JP2004278866A - Heat collection piping unit for underground heat exchange system - Google Patents
Heat collection piping unit for underground heat exchange system Download PDFInfo
- Publication number
- JP2004278866A JP2004278866A JP2003068777A JP2003068777A JP2004278866A JP 2004278866 A JP2004278866 A JP 2004278866A JP 2003068777 A JP2003068777 A JP 2003068777A JP 2003068777 A JP2003068777 A JP 2003068777A JP 2004278866 A JP2004278866 A JP 2004278866A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- flange
- pipes
- heat
- heat collection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/15—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、地下10m〜100mの地中の比較的浅い部分に存在する低温域の熱源を有効利用するものであり、地下の熱を有効に利用して融雪、暖房及び冷房等を効率よくおこなうための地中熱交換システム用採熱管ユニットに関する。
【0002】
【従来の技術】
地球温暖化に対し、化石燃料に代わるエネルギーとしてクリーンな自然エネルギーが脚光を浴びている。
地下10m以下の温度は年間を通じてほぼ一定であり、エネルギー密度は低いが量的に期待できるエネルギー源である。
【0003】
【特許文献1】
特開2001−289533号公報(特許請求の範囲、要約、図1)
【0004】
地中熱交換方式としては図8に示すように次の方式が挙げられる。
▲1▼二重管方式。
▲2▼Uチューブ方式。
▲3▼WUチューブ方式。
二重管方式は、内管と外管の二重管から構成されており、内管の最下端からヒートポンプを通ってきた循環ブラインが外管に放出され、外管を通って再びヒートポンプに返送される循環方式である。なお、ブラインが外管から内管を通って循環する方式も可能である。
【0005】
井戸方式は、ブラインの循環移動経路は二重管方式と同じであるが、内管に比較して外管が大きく、外管を通過するブラインを地表面付近では吸引する必要があるが、ブラインの循環形式の観点からは同じと見てよいものである。
【0006】
Uチューブ方式は、二本の高密度ポリエチレンパイプをUパイプで連結してあり、錘を付して削孔内に降ろし、パイプ周辺にグラウトを充填して固定したものであり、Uチューブ内にブラインを通して熱交換するものである。
【0007】
WUチューブ方式は、二組のUチューブを直角に配置したものを削孔内に降ろし、パイプ周辺にグラウトを充填して固定するもので、ブラインをWUチューブ内に通して熱交換をおこなう方式である。
【0008】
【発明が解決しようとする課題】
地中熱利用熱交換システムにおいて、削孔費用がかなりの割合を占めるので、削孔1本当たりの採熱効率を高め、削孔数を減少させることが必要である。また、熱交換の媒体である採熱管を流下するブラインの漏液に対する対策を講じ、安全性を確保し、更には採熱管の施工効率を高めて削孔1本当たりの施工コストを抑制する必要がある。
【0009】
熱交換量は採熱管となるチューブ内を通過するブライン量とチューブ入口と出口の温度差の積に比例する。また、熱交換効率を高めるためには、熱伝導度の高い材質のチューブを使用するか、または、熱交換面積を大きくするためにチューブの表面積を大きくすると共に、断面積を大きくすることが必要である。
【0010】
二重管方式は、Uチューブ方式やWUチューブ方式に比べ、同一径の削孔内ではブラインが流れる断面を最も大きくできるのでブライン量を最も大きくすることができる。しかし、ブライン流下断面がUチューブ方式或いはWUチューブ方式の換算断面積と同じであると、表面積が小さいので熱交換量が小さくなる。従って、送ブライン量は多くすることができるが、熱交換容量がそれほど大きくならない。
また、二重管方式では、グラウト等の充填材の注入管を外管より外側に配置しなければならず、充填材注入管の分だけ外管を小さくしないと、削孔に挿入することができないという問題がある。
【0011】
Uチューブ方式は、合成樹脂製のホースによって作られているので、継ぎ目がなく、止水性が高く、削孔内への設置が容易であるが、ブラインが通過する断面積が小さく、従って表面積も小さくなり、更に、チューブを構成する合成樹脂の熱伝導率が小さいので、総合的に熱交換率が低くなる。
【0012】
WUチューブ方式は、Uチューブと同じく、止水性・施工性に優れており、Uチューブの2倍の表面積を有するので比較的熱交換効率がよい。
しかし、従来の方式では採熱量が10〜30W/m程度しか達成できず、熱交換効率が充分とはいえない。そのため、削孔深度を深くしたり、削孔本数を増やしたりして必要熱量を確保していたため、初期投資費用が増大する原因となっていた。
本発明は、採熱管の熱交換容量を大きくすると共に採熱管をユニット化することにより、削孔内への挿入作業を容易にし、地中熱を利用したシステムの初期投資費用を減少させようとするものである。
【0013】
【課題を解決するための手段】
偶数本の耐腐食金属製パイプの両端部に周方向にパイプ用の穴が設けてある環状フランジが固定してあり、フランジを介してパイプを接続することにより、従来より多くの本数の採熱管を削孔内に挿入できるようにして採熱量を増大させた。
また、パイプの接続にはOリングと、それを収容する拡径部を形成することによって接続作業を簡略化すると共に、漏液に対して安全性を高めた。
【0014】
【実施例】
実施例1
採熱管ユニット1は、図1に示すように、図3の偶数個のパイプ穴30が周方向に形成してあるドーナツ型のフランジ2にチタン製またはステンレス製のトラック輸送が可能な長さ4m〜10mのパイプ3を通したユニットである。パイプ3は、フランジ2において接続されるので、パイプ3の一端部はフランジから突出させてあり、他端はフランジ2内に位置する。採熱管ユニット1を削孔内に挿入した後、図3に示すフランジ2の中央部の穴20を利用してグラウト注入管(図示しない)が削孔底まで配設される。
【0015】
削孔底に設置する採熱管ユニットは、図2に示すように、対向するパイプ3の端部はU字管31で連結してあり、ブラインが循環するようにしてある。そのため、削孔断面内にWUチューブ方式より多いパイプ3を配置することができ、循環ブライン量を増大させて地中熱交換システムの熱交換量を大きくすることができる。
【0016】
図3に、フランジ2の平面図を示す。ユニット同士の接続は、フランジ2を接触させてボルト25で接続する。
図4に接続状態を、図5にパイプ3の端部の詳細を示すように、パイプ3のフランジ2から突出する側の端部に凹部32を形成し、Oリング33を填め込んである。また、Oリングの後側にはパイプ3をフランジに固定するテーパー34を有するスリーブ35がパイプに填め込んである。接続相手側のユニットのパイプの先端部は、Oリングを収容できるように、拡径部36が形成してある。パイプ3を接合したのち、フランジ2にボルト25を取り付けてユニット同士を締結する。
万一、ブラインが漏れる場合には異なる二重の接合部を通過しなければならず、一回のボルトによる締結によって二重の水密構造が形成されるので、漏液に対して安全性が高い。
パイプ3が水密的に接続され、フランジ2同士はボルトで固定するものであるので、ユニットの増減によって削孔の深さに対応させることができる。
【0017】
実施例2
実施例1は、フランジ2においてパイプ3を一端は突出させ、他端はフランジ内に位置するようにしてあるため、方向性を有し、製造に手間がかかるので、図6に示すように、パイプ3の両端部を拡径した拡径部36としてフランジ2における構造を単一形式として経済的に製造できるようにした。
ユニットの接続は、両端にOリングを取り付け、中央部に両側にテーパーを有するスリーブ38が取り付けてある、接続パイプ39をユニットの端部のパイプ3の拡径部36に差し込み、テーパーの作用でパイプ3をフランジに固定する。
【0018】
実施例3
実施例1は、ユニットの接合に方向性を有しているので、Oリング及びスリーブを取り付けているパイプと拡径部を有するパイプをフランジに固定する場合、円周方向の穴に交互に取り付けるようにすることにより、ユニットの方向性がなくなり、製造及び現場における接合が容易になる。
【0019】
本発明の採熱管ユニット1を接続して削孔内に挿入した状態を図7に示す。
【0020】
【発明の効果】
本発明では、採熱管として熱伝導率の大きな耐食性金属管を採用し、ユニット化することによって従来方法より多い本数の採熱管を削孔内に挿入できるようにして採熱量の増大を図った。
また、ユニットの長さをトラック等で運搬できる長さとし、フランジで簡単に接続できるようにし、長い採熱管を効率よく削孔に挿入設置できるようにした。
【図面の簡単な説明】
【図1】採熱管ユニットの斜視図。
【図2】U字管を設けた削孔底部用の採熱管ユニットを連結した斜視図。
【図3】フランジの平面図。
【図4】採熱管ユニットのフランジ部の断面図。
【図5】パイプの接合端部詳細を示す正面図。
【図6】採熱管ユニットのフランジ部の実施例2の断面図。
【図7】採熱管ユニットを削孔内に設置した状態の断面図。
【図8】採熱管の各種方式の斜視図。
【符号の説明】
1 採熱管ユニット
2 フランジ
3 パイプ[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention effectively utilizes a low-temperature heat source existing in a relatively shallow part of the ground at a depth of 10 m to 100 m underground, and efficiently uses underground heat to efficiently perform snow melting, heating, cooling, and the like. Tube unit for an underground heat exchange system.
[0002]
[Prior art]
In response to global warming, clean natural energy has been spotlighted as an alternative to fossil fuels.
The temperature below 10m below the ground is almost constant throughout the year, and the energy density is low, but it is a promising energy source.
[0003]
[Patent Document 1]
JP 2001-289533 A (claims, abstract, FIG. 1)
[0004]
As the underground heat exchange system, the following system is exemplified as shown in FIG.
(1) Double tube system.
(2) U tube method.
(3) WU tube method.
The double-pipe system consists of a double pipe consisting of an inner pipe and an outer pipe, and the circulating brine that has passed through the heat pump from the lower end of the inner pipe is discharged to the outer pipe and returned to the heat pump again through the outer pipe. It is a circulation method. A system in which the brine circulates from the outer pipe through the inner pipe is also possible.
[0005]
In the well method, the brine circulation path is the same as that of the double pipe method, but the outer pipe is larger than the inner pipe, and the brine passing through the outer pipe needs to be suctioned near the ground surface. From the point of view of the cyclic form of.
[0006]
The U-tube method is a system in which two high-density polyethylene pipes are connected by a U-pipe, attached to a weight, lowered into a drilled hole, filled with grout around the pipe, and fixed. Heat exchange through brine.
[0007]
The WU tube method is a method in which two sets of U-tubes are placed at right angles, lowered into a hole, filled with grout around the pipe and fixed, and heat is exchanged by passing brine through the WU tube. is there.
[0008]
[Problems to be solved by the invention]
In the geothermal heat exchange system, the cost of drilling accounts for a considerable proportion, so it is necessary to increase the heat extraction efficiency per drilling and to reduce the number of drillings. In addition, measures must be taken to prevent leakage of brine flowing down the heat collection tube, which is a medium for heat exchange, to ensure safety, and to further increase the efficiency of the heat collection tube to reduce the construction cost per hole. There is.
[0009]
The amount of heat exchange is proportional to the product of the amount of brine passing through the tube serving as the heat collection tube and the temperature difference between the inlet and the outlet of the tube. In order to increase the heat exchange efficiency, it is necessary to use a tube made of a material with high thermal conductivity, or to increase the surface area of the tube and the cross-sectional area to increase the heat exchange area. It is.
[0010]
The double tube method can maximize the amount of brine since the cross section through which the brine flows can be maximized within the same diameter hole as compared with the U tube method and the WU tube method. However, if the brine cross-section is the same as the converted cross-sectional area of the U-tube method or the WU-tube method, the amount of heat exchange is reduced because the surface area is small. Therefore, the amount of brine sent can be increased, but the heat exchange capacity is not so large.
In addition, in the double-pipe system, the filling pipe for the filler such as grout must be arranged outside the outer pipe, and if the outer pipe is not made smaller by the filler filling pipe, it can be inserted into the drilled hole. There is a problem that can not be.
[0011]
The U-tube method is made of a synthetic resin hose, so it has no seams, has high water-blocking properties, and can be easily installed in a drilled hole. In addition, since the thermal conductivity of the synthetic resin constituting the tube is small, the overall heat exchange rate is low.
[0012]
The WU tube method is excellent in water stopping performance and workability, like the U tube, and has a relatively high heat exchange efficiency because it has twice the surface area of the U tube.
However, the conventional method can achieve only about 10 to 30 W / m of the amount of heat collected, and the heat exchange efficiency is not sufficient. For this reason, the required heat quantity was secured by increasing the drilling depth or increasing the number of drilling holes, thereby causing an increase in initial investment cost.
The present invention seeks to increase the heat exchange capacity of the heat collection tube and to unitize the heat collection tube, thereby facilitating insertion work into the borehole and reducing the initial investment cost of a system using ground heat. Is what you do.
[0013]
[Means for Solving the Problems]
An even number of corrosion-resistant metal pipes are fixed at both ends with annular flanges provided with holes for pipes in the circumferential direction, and by connecting the pipes through the flanges, a larger number of heat sampling tubes than before Was inserted into the drilled hole to increase the heat collection.
In addition, an O-ring and an enlarged-diameter portion for accommodating the O-ring are used for pipe connection, thereby simplifying the connection work and increasing safety against liquid leakage.
[0014]
【Example】
Example 1
As shown in FIG. 1, the heat
[0015]
As shown in FIG. 2, in the heat collecting tube unit installed at the bottom of the drilling hole, the ends of the
[0016]
FIG. 3 shows a plan view of the
As shown in FIG. 4 and the details of the end of the
In the unlikely event that brine leaks, it must pass through different double joints, and a single watertight structure is formed by fastening with one bolt, so it is highly safe against liquid leakage .
Since the
[0017]
Example 2
In the first embodiment, since one end of the
The connection of the unit is performed by inserting a connecting
[0018]
Example 3
In the first embodiment, since the unit has directionality in joining the units, when the pipe having the O-ring and the sleeve and the pipe having the enlarged diameter portion are fixed to the flange, they are alternately mounted in the circumferential holes. By doing so, the directionality of the unit is lost, and the production and on-site joining are facilitated.
[0019]
FIG. 7 shows a state in which the heat collecting
[0020]
【The invention's effect】
In the present invention, a corrosion-resistant metal tube having a large thermal conductivity is adopted as a heat collection tube, and the heat collection amount is increased by unitizing the heat collection tube so that a larger number of heat collection tubes than the conventional method can be inserted into the drilled hole.
In addition, the length of the unit is set to a length that can be transported by truck or the like, so that it can be easily connected with a flange, and a long heat sampling tube can be inserted and installed in the drilled hole efficiently.
[Brief description of the drawings]
FIG. 1 is a perspective view of a heat collection tube unit.
FIG. 2 is a perspective view in which a heat sampling tube unit provided with a U-shaped tube for a drill hole bottom is connected.
FIG. 3 is a plan view of a flange.
FIG. 4 is a sectional view of a flange portion of the heat collection tube unit.
FIG. 5 is a front view showing details of a joint end of the pipe.
FIG. 6 is a sectional view of a flange portion of a heat collection tube unit according to a second embodiment.
FIG. 7 is a cross-sectional view of a state in which the heat collection tube unit is installed in the hole.
FIG. 8 is a perspective view of various types of heat collecting tubes.
[Explanation of symbols]
1 Heat
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068777A JP2004278866A (en) | 2003-03-13 | 2003-03-13 | Heat collection piping unit for underground heat exchange system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068777A JP2004278866A (en) | 2003-03-13 | 2003-03-13 | Heat collection piping unit for underground heat exchange system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004278866A true JP2004278866A (en) | 2004-10-07 |
Family
ID=33286018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003068777A Pending JP2004278866A (en) | 2003-03-13 | 2003-03-13 | Heat collection piping unit for underground heat exchange system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004278866A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1978314A1 (en) * | 2007-04-03 | 2008-10-08 | Iride S.r.l. | Geothermal probe |
JP2009008342A (en) * | 2007-06-28 | 2009-01-15 | Nomoto Tetsutsugu | Underground device in underground water heat utilization terrestrial facility |
WO2013073294A1 (en) * | 2011-11-17 | 2013-05-23 | NAKAGOMI Hideki | Spacer for heat exchange duct |
JP2014185450A (en) * | 2013-03-22 | 2014-10-02 | Nippon Hume Corp | Installation method of geothermal concrete foundation pile |
CN104567485A (en) * | 2014-12-26 | 2015-04-29 | 新奥科技发展有限公司 | Tubular heat exchanger |
CN105333243A (en) * | 2015-11-18 | 2016-02-17 | 潘泉方 | High pressure pipeline (functional combination through winding SUS304L pipes around GRP pipes) |
-
2003
- 2003-03-13 JP JP2003068777A patent/JP2004278866A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1978314A1 (en) * | 2007-04-03 | 2008-10-08 | Iride S.r.l. | Geothermal probe |
JP2009008342A (en) * | 2007-06-28 | 2009-01-15 | Nomoto Tetsutsugu | Underground device in underground water heat utilization terrestrial facility |
WO2013073294A1 (en) * | 2011-11-17 | 2013-05-23 | NAKAGOMI Hideki | Spacer for heat exchange duct |
JP2013108217A (en) * | 2011-11-17 | 2013-06-06 | Hideki Nakagome | Spacer for heat exchange duct |
JP2014185450A (en) * | 2013-03-22 | 2014-10-02 | Nippon Hume Corp | Installation method of geothermal concrete foundation pile |
CN104567485A (en) * | 2014-12-26 | 2015-04-29 | 新奥科技发展有限公司 | Tubular heat exchanger |
CN105333243A (en) * | 2015-11-18 | 2016-02-17 | 潘泉方 | High pressure pipeline (functional combination through winding SUS304L pipes around GRP pipes) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7370488B2 (en) | Geo-thermal heat exchanging system facilitating the transfer of heat energy using coaxial-flow heat exchanging structures installed in the earth for introducing turbulence into the flow of the aqueous-based heat transfer fluid flowing along the outer flow channel | |
KR100824419B1 (en) | Structure for establishment in-case of heating exchange system using the geothermal | |
US20120211210A1 (en) | Coaxial-flow heat transfer structure | |
JP5913119B2 (en) | Low-energy system ground circuit | |
US7048037B2 (en) | Geothermal heating and/or cooling apparatus and method of using same | |
US20170108290A1 (en) | Collector | |
CN101581517A (en) | Heat pump system of single-loop geothermal underground heat exchanger | |
US8261551B2 (en) | Energy producing device | |
KR101299826B1 (en) | Depth geothermal system unit | |
KR101544753B1 (en) | Guide, cleaning and protection device of standing column well type geothermal heat exchange circulation pipe | |
CN209893671U (en) | High-efficient geothermal utilization system based on closed loop heat medium pipe | |
JP2004278866A (en) | Heat collection piping unit for underground heat exchange system | |
JP2014163554A (en) | Construction method of heat exchange equipment of geothermal heat utilization system and geothermal heat utilization system | |
US10345051B1 (en) | Ground source heat pump heat exchanger | |
CN201066219Y (en) | Down-hole heat exchanger heat pump system | |
CN112815557A (en) | Heat exchange sleeve device for efficiently exploiting geothermal resources and geothermal single well system | |
KR100795336B1 (en) | Heating exchanging system using the ground source | |
CN104880104A (en) | Underground corrugated pipe heat exchanging device for ground source heat pump heat exchanging system | |
JP2003302109A (en) | Geothermal heat exchanger | |
US11022345B1 (en) | Ground source heat pump heat exchanger | |
CN101672584A (en) | Heat exchanger and oil well paraffin removal device with same | |
CN221349789U (en) | Middle-deep U-shaped well geothermal heat exchanger | |
CN217109744U (en) | Heat exchanger for medium-deep non-interference heating | |
KR101822081B1 (en) | Pipe assembly with coupling module for geothermal borehole | |
KR200419540Y1 (en) | Heat exchange circulator using geothermal heat in rock aquifer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060119 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071023 |