, and a voltage higher than a threshold voltage is applied to the liquid crystal layer to perform display driving.
[0011]
Further, in the reflection type liquid crystal display device of the present invention, it is preferable that at least three or more positive uniaxial or biaxial phase compensators laminated on the counter electrode substrate side are provided.
[0012]
When three phase compensators are configured, the slow axis of the first phase compensator is arranged perpendicular to the optical axis direction of the liquid crystal, and the light reflected on the reflective electrode is reflected by the liquid crystal cell and the first phase compensator. , The phase difference of the first phase compensator is adjusted so that the light is modulated into circularly polarized light. Further, the phase difference and the slow axis azimuth of the second and third phase compensators are adjusted so that the light is modulated into linearly polarized light after passing through the second and third phase compensators. Further, the polarization axis of the polarizing plate is disposed at -45 or +45 with respect to the optical axis direction of the liquid crystal.
[0013]
According to the reflective liquid crystal display device of the present invention, a low reflectance characteristic independent of wavelength in a black display can be obtained in a wide viewing angle range, so that a high contrast image and a wide viewing angle can be realized. Further, it is possible to realize a wide viewing angle without grayscale inversion between grayscale displays. On the other hand, even in white display, high reflectance characteristics can be obtained in a wide viewing angle range, and a bright image display can be realized. In addition, since the liquid crystal is formed in a homogeneous alignment mode and is driven and displayed at a threshold voltage or higher, a display image that responds at a high speed can be realized regardless of a gradation level. Further, since the change in the reflectance characteristic of the black display with respect to the operating temperature is very small, there is no image deterioration due to the temperature change, and a high-quality image display can be realized.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a configuration of a homogeneously oriented reflective liquid crystal panel using three reflective biaxial phase compensating plates with a reflective electrode as a mirror body, and the polarization state of light during monochrome operation. FIG. 1A shows a case where the display state is black display, and FIG. 1B shows a case where the display state is white display. FIG. 2 is a cross-sectional view showing a panel configuration of a reflective liquid crystal panel used in the reflective liquid crystal display device of the present embodiment.
[0015]
The reflection type liquid crystal panel includes a third phase compensator 13, a diffusion film 15, a first phase compensator 11, a second phase compensator 12, and a polarizer 14 on an upper surface of a liquid crystal cell 16 including the reflective electrode 1. Are sequentially laminated. As shown in FIG. 2, the liquid crystal cell 16 includes a TFT glass substrate 3 and a thin film transistor array substrate having the reflective electrode 1 formed on the array chip 2 thereon, a CF glass substrate 4 and a color filter layer 9 It comprises a counter electrode substrate on which a counter electrode 8 is formed, and a liquid crystal layer 7 which is homogeneously aligned between the two electrodes.
[0016]
Here, a polycarbonate polymer film is used as the first and second phase compensators 11 and 12, and the polarizing plate 14 is made of a material that has been subjected to a low reflection surface treatment for preventing external light reflection. use.
[0017]
Here, the polarization state of light passing through the polarizing plate 14, the second, first and third phase compensating plates 12, 11, 13 and the liquid crystal layer 7 of the liquid crystal cell 16 will be described with reference to FIG. In the case of black display, as shown in FIG. 1A, the color changes from linearly polarized light to elliptically polarized light → circularly polarized light → circularly polarized light → elliptically polarized light → circularly polarized light. On the contrary, the return path starts from circularly polarized light, and becomes elliptically polarized light → circularly polarized light → circularly polarized light → elliptically polarized light → linearly polarized light. However, since the linearly polarized light after passing through the polarizing plate 14 on the path and the linearly polarized light after passing through the second phase compensator on the return path are orthogonal to each other, black display is performed.
[0018]
On the other hand, in the case of white display, as shown in FIG. 1B, the polarization state of the path is linearly polarized light → elliptical polarized light → circular polarized light → circular polarized light → elliptical polarized light → elliptical polarized light. On the return path, starting from elliptically polarized light on the reflective electrode, the order is elliptically polarized light → elliptically polarized light → elliptically polarized light → elliptically polarized light → elliptically polarized light.
[0019]
Further, the refractive indices of the liquid crystal in the optical axis direction and the vertical direction thereof are respectively n p and n v , the cell thickness of the liquid crystal cell is d, the tilt angle of the liquid crystal molecules is α, and the third phase compensating plate is provided. each 13 of the slow axis, fast axis and the refractive index in the thickness direction, n x (3), n y (3), n z (3), when the films film thickness and D, n x (3 ), Ny (3), nz (3) and D are designed as follows.
n x (3) = [( n v × cosα) 2 + (n p × sinα) 2] / n p
n y (3) = [(n v × cos α) 2 + (n p × sin α) 2 ] 1/2
nz (3) = n v
D = n p × n v / [(n v × cos α) 2 + (n p × sin α) 2 ] × d
The slow axis direction is arranged in a direction perpendicular to the liquid crystal optical axis.
[0020]
The optical design of the second phase compensator 12 is such that its slow axis is arranged at + 30 ° or −30 ° with respect to the optical axis direction of the liquid crystal, and the slow axis, the fast axis and the refractive index in the thickness direction. Let nx (4), ny (4), nz (4) be
[N x (4) -n z (4)] / [n x (4) -n y (4)] = 0.5
Is created to satisfy
[0021]
The optical design of the first phase compensator 11 is such that its slow axis is -30 ° with respect to the optical axis direction of the liquid crystal (in this case, the slow axis direction of the second phase compensator 12 is + 30 °). ) Or + 30 ° (the slow axis direction of the second phase compensator 12 in this case is -30 °). The slow axis, n x (5) a refractive index of the fast axis and the thickness direction, n y (5), When n z (5),
[N x (5) -n z (5)] / [n x (5) -n y (5)] = 0.5
Is created to satisfy
[0022]
On the other hand, the polarization axis of the polarizing plate 14 is arranged at + 45 ° or −45 ° with respect to the optical axis direction of the liquid crystal.
[0023]
Next, the thickness d of the liquid crystal cell, the black voltage and the viewing angle characteristics will be described. FIG. 3A shows a change in the viewing angle at which the reflectance R becomes 50% with respect to the black voltage (V) with respect to the front, with respect to the black voltage (V), and graphs for the film thickness d of 3.0 μm, 4.0 μm, and 5.0 μm. Is shown. FIG. 3B shows an angle where the contrast CR with respect to the black voltage is 10 or more. Setting a black voltage is important to obtain good viewing angle characteristics of reflectance and contrast. It is desirable that the black voltage is reduced from the viewpoint of reducing the panel power consumption, but it is necessary to increase the black voltage beyond the threshold voltage of the liquid crystal. The thickness d of the liquid crystal cell is set to 3.0 to 3.5 μm so that the viewing angle characteristic of the reflectance is 50 ° or more and the viewing angle characteristic of the contrast is 60 ° or more. The physical constants of the liquid crystal used here are Δε = 3.5, Δn = 0.090, and K33 / K11 = 1.5. In addition, K33 indicates a bend elastic constant of liquid crystal physical properties, and K11 indicates a splay elastic constant.
[0024]
FIGS. 4A and 4B show the viewing angle characteristics of the reflectance and the viewing angle characteristics of the contrast when the refractive index anisotropy Δn is changed from 0.07 to 0.15. Also in this case, Δn is set to 0.07 to 0.09 in order to set the viewing angle characteristic of the reflectance to 50 ° or more and the viewing angle characteristic of the contrast to 60 ° or more.
[0025]
FIGS. 5A and 5B show the viewing angle characteristics of the reflectance and the viewing angle characteristics of the contrast when the dielectric anisotropy Δε is changed to 3.5 to 8.0. Also in this case, the dielectric anisotropy Δε is set to 6.5 to 8.0 so that the viewing angle characteristic of the reflectance is 50 ° or more and the viewing angle characteristic of the contrast is 60 ° or more.
[0026]
6 (a) and 6 (b) show the viewing angle characteristics of the reflectance, and FIG. 6 (b) shows the viewing angle characteristics of the contrast for the elastic constant ratio K33 / K11. In these figures, the elastic constant ratio K33 / K11 is in the range of 1.0 to 2.0 in order to make the viewing angle characteristic of the reflectance 50 ° or more and the viewing angle characteristic of the contrast 60 ° or more.
[0027]
According to the reflective liquid crystal panel of the present embodiment, the reflectance in the front direction of the panel when the black display voltage is applied can be made as small as possible, and a characteristic that is flat with respect to the wavelength can be obtained. Can be provided. Further, even if the viewing angle is tilted with respect to the optical axis direction of the liquid crystal, the phase difference of the entire liquid crystal panel hardly changes, so that inversion between each gradation does not occur, and an image display with a wide viewing angle can be realized. In addition, since the driving voltage of the liquid crystal panel is used at a voltage higher than the threshold voltage of the liquid crystal, a high-speed response characteristic can be obtained between each gradation including the halftone. On the other hand, in order to minimize the change in retardation of the liquid crystal layer even at high temperatures, the appropriate liquid crystal physical properties are selected, and the display quality such as contrast, viewing angle, and reflectance is optimized by optimizing the black display voltage. Thus, it is possible to realize an image which is less affected by deterioration due to a temperature change.
[0028]
【Example】
Here, an embodiment of the present invention will be described. As the liquid crystal layer 7, a dielectric anisotropy Δε = 7.8, a refractive index anisotropy Δn = 0.0074, an elastic constant ratio K33 / K11 = 2.0, and a wavelength dispersion ratio Δnd (α) / △. A liquid crystal material having a physical property value of nd (550 nm) of 1.15 ≦ △ nd (α) / △ nd (550 nm) ≦ 0.95 was used, and the cell thickness d of the liquid crystal cell was formed to d = 3 μm. Further, the phase difference of the third phase compensator 13 is △ nd (3), the slow axis is θ (3), the phase difference of the second phase compensator 12 is △ nd (4), and the slow axis is θ (4), the phase difference of the first phase compensator 11 is Δnd (5), the slow axis is θ (5), the polarization axis of the polarizer is θp (2), and these are respectively described below. I did it.
Δnd (3) = 180 nm
θ (3) = + 90 ° or −90 ° nd (4) = 137.5 nm
θ (4) = + 30 ° or −30 ° nd (5) = 265 nm
θ (5) = + 30 ° (when the slow axis θ (4) = − 30 °) or = −30 ° (when the slow axis θ (4) = + 30 °)
θp (2) = + 45 ° or −45 °
FIG. 7 shows a voltage-reflectance characteristic of the reflection type liquid crystal display panel according to this embodiment. Regarding the measurement of the voltage-reflection characteristics, measurement was performed in the front direction using MgO as a reference using a measurement system shown in FIG. However, after the applied voltage Vc of the black gradation is fixed to Vc = 1.5 (V) in the RGB pixel so that the voltage-reflectance characteristics of each pixel match, the voltage-reflectance characteristics of the other gradations are obtained. Were corrected for each of the RGB pixels. As is clear from the characteristics of FIG. 7, by performing the voltage correction, a high-quality image display without coloring at all gradation levels can be realized.
[0030]
FIG. 8 shows the voltage-retardation ratio characteristics of the reflective liquid crystal panel at a high temperature of 60 ° C. Here, the retardation ratio is represented by a retardation ratio of 25 ° C. and a retardation ratio of 60 ° C. Curve A is a homogeneous liquid crystal having improved temperature characteristics according to the present embodiment, and B is a homogeneous liquid crystal of a conventional example. As shown in FIG. 8, as the voltage is increased, the retardation ratio temporarily changes abruptly at the boundary of the threshold voltage, but increases as the voltage shifts to the higher voltage side. Therefore, as the selection of the black gradation voltage of the present reflection type liquid crystal panel, (1) that it is larger than the threshold voltage, (2) that a black and white modulation rate of 100% can be ensured (that is, the retardation of the liquid crystal cell △ nd ≧ 175 nm), 3) Vc = 1.5 (V) on condition that the influence of the retardation ratio is small.
[0031]
FIG. 9 is a graph showing the viewing angle-contrast characteristics. FIG. 9A is a graph of a liquid crystal having improved temperature characteristics according to the present embodiment, and FIG. 9B is a graph of a conventional liquid crystal at 25 ° C. and 60 ° C., respectively. The measurement system shown in FIG. 13 was used. FIG. 9 shows that under the condition of 60 ° C., not only in the front direction but also in the entire viewing angle range, the liquid crystal of the present embodiment can obtain higher contrast characteristics than the conventional example.
[0032]
FIG. 10 is a diagram illustrating the viewing angle-gradation characteristics at 25 ° C. of the reflective liquid crystal panel including the liquid crystal of the present embodiment. The measurement system shown in FIG. 13 was used. R4 (1.6 V), R26 (2.1 V), R54 (2.5 V), R75 (2.9 V), and R96 (4.2 V) in FIG. The voltage value in parentheses indicates the voltage value applied at the time of halftone display. FIG. 10 shows that the reflection type liquid crystal panel according to the present embodiment can obtain high reflectance characteristics even in a viewing angle range other than the specular reflection azimuth, and can realize a wide viewing angle characteristic in which the reflectance characteristics are not inverted between gradations. Understand.
[0033]
FIG. 11 is a diagram illustrating the response characteristics at 25 ° C. of the reflective liquid crystal panel including the liquid crystal of the present example. From FIG. 11, it can be seen that the reflective liquid crystal panel of the present embodiment can provide a display image that responds at high speed between each gradation including the halftone.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the reflective liquid crystal display device of this invention, the low reflectance characteristic which does not depend on a wavelength in black display can be obtained in a wide viewing angle range, and high contrast and wide viewing angle of an image can be realized. Further, it is possible to realize a wide viewing angle without grayscale inversion between grayscale displays. On the other hand, even in white display, high reflectance characteristics can be obtained in a wide viewing angle range, and a bright image display can be realized. In addition, the liquid crystal physical property parameters of the liquid crystal layer are adjusted in a range of 6.5 ≦ Δε ≦ 8.0, 0.07 ≦ Δn ≦ 0.09, 1.0 ≦ K33 / K11 ≦ 2.0, and The liquid crystal cell has a cell gap in the range of 3.0 μm ≦ d ≦ 3.5 μm. In addition, since display driving is performed with the voltage applied to the liquid crystal layer being equal to or higher than the threshold voltage, it is not limited to black and white gradations, It is possible to realize a display image that responds at a high speed even during a key interval. Furthermore, since the change in the reflectance characteristic of the black display with respect to the operating temperature can be designed to be minimized, image deterioration due to the temperature change is small, and high-quality image display can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a panel configuration and a polarization state of light of a reflective liquid crystal display panel of the present embodiment. FIG. 2 is a diagram showing a panel cross section of the reflective liquid crystal display panel of the present embodiment. (A) is a view showing a viewing angle characteristic when the film thickness d of the liquid crystal cell is changed, and (b) is a view showing a viewing angle (contrast) characteristic. FIG. 5 (a) is a diagram showing the viewing angle characteristics of contrast, and FIG. 5 (a) is a diagram showing the viewing angle characteristics of contrast when the dielectric anisotropy Δε is changed. 6 (a) is a diagram showing reflectance when the elastic constant ratio K33 / K11 is changed, and FIG. 6 (b) is a diagram showing viewing angle characteristics of contrast. FIG. 7 is a diagram showing a voltage of a reflection type liquid crystal display panel of the present embodiment. FIG. 8 is a graph showing reflectance characteristics. FIG. 8 is a graph showing the relationship between the voltage and the retardation of the reflective liquid crystal display panel of the present embodiment. FIG. 9 is a diagram showing a viewing angle-contrast characteristic of the reflective liquid crystal display panel of the present embodiment. FIG. 10 is a diagram showing a viewing angle-gradation characteristic of the reflective liquid crystal display panel of the present embodiment. FIG. 11 is a diagram showing the response characteristics of the reflective liquid crystal display panel of the present embodiment. FIG. 12 is a panel configuration diagram of a conventional reflective liquid crystal display panel. FIG. 13 is a diagram of the reflective liquid crystal panel of the present embodiment. Diagram showing a measurement system for measuring optical characteristics [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Reflective electrode 2 Array chip 3 TFT glass substrate 4 CF glass substrate 5 Organic insulating film 6 Alignment film 7 Liquid crystal layer 8 Counter electrode 9 Color filter layer 10 Light shielding layer 11 First phase compensator 12 Second phase compensator 13 3 phase compensation plate 14 polarizing plate 15 diffusion film 16 liquid crystal cell 17 diffusion reflection plate 18 light source 19 detector 20 liquid crystal panel

Claims (2)

画素毎に形成された薄膜トランジスタ及び反射電極を有する薄膜トランジスタアレイ基板と、対向電極が形成された対向電極基板と、前記薄膜トランジスタアレイ基板と対向基板との間に挟持され、ホモジニアスに配向処理された液晶層と、を有する液晶セルと、
前記対向電極基板側に積層された正の1軸性または2軸性の位相補償板と、
前記位相補償板上に積層された1枚の偏光板と、を具備し、
前記位相補償板の位相差及び遅相軸方位は、前記液晶セルを通過した反射光が前記位相補償板を順次通過した後、直線偏光に変調されるよう調整されており、
前記偏光板は、その偏光軸が、前記液晶層の光軸方位に対して−45°または+45°の方位となるよう配置され、
前記液晶層の液晶は、その誘電率異方性△εが6.5≦△ε≦8.0、屈折率異方性△nが0.07≦△n≦0.09及び弾性定数比K33/K11が1.0≦K33/K11≦2.0の範囲であり、
前記液晶セルのセルギャップdは、3.0μm≦d≦3.5μmの範囲であり、前記液晶層に閾値電圧以上の電圧を印加し、表示駆動することを特徴とする反射型液晶表示装置。
A thin film transistor array substrate having a thin film transistor and a reflective electrode formed for each pixel; a counter electrode substrate having a counter electrode formed thereon; and a liquid crystal layer sandwiched between the thin film transistor array substrate and the counter substrate and homogeneously aligned. And a liquid crystal cell having:
A positive uniaxial or biaxial phase compensator laminated on the counter electrode substrate side;
One polarizing plate laminated on the phase compensator,
The phase difference and the slow axis azimuth of the phase compensator are adjusted so that the reflected light passing through the liquid crystal cell sequentially passes through the phase compensator, and is then modulated into linearly polarized light.
The polarizing plate is disposed such that its polarization axis has an orientation of -45 ° or + 45 ° with respect to the optical axis orientation of the liquid crystal layer,
The liquid crystal of the liquid crystal layer has a dielectric anisotropy Δ △ of 6.5 ≦ Δε ≦ 8.0, a refractive index anisotropy Δn of 0.07 ≦ Δn ≦ 0.09, and an elastic constant ratio K33. / K11 is in the range of 1.0 ≦ K33 / K11 ≦ 2.0,
The reflection type liquid crystal display device, wherein a cell gap d of the liquid crystal cell is in a range of 3.0 μm ≦ d ≦ 3.5 μm, and a voltage higher than a threshold voltage is applied to the liquid crystal layer to perform display driving.
前記対向電極基板側に積層された正の1軸性または2軸性の位相補償板を少なくとも3枚以上備える請求項1記載の反射型液晶表示装置。2. The reflection type liquid crystal display device according to claim 1, comprising at least three or more positive uniaxial or biaxial phase compensators laminated on the counter electrode substrate side.
JP2003073955A 2003-03-18 2003-03-18 Reflective liquid crystal display Expired - Lifetime JP4336128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073955A JP4336128B2 (en) 2003-03-18 2003-03-18 Reflective liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073955A JP4336128B2 (en) 2003-03-18 2003-03-18 Reflective liquid crystal display

Publications (2)

Publication Number Publication Date
JP2004279930A true JP2004279930A (en) 2004-10-07
JP4336128B2 JP4336128B2 (en) 2009-09-30

Family

ID=33289722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073955A Expired - Lifetime JP4336128B2 (en) 2003-03-18 2003-03-18 Reflective liquid crystal display

Country Status (1)

Country Link
JP (1) JP4336128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256422A1 (en) * 2020-06-19 2021-12-23 富士フイルム株式会社 Optical element, light-guiding element, and liquid crystal composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256422A1 (en) * 2020-06-19 2021-12-23 富士フイルム株式会社 Optical element, light-guiding element, and liquid crystal composition

Also Published As

Publication number Publication date
JP4336128B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP3162210B2 (en) Liquid crystal display
EP0989441B1 (en) Laminated phase plate and liquid crystal display comprising the plate
US20090147193A1 (en) Liquid crystal display device
JP4332515B2 (en) Liquid crystal display
JP4717506B2 (en) Color display device
JPH11194353A (en) Active matrix liquid crystal display device
KR20040061343A (en) Optically Compensated Bend Mode Liquid Crystal Display Device
JP4336128B2 (en) Reflective liquid crystal display
KR100562174B1 (en) Transflective Liquid Crystal Display
JP2005031265A (en) Liquid crystal display
JP3946745B2 (en) Liquid crystal display
JP2000122060A (en) Reflection type liquid crystal display device
JP2006053498A (en) Color display device
JP2849025B2 (en) Liquid crystal display
JP2000258773A (en) Reflection type liquid crystal display device
KR100734233B1 (en) color liquid crystal display
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JP2003161944A (en) Liquid crystal display device
JP3946742B2 (en) Liquid crystal display
JP2943062B2 (en) Electro-optic element
JP3946746B2 (en) Liquid crystal display
JP3946744B2 (en) Liquid crystal display
JP3946741B2 (en) Liquid crystal display
JP3946740B2 (en) Liquid crystal display
JP3946743B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4336128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term