JP2004278770A - Clutch - Google Patents

Clutch Download PDF

Info

Publication number
JP2004278770A
JP2004278770A JP2003099284A JP2003099284A JP2004278770A JP 2004278770 A JP2004278770 A JP 2004278770A JP 2003099284 A JP2003099284 A JP 2003099284A JP 2003099284 A JP2003099284 A JP 2003099284A JP 2004278770 A JP2004278770 A JP 2004278770A
Authority
JP
Japan
Prior art keywords
surface portion
engagement
rotating member
axial direction
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099284A
Other languages
Japanese (ja)
Inventor
Sadatomo Kuribayashi
定友 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Seven Co Ltd
Original Assignee
K Seven Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Seven Co Ltd filed Critical K Seven Co Ltd
Priority to JP2003099284A priority Critical patent/JP2004278770A/en
Publication of JP2004278770A publication Critical patent/JP2004278770A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clutch of a simplified mechanism to be coupled in a short time even when the difference in number of rotation is large between a driving side and a driven side. <P>SOLUTION: An engagement outer surface part 21 of flat surface arranged in the circumferential direction is formed on an outer circumferential surface of a driving rotary member 2, and an engagement inner surface part 41 of cylindrical inner surface is formed over the entire circumference on the inner circumferential surface of a driven rotary member 4. A rotational force transmission roller 7 disposed between the engagement outer surface part 21 and the engagement inner surface part 41 has the dimension smaller than the distance between a circumferential center part of the engagement outer surface part 21 and the engagement inner surface part 41 but larger than the distance between a circumferential end part of the engagement outer surface part 21 and the engagement inner surface part 41. The driving rotary member 2 is turnable around the center 1 of rotation with respect to a roller holder 6. In order to control the turnable range of the driving rotary member 2 with respect to the holder 6, a groove 22 formed in the outer circumferential surface of the driving rotary member 2 and having the width changing in the axial direction is engaged with a projection member 81 variable in the position in the axial direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転力伝達の技術分野に属するものであり、特に機構部に特徴を有するクラッチに関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
回転力伝達系において、所望により原動軸側から従動軸側への回転力伝達の断続を行うためにクラッチが利用される。クラッチにおいては、特に、回転力伝達が遮断されている時に原動軸側の回転部材と従動軸側の回転部材とで回転数の差が大きくなることがある。そのような場合でも、回転力伝達のために原動軸側回転部材と従動軸側回転部材とを短時間に結合させることが要求される。
【0003】
しかるに、従来より使用されているクラッチは、以上のような短時間での結合の要求を満たすために、複雑な機構が採用されており、高価なものにならざるを得なかった。
【0004】
そこで、本発明は、簡素化された機構を持ち、且つ原動軸側回転部材と従動軸側回転部材との回転数差が大きい場合であっても短時間に結合させることが可能なクラッチを提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明によれば、以上の如き目的を達成するものとして、
回転中心の周りで同軸にて互いに回転可能に配置された第1の回転部材と第2の回転部材との間での回転力伝達の断続を行うクラッチであって、
前記第1の回転部材の外周面には前記回転中心の周りの周方向に配列された互いに同等な複数の係合外面部が形成されており、
前記第2の回転部材の内周面には前記回転中心と平行な軸方向に関し前記係合外面部と同一の位置に前記係合外面部に対応して配置され得る前記周方向に配列された互いに同等な複数の係合内面部が形成されており、該係合内面部は前記第1及び第2の回転部材の径方向に関し前記係合外面部の外方に位置しており、
前記係合外面部と前記係合内面部とはこれらが対応して配置されたときにこれらの間の距離が前記周方向に関しそれらの中央部から端部へと次第に小さくなるような形状とされており、
前記係合外面部と前記第2の回転部材の内周面との間には回転力伝達駒が配置されており、
前記第1の回転部材と前記第2の回転部材との間には前記回転力伝達駒を前記周方向及び前記軸方向に関し保持する保持器が配置されており、
前記第1の回転部材は前記保持器に対して前記回転中心の周りで回動可能とされており、
前記保持器に対する前記第1の回転部材の回動可能範囲を制御する制御手段が設けられており、該制御手段は前記回動可能範囲として少なくとも第1範囲及び第2範囲を設定することができ、前記第1範囲では前記回転力伝達駒を前記係合外面部の中央部及びその近傍の部分に対応して位置させることを許容することで該回転力伝達駒を前記係合外面部及び前記第2の回転部材の内周面の少なくとも一方から離間させ、前記第2範囲では前記回転力伝達駒を前記係合外面部の両端部の近傍の間の部分に対応して位置させることを許容することで該回転力伝達駒を前記係合外面部及び前記係合内面部の双方と接触させることを特徴とするクラッチ、が提供される。
【0006】
本発明の一態様においては、前記第2の回転部材の内周面は前記回転中心と平行な軸方向に関し前記係合外面部と同一の位置に前記周方向の全周に亘って形成された前記回転中心に関し回転対称な面とされており、該面が適宜部分的に前記係合内面部として機能する。
【0007】
本発明の一態様においては、前記係合外面部は前記軸方向に延びた平面形状をなしている。本発明の一態様においては、前記係合内面部は円筒内周面形状をなしている。本発明の一態様においては、前記係合外面部は前記軸方向に延びたV字溝形状をなしている。本発明の一態様においては、前記係合内面部は前記軸方向に延びた平面形状をなしている。
【0008】
本発明の一態様においては、前記制御手段は、前記第1の回転部材の外周面に形成され前記軸方向に関し幅が変化している溝と、該溝に係合し且つ前記軸方向の位置の可変な前記径方向に内向きの突起部材と、該突起部材を前記軸方向に移動させる操作部材とを含んでなる。
【0009】
本発明の一態様においては、前記制御手段は、前記保持器の軸方向端面において前記周方向に形成され前記軸方向に関し幅が変化している切欠と、該切欠に係合し且つ前記軸方向の位置の可変な凸部材と、該凸部材を前記軸方向に移動させる操作部材とを含んでなる。
【0010】
本発明の一態様においては、前記第2の回転部材は前記係合内面部を備えた内側部材と該内側部材に対して前記回転中心の周りで相対回動可能に取り付けられた外側部材とを含んでなり、前記内側部材と前記外側部材とは弾性連結部材を介して接続されている。本発明の一態様においては、前記弾性連結部材は、一方端が前記内側部材の外面に固着され他方端が前記外側部材の内面に固着され且つ前記周方向に略沿って該周方向に関し伸縮可能な形状を有する板ばねからなる。
【0011】
本発明の一態様においては、前記回転力伝達駒は前記軸方向を向いて保持される円筒形状体または球状体である。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照しながら説明する。
【0013】
図1は本発明によるクラッチの一実施形態を示す部分分解斜視図であり、図2は本実施形態を示す断面図である。また、図3は本実施形態の第1の回転部材と保持器とを示す部分断面図であり、図4は本実施形態の第1の回転部材の溝と保持器の長孔と制御手段の突起材とを示す模式的部分平面図である。また、図5は本実施形態の第1の回転部材と第2の回転部材と保持器と回転力伝達駒と制御部材とを示す部分断面図である。また、図6は本実施形態の制御手段の操作部材を示す部分斜視図であり、図7はその平面図である。
【0014】
図1及び図2に示されているように、本実施形態のクラッチは、大略円柱形状の原動側回転部材(第1の回転部材)2と、大略円筒形状の先端部を有する従動側回転部材(第2の回転部材)4と、大略円筒形状の保持器6と、大略円筒形状の制御部材8とを備えている。
【0015】
原動側回転部材2と従動側回転部材4とは、回転中心1の周りで同軸にて互いに回転可能に配置されている。これら回転部材2,4のそれぞれは、図2に示されているように、支持フレーム10によりベアリングを介して支持されている。
また、原動側回転部材2の先端部は従動側回転部材4によりベアリングを介して回転中心1の周りで相対回転可能な様に支持されている。
原動側回転部材2の外周面には、複数(例えば8個)の係合外面部21が形成されている。これら係合外面部21は、互いに同等であり、回転中心1の周りの周方向(以下、この方向を単に「周方向」という)に均等に配列されている。係合外面部21は、回転中心1と平行な軸方向(以下、この方向を単に「軸方向」という)に延びた平面形状をなしている。即ち、係合外面部21の位置における原動側回転部材2の回転中心1と直交する断面の形状は正多角形(例えば正八角形)である。また、原動側回転部材2の外周面には、軸方向に従動側回転部材4とは反対の方へと係合外面部21から隔てられた位置に、溝22が形成されている。該溝22は、軸方向に関し幅が変化しており、従動側回転部材4の方へと次第に幅が大きくなっている。溝22は、回転中心12関して反対側の位置にも、同等なものが設けられている。
従動側回転部材4の内周面は回転中心1と平行な軸方向に関し係合外面部21と同一の位置に周方向の全周に亘って回転中心1に関し回転対称な面とされており、この面が適宜(随時)部分的に係合内面部41として機能する。即ち、周方向に配列された互いに同等な複数の係合内面部41が係合外面部21に対応して配置される。係合内面部41は従動側回転部材4の内周面と同一の円筒内周面形状をなしている。係合内面部41は原動側回転部材2及び従動側回転部材4の径方向(即ち、回転中心1からそれに直交する放射状の方向:以下、この方向を単に「径方向」という)に関し係合外面部21の外方に位置している。従って、平面状係合外面部21のそれぞれは、対応して配置された係合内面部41との距離が、周方向に関し中央部から端部(即ち隣接係合外面部との境界線近傍の部分)へと次第に小さくなる。
係合外面部21のそれぞれと係合内面部41との間には、回転力伝達駒としてのローラー7が配置されている。該ローラー7は、対応配置された係合外面部21の中央部と係合内面部41の中央部との間の距離よりは小さく且つ対応配置された係合外面部21の端部と係合内面部41の端部との間の距離よりは大きな径方向の寸法を有している。係合外面部21と係合内面部41とはこれらが対応して配置されたときにこれらの間の距離が周方向に関しそれらの中央部から端部へと次第に小さくなるような形状とされているので、ローラー7は、係合外面部21の中央部の近傍に位置する時には係合外面部21及び係合内面部41の少なくとも一方から離間して位置し、係合外面部21の端部の近傍に位置することで係合外面部21及び係合内面部41の双方と接触して(即ちこれらに挟持されて)位置するようになる。
【0016】
保持器6は、一部分(第1部分とする)が原動側回転部材2と従動側回転部材4との間に位置しており、他の一部分(第2部分とする)が従動側回転部材4から軸方向に離れて位置している。保持器6の第1部分には、周方向に均等に配置された保持孔61が形成されており、各保持孔内に上記ローラー7のそれぞれが軸方向を向いて配置されている。これにより、周方向及び軸方向に関し、ローラー7の位置が保持される(但し、適度のクリアランスは存在する)。また、保持器6の第2部分には、上記原動側回転部材2の溝22に対応して、径方向に貫通し且つ軸方向に溝22と同等の長さを有する細長い長孔62が2つ形成されている。
【0017】
保持器6は原動側回転部材2に対して回転中心1の周りで回動可能であり、即ち原動側回転部材2は保持器6に対して回転中心1の周りで回動可能とされている。但し、原動側回転部材2は保持器6に対して回転中心1の方向には移動不能とされている。
【0018】
図1、2及び5に示されているように、保持器6の第2部分の径方向外方には制御部材8が配置されている。該制御部材8は、保持器6及び原動側回転部材2に対して軸方向に移動可能に支持されている。制御部材8は、上記2つの溝22及び2つの長孔62に対応して、2つの突起部材81を備えている。該突起部材81は、径方向に内向きに延びており、保持器6の第2部分に形成された長孔62を貫通しており、内方端が溝22に適合している。図4には、この適合状態が模式的に示されている。従って、制御部材8は、保持器6に対しては所定のストロークでの軸方向移動が可能であり、原動側回転部材2に対しては同等な所定ストロークでの軸方向移動が可能であると共に軸方向位置によっては所定角度範囲内の周方向の回動も可能である。
【0019】
図2に示されているように、支持フレーム10には回転中心1を中心とする環状のカム部材101が形成されており、該カム部材の内側には軸方向に移動可能な可動部材9が配置されている。上記制御部材8は、可動部材9によりベアリングを介して回転中心1の周りで回転可能に支持されている。
【0020】
図6及び図7に示されているように、カム部材101には径方向に貫通したカム長孔101aが形成されており、及び該カム長孔に適合して径方向に貫通して延びた操作レバー91が配置されている。該操作レバー91の内方端は可動部材9に固定されている。従って、操作レバー91を周方向に移動させる(即ち回転中心1の周りで回転させる)ことで、該操作レバーはカム溝101aによりガイドされて可動部材9及び制御部材8と共に軸方向に移動する。操作レバー91、カム部材101及び可動部材9を含んで操作部材が構成される。また、この操作部材と、上記原動側回転部材2の外周面の溝22と、制御部材8の突起部材81とを含んで制御手段が構成される。
【0021】
次に、本実施形態の動作とくに制御手段の動作を説明する。操作レバー91を操作することで、カム部材101のカム長孔101aの作用により、可動部材9及び制御部材8が軸方向に移動せしめられる。
【0022】
操作レバー91が、図7の91xの位置にあるときには、可動部材9及び制御部材8が軸方向可動範囲の最も従動側回転部材4から遠い位置にあり、その場合には突起部材81は図4のP1にある。この位置では、溝22の幅は突起部材81の直径より僅かに大きいものであり、従って保持器6に対する原動側回転部材2の周方向の回動範囲も狭く(第1範囲)、図5(a)に示されるような第1の状態が実現される。この状態では、係合外面部21の中央部の近傍部分のみがローラー7に対応して位置することが許容され(即ち、ローラー7を係合外面部21の中央部及びその近傍の部分に対応して位置させることが許容され)、ローラー7は係合外面部21及び係合内面部41の少なくとも一方から離間して位置することになり、原動側回転軸2から従動側回転軸4への回転力の伝達はなされない。
【0023】
これに対して、操作レバー91が、図7の91yの位置にあるときには、可動部材9及び制御部材8が軸方向可動範囲の最も従動側回転部材4に近い位置にあり、その場合には突起部材81は図4のP2にある。この位置では、溝22の幅は突起部材81の直径より十分に大きいものであり、従って保持器6に対する原動側回転部材2の周方向の回動範囲も広く(第2範囲)、図5(b)に示されるような第2の状態が実現され得る。この状態では、係合外面部21の中央部から端部の近傍までの部分(即ち両方の端部近傍の間の部分)がローラー7に対応して位置することが許容され(即ち、ローラー7を係合外面部21の両端部の近傍の間の部分に対応して位置させることが許容され)、従って原動側回転部材2の回転に伴いローラー7は係合外面部21及び係合内面部41の双方と接触して位置するようになり、原動側回転軸2からローラー7を介して従動側回転軸4へと回転力が伝達される。
【0024】
以上のようにして、操作レバー91を周方向に91xと91yとの間で回動させる操作を行うことで、回転力伝達の断続を行うことが出来る。本実施形態においては、原動側回転部材2と従動側回転部材4とで回転数が大きく相違しても、突起部材81を軸方向に移動させることで上記第2の状態を実現する動作を迅速且つ的確に行うことが可能である。
【0025】
図8は本発明によるクラッチの更に別の実施形態を示す部分分解斜視図であり、図9及び図10はいずれも本実施形態の第2の回転部材を示す部分断面図である。また、図11は本実施形態の弾性連結部材を示す側面図である。これらの図において、上記図1〜7におけると同様の機能を有する部材または部分には同一の符号が付されている。
【0026】
本実施形態は、上記図1他を参照して説明した実施形態とは、第2の回転部材即ち従動側回転部材4の構造が異なるのみであり、他は同等である。即ち、本実施形態では、従動側回転部材4は、内側部材4Aと外側部材4Bとを含んでなる。内側部材4Aは大略円筒形状をなしており、その内周面には係合内面部41が形成されている。図9に示されているように、外側部材4Bは内側部材4Aに対して面接触により回転中心1の周りで相対回動可能に取り付けられている。そして、内側部材4Aと外側部材4Bとは、弾性連結部材としての板ばね4C1,4C2を介して接続されている。板ばね4C1は、外力がかかっていない自由状態では、図11に示されるような形状をなしている。即ち、所要の幅(図11では紙面と垂直の方向の寸法)を持ち且つ折れ線状でその屈曲部が若干丸められた断面形状をなしている。板ばねは、図12に示されるように、所要の幅(図12では紙面と垂直の方向の寸法)を持ち且つ波形の断面形状をなすものであってもよい。板ばねの両端には、内側部材4Aとの固着部C’及び外側部材4Bとの固着部C”が形成されている。板ばね4C2も板ばね4C1同様の形状を有する。これらの板ばねを図8〜図10に示されているように、それぞれ内側部材4Aと外側部材4Bとの間の環状の空間にて、周方向に回転中心1の周りで半周弱となるように屈曲した状態で配置されており、固着部C’,C”がそれぞれ内側部材4Aの外面及び外側部材4Bの内面に形成された溝に差し込まれ、溶接などで固着されている。図9に示されているように、外側部材4Bには、板ばね4C1,4C2による内側部分との連結部分を覆う円環状板部材4Dが付されている。
【0027】
本実施形態では、内側部材4Aと外側部材4Bとは回転中心1に関して相対回動可能で、しかも、これら部材の間に周方向の相対的回転力の作用がない状態を基準として、これら部材の間に相対的回転力が生じた場合には板ばね4C1,4C2が周方向に伸縮変形することで該回転力との釣り合いが実現するまで相対的回動がなされる。
【0028】
従って、本実施形態においては、原動側部材2と従動側部材4との結合時に該従動側部材に急激な回転力変化が発生しても、その衝撃は板ばね4C1,4C2により吸収され、従動側部材4の外側部材4Bに滑らかに回転力を伝達することができる。従って、原動側部材2と従動側部材4との間の回転数の差が極めて大きい場合であっても、極めて良好且つ安定したクラッチ動作が可能である。
【0029】
本実施形態においては、所望により、ばね定数を変化させるために、同等な複数の板ばねを重ね合わせて使用することができる。
以上の実施形態では弾性連結部材として板ばねが使用されているが、本発明では弾性連結部材はコイルばねその他のばねであってもよいし更には内側部材と外側部材との間の空間に配置されこれらと接着されたゴムであってもよい。
【0030】
また、以上の実施形態では係合外面部は軸方向に延びた平面形状をなしているが、本発明では係合外面部は必ずしも平面からなるものでなくともよく、例えば軸方向に延び且つ軸方向と直交する断面が凹曲線形状または凸曲線形状(但し、曲率半径は係合内面部より大きい)をなすものであってもよい。
図13は本発明によるクラッチの更に別の実施形態を示す部分分解斜視図であり、図14及び図15は本実施形態を示す断面図である。これらの図において、上記図1〜12におけると同様の機能を有する部材または部分には同一の符号が付されている。
本実施形態では、従動側回転部材4がベアリングを介して原動側回転部材2の外周面に取り付けられている。また、原動側回転部材2の外周面に形成された係合外面部21は軸方向に延びたV字溝形状をなしており、従動側回転部材4の内周面に形成された係合内面部41は軸方向に延びた平面形状をなしている。係合外面部21及び係合内面部41は、それぞれ3つづつ周方向に均等に配置されて形成されている。
本実施形態は、制御手段の構成が上記実施形態のものと異なる。即ち、本実施形態では、保持器6の軸方向端面において周方向に沿って切欠64が形成されている。この切欠64は、図13及び図14に示されているように、軸方向に関し幅が変化している。即ち、保持器6の軸方向端面で最も幅が広く軸方向に奥へと進むに従い次第に幅が狭くなっている。一方、原動側回転部材2の外周面には軸方向のキー24が付されており、制御部材8の内周面に形成された軸方向溝83がキー24に適合している。これにより、制御部材8は原動側回転部材2に対して軸方向に移動可能とされている。制御部材8には、図14に示されているように、保持器6と対向する端面において、上記切欠64と対応して対応する形状の凸部材84が付されている。また、制御部材8の外周面には周方向溝85が形成されており、図14に示されているように、該周方向溝85には軸方向可動部材9’が適合している。該可動部材9’は、図2他に示される可動部材9と同様に、図14では不図示の操作レバー91及びカム部材101とともに操作部材を構成する。また、この操作部材と、上記保持器6の端面の切欠64と、制御部材8の端面の凸部材84とを含んで制御手段が構成される。
【0031】
次に、本実施形態の動作とくに制御手段の動作を説明する。上記実施形態と同様にして可動部材9’及び制御部材8を軸方向に移動させることで、以下のように保持器6に対する原動側回転部材2の回動可能範囲を制御する。
可動部材9’及び制御部材8が軸方向可動範囲の最も従動側回転部材4に近い位置にある時には、図17(a)に示されているように、凸部材84が切欠64に十分に入り込み、従って保持器6は制御部材8に対して殆ど回動できないようになり、保持器6に対する原動側回転部材2の周方向の回動範囲も狭く(第1範囲)なる。この状態では、図15に示されているように、係合外面部21の中央部の近傍部分のみがローラー7に対応して位置することが許容され(即ち、ローラー7を係合外面部21の中央部及びその近傍の部分に対応して位置させることが許容され)、ローラー7は係合外面部21及び係合内面部41の少なくとも一方から離間して位置することになり、原動側回転軸2から従動側回転軸4への回転力の伝達はなされない。
【0032】
これに対して、可動部材9’及び制御部材8が軸方向可動範囲の最も従動側回転部材4から遠い位置にある時には、図17(b)に示されているように、凸部材84が切欠64に僅かしか入り込まず、従って保持器6は制御部材8に対して所定の角度範囲内で回動できるようになり、保持器6に対する原動側回転部材2の周方向の回動範囲も広く(第2範囲)なる。この状態では、図16に示されているように、係合外面部21の中央部から端部の近傍までの部分(即ち両方の端部近傍の間の部分)がローラー7に対応して位置することが許容され(即ち、ローラー7を係合外面部21の両端部の近傍の間の部分に対応して位置させることが許容され)、従って原動側回転部材2の回転に伴いローラー7は係合外面部21及び係合内面部41の双方と接触して位置するようになり(この時、ローラー7の中心が係合外面部21の中央部から周方向に角度θだけ移動している)、原動側回転軸2からローラー7を介して従動側回転軸4へと回転力が伝達される。
以上のようにして、本実施形態においても、上記実施形態と同様な作用効果を得ることができる。
以上のいくつかの実施形態では第1の回転部材が原動側回転部材であり第2の回転部材が従動側回転部材であるとされているが、本発明においては、第1の回転部材を従動側回転部材とし第2の回転部材を原動側回転部材とすることができる。この場合、図5または図16に示すのと反対の向きに回転部材が回転せしめられる。
【0033】
また、以上の実施形態では回転力伝達駒として円筒形状体であるローラーが使用されているが、本発明においては回転力伝達駒として軸方向に延びた例えば略半円筒形(かまぼこ型)のもの等を用いることも可能である。これは、特に図1〜12に関し説明した実施形態のように第2の回転部材の内周面が回転中心に関して回転対称に形成されて適宜部分的に係合内面部として機能する場合に好適であり、この場合、略半円筒形等の回転力伝達駒の平坦面を第1の回転部材の係合外面部に対向させて配置するのが好ましい。更に、本発明においては、伝達される回転力が小さい場合には、回転力伝達駒としてボール(球状体)等を用いてもよい。
【0034】
【発明の効果】
以上説明したように、本発明によれば、簡素化された機構で、原動側回転部材と従動側回転部材との回転数差が大きい場合であっても短時間に的確に結合させることが可能なクラッチが提供される。
【図面の簡単な説明】
【図1】本発明によるクラッチの一実施形態を示す部分分解斜視図である。
【図2】本発明によるクラッチの一実施形態を示す断面図である。
【図3】本発明によるクラッチの一実施形態の第1の回転部材と保持器とを示す部分断面図である。
【図4】本発明によるクラッチの一実施形態の第1の回転部材の溝と保持器の長孔と制御手段の突起材とを示す模式的部分平面図である。
【図5】本発明によるクラッチの一実施形態の第1の回転部材と第2の回転部材と保持器と回転力伝達駒と制御部材とを示す部分断面図である。
【図6】本発明によるクラッチの一実施形態の制御手段の操作部材を示す部分斜視図である。
【図7】本発明によるクラッチの一実施形態の制御手段の操作部材を示す平面図である。
【図8】本発明によるクラッチの実施形態を示す部分分解斜視図である。
【図9】本発明によるクラッチの実施形態の第2の回転部材を示す部分断面図である。
【図10】本発明によるクラッチの実施形態の第2の回転部材を示す部分断面図である。
【図11】本発明によるクラッチの実施形態の弾性連結部材を示す側面図である。
【図12】本発明によるクラッチの弾性連結部材の他の例を示す側面図である。
【図13】本発明によるクラッチの実施形態を示す部分分解斜視図である。
【図14】本発明によるクラッチの実施形態を示す断面図である。
【図15】本発明によるクラッチの実施形態を示す断面図である。
【図16】本発明によるクラッチの実施形態を示す断面図である。
【図17】本発明によるクラッチの保持器の切欠と制御部材の凸部材とを示す部分拡大図である。
【符号の説明】
1 回転中心
2 原動側回転部材(第1の回転部材)
21 係合外面部
22 溝
4 従動側回転部材(第2の回転部材)
41 係合内面部
4A 内側部材
4B 外側部材
4C1,4C2 板ばね
C’,C” 固着部
4D 円環状板部材
6 保持器
61 保持孔
62 長孔
7 ローラー(回転力伝達駒)
8 制御部材
81 突起部材
9 可動部材
91 操作レバー
91x,91y 操作レバーの周方向位置
10 支持フレーム
101 環状カム部材
101a カム長孔
24 キー
64 切欠
83 軸方向溝
84 凸部材
85 周方向溝
9’ 可動部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of torque transmission, and more particularly to a clutch having a feature in a mechanism.
[0002]
Problems to be solved by the prior art and the invention
In the torque transmission system, a clutch is used to intermittently transmit torque from the driving shaft to the driven shaft, if desired. In a clutch, in particular, when the transmission of rotational force is interrupted, the difference in the number of rotations between the rotating member on the driving shaft side and the rotating member on the driven shaft side may increase. Even in such a case, it is required to couple the driving shaft side rotating member and the driven shaft side rotating member in a short time for transmitting the rotational force.
[0003]
However, a conventionally used clutch employs a complicated mechanism in order to satisfy the above-described demands for the connection in a short time, and thus has to be expensive.
[0004]
Therefore, the present invention provides a clutch having a simplified mechanism and capable of being engaged in a short time even when the rotational speed difference between the driving shaft side rotating member and the driven shaft side rotating member is large. It is intended to do so.
[0005]
[Means for Solving the Problems]
According to the present invention, as achieving the above objects,
A clutch for intermittently transmitting rotational force between a first rotating member and a second rotating member which are coaxially rotatable with each other around a rotation center,
On the outer peripheral surface of the first rotating member, a plurality of engagement outer surface portions equivalent to each other arranged in a circumferential direction around the rotation center are formed,
The inner peripheral surface of the second rotating member is arranged in the circumferential direction that can be arranged at the same position as the engaging outer surface portion in the axial direction parallel to the rotation center and corresponding to the engaging outer surface portion. A plurality of engagement inner surface portions equivalent to each other are formed, and the engagement inner surface portion is located outside the engagement outer surface portion in a radial direction of the first and second rotating members,
The engagement outer surface portion and the engagement inner surface portion are shaped such that when they are arranged correspondingly, the distance between them gradually decreases from the center to the end in the circumferential direction. And
A rotational force transmission piece is disposed between the engagement outer surface portion and the inner peripheral surface of the second rotating member,
A retainer that holds the rotational force transmission piece in the circumferential direction and the axial direction is arranged between the first rotating member and the second rotating member,
The first rotating member is rotatable around the rotation center with respect to the retainer,
Control means for controlling a rotatable range of the first rotating member with respect to the retainer is provided, and the control means can set at least a first range and a second range as the rotatable range. In the first range, by allowing the rotational force transmitting piece to be positioned corresponding to the central portion of the engaging outer surface portion and a portion in the vicinity thereof, the rotational force transmitting piece is moved to the engaging outer surface portion and the engaging outer surface portion. The second rotating member is separated from at least one of the inner peripheral surfaces, and in the second range, the rotational force transmitting piece is allowed to be positioned corresponding to a portion between both ends of the engaging outer surface portion. By doing so, there is provided a clutch, wherein the rotational force transmission piece is brought into contact with both the engagement outer surface portion and the engagement inner surface portion.
[0006]
In one aspect of the present invention, the inner peripheral surface of the second rotating member is formed at the same position as the engaging outer surface portion in the axial direction parallel to the rotation center and over the entire circumference in the circumferential direction. The surface is a rotationally symmetric surface with respect to the rotation center, and the surface appropriately and partially functions as the engagement inner surface portion.
[0007]
In one aspect of the present invention, the engagement outer surface portion has a planar shape extending in the axial direction. In one aspect of the present invention, the engagement inner surface has a cylindrical inner peripheral surface shape. In one aspect of the present invention, the engaging outer surface portion has a V-shaped groove shape extending in the axial direction. In one aspect of the present invention, the engagement inner surface has a planar shape extending in the axial direction.
[0008]
In one aspect of the present invention, the control means includes a groove formed on the outer peripheral surface of the first rotating member, the width of which is changed in the axial direction, and a position in the axial direction that engages with the groove. And a control member for moving the protrusion member in the axial direction.
[0009]
In one aspect of the present invention, the control means includes: a notch formed in the circumferential end face of the retainer in the circumferential direction and having a width varying with respect to the axial direction; And a control member for moving the convex member in the axial direction.
[0010]
In one embodiment of the present invention, the second rotating member includes an inner member provided with the engagement inner surface portion and an outer member attached to the inner member so as to be relatively rotatable around the rotation center. The inner member and the outer member are connected via an elastic connecting member. In one aspect of the present invention, the elastic connecting member has one end fixed to the outer surface of the inner member and the other end fixed to the inner surface of the outer member, and is extendable and contractable in the circumferential direction substantially along the circumferential direction. It consists of a leaf spring having various shapes.
[0011]
In one aspect of the present invention, the rotational force transmitting piece is a cylindrical body or a spherical body held in the axial direction.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a partially exploded perspective view showing an embodiment of a clutch according to the present invention, and FIG. 2 is a sectional view showing the present embodiment. FIG. 3 is a partial cross-sectional view showing a first rotating member and a retainer of the present embodiment, and FIG. 4 is a diagram illustrating a groove of the first rotating member, a long hole of the retainer, and a control unit of the first embodiment. FIG. 4 is a schematic partial plan view showing a projection material. FIG. 5 is a partial cross-sectional view showing a first rotating member, a second rotating member, a retainer, a rotational force transmitting piece, and a control member of the present embodiment. FIG. 6 is a partial perspective view showing an operation member of the control means of the present embodiment, and FIG. 7 is a plan view thereof.
[0014]
As shown in FIGS. 1 and 2, the clutch according to the present embodiment includes a substantially cylindrical driving-side rotating member (first rotating member) 2 and a driven-side rotating member having a substantially cylindrical distal end. (Second rotating member) 4, a substantially cylindrical retainer 6, and a substantially cylindrical control member 8.
[0015]
The driving side rotating member 2 and the driven side rotating member 4 are coaxially arranged around the rotation center 1 so as to be rotatable with each other. As shown in FIG. 2, each of the rotating members 2 and 4 is supported by a support frame 10 via a bearing.
The leading end of the driving side rotating member 2 is supported by the driven side rotating member 4 via a bearing so as to be relatively rotatable around the rotation center 1.
A plurality (for example, eight) of engagement outer surface portions 21 are formed on the outer peripheral surface of the driving side rotating member 2. These engagement outer surface portions 21 are equivalent to each other and are evenly arranged in a circumferential direction around the rotation center 1 (hereinafter, this direction is simply referred to as a “circumferential direction”). The engagement outer surface portion 21 has a planar shape extending in an axial direction parallel to the rotation center 1 (hereinafter, this direction is simply referred to as “axial direction”). That is, the shape of the cross section orthogonal to the rotation center 1 of the driving side rotating member 2 at the position of the engagement outer surface portion 21 is a regular polygon (for example, regular octagon). A groove 22 is formed on the outer peripheral surface of the driving side rotating member 2 at a position separated from the engagement outer surface portion 21 in a direction opposite to the driven side rotating member 4 in the axial direction. The width of the groove 22 changes in the axial direction, and the width gradually increases toward the driven side rotation member 4. The groove 22 is provided with an equivalent groove at a position opposite to the rotation center 12.
The inner peripheral surface of the driven-side rotating member 4 is a rotationally symmetric surface with respect to the rotational center 1 over the entire circumference in the axial direction parallel to the rotational center 1 at the same position as the engagement outer surface portion 21, This surface appropriately (particularly) partially functions as the engagement inner surface portion 41. That is, a plurality of engagement inner surfaces 41 which are arranged in the circumferential direction and are equivalent to each other are arranged corresponding to the engagement outer surfaces 21. The engagement inner surface portion 41 has the same cylindrical inner peripheral surface shape as the inner peripheral surface of the driven-side rotating member 4. The engagement inner surface portion 41 is an engagement outer surface with respect to the radial direction of the driving side rotating member 2 and the driven side rotating member 4 (that is, a radial direction orthogonal to the rotation center 1 from the rotation center 1; hereinafter, this direction is simply referred to as a “radial direction”). It is located outside the part 21. Therefore, each of the planar engagement outer surface portions 21 is spaced from the correspondingly disposed engagement inner surface portion 41 by a distance from the central portion to the end portion (that is, near the boundary line with the adjacent engagement outer surface portion) in the circumferential direction. Part).
The roller 7 as a rotational force transmission piece is disposed between each of the engagement outer surface portions 21 and the engagement inner surface portion 41. The roller 7 is smaller than the distance between the central portion of the correspondingly disposed outer engaging portion 21 and the central portion of the inner engaging portion 41 and engages with the end of the correspondingly disposed outer engaging portion 21. It has a larger radial dimension than the distance between the inner surface 41 and the end. The engaging outer surface portion 21 and the engaging inner surface portion 41 are shaped such that when they are arranged correspondingly, the distance between them gradually decreases from the center to the end in the circumferential direction. Therefore, when the roller 7 is located near the center of the engaging outer surface portion 21, the roller 7 is located away from at least one of the engaging outer surface portion 21 and the engaging inner surface portion 41, and the end portion of the engaging outer surface portion 21. Is located in contact with (i.e., sandwiched between) the engaging outer surface portion 21 and the engaging inner surface portion 41.
[0016]
The retainer 6 has a portion (referred to as a first portion) positioned between the driving side rotating member 2 and the driven side rotating member 4, and another portion (referred to as a second portion) positioned between the driven side rotating member 4 and the driven side rotating member 4. Located axially away from the The first portion of the retainer 6 is formed with holding holes 61 uniformly arranged in the circumferential direction, and each of the rollers 7 is arranged in each holding hole in the axial direction. Thereby, the position of the roller 7 is maintained in the circumferential direction and the axial direction (however, there is an appropriate clearance). Further, in the second portion of the retainer 6, there are provided two elongated holes 62, which penetrate in the radial direction and have the same length as the grooves 22 in the axial direction, corresponding to the grooves 22 of the driving-side rotating member 2. One is formed.
[0017]
The retainer 6 is rotatable about the rotation center 1 with respect to the driving-side rotating member 2, that is, the driving-side rotating member 2 is rotatable about the rotation center 1 with respect to the retainer 6. . However, the driving-side rotating member 2 cannot be moved in the direction of the rotation center 1 with respect to the retainer 6.
[0018]
As shown in FIGS. 1, 2 and 5, a control member 8 is arranged radially outward of the second part of the retainer 6. The control member 8 is supported movably in the axial direction with respect to the retainer 6 and the driving side rotating member 2. The control member 8 includes two protrusion members 81 corresponding to the two grooves 22 and the two long holes 62. The projecting member 81 extends inward in the radial direction, penetrates a long hole 62 formed in the second portion of the retainer 6, and has an inner end adapted to the groove 22. FIG. 4 schematically shows this fitting state. Therefore, the control member 8 can move in the axial direction with a predetermined stroke with respect to the retainer 6, and can move in the axial direction with the same predetermined stroke with respect to the driving side rotating member 2. Depending on the axial position, rotation in the circumferential direction within a predetermined angle range is also possible.
[0019]
As shown in FIG. 2, an annular cam member 101 centering on the rotation center 1 is formed on the support frame 10, and a movable member 9 movable in the axial direction is provided inside the cam member 101. Are located. The control member 8 is rotatably supported by the movable member 9 around the rotation center 1 via a bearing.
[0020]
As shown in FIGS. 6 and 7, the cam member 101 has a cam elongated hole 101a penetrating in the radial direction, and extends through the radial direction in conformity with the cam elongated hole. An operation lever 91 is provided. The inner end of the operation lever 91 is fixed to the movable member 9. Accordingly, when the operation lever 91 is moved in the circumferential direction (that is, rotated around the rotation center 1), the operation lever is guided by the cam groove 101a and moves in the axial direction together with the movable member 9 and the control member 8. An operation member includes the operation lever 91, the cam member 101, and the movable member 9. The control means includes the operating member, the groove 22 on the outer peripheral surface of the driving-side rotating member 2, and the projecting member 81 of the control member 8.
[0021]
Next, the operation of this embodiment, particularly the operation of the control means, will be described. By operating the operation lever 91, the movable member 9 and the control member 8 are moved in the axial direction by the action of the cam long hole 101a of the cam member 101.
[0022]
When the operating lever 91 is at the position 91x in FIG. 7, the movable member 9 and the control member 8 are located farthest from the driven-side rotating member 4 in the axially movable range. At P1. In this position, the width of the groove 22 is slightly larger than the diameter of the protrusion member 81, and therefore, the circumferential rotation range of the driving-side rotating member 2 with respect to the retainer 6 is also narrow (first range), and FIG. The first state as shown in a) is realized. In this state, only the portion near the center of the engagement outer surface portion 21 is allowed to be located corresponding to the roller 7 (that is, the roller 7 is located at the center of the engagement outer surface portion 21 and the portion near the center thereof). The roller 7 is located away from at least one of the engaging outer surface portion 21 and the engaging inner surface portion 41, and the roller 7 moves from the driving side rotation shaft 2 to the driven side rotation shaft 4. No torque is transmitted.
[0023]
On the other hand, when the operating lever 91 is at the position of 91y in FIG. 7, the movable member 9 and the control member 8 are located at the positions closest to the driven side rotating member 4 in the axial movable range. Member 81 is at P2 in FIG. In this position, the width of the groove 22 is sufficiently larger than the diameter of the protrusion member 81, and therefore, the circumferential rotation range of the driving side rotating member 2 with respect to the retainer 6 is also wide (second range), and FIG. A second state as shown in b) can be realized. In this state, the portion from the central portion to the vicinity of the end of the engagement outer surface portion 21 (that is, the portion between the vicinity of both ends) is allowed to be positioned corresponding to the roller 7 (ie, the roller 7). Is allowed to be positioned corresponding to a portion between the vicinity of both ends of the engagement outer surface portion 21). Therefore, with the rotation of the driving-side rotating member 2, the roller 7 is disengaged from the engagement outer surface portion 21 and the engagement inner surface portion. As a result, the rotational force is transmitted from the driving-side rotating shaft 2 to the driven-side rotating shaft 4 via the roller 7.
[0024]
As described above, the rotational force transmission can be intermittently performed by performing the operation of rotating the operation lever 91 in the circumferential direction between 91x and 91y. In the present embodiment, even when the driving-side rotating member 2 and the driven-side rotating member 4 have significantly different rotation speeds, the operation of realizing the second state can be quickly performed by moving the protrusion member 81 in the axial direction. And it can be performed accurately.
[0025]
FIG. 8 is a partially exploded perspective view showing still another embodiment of the clutch according to the present invention, and FIGS. 9 and 10 are partial sectional views showing a second rotating member of this embodiment. FIG. 11 is a side view showing the elastic connecting member of the present embodiment. In these drawings, members or portions having the same functions as those in FIGS. 1 to 7 are denoted by the same reference numerals.
[0026]
This embodiment is the same as the embodiment described with reference to FIG. 1 and the like, except for the structure of the second rotating member, that is, the driven-side rotating member 4, and the other components are the same. That is, in the present embodiment, the driven rotation member 4 includes the inner member 4A and the outer member 4B. The inner member 4A has a substantially cylindrical shape, and an engagement inner surface portion 41 is formed on an inner peripheral surface thereof. As shown in FIG. 9, the outer member 4B is attached to the inner member 4A so as to be relatively rotatable around the rotation center 1 by surface contact. The inner member 4A and the outer member 4B are connected via leaf springs 4C1 and 4C2 as elastic connecting members. The leaf spring 4C1 has a shape as shown in FIG. 11 in a free state where no external force is applied. That is, it has a required width (the dimension in the direction perpendicular to the paper surface in FIG. 11), and has a cross-sectional shape in a polygonal line shape with a slightly rounded bent portion. As shown in FIG. 12, the leaf spring may have a required width (in FIG. 12, a dimension in a direction perpendicular to the paper surface) and have a corrugated cross-sectional shape. At both ends of the leaf spring, a fixing portion C 'with the inner member 4A and a fixing portion C "with the outer member 4B are formed. The leaf spring 4C2 also has the same shape as the leaf spring 4C1. As shown in FIGS. 8 to 10, in the annular space between the inner member 4 </ b> A and the outer member 4 </ b> B, in a state of being bent so as to be less than half a circumference around the rotation center 1 in the circumferential direction. The fixing portions C ′ and C ″ are inserted into grooves formed on the outer surface of the inner member 4A and the inner surface of the outer member 4B, respectively, and are fixed by welding or the like. As shown in FIG. 9, the outer member 4B is provided with an annular plate member 4D that covers a portion connected to the inner portion by the leaf springs 4C1 and 4C2.
[0027]
In the present embodiment, the inner member 4A and the outer member 4B are relatively rotatable with respect to the rotation center 1 and, furthermore, based on a state in which there is no action of a relative rotational force in the circumferential direction between these members, a reference is made to these members. When a relative rotational force is generated therebetween, the leaf springs 4C1 and 4C2 expand and contract in the circumferential direction, so that relative rotation is achieved until a balance with the rotational force is realized.
[0028]
Therefore, in the present embodiment, even if a sudden change in the rotational force occurs in the driven-side member 2 when the driving-side member 2 and the driven-side member 4 are connected, the impact is absorbed by the leaf springs 4C1 and 4C2, and the driven The rotational force can be smoothly transmitted to the outer member 4B of the side member 4. Therefore, even when the difference in the number of rotations between the driving side member 2 and the driven side member 4 is extremely large, an extremely good and stable clutch operation can be performed.
[0029]
In the present embodiment, a plurality of equivalent leaf springs can be used in an overlapping manner to change the spring constant, if desired.
In the above embodiments, a leaf spring is used as the elastic connecting member. However, in the present invention, the elastic connecting member may be a coil spring or other spring, or may be disposed in a space between the inner member and the outer member. And a rubber bonded to them.
[0030]
Further, in the above embodiment, the engaging outer surface portion has a planar shape extending in the axial direction. However, in the present invention, the engaging outer surface portion does not necessarily have to be a flat surface. The cross section perpendicular to the direction may be a concave curve or a convex curve (however, the radius of curvature is larger than the engagement inner surface portion).
FIG. 13 is a partially exploded perspective view showing still another embodiment of the clutch according to the present invention, and FIGS. 14 and 15 are sectional views showing the present embodiment. In these drawings, members or portions having the same functions as those in FIGS. 1 to 12 are denoted by the same reference numerals.
In the present embodiment, the driven side rotating member 4 is attached to the outer peripheral surface of the driving side rotating member 2 via a bearing. The engagement outer surface portion 21 formed on the outer peripheral surface of the driving side rotation member 2 has a V-shaped groove shape extending in the axial direction, and the engagement inner surface formed on the inner peripheral surface of the driven side rotation member 4. The portion 41 has a planar shape extending in the axial direction. The engagement outer surface portion 21 and the engagement inner surface portion 41 are each formed to be evenly arranged in the circumferential direction by three each.
This embodiment is different from the above embodiment in the configuration of the control means. That is, in the present embodiment, the notch 64 is formed along the circumferential direction on the axial end surface of the retainer 6. As shown in FIGS. 13 and 14, the width of the notch 64 changes in the axial direction. That is, the width is widest at the axial end face of the retainer 6, and the width gradually becomes narrower as it goes further in the axial direction. On the other hand, an axial key 24 is provided on the outer peripheral surface of the driving side rotating member 2, and an axial groove 83 formed on the inner peripheral surface of the control member 8 matches the key 24. Thus, the control member 8 is movable in the axial direction with respect to the driving-side rotating member 2. As shown in FIG. 14, the control member 8 is provided with a convex member 84 having a shape corresponding to the notch 64 on an end face facing the retainer 6. Further, a circumferential groove 85 is formed on the outer peripheral surface of the control member 8, and the axially movable member 9 ′ is fitted in the circumferential groove 85 as shown in FIG. The movable member 9 ', like the movable member 9 shown in FIG. 2 and the like, constitutes an operation member together with the operation lever 91 and the cam member 101 not shown in FIG. Further, a control means includes this operating member, the notch 64 on the end face of the retainer 6, and the convex member 84 on the end face of the control member 8.
[0031]
Next, the operation of this embodiment, particularly the operation of the control means, will be described. By moving the movable member 9 ′ and the control member 8 in the axial direction in the same manner as in the above embodiment, the rotatable range of the driving-side rotating member 2 with respect to the holder 6 is controlled as described below.
When the movable member 9 ′ and the control member 8 are located closest to the driven-side rotating member 4 in the axial movable range, the convex member 84 sufficiently enters the notch 64 as shown in FIG. Therefore, the retainer 6 can hardly rotate with respect to the control member 8, and the circumferential rotation range of the driving side rotating member 2 with respect to the retainer 6 also becomes narrow (first range). In this state, as shown in FIG. 15, only the portion near the center of the engagement outer surface portion 21 is allowed to be located corresponding to the roller 7 (that is, the roller 7 is moved to the engagement outer surface portion 21). Roller 7 is allowed to be positioned corresponding to the center portion and the portion in the vicinity thereof), and the roller 7 is positioned apart from at least one of the engaging outer surface portion 21 and the engaging inner surface portion 41, so that the driving side rotation No rotational force is transmitted from the shaft 2 to the driven-side rotary shaft 4.
[0032]
On the other hand, when the movable member 9 ′ and the control member 8 are located farthest from the driven-side rotating member 4 in the axial movable range, as shown in FIG. 64, so that the retainer 6 can rotate with respect to the control member 8 within a predetermined angle range, and the circumferential rotation range of the driving-side rotating member 2 with respect to the retainer 6 is wide ( 2nd range). In this state, as shown in FIG. 16, the portion from the central portion to the vicinity of the end of the engaging outer surface portion 21 (that is, the portion between the vicinity of both ends) is positioned corresponding to the roller 7. (I.e., the roller 7 is allowed to be positioned corresponding to a portion between the vicinity of both ends of the engagement outer surface portion 21), and accordingly, with the rotation of the driving side rotating member 2, the roller 7 The roller 7 comes into contact with both the engaging outer surface portion 21 and the engaging inner surface portion 41 (at this time, the center of the roller 7 is displaced from the central portion of the engaging outer surface portion 21 by an angle θ in the circumferential direction. ), A rotational force is transmitted from the driving side rotation shaft 2 to the driven side rotation shaft 4 via the roller 7.
As described above, also in the present embodiment, it is possible to obtain the same operation and effect as in the above-described embodiment.
In some of the above embodiments, the first rotating member is the driving side rotating member and the second rotating member is the driven side rotating member. However, in the present invention, the first rotating member is driven by the driven side rotating member. The second rotating member may be a driving side rotating member as the side rotating member. In this case, the rotating member is rotated in a direction opposite to that shown in FIG. 5 or FIG.
[0033]
In the above embodiment, a roller having a cylindrical shape is used as the rotational force transmitting piece. However, in the present invention, the rotational force transmitting piece has, for example, a substantially semi-cylindrical (kamaboko type) extending in the axial direction. Etc. can also be used. This is particularly suitable when the inner peripheral surface of the second rotating member is formed to be rotationally symmetrical with respect to the center of rotation and partially appropriately functions as the engaging inner surface portion, as in the embodiment described with reference to FIGS. In this case, it is preferable to arrange the flat surface of the rotational force transmitting piece having a substantially semi-cylindrical shape or the like so as to face the engaging outer surface of the first rotating member. Further, in the present invention, when the transmitted rotational force is small, a ball (spherical body) or the like may be used as the rotational force transmitting piece.
[0034]
【The invention's effect】
As described above, according to the present invention, even with a large difference in the number of rotations between the driving-side rotating member and the driven-side rotating member, the coupling can be accurately performed in a short time with a simplified mechanism. Is provided.
[Brief description of the drawings]
FIG. 1 is a partially exploded perspective view showing an embodiment of a clutch according to the present invention.
FIG. 2 is a sectional view showing an embodiment of the clutch according to the present invention.
FIG. 3 is a partial cross-sectional view showing a first rotating member and a retainer of an embodiment of the clutch according to the present invention.
FIG. 4 is a schematic partial plan view showing a groove of a first rotating member, a long hole of a retainer, and a protruding material of a control means of an embodiment of the clutch according to the present invention.
FIG. 5 is a partial cross-sectional view showing a first rotating member, a second rotating member, a retainer, a rotational force transmitting piece, and a control member of one embodiment of the clutch according to the present invention.
FIG. 6 is a partial perspective view showing an operation member of a control unit of the clutch according to the embodiment of the present invention.
FIG. 7 is a plan view showing an operation member of control means of the clutch according to one embodiment of the present invention.
FIG. 8 is a partially exploded perspective view showing an embodiment of a clutch according to the present invention.
FIG. 9 is a partial sectional view showing a second rotating member of the embodiment of the clutch according to the present invention.
FIG. 10 is a partial sectional view showing a second rotating member of the clutch according to the embodiment of the present invention.
FIG. 11 is a side view showing an elastic connecting member of the clutch according to the embodiment of the present invention.
FIG. 12 is a side view showing another example of the elastic connecting member of the clutch according to the present invention.
FIG. 13 is a partially exploded perspective view showing an embodiment of a clutch according to the present invention.
FIG. 14 is a sectional view showing an embodiment of a clutch according to the present invention.
FIG. 15 is a sectional view showing an embodiment of a clutch according to the present invention.
FIG. 16 is a sectional view showing an embodiment of a clutch according to the present invention.
FIG. 17 is a partially enlarged view showing the notch of the retainer of the clutch and the convex member of the control member according to the present invention.
[Explanation of symbols]
1 rotation center 2 driving side rotating member (first rotating member)
21 engagement outer surface portion 22 groove 4 driven side rotating member (second rotating member)
41 engagement inner surface portion 4A inner member 4B outer member 4C1, 4C2 leaf spring C ', C "fixing portion 4D annular plate member 6 retainer 61 retaining hole 62 long hole 7 roller (rotational force transmission piece)
8 Control member 81 Projection member 9 Movable member 91 Operating lever 91x, 91y Circumferential position of operating lever 10 Support frame 101 Annular cam member 101a Cam long hole 24 Key 64 Notch 83 Axial groove 84 Convex member 85 Circumferential groove 9 'Movable Element

Claims (11)

回転中心の周りで同軸にて互いに回転可能に配置された第1の回転部材と第2の回転部材との間での回転力伝達の断続を行うクラッチであって、
前記第1の回転部材の外周面には前記回転中心の周りの周方向に配列された互いに同等な複数の係合外面部が形成されており、
前記第2の回転部材の内周面には前記回転中心と平行な軸方向に関し前記係合外面部と同一の位置に前記係合外面部に対応して配置され得る前記周方向に配列された互いに同等な複数の係合内面部が形成されており、該係合内面部は前記第1及び第2の回転部材の径方向に関し前記係合外面部の外方に位置しており、
前記係合外面部と前記係合内面部とはこれらが対応して配置されたときにこれらの間の距離が前記周方向に関しそれらの中央部から端部へと次第に小さくなるような形状とされており、
前記係合外面部と前記第2の回転部材の内周面との間には回転力伝達駒が配置されており、
前記第1の回転部材と前記第2の回転部材との間には前記回転力伝達駒を前記周方向及び前記軸方向に関し保持する保持器が配置されており、
前記第1の回転部材は前記保持器に対して前記回転中心の周りで回動可能とされており、
前記保持器に対する前記第1の回転部材の回動可能範囲を制御する制御手段が設けられており、該制御手段は前記回動可能範囲として少なくとも第1範囲及び第2範囲を設定することができ、前記第1範囲では前記回転力伝達駒を前記係合外面部の中央部及びその近傍の部分に対応して位置させることを許容することで該回転力伝達駒を前記係合外面部及び前記第2の回転部材の内周面の少なくとも一方から離間させ、前記第2範囲では前記回転力伝達駒を前記係合外面部の両端部の近傍の間の部分に対応して位置させることを許容することで該回転力伝達駒を前記係合外面部及び前記係合内面部の双方と接触させることを特徴とするクラッチ。
A clutch for intermittently transmitting rotational force between a first rotating member and a second rotating member which are coaxially rotatable with each other around a rotation center,
On the outer peripheral surface of the first rotating member, a plurality of engagement outer surface portions equivalent to each other arranged in a circumferential direction around the rotation center are formed,
The inner peripheral surface of the second rotating member is arranged in the circumferential direction that can be arranged at the same position as the engaging outer surface portion in the axial direction parallel to the rotation center and corresponding to the engaging outer surface portion. A plurality of engagement inner surface portions equivalent to each other are formed, and the engagement inner surface portion is located outside the engagement outer surface portion in a radial direction of the first and second rotating members,
The engagement outer surface portion and the engagement inner surface portion are shaped such that when they are arranged correspondingly, the distance between them gradually decreases from the center to the end in the circumferential direction. And
A rotational force transmission piece is disposed between the engagement outer surface portion and the inner peripheral surface of the second rotating member,
A retainer that holds the rotational force transmission piece in the circumferential direction and the axial direction is arranged between the first rotating member and the second rotating member,
The first rotating member is rotatable around the rotation center with respect to the retainer,
Control means for controlling a rotatable range of the first rotating member with respect to the retainer is provided, and the control means can set at least a first range and a second range as the rotatable range. In the first range, by allowing the rotational force transmitting piece to be positioned corresponding to the central portion of the engaging outer surface portion and a portion in the vicinity thereof, the rotational force transmitting piece is moved to the engaging outer surface portion and the engaging outer surface portion. The second rotating member is separated from at least one of the inner peripheral surfaces, and in the second range, the rotational force transmitting piece is allowed to be positioned corresponding to a portion between both ends of the engaging outer surface portion. A clutch that causes the rotational force transmitting piece to contact both the engagement outer surface portion and the engagement inner surface portion.
前記第2の回転部材の内周面は前記回転中心と平行な軸方向に関し前記係合外面部と同一の位置に前記周方向の全周に亘って形成された前記回転中心に関し回転対称な面とされており、該面が適宜部分的に前記係合内面部として機能することを特徴とする、請求項1に記載のクラッチ。An inner peripheral surface of the second rotating member is rotationally symmetric with respect to the rotational center, which is formed at the same position as the engaging outer surface portion in the axial direction parallel to the rotational center and over the entire circumference in the circumferential direction. The clutch according to claim 1, wherein the surface appropriately and partially functions as the engagement inner surface portion. 前記係合外面部は前記軸方向に延びた平面形状をなしていることを特徴とする、請求項1〜2のいずれかに記載のクラッチ。The clutch according to claim 1, wherein the engagement outer surface portion has a planar shape extending in the axial direction. 前記係合内面部は円筒内周面形状をなしていることを特徴とする、請求項1〜3のいずれかに記載のクラッチ。The clutch according to any one of claims 1 to 3, wherein the engagement inner surface portion has a cylindrical inner peripheral surface shape. 前記係合外面部は前記軸方向に延びたV字溝形状をなしていることを特徴とする、請求項1に記載のクラッチ。The clutch according to claim 1, wherein the engagement outer surface portion has a V-shaped groove shape extending in the axial direction. 前記係合内面部は前記軸方向に延びた平面形状をなしていることを特徴とする、請求項1及び5のいずれかに記載のクラッチ。The clutch according to any one of claims 1 and 5, wherein the engagement inner surface portion has a planar shape extending in the axial direction. 前記制御手段は、前記第1の回転部材の外周面に形成され前記軸方向に関し幅が変化している溝と、該溝に係合し且つ前記軸方向の位置の可変な前記径方向に内向きの突起部材と、該突起部材を前記軸方向に移動させる操作部材とを含んでなることを特徴とする、請求項1〜6のいずれかに記載のクラッチ。The control means includes: a groove formed on the outer peripheral surface of the first rotating member, the width of which is changed in the axial direction; and a radially inwardly engaging groove that is variable in the axial direction. The clutch according to any one of claims 1 to 6, further comprising a projecting member having an orientation, and an operating member that moves the projecting member in the axial direction. 前記制御手段は、前記保持器の軸方向端面において前記周方向に形成され前記軸方向に関し幅が変化している切欠と、該切欠に係合し且つ前記軸方向の位置の可変な凸部材と、該凸部材を前記軸方向に移動させる操作部材とを含んでなることを特徴とする、請求項1〜6のいずれかに記載のクラッチ。A notch formed in the circumferential direction at the axial end surface of the retainer and having a width varying in the axial direction, and a convex member engaging with the notch and having a variable position in the axial direction; The clutch according to any one of claims 1 to 6, further comprising: an operating member that moves the convex member in the axial direction. 前記第2の回転部材は前記係合内面部を備えた内側部材と該内側部材に対して前記回転中心の周りで相対回動可能に取り付けられた外側部材とを含んでなり、前記内側部材と前記外側部材とは弾性連結部材を介して接続されていることを特徴とする、請求項1〜8のいずれかに記載のクラッチ。The second rotating member includes an inner member provided with the engagement inner surface portion, and an outer member attached to the inner member so as to be relatively rotatable around the rotation center with respect to the inner member. The clutch according to any one of claims 1 to 8, wherein the clutch is connected to the outer member via an elastic connecting member. 前記弾性連結部材は、一方端が前記内側部材の外面に固着され他方端が前記外側部材の内面に固着され且つ前記周方向に略沿って該周方向に関し伸縮可能な形状を有する板ばねからなることを特徴とする、請求項9に記載のクラッチ。The elastic connecting member is formed of a leaf spring having one end fixed to the outer surface of the inner member and the other end fixed to the inner surface of the outer member, and having a shape that can extend and contract in the circumferential direction substantially along the circumferential direction. The clutch according to claim 9, wherein: 前記回転力伝達駒は前記軸方向を向いて保持される円筒形状体または球状体であることを特徴とする、請求項1〜10のいずれかに記載のクラッチ。The clutch according to any one of claims 1 to 10, wherein the rotational force transmission piece is a cylindrical body or a spherical body held in the axial direction.
JP2003099284A 2003-01-24 2003-04-02 Clutch Pending JP2004278770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099284A JP2004278770A (en) 2003-01-24 2003-04-02 Clutch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003016367 2003-01-24
JP2003099284A JP2004278770A (en) 2003-01-24 2003-04-02 Clutch

Publications (1)

Publication Number Publication Date
JP2004278770A true JP2004278770A (en) 2004-10-07

Family

ID=33301548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099284A Pending JP2004278770A (en) 2003-01-24 2003-04-02 Clutch

Country Status (1)

Country Link
JP (1) JP2004278770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198584A (en) * 2005-12-26 2007-08-09 Denso Corp Two-way clutch
KR101873277B1 (en) * 2017-01-12 2018-08-02 (주)리얼감 Clutch unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198584A (en) * 2005-12-26 2007-08-09 Denso Corp Two-way clutch
KR101873277B1 (en) * 2017-01-12 2018-08-02 (주)리얼감 Clutch unit

Similar Documents

Publication Publication Date Title
JP5316691B2 (en) Power transmission device
JP2002250360A (en) Constant velocity fixed joint having improved cage assembly
JP2009257392A (en) Power transmission shaft
JPS61266830A (en) Synchromesh universal joint
JP2004278770A (en) Clutch
JP6170537B2 (en) Linear transmission power transmission mechanism
JP2000039028A (en) Slide type constant velocity joint
JP2004144240A (en) Tripod type constant velocity universal joint
WO2012169057A1 (en) Continuously variable transmission
JP2009197920A (en) Tripod-type constant velocity universal joint
JP2002327773A (en) Uniform universal coupling
JP2004257418A (en) Tripod uniform velocity universal joint
JPH0415314A (en) Drive transmission device
JP2012013207A (en) Tripod type constant velocity joint
JP3648383B2 (en) Variable diameter pulley
JP3555373B2 (en) Tripod type constant velocity joint
JP2004162791A (en) Tripod constant velocity universal joint
JPH1078046A (en) Clutch
KR102000357B1 (en) Constant velocity joint
JP2008064252A (en) Tripod type constant velocity universal joint
WO2011074449A1 (en) Constant velocity joint
JP2006207801A (en) Constant speed joint
JP2017155759A (en) Rotation transmission mechanism
JP4571446B2 (en) clutch
JP4624892B2 (en) Constant velocity universal joint