JP2004278627A - Cutoff valve device - Google Patents

Cutoff valve device Download PDF

Info

Publication number
JP2004278627A
JP2004278627A JP2003069715A JP2003069715A JP2004278627A JP 2004278627 A JP2004278627 A JP 2004278627A JP 2003069715 A JP2003069715 A JP 2003069715A JP 2003069715 A JP2003069715 A JP 2003069715A JP 2004278627 A JP2004278627 A JP 2004278627A
Authority
JP
Japan
Prior art keywords
pressure
valve
driving force
primary
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003069715A
Other languages
Japanese (ja)
Other versions
JP3788975B2 (en
Inventor
Kaoru Nomichi
薫 野道
Seiji Ishii
清治 石井
Makoto Ninomiya
誠 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Precision Machinery Ltd
Original Assignee
Kawasaki Precision Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Precision Machinery Ltd filed Critical Kawasaki Precision Machinery Ltd
Priority to JP2003069715A priority Critical patent/JP3788975B2/en
Publication of JP2004278627A publication Critical patent/JP2004278627A/en
Application granted granted Critical
Publication of JP3788975B2 publication Critical patent/JP3788975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutoff valve device suitably used in a wide primary pressure range and a wide range flow rate, in a two-stage type cutoff valve device utilizing pilot pressure. <P>SOLUTION: A cutoff valve part 21 is disposed to a main passage 25 making a primary port 27 communicate to a secondary port 28. The cutoff valve part 21 is opened/closed by using differential pressure ΔP between primary pressure Pin and secondary pressure Pout. An operation valve part 22 is disposed in a pilot passage 26 introducing pilot pressure into the cutoff valve part 21. The operation valve part 22 operates the pilot pressure to drive the cutoff vale part to be opened/closed. A differential pressure generating valve part 23 is disposed in the main passage 25 so that the position of the differential pressure generating valve part 23 is closer to the primary port 25 compared with the position of the cutoff valve part 21. Opening of the differential pressure generating valve 23 is changed depending on the primary pressure Pin and the flow rate Q when the cutoff valve part 21 is opened, so as to keep the differential pressure ΔP between the primary pressure Pin and the secondary pressure Pout approximately constant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、パイロット圧を利用する2段形の遮断弁装置に関する。
【0002】
【従来の技術】
図6は、従来の技術の電磁遮断弁装置1を示す断面図である。図7は、電磁遮断弁装置1の具体的構成を示す回路図である。電磁遮断弁装置1は、メイン通路2を開閉する遮断弁部3と、遮断弁部3へのパイロット圧を制御する電磁弁部4とを有する。遮断弁部3は、遮断弁体15の変位によって、一次ポート5と二次ポート6を連通するメイン通路2を開閉する。遮断弁体15は、一次ポート5における流体の圧力である一次圧力p1に基づく駆動力を開方向に受けるとともに、二次ポート6における流体の圧力である二次圧力p2に基づく駆動力を開方向に受ける。また遮断弁体15は、背圧力室7における流体の圧力である背圧力prに基づく駆動力を閉方向に受けるとともに、ばね部材8による駆動力を閉方向に受ける。
【0003】
電磁弁部4は、一次ポート5と二次ポート6とを、背圧力室7を経てバイパスするパイロット通路9に介在されている。この電磁弁部4は、コイル10への通電および非通電を制御して、電磁弁体11を変位駆動し、背圧力室7よりも二次ポート6寄りで、パイロット通路9を開閉する。このパイロット通路9には、背圧力室7よりも一次ポート5寄りに固定絞り12が介在されている。
【0004】
この電磁遮断弁1では、電磁弁部4を閉状態にすると、背圧力prが一次圧力p1と同一となり、遮断弁部3に対する閉方向の駆動力が開方向の駆動力よりも大きくなり、遮断弁部3を閉じることができる。また電磁遮断弁1では、電磁弁部4を閉状態にすると、背圧力prが一次圧力p1と同一となり、遮断弁部3に対する閉方向の駆動力が開方向の駆動力よりも大きくなり、遮断弁部3を閉じることができる。このように電磁遮断弁1は、一次圧力p1と二次圧力p2との差圧Δpを利用して、遮断弁部3が開閉動作している。この差圧Δpは、遮断弁部3が閉状態では、流体が遮断弁部3を流下するときの圧力損失と無関係であるが、開状態では、流体が遮断弁部3を流下するときの圧力損失に基づく差圧となる(たとえば、非特許文献1参照)。
【0005】
【非特許文献1】
JIS B 8373 空気圧用2ポート電磁弁
【0006】
【発明が解決しようとする課題】
図8は、圧縮性流体が遮断弁部3を流下するときの流量qと圧力損失との関係を示すグラフである。図9は、圧縮性流体が遮断弁部3を流下するときの一次圧力p1と圧力損失との関係を示すグラフである。流体が、たとえば気体、および気泡を含む液体などの圧縮性流体である場合、遮断弁部3における圧力損失は、図8および図9に示すように、流量qが増加に伴って大きくなり、一次圧力p1の高騰に伴って小さくなる。
【0007】
電磁遮断弁1を圧縮性流体に対して用いると、遮断弁部3が開状態にあるときの差圧Δpが、一次圧力p1および流量qの変動に伴って変動する。電磁遮断弁1は、遮断弁部3が、差圧Δpを利用して動作する構成であり、閉動作は、遮断弁部3が開状態にあるときの差圧Δpを利用しているので、この閉動作は、一次圧力p1および流量qの変動の影響を受け、遮断弁体15を変位させるための駆動力が、大きく変動してしまう。したがって一次圧力p1および流量qが、広い範囲にわたる装置には、安定した動作が得られず用いることができない。
【0008】
このようにパイロット圧を利用する2段形の遮断弁では、動作が不安定になる問題を有しているので、メイン通路を開閉する遮断弁体をソレノイドで直接駆動する直動形の遮断弁を用いることが考えられるが、次のような2つの問題を有する。まず第1に、直動形では、メイン通路を開閉する遮断弁体は、大きな流量キャパシティを確保しようとすると、必然的に大きくなるが、このためには、閉状態を保持するために大きなシート力が必要となる。したがってソレノイドを大形にしなければならず、電磁遮断弁装置が大形化してしまう。また第2に、直動形では、前述のように大きな流量キャパシティを確保しようとすると、ソレノイドなどが設けられる部分にも高圧に耐え得る強度が必要となる。これによってもまた電磁遮断弁装置が大形化してしまう。したがってパイロット圧を利用する2段形の遮断弁の改良が望まれている。
【0009】
本発明の目的は、パイロット圧を利用する2段形の遮断弁装置であって、広い一次圧力範囲および広い流量範囲で好適に用いることができる遮断弁装置を提供することである。
【0010】
【課題を解決するための手段】
請求項1記載の本発明は、一次ポートおよび二次ポートを連通するメイン通路に介在されてメイン通路を開閉する遮断弁部であって、一次ポートにおける流体の圧力である一次圧力と二次ポートにおける流体の圧力である二次圧力との差圧を利用して開閉動作する遮断弁部と、
遮断弁部にパイロット圧を導くパイロット通路に介在され、パイロット圧を操作して、遮断弁部を開閉駆動操作する操作弁部と、
前記メイン通路に遮断弁部よりも一次ポート寄りの位置に介在され、遮断弁部が開状態にあるとき、一次圧力および流量に応じて開度を変化させ、一次圧力と二次圧力との差圧をほぼ一定に保持する差圧発生弁部とを含むことを特徴とする遮断弁装置である。
【0011】
本発明に従えば、遮断弁部は、一次圧力と二次圧力との差圧を利用して、この差圧に基づく駆動力によって開閉動作される。操作弁部は、遮断弁部に導くパイロット圧を操作することによって、前記差圧の遮断弁部に対する働き方を変化させることができ、遮断弁部を開閉駆動操作することができる。この開閉駆動操作に従って、遮断弁部が開閉動作する。メイン通路の遮断弁部よりも一次ポート寄りには、差圧発生弁部が介在される。この差圧発生弁部は、遮断弁部が開状態にあって、この遮断弁部を圧縮性を有する流体が流下するとき、一次圧力および流量に応じて開度を変化させ、一次圧力と二次圧力との差圧をほぼ一定に保持する。
【0012】
これによって一次圧力および流量が変動しても、前記差圧がほぼ一定に保たれるので、差圧に基づく駆動力は変動しない。したがって遮断弁部は、一次圧力および流量の変動に影響されることなく、安定して動作する。このように遮断弁部の安定した動作が可能であるので、広い一次圧力範囲および広い流量範囲で好適に用いることができる。また差圧発生弁部の構成だけを変更することによって、一次圧力と二次圧力との差圧を設定変更できる利点もある。
【0013】
さらに操作弁部によって、パイロット圧を操作し、遮断弁部を駆動する構成とすることによって、遮断弁部を駆動するために流体圧を利用することができ、操作弁部は、パイロット通路を開閉できればよく、小形にすることができる。したがって遮断弁装置を小形に実現することができる。つまり広い一次圧力範囲および広い流量範囲で好適に用いることができる遮断弁を、小形に実現することができる。
【0014】
請求項2記載の本発明は、遮断弁部は、
弁座が形成される遮断弁ハウジングと、
遮断弁ハウジング内に、開方向および閉方向へ変位自在に設けられ、弁座に対して着座および離間してメイン通路を開閉する開閉部を有する遮断弁体であって、弁ハウジングと協働して、一次圧力が導かれる第1圧力室と、一次圧力が導かれる空間に固定絞りを介して連なる背圧力室と、開閉部が配置される第2圧力室とを形成し、第1圧力室の流体から開方向の流体圧駆動力を受ける第1受圧面と、背圧力室の流体から閉方向の流体圧駆動力を受ける背受圧面と、第2圧力室の流体から開方向の流体圧駆動力を受ける第2受圧面とが形成される遮断弁体と、
遮断弁体に閉方向のばね駆動力を与える遮断ばね力発生手段であって、ばね駆動力は、背圧力室の流体の圧力である背圧力が一次圧力と同一である場合、前記各受圧面で受ける流体圧駆動力およびばね駆動力の合力である総合駆動力が、閉方向に向かう駆動力となり、背圧力が二次圧力と同一である場合、前記総合駆動力が、開方向に向かう駆動力となる大きさを有する遮断ばね力発生手段とを備え、
操作弁部は、背圧力室と二次ポートとを連通するパイロット通路に介在され、予め定める操作入力に基づいて、パイロット通路を開閉することを特徴とする。
【0015】
本発明に従えば、遮断弁部の遮断弁体には、第1および第2受圧面ならびに背受圧面が形成されており、遮断弁体は、これら各受圧面によって流体から流体圧駆動力を受ける。また遮断弁部には、ばね力発生手段が設けられており、遮断弁体は、ばね力発生手段からばね駆動力を受ける。遮断弁部は、遮断弁体が前記流体圧駆動力およびばね駆動力の合力である総合駆動力によって駆動され、メイン通路を開閉する。
【0016】
ばね駆動力は、背圧力が一次圧力と同一である場合、前記総合駆動力が、閉方向に向かう駆動力となり、背圧力が二次圧力と同一である場合、前記総合駆動力が、開方向に向かう駆動力となるように決定さている。操作弁部が閉状態にあるとき、背圧力は一次圧力と同一となり、各受圧面で受ける流体圧駆動力の合力である差圧駆動力は、閉方向に向かう駆動力となり、ばね駆動力と協働して遮断弁部を閉じる。操作弁部が開状態にあるとき、背圧力は二次圧力となり、差圧駆動力は、開方向に向かう駆動力となり、ばね駆動力に抗して遮断弁部を開く。したがって操作弁部によって、遮断弁部を開閉駆動操作し、メイン通路を開閉することができる。
【0017】
遮断弁部が開状態にあるとき、第1受圧面には、一次圧力が作用し、第2受圧面および背受圧面には、二次圧力およびこれと同一の圧力が作用している。このとき二次圧力は、差圧発生弁部によって、一次圧力との差圧がほぼ一定に保たれている。したがって遮断弁部の安定した動作を達成する電磁遮断弁装置を実現することができる。
【0018】
また遮断弁部が閉状態にあるとき、前記差圧駆動力が閉方向に向かう駆動力となっており、この差圧駆動力が遮断弁部を閉状態に保つレシート力として働く。一次圧力が大きくなると、遮断弁部が閉状態にあるときの前記差圧駆動力が大きくなり、前記レシート力が大きくなるので、一次圧力が高圧のときでも、高いレシート性を確保して、閉状態を確実に保持することができる。
【0019】
請求項3記載の本発明は、操作弁部は、
弁座が形成される操作弁ハウジングと、
操作弁ハウジング内に、開方向および閉方向へ変位自在に設けられ、弁座に対して着座および離間してパイロット通路を開閉する操作弁体であって、閉状態にあるとき、背圧力が導かれる空間から閉方向の駆動力を受けることを特徴とする。
【0020】
本発明に従えば、操作弁部は、閉状態にあるとき、操作弁体が遮断弁部における背圧力が導かれる空間から閉方向の駆動力を受ける。このときの背圧力は一次圧力と同一である。このように一次圧力と同一となる背圧力に基づく駆動力が閉方向に向かう駆動力となっており、この駆動力が操作弁部を閉状態に保つレシート力として働く。一次圧力が大きくなると、操作弁部が閉状態にあるときの前記駆動力が大きくなり、前記レシート力が大きくなるので、一次圧力が高圧のときでも、高いレシート性を確保して、閉状態を確実に保持することができる。
【0021】
請求項4記載の本発明は、差圧発生弁部は、
差圧弁ハウジングと、
差圧弁ハウジング内に、開方向および閉方向へ変位自在に保持され、一次圧力に基づく流体圧駆動力を開方向へ受ける差圧弁体と、
差圧弁体に、閉方向へばね駆動力を与える差圧ばね力発生手段とを含むことを特徴とする。
【0022】
本発明に従えば、差圧発生弁部の差圧弁体は、一次圧力に基づく流体圧駆動力を開方向へ受けるとともに、差圧ばね力発生手段からばね駆動力を閉方向に受ける。このような差圧発生弁部は、その一次ポート側と、二次ポート側との間に、差圧ばね力発生手段によるばね駆動力に対応する差圧を発生させることができる。したがって遮断弁部が開状態にあるときの一次圧力と二次圧力とをほぼ一定の差圧に保つことができる。
【0023】
【発明の実施の形態】
図1は、本発明の実施の一形態の電磁遮断弁装置20を示す断面図である。図2は、電磁遮断弁装置20を示す流体圧回路図である。電磁遮断弁装置20は、たとえば高圧ガス装置を含む流体圧装置に設けられ、一次側から二次側に流体が流下する流路に介在されて、この流路を開閉する弁装置である。本実施の形態において、流体は、圧縮性を有する圧縮性流体である。圧縮性流体は、空気などの気体であってもよいし、気泡を含有するる液体であってもよいし、その他外圧によって圧縮する流体であればよい。
【0024】
電磁遮断弁装置20は、遮断弁部21と、操作弁部22と、差圧発生弁部23とを含んで構成される。電磁遮断弁装置20は、パイロット圧を利用する2段形の遮断弁装置であって、ハウジング体24を有し、このハウジング体24に、メイン通路25と、パイロット通路26とが形成されている。メイン通路25に遮断弁部21および差圧発生弁部23が介在され、パイロット通路26に操作弁部22が介在される。
【0025】
ハウジング体24には、前記流路の一次側に接続される一次ポート27と、前記流路の二次側に接続される二次ポート28とが形成され、これら各ポート27,28を連通するようにメイン通路25が形成される。このメイン通路25の中途部に遮断弁部21が介在される。遮断弁部21は、一次圧力Pinと二次圧力Poutとの差圧ΔPを利用して、メイン通路25を開閉する。一次圧力Pinは、一次ポート27における流体の圧力であり、二次圧力Poutは、二次ポート28における流体の圧力である。
【0026】
遮断弁部21は、遮断弁ハウジング30と、遮断弁体31と、遮断ばね力発生手段32とを備える。遮断弁ハウジング30は、ハウジング体24の一部によって構成される。この遮断弁ハウジング30内に、遮断弁体31および遮断ばね力発生手段32とが設けられる。
【0027】
遮断弁ハウジング30には、弁座33が形成されており、遮断弁体31は、弁座33に近づく方向および弁座33から遠ざかる方向に変位自在に設けられている。この遮断弁体31が弁座33に着座することによって、メイン通路25が閉塞され、遮断弁体31が弁座33から離間することによって、メイン通路25が開放される。したがって弁座33に近づく方向は閉方向であり、弁座33から遠ざかる方向は開方向である。また遮断弁体31は、一次ポート27側から弁座33に着座する構成である。
【0028】
遮断弁体31は、略円柱状の軸部35と、軸部35の軸線方向一端部に同軸で連なる略短円柱状のフランジ部36とを有し、軸線方向に変位自在である。軸部35は、軸線方向両端部間の中間部で、遮断弁ハウジング30との間のシールを達成しており、軸線方向他端部に開閉部37を有する。開閉部37が、その端面部に設けられるシート部分38の弁座33に対する着座および離間によって、メイン通路25を開閉する。開閉部37は、軸部分35の残余の部分よりも小径である。フランジ部36は、軸部35よりも大径であり、遮断弁ハウジング30との間のシールを達成している。
【0029】
このような遮断弁体31と前記遮断弁ハウジング30とが協働して、第1圧力室40、第2圧力室41および背圧力室42が形成される。第1圧力室40は、遮断弁体31の軸部35におけるシール部位およびフランジ部36におけるシール部位間の部分と、遮断弁ハウジング30とによって形成される。この第1圧力室40は、メイン通路25における遮断弁部21および差圧発生弁部23よりも一次ポート21寄りの位置に、一次圧力導入通路47によって連通され、一次圧力P1が導かれている。
【0030】
第2圧力室41は、遮断弁体31の軸部35におけるシール部位よりも軸線方向一端部側の部分と、遮断弁ハウジング30とによって形成される。この第2圧力室41は、開閉部37が収容されており、シート部分38が弁座33に着座した状態で、一次側領域44と二次側領域45とに仕切られる。一次側領域44は、開閉部37の着座部位よりも半径方向外方側の部分が臨む領域であり、メイン通路25の一次ポート27寄りの部分に連なっている。二次側領域45は、開閉部37の着座部位よりも半径方向内方側の部分が臨む領域であり、メイン通路25の二次ポート28寄りの部分に連なっている。
【0031】
背圧力室42は、遮断弁体31のフランジ部36におけるシール部位よりも軸部35とは反対側の部分と、遮断弁ハウジング30とによって形成される。この背圧力室42は、一次圧力P1が導かれる空間である第1圧力室40に、接続通路48によって連通される。この接続通路48は、遮断弁体31に形成され、固定絞り49が介在される。
【0032】
遮断弁ハウジング30と協働して、前記各圧力室40〜42を形成する遮断弁体31には、第1受圧面50、第2受圧面51および背受圧面52が形成される。第1受圧面50は、フランジ部36の軸部35側の端面から成り、フランジ部36の軸直角断面積A1から、軸部35の軸直角断面積A2を減算した受圧面積A1−A2を有する。この第1受圧面50は、第1圧力室40に臨み、第1圧力室40の流体から開方向の流体圧駆動力を受ける。第1受圧面50が受ける流体圧駆動力(以下「第1流体圧駆動力」という場合がある)F1は、第1圧力室40の流体の圧力である第1圧力P1に基づく駆動力P1×(A1−A2)である。
【0033】
第2受圧面51は、開閉部37の外表面から成り、軸部35の軸直角断面積A2と同一の受圧面積A2を有する。この第2受圧面51のうち、弁座33に着座する着座部位よりも内側の受圧面部分は、着座部位の円の面積、すなわち弁座33の直径と同一の円の面積A3と同一の面積A3を有し、着座部位よりも外側の受圧面部分は、前記第2受圧面51全体の受圧面積A2から内側の受圧面部分A3の面積を減算した面積A2−A3を有する。
【0034】
また第2受圧面51は、第2圧力室41に臨み、第2圧力室41の流体から開方向の流体圧駆動力を受ける。第2受圧面51が受ける流体圧駆動力は、内外の各受圧面部分が受ける流体駆動力の合力である。内側の受圧面部分が受ける流体圧駆動力(以下「内側第2流体圧駆動力」という場合がある)F2iは、二次側領域45の流体の圧力である二次側第2圧力P2oに基づく駆動力P2o×A3であり、外側の受圧面部分が受ける流体圧駆動力(以下「外側第2流体圧駆動力」という場合がある)F2oは、一次側領域44の流体の圧力である一次側第1圧力P2iに基づく駆動力P2i×(A2−A3)である。
【0035】
背受圧面52は、フランジ部36の軸部35とは反対側の端面から成り、フランジ部36の軸直角断面積A1と同一の受圧面積A1を有する。この背受圧面52は、背圧力室42に臨み、背圧力室42の流体から閉方向の流体圧駆動力を受ける。背受圧面52が受ける流体圧駆動力(以下「背流体圧駆動力」という場合がある)Frは、背圧力室42の流体の圧力である背圧力Prに基づく駆動力Pr×A1である。
【0036】
遮断ばね力発生手段32は、遮断弁体31に閉方向のばね駆動力Fsprを与える手段であって、ばね部材、たとえば圧縮コイルばねによって実現される。この遮断ばね力発生手段32は、背圧力42に設けられ、一端部が遮断弁ハウジング30に支持され、他端部が遮断弁体31に支持されて設けられる。
【0037】
遮断ばね力発生手段32のばね駆動力Fsprは、背圧力Prが一次圧力Pinと同一である場合、前記各受圧面50〜52で受ける流体圧駆動力F1,F2i,F2o,Frおよびばね駆動力Fsprの合力である総合駆動力Ftが、閉方向に向かう駆動力となり、背圧力Prが二次圧力Poutと同一である場合、前記総合駆動力Ftが、開方向に向かう駆動力となる大きさを有する。
【0038】
総合駆動力Ftは、厳密には、遮断弁ハウジング30と遮断弁体31との間の摺動抵抗力Fsealを考慮される。この摺動抵抗力Fsealは、たとえば遮断弁体31の軸部35と弁ハウジング30の間のシールを達成するためのシール部材、および断弁体31のフランジ部36と弁ハウジング30の間のシールを達成するためのシール部材などに大きく起因するものであり、その配置および個数などを考慮し、適宜求めることができる。摺動抵抗力Fsealは、言うまでもなく、遮断弁体31に対して、変位方向と逆方向に働く力である。
【0039】
パイロット通路26は、メイン通路25の遮断弁部21および差圧発生弁部23よりも二次ポート28寄りの位置と、遮断弁部21の背圧力室42にを連通するように形成されている。このパイロット通路26の中途部に操作弁部22が介在される。
【0040】
操作弁部22は、電磁弁によって実現され、操作弁ハウジング55と、操作弁体56と、操作ばね力発生手段57と、駆動ソレノイド手段58とを備える。操作ばね力発生手段57と駆動ソレノイド手段58とによって、操作弁部22の駆動手段が構成される。操作弁ハウジング55は、ハウジング体24の一部によって構成される。この操作弁ハウジング55内に、操作弁体56および操作ばね力発生手段57とが設けられ、操作弁ハウジング55を外囲するようにして駆動ソレノイド手段58が設けられる。
【0041】
操作弁ハウジング55には、弁座60が形成されており、操作弁体56は、弁座60に近づく方向および弁座60から遠ざかる方向に変位自在に設けられている。この操作弁体56が弁座60に着座することによって、パイロット通路26が閉塞され、操作弁体56が弁座60から離間することによって、パイロット通路26が開放される。したがって弁座60に近づく方向は閉方向であり、弁座60から遠ざかる方向は開方向である。操作弁体56は、背圧力室42側から弁座60に着座する。
【0042】
操作弁体56は、略円柱状の軸部58と、軸部58の軸線方向一端部に同軸で連なる略短円柱状のプランジャ部59とを有し、軸線方向に変位自在である。軸部58は、軸線方向他端部に開閉部62を有し、開閉部62が、その端面部に設けられるシート部分63の弁座60に対する着座および離間によって、パイロット通路26を開閉する。
【0043】
この操作弁体56は、操作弁ハウジング55に対して緩やかに保持されており、操作弁体56と操作弁ハウジング55との間に流体が流下可能な隙間を有する。操作弁体56が弁座60に着座した閉状態で、開閉部62の着座部位よりも半径方向外方側の部分が配置される空間64が、パイロット通路26の操作弁部22よりも背圧力室42寄りの部分に連なっており、この背圧力Prが導かれる空間64の圧力P64が、前記隙間を介して操作弁体56の軸線方向他端部に導かれ、この軸線方向他端部の受圧面で、閉方向の駆動力として受ける。この駆動力は、前記空間64の圧力P64に基づく駆動力である。
【0044】
操作ばね力発生手段57は、操作弁体56に閉方向のばね駆動力を与える手段であって、ばね部材、たとえば圧縮コイルばねによって実現される。この操作ばね力発生手段57は、操作弁体56の軸線方向他端部側に設けられ、一端部が操作弁ハウジング55に支持され、他端部が操作弁体56に支持されて設けられる。
【0045】
駆動ソレノイド手段58は、操作弁体56のプランジャ部59を外囲するように設けられ、操作弁体56に開方向の電磁駆動力を与えるための手段であって、ソレノイドコイルによって実現される。この駆動ソレノイド手段58は、駆動電流Iが供給されることによって、操作ばね力発生手段57のばね駆動力に抗して操作弁体56を開方向へ変位させる電磁駆動力を、操作弁体56に与え、操作弁体56が開方向へ駆動される。また駆動ソレノイド手段58は、駆動電流Iの供給が停止されることによって、電磁駆動力の発生が停止され、この状態では、操作ばね力発生手段57のばね駆動力によって、操作弁体56が閉方向へ駆動される。
【0046】
このように駆動手段は、ばね力発生手段57によって遮断弁体56に開方向および閉方向のいずれか一方へばね駆動力を与え、駆動ソレノイド手段58によって遮断弁体56に開方向および閉方向のいずれか他方へばね駆動力より大きい電磁駆動力を選択的に与え、パイロット通路26を開閉制御することができる。ばね駆動力と電磁駆動力とは、相互に反対方向への駆動力であればよく、ばね駆動力が開方向に与えられ、電磁駆動力が閉方向に与えられてもよい。
【0047】
差圧発生弁部23は、メイン通路25の遮断弁部21よりも一次ポート27寄りで、かつ一次圧導入通路47の接続点よりも二次ポート28寄りで、メイン通路25に介在される。差圧発生弁部23は、差圧弁ハウジング70と、差圧弁体71と、差圧ばね力発生手段72とを備える。差圧弁ハウジング70は、ハウジング体24の一部によって構成される。この差圧弁ハウジング70内に、差圧弁体71および差圧ばね力発生手段72とが設けられる。
【0048】
差圧弁ハウジング70には、弁座73が形成されており、差圧弁体71は、弁座73に近づく方向および弁座73から遠ざかる方向に変位自在に設けられている。この差圧弁体71が弁座73に着座することによって、メイン通路25が閉塞され、差圧弁体71が弁座73から離間することによって、メイン通路25が開放される。したがって弁座73に近づく方向は閉方向であり、弁座73から遠ざかる方向は開方向である。差圧弁体71は、二次ポート28側から弁座73に着座する。
【0049】
差圧弁体71は、略円柱状の部材であり、軸線方向に変位自在である。差圧弁体71は、軸線方向一端部の端面部にシート部分75を有し、このシート部分75の弁座73に対する着座および離間によって、メイン通路25を開閉する。この差圧弁体71は、軸線方向一端部の弁座73への着座部位の内側の部分は、メイン通路25の一次ポート27寄りの部分に連なる空間に臨んでおり、軸線方向一端部の着座部位の外側の部分が臨む空間が、メイン通路25の一次ポート27寄りの部分に、差圧弁体71に形成される通路を介して連なっている。
【0050】
このような差圧弁体71には、弁座73に着座する着座部位を軸線方向に垂直な面に投影した面積の開受圧面77を有するとともに、この開受圧面77と同一面積の閉受圧面78を有する。開受圧面77は、差圧弁部23に関してメイン通路25の一次ポート27側の部分から流体の圧力に基づく開方向の流体圧駆動力を受ける。閉受圧面78は、差圧弁部23に関してメイン通路25の二次ポート28側の部分から流体の圧力に基づく閉方向の流体圧駆動力を受ける。
【0051】
差圧ばね力発生手段72は、差圧弁体71に閉方向のばね駆動力を与える手段であって、ばね部材、たとえば圧縮コイルばねによって実現される。この差圧ばね力発生手段72は、差圧弁体71の二次ポート28側に設けられ、一端部が差圧弁ハウジング70に支持され、他端部が差圧弁体71に支持されて設けられる。
【0052】
このような差圧弁部23では、差圧弁体71が開受圧面77で受ける流体圧駆動力と、差圧弁体71が閉受圧面78で受ける流体圧駆動力および差圧ばね力発生手段から受けるばね駆動力の合力とが釣り合うように、メイン通路25を開閉する。これによって差圧弁部23は、メイン通路25における差圧弁部23に関して、一次ポート27側の部分と二次ポート28側の部分との間に、クラッキング圧などの呼ばれるばね力発生手段72によるばね力に対応した設定圧力に相当する差圧が生じるように、メイン通路25を開閉する。つまりメイン通路25における差圧弁部23に関して、一次ポート27側の部分と二次ポート28側の部分とに、設定される一定の差圧を発生させ、その差圧に保持することができる。この差圧の設定は、ばね力発生手段72の選択におって、任意かつ用意に設定することができる。
【0053】
このような電磁遮断弁装置20では、遮断弁部21および操作弁部22が閉状態にある状態から、駆動ソレノイド手段58に駆動電流Iが供給されて、操作弁部22が開状態にされると、背圧力室40の背圧力Prがパイロット通路26を介して抜け、固定絞り49によって、第1圧力P1と、背圧力Prとの間に差圧が発生する。このときの遮断弁体31に働く駆動力の関係式は、次式(1)で表される。
【0054】
【数1】

Figure 2004278627
【0055】
このとき、流体がメイン通路25を流下していないので、差圧発生弁部23に関して一次ポート27側および二次ポート28側は、同一の圧力であり、一次側第2圧力Piは、一次圧力Pinと同一となる。また第1圧力P1は、一次圧力Pinと同一であり、背圧力Prおよび二次側第2圧力P2oは、二次圧力Poutと同一である。またこのように遮断弁部21が閉状態にあるときの二次圧力Poutは、一次圧力Pinに比べて十分小さく、二次圧力Poutに基づく流体圧駆動力は、遮断弁体31の駆動への影響が殆どなく、無視できるものとなる。したがって前記式(1)は、次式(2)のようになり、遮断弁部21は、ばね駆動力Fsprおよび摺動抵抗力Fsealに打ち勝って、開動作し、メイン通路25を開く。
Fspr+Fseal<Pin(A1−A3) …(2)
【0056】
このようにして遮断弁部21が開状態となると、流体がメイン通路25を流下するので、差圧発生弁部23に関して一次ポート27側および二次ポート28側の間に、前記設定される差圧が生じる。差圧発生弁部23に関して、一次ポート27側の圧力は、一次圧力Pinであり、二次ポート28側の圧力は、二次圧力Poutである。このときの遮断弁体31に働く駆動力の関係式は、次式(3)で表される。
【0057】
【数2】
Figure 2004278627
【0058】
このとき第1圧力P1が一次圧力Pinであり、各第2圧力P2i,P2oおよび背圧力PrがPoutとなる。したがって前記式(3)は、次式(4)のようになり、開方向の駆動力が閉方向の駆動力より大きい状態が保たれるので、開状態が保たれる。
Fspr+Pout×(A1−A2)<Pin(A1−A2)
Fspr<(Pin−Pout)×(A1−A2)
Fspr<ΔP×(A1−A2) …(4)
【0059】
ここでΔPは、一次圧力Pinと二次圧力Poutとの差圧であり、式(4)を満たすような圧力損失ΔPを差圧発生弁部23で生み出す。
【0060】
このように遮断弁部21および操作弁部22が開状態にある状態から、駆動ソレノイド手段58への駆動電流I供給が停止されて、操作弁部22が閉状態にされると、背圧力室40の背圧力Prが上昇し、第1圧力P1と同一となる。このときの遮断弁体31に働く駆動力の関係式は、次式(5)で表される。
【0061】
【数3】
Figure 2004278627
【0062】
このとき、流体がメイン通路25を流下しているので、差圧発生弁部23に関して一次ポート27側および二次ポート28側の間に、前記設定される差圧が生じる。差圧発生弁部23に関して、一次ポート27側の圧力は、一次圧力Pinであり、二次ポート28側の圧力は、二次圧力Poutである。第1圧力P1および背圧力Prは、一次圧力Pinであり、各第2圧力P2i,P2oは、二次圧力Poutである。したがって前記式(5)は、次式(6)のようになり、遮断弁部21は、摺動抵抗力Fsealに打ち勝って、閉動作し、メイン通路25を開く。
Fspr+ΔP×A2>Fseal …(6)
【0063】
ここでΔPは、一次圧力Pinと二次圧力Poutとの差圧である。このようにして遮断弁部21が閉状態となると、流体がメイン通路25を流下しなくなるので、差圧発生弁部23に関して一次ポート27側と二次ポート28側とは、同一の圧力となる。このときの遮断弁体31に働く駆動力の関係式は、次式(7)で表される。
【0064】
【数4】
Figure 2004278627
【0065】
このとき第1圧力P1、一次側第2圧力P2iおよび背圧力Prは、一次圧力Pinとなり、二次側第2圧力P2oは、二次圧力Poutとなる。したがって前記式(7)は、次式(8)のようになり、開方向の駆動力が閉方向の駆動力より大きい状態が保たれるので、開状態が保たれる。
Fspr+Pin×A3>Pout×A3 …(8)
【0066】
このように電磁遮断弁装置20では、操作弁部22の開閉によって、遮断弁部21のパイロット圧としての背圧力Prを操作し、遮断弁部21を開閉することができる。遮断弁部21は、一次圧力Pinと二次圧力Poutとの差圧ΔPを利用して開閉動作している。具体的には、遮断弁部21が閉状態にあるときの前記差圧ΔPは、遮断弁部21が閉状態にあるときの二次圧力Poutが極めて小さいので、一次圧力Pinが、そのまま差圧に相当しており、式(2)に示すように差圧に相当する一次圧力Pinに基づいて開動作している。また遮断弁部21が閉状態にあるときの前記差圧ΔPは、差圧発生弁部23によって設定される差圧であり、式(6)に示されるように、差圧ΔPに基づいて閉動作している。
【0067】
図3は、メイン通路25を流下する流体の流量Qと、一次ポート27から二次ポート28に至るまでの圧力損失との関係を示すグラフである。図4は、一次圧力Pinと、一次ポート27から二次ポート28に至るまでの圧力損失との関係を示すグラフである。図5は、メイン通路25を流下する流体の流量Qと、一次圧力Pinと、一次ポート27から二次ポート28に至るまでの圧力損失との関係を示すグラフである。
【0068】
図3および図4において、各実線80,81は、本実施の形態における関係を示し、各仮想線82,83は、従来の技術における関係を示す。また図5において、実線85は、一次圧力Pinが比較的高圧である場合の流量Qと圧力損失との関係を示し、破線86は、一次圧力Pinが比較的低圧である場合の流量Qと圧力損失との関係を示す。一次ポート27から二次ポート28に至るまでの圧力損失によって、一次圧力Pinと二次圧力Poutとの間に差圧ΔPが生じる。
【0069】
電磁遮断弁装置20では、メイン通路25に介在される遮断弁部21は、操作弁部22の操作に従って、一次圧力Pinと二次圧力Poutとの差圧ΔPを利用して、この差圧ΔPに基づく駆動力によって開閉動作される。メイン通路25の遮断弁部21よりも一次ポート寄りには、差圧発生弁部23が介在される。この差圧発生弁部23は、遮断弁部21が開状態にあって、この遮断弁部21を圧縮性を有する流体が流下するときでも、一次圧力Pinおよび流量Qに応じて開度を変化させ、一次圧力Pinと二次圧力Poutとの差圧ΔPをほぼ一定に保持する。したがって前記式(4),(6)に示される差圧ΔPが一定に保たれるので、遮断弁部21を閉動作させる駆動力が、一次圧力Pinおよび流量Qが変動しても、ほぼ一定に保たれ、安定した閉動作をすることができる。このように遮断弁部21の安定した動作が可能であるので、電磁遮断弁装置20は、広い一次圧力範囲および広い流量範囲で好適に用いることができる。また差圧発生弁部23の構成だけを変更することによって、特に差圧ばね力発生手段72を変えることによって、前記差圧ΔPを容易に設定変更できる利点もある。
【0070】
さらに操作弁部22によって、パイロット圧として背圧力Prを操作し、遮断弁部21を駆動する構成とすることによって、遮断弁部21を駆動するために流体圧を利用することができ、操作弁部21は、パイロット通路26を開閉できればよく、小形にすることができる。つまり操作弁部22におけるシート径、つまり着座部位の径を小さくし、この操作弁部22の閉状態に保つレシート力を小さく抑えることができ、駆動ソレノイド手段58などを小形にし、したがって遮断弁装置を小形に実現することができる。つまり広い一次圧力範囲および広い流量範囲で好適に用いることができる遮断弁を、小形に実現することができる。
【0071】
また遮断弁部21の遮断弁体31には、第1および第2受圧面50,51ならびに背受圧面52が形成されており、遮断弁体31は、これら各受圧面50〜52によって流体から流体圧駆動力F1,F2i,F2o,Frを受ける。また遮断弁部21には、ばね力発生手段32が設けられており、遮断弁体31は、ばね力発生手段32からばね駆動力Fsprを受ける。遮断弁部21は、遮断弁体31が前記流体圧駆動力F1,F2i,F2o,Frおよびばね駆動力Fsprの合力である総合駆動力Ftによって駆動され、メイン通路25を開閉する。
【0072】
ばね駆動力Fsprは、背圧力Prが一次圧力Pinと同一である場合、前記総合駆動力Ftが、閉方向に向かう駆動力となり、背圧力Prが二次圧力Poutと同一である場合、前記総合駆動力Ftが、開方向に向かう駆動力となるように決定さている。操作弁部22が閉状態にあるとき、背圧力Prは一次圧力Pinと同一となり、各受圧面で受ける流体圧駆動力F1,F2i,F2o,Frの合力である差圧駆動力は、閉方向に向かう駆動力となり、ばね駆動力Fsprと協働して遮断弁部21を閉じる。操作弁部22が開状態にあるとき、背圧力Prは二次圧力Poutとなり、差圧駆動力は、開方向に向かう駆動力となり、ばね駆動力Fsprに抗して遮断弁部21を開く。したがって操作弁部22によって、遮断弁部21を開閉駆動操作し、メイン通路25を開閉することができる。
【0073】
遮断弁部21が開状態にあるとき、第1受圧面50には、一次圧力Pinが作用し、第2受圧面51および背受圧面52には、二次圧力Poutが作用している。このとき二次圧力Poutは、差圧発生弁部23によって、一次圧力Pinとの差圧ΔPがほぼ一定に保たれている。したがって遮断弁部21の安定した動作を達成する電磁遮断弁装置20を実現することができる。
【0074】
また遮断弁部21が閉状態にあるとき、前記差圧駆動力が閉方向に向かう駆動力となっており、この差圧駆動力が遮断弁部21を閉状態に保つレシート力として働く。一次圧力Pinが大きくなると、遮断弁部21が閉状態にあるときの前記差圧駆動力が大きくなり、前記レシート力が大きくなるので、一次圧力Pinが高圧のときでも、高いレシート性を確保して、閉状態を確実に保持することができる。
【0075】
また操作弁部22は、閉状態にあるとき、操作弁体56が遮断弁部21における背圧力Prが導かれる空間64から閉方向の駆動力を受ける。このときの背圧力Prは一次圧力Pinと同一である。このように一次圧力Pinに基づく駆動力が閉方向に向かう駆動力となっており、この駆動力が操作弁部22を閉状態に保つレシート力として働く。一次圧力Pinが大きくなると、操作弁部22が閉状態にあるときの前記駆動力が大きくなり、前記レシート力が大きくなるので、一次圧力Pinが高圧のときでも、高いレシート性を確保して、閉状態を確実に保持することができる。
【0076】
上述の実施の形態は、本発明の例示に過ぎず、本発明の範囲内で構成を変更することができる。たとえば接続通路48は、遮断弁体31以外に形成される構成であってもよいし、またメイン通路25の一次圧力Pinに保たれる部位と背圧力室42とを連通する通路をハウジング体24に形成する構成であって、この通路に固定絞りを介在させる構成であってもよい。
【0077】
【発明の効果】
本発明によれば、遮断弁部は、一次圧力と二次圧力との差圧を利用して、この差圧に基づく駆動力によって開閉動作される。操作弁部は、遮断弁部に導くパイロット圧を操作することによって、前記差圧の遮断弁部に対する働き方を変化させることができ、遮断弁部を開閉駆動操作することができる。この開閉駆動操作に従って、遮断弁部が開閉動作する。メイン通路の遮断弁部よりも一次ポート寄りには、差圧発生弁部が介在される。この差圧発生弁部は、遮断弁部が開状態にあって、この遮断弁部を圧縮性を有する流体が流下するとき、一次圧力および流量に応じて開度を変化させ、一次圧力と二次圧力との差圧をほぼ一定に保持する。
【0078】
これによって一次圧力および流量が変動しても、前記差圧がほぼ一定に保たれるので、差圧に基づく駆動力は変動しない。したがって遮断弁部は、一次圧力および流量の変動に影響されることなく、安定して動作する。このように遮断弁部の安定した動作が可能であるので、広い一次圧力範囲および広い流量範囲で好適に用いることができる。また差圧発生弁部の構成だけを変更することによって、一次圧力と二次圧力との差圧を設定変更できる利点もある。
【0079】
さらに操作弁部によって、パイロット圧を操作し、遮断弁部を駆動する構成とすることによって、遮断弁部を駆動するために流体圧を利用することができ、操作弁部は、パイロット通路を開閉できればよく、小形にすることができる。したがって遮断弁装置を小形に実現することができる。つまり広い一次圧力範囲および広い流量範囲で好適に用いることができる遮断弁を、小形に実現することができる。
【0080】
また本発明によれば、遮断弁部の遮断弁体には、第1および第2受圧面ならびに背受圧面が形成されており、遮断弁体は、これら各受圧面によって流体から流体圧駆動力を受ける。また遮断弁部には、ばね力発生手段が設けられており、遮断弁体は、ばね力発生手段からばね駆動力を受ける。遮断弁部は、遮断弁体が前記流体圧駆動力およびばね駆動力の合力である総合駆動力によって駆動され、メイン通路を開閉する。
【0081】
ばね駆動力は、背圧力が一次圧力と同一である場合、前記総合駆動力が、閉方向に向かう駆動力となり、背圧力が二次圧力と同一である場合、前記総合駆動力が、開方向に向かう駆動力となるように決定さている。操作弁部が閉状態にあるとき、背圧力は一次圧力と同一となり、各受圧面で受ける流体圧駆動力の合力である差圧駆動力は、閉方向に向かう駆動力となり、ばね駆動力と協働して遮断弁部を閉じる。操作弁部が開状態にあるとき、背圧力は二次圧力となり、差圧駆動力は、開方向に向かう駆動力となり、ばね駆動力に抗して遮断弁部を開く。したがって操作弁部によって、遮断弁部を開閉駆動操作し、メイン通路を開閉することができる。
【0082】
遮断弁部が開状態にあるとき、第1受圧面には、一次圧力が作用し、第2受圧面および背受圧面には、二次圧力およびこれと同一の圧力が作用している。このとき二次圧力は、差圧発生弁部によって、一次圧力との差圧がほぼ一定に保たれている。したがって遮断弁部の安定した動作を達成する電磁遮断弁装置を実現することができる。
【0083】
また遮断弁部が閉状態にあるとき、前記差圧駆動力が閉方向に向かう駆動力となっており、この差圧駆動力が遮断弁部を閉状態に保つレシート力として働く。一次圧力が大きくなると、遮断弁部が閉状態にあるときの前記差圧駆動力が大きくなり、前記レシート力が大きくなるので、一次圧力が高圧のときでも、高いレシート性を確保して、閉状態を確実に保持することができる。
【0084】
また本発明によれば、操作弁部は、閉状態にあるとき、操作弁体が遮断弁部における背圧力が導かれる空間から閉方向の駆動力を受ける。このときの背圧力は一次圧力と同一である。このように一次圧力と同一となる背圧力に基づく駆動力が閉方向に向かう駆動力となっており、この駆動力が操作弁部を閉状態に保つレシート力として働く。一次圧力が大きくなると、操作弁部が閉状態にあるときの前記駆動力が大きくなり、前記レシート力が大きくなるので、一次圧力が高圧のときでも、高いレシート性を確保して、閉状態を確実に保持することができる。
【0085】
また本発明によれば、差圧発生弁部の差圧弁体は、一次圧力に基づく流体圧駆動力を開方向へ受けるとともに、差圧ばね力発生手段からばね駆動力を閉方向に受ける。このような差圧発生弁部は、その一次ポート側と、二次ポート側との間に、差圧ばね力発生手段によるばね駆動力に対応する差圧を発生させることができる。したがって遮断弁部が開状態にあるときの一次圧力と二次圧力とをほぼ一定の差圧に保つことができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の電磁遮断弁装置20を示す断面図である。
【図2】電磁遮断弁装置20を示す流体圧回路図である。
【図3】メイン通路25を流下する流体の流量Qと、一次ポート27から二次ポート28に至るまでの圧力損失との関係を示すグラフである。
【図4】一次圧力Pinと、一次ポート27から二次ポート28に至るまでの圧力損失との関係を示すグラフである。
【図5】メイン通路25を流下する流体の流量Qと、一次圧力Pinと、一次ポート27から二次ポート28に至るまでの圧力損失との関係を示すグラフである。
【図6】従来の技術の電磁遮断弁装置1を示す断面図である。
【図7】電磁遮断弁装置1を示す流体圧回路図である。
【図8】圧縮性流体が遮断弁部3を流下するときの流量qと圧力損失との関係を示すグラフである。
【図9】圧縮性流体が遮断弁部3を流下するときの一次圧力p1と圧力損失との関係を示すグラフである。
【符号の説明】
20 電磁遮断弁装置
21 遮断弁部
22 操作弁部
23 差圧発生弁部
27 一次ポート
28 二次ポート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a two-stage shutoff valve device using pilot pressure.
[0002]
[Prior art]
FIG. 6 is a cross-sectional view showing a conventional electromagnetic shut-off valve device 1. FIG. 7 is a circuit diagram showing a specific configuration of the electromagnetic shut-off valve device 1. The electromagnetic shut-off valve device 1 has a shut-off valve unit 3 for opening and closing the main passage 2 and an electromagnetic valve unit 4 for controlling a pilot pressure to the shut-off valve unit 3. The shutoff valve section 3 opens and closes the main passage 2 that connects the primary port 5 and the secondary port 6 by the displacement of the shutoff valve body 15. The shut-off valve element 15 receives a driving force based on the primary pressure p1 that is the pressure of the fluid at the primary port 5 in the opening direction, and transmits a driving force based on the secondary pressure p2 that is the pressure of the fluid at the secondary port 6 in the opening direction. To receive. Further, the shutoff valve element 15 receives a driving force based on the back pressure pr, which is the pressure of the fluid in the back pressure chamber 7, in the closing direction, and receives a driving force from the spring member 8 in the closing direction.
[0003]
The solenoid valve portion 4 is interposed in a pilot passage 9 that bypasses the primary port 5 and the secondary port 6 via the back pressure chamber 7. The electromagnetic valve unit 4 controls energization and non-energization of the coil 10 to drive the electromagnetic valve body 11 to be displaced, and opens and closes the pilot passage 9 closer to the secondary port 6 than the back pressure chamber 7. A fixed throttle 12 is interposed in the pilot passage 9 closer to the primary port 5 than the back pressure chamber 7.
[0004]
In this electromagnetic shut-off valve 1, when the electromagnetic valve portion 4 is closed, the back pressure pr becomes the same as the primary pressure p1, the driving force in the closing direction for the shut-off valve portion 3 becomes larger than the driving force in the opening direction, and The valve part 3 can be closed. Also, in the electromagnetic shut-off valve 1, when the electromagnetic valve portion 4 is closed, the back pressure pr becomes equal to the primary pressure p1, the driving force in the closing direction for the shut-off valve portion 3 becomes larger than the driving force in the opening direction, The valve part 3 can be closed. As described above, in the electromagnetic shut-off valve 1, the shut-off valve portion 3 is opened and closed using the pressure difference Δp between the primary pressure p1 and the secondary pressure p2. The differential pressure Δp is irrelevant to the pressure loss when the fluid flows down the shut-off valve section 3 when the shut-off valve section 3 is in the closed state, but is the pressure when the fluid flows down the shut-off valve section 3 in the open state. The pressure difference is based on the loss (for example, see Non-Patent Document 1).
[0005]
[Non-patent document 1]
JIS B 8373 Pneumatic 2-port solenoid valve
[0006]
[Problems to be solved by the invention]
FIG. 8 is a graph showing the relationship between the flow rate q and the pressure loss when the compressible fluid flows down the shutoff valve unit 3. FIG. 9 is a graph showing the relationship between the primary pressure p1 and the pressure loss when the compressive fluid flows down the shutoff valve unit 3. When the fluid is a compressive fluid such as a gas and a liquid containing air bubbles, the pressure loss in the shutoff valve section 3 increases as the flow rate q increases, as shown in FIGS. It becomes smaller as the pressure p1 rises.
[0007]
When the electromagnetic shut-off valve 1 is used for a compressible fluid, the differential pressure Δp when the shut-off valve unit 3 is in the open state fluctuates with the fluctuation of the primary pressure p1 and the flow rate q. The electromagnetic shut-off valve 1 has a configuration in which the shut-off valve unit 3 operates using the differential pressure Δp, and the closing operation uses the differential pressure Δp when the shut-off valve unit 3 is in the open state. This closing operation is affected by fluctuations in the primary pressure p1 and the flow rate q, and the driving force for displacing the shutoff valve body 15 greatly fluctuates. Therefore, a stable operation cannot be obtained and cannot be used for an apparatus in which the primary pressure p1 and the flow rate q are in a wide range.
[0008]
As described above, the two-stage type shut-off valve using the pilot pressure has a problem that the operation becomes unstable. Therefore, a direct-acting type shut-off valve that directly drives a shut-off valve body that opens and closes a main passage by a solenoid. Can be considered, but has the following two problems. First, in the direct-acting type, the shut-off valve element that opens and closes the main passage is inevitably large in order to secure a large flow capacity. Seat force is required. Therefore, the size of the solenoid must be increased, and the size of the electromagnetic shut-off valve device increases. Second, in the case of the direct acting type, in order to secure a large flow capacity as described above, a portion provided with a solenoid or the like also needs to have a strength capable of withstanding high pressure. This also increases the size of the electromagnetic shut-off valve device. Therefore, improvement of a two-stage shutoff valve utilizing pilot pressure is desired.
[0009]
An object of the present invention is to provide a two-stage type shut-off valve device using pilot pressure, which can be suitably used in a wide primary pressure range and a wide flow rate range.
[0010]
[Means for Solving the Problems]
The present invention according to claim 1 is a shut-off valve portion that opens and closes a main passage interposed in a main passage communicating with a primary port and a secondary port, wherein the primary pressure and the secondary port are fluid pressures in the primary port. A shut-off valve part that opens and closes using a differential pressure between the secondary pressure that is the pressure of the fluid at
An operation valve section that is interposed in a pilot passage that guides pilot pressure to the shutoff valve section and that operates the pilot pressure to open and close the shutoff valve section;
The main passage is interposed at a position closer to the primary port than the shut-off valve portion, and when the shut-off valve portion is in an open state, the opening degree is changed according to the primary pressure and the flow rate, and the difference between the primary pressure and the secondary pressure is changed. And a differential pressure generating valve section for maintaining the pressure at a substantially constant level.
[0011]
According to the present invention, the shut-off valve portion is opened and closed by a driving force based on the differential pressure between the primary pressure and the secondary pressure. By operating the pilot pressure guided to the shut-off valve unit, the operation valve unit can change the manner in which the differential pressure acts on the shut-off valve unit, and can open and close the shut-off valve unit. According to this opening / closing drive operation, the shut-off valve section opens and closes. A differential pressure generating valve is interposed closer to the primary port than the shutoff valve in the main passage. When the shutoff valve is in an open state and a fluid having a compressibility flows down the shutoff valve, the differential pressure generating valve changes the opening degree according to the primary pressure and the flow rate, and changes the primary pressure and the secondary pressure. The differential pressure from the next pressure is kept almost constant.
[0012]
As a result, even if the primary pressure and the flow rate fluctuate, the differential pressure is kept substantially constant, and the driving force based on the differential pressure does not fluctuate. Therefore, the shut-off valve section operates stably without being affected by fluctuations in the primary pressure and the flow rate. Since the stable operation of the shut-off valve portion is thus possible, it can be suitably used in a wide primary pressure range and a wide flow rate range. Further, by changing only the configuration of the differential pressure generating valve section, there is an advantage that the setting of the differential pressure between the primary pressure and the secondary pressure can be changed.
[0013]
Further, by operating the pilot pressure by the operation valve unit and driving the shut-off valve unit, the fluid pressure can be used to drive the shut-off valve unit, and the operation valve unit opens and closes the pilot passage. If possible, it can be downsized. Therefore, the shut-off valve device can be realized in a small size. That is, a shutoff valve that can be suitably used in a wide primary pressure range and a wide flow rate range can be realized in a small size.
[0014]
According to the second aspect of the present invention, the shut-off valve portion includes:
A shut-off valve housing in which a valve seat is formed;
A shutoff valve body that is provided in a shutoff valve housing so as to be displaceable in an opening direction and a closing direction, and has an opening / closing portion that opens and closes a main passage while being seated and separated from a valve seat, and cooperates with the valve housing. Forming a first pressure chamber into which the primary pressure is introduced, a back pressure chamber connected to the space through which the primary pressure is introduced via a fixed throttle, and a second pressure chamber in which an opening / closing unit is arranged; A first pressure receiving surface that receives a fluid pressure driving force in the opening direction from the fluid of the first pressure chamber, a back pressure receiving surface that receives a fluid pressure driving force in the closing direction from the fluid in the back pressure chamber, and a fluid pressure in the opening direction from the fluid in the second pressure chamber. A shutoff valve body formed with a second pressure receiving surface for receiving a driving force;
A shut-off spring force generating means for applying a spring drive force in a closing direction to the shut-off valve body, wherein the spring drive force is such that when the back pressure, which is the pressure of the fluid in the back pressure chamber, is the same as the primary pressure, each of the pressure receiving surfaces When the total driving force, which is the combined force of the fluid pressure driving force and the spring driving force received in the step (a), becomes the driving force in the closing direction, and the back pressure is the same as the secondary pressure, the driving force in the opening direction is increased. Breaking spring force generating means having a magnitude to be a force,
The operation valve section is interposed in a pilot passage communicating the back pressure chamber and the secondary port, and opens and closes the pilot passage based on a predetermined operation input.
[0015]
According to the present invention, the first and second pressure receiving surfaces and the back pressure receiving surface are formed in the shut-off valve body of the shut-off valve unit, and the shut-off valve body applies fluid pressure driving force from the fluid by each of the pressure receiving surfaces. receive. The shutoff valve section is provided with spring force generating means, and the shutoff valve receives spring driving force from the spring force generating means. The shut-off valve portion is driven by a total drive force that is a combined force of the fluid pressure drive force and the spring drive force to open and close the main passage.
[0016]
The spring driving force is such that when the back pressure is the same as the primary pressure, the total driving force is a driving force toward the closing direction, and when the back pressure is the same as the secondary pressure, the total driving force is the opening direction. It is determined to be the driving force toward. When the operation valve portion is in the closed state, the back pressure becomes the same as the primary pressure, and the differential pressure driving force, which is the resultant force of the fluid pressure driving forces received on each pressure receiving surface, becomes the driving force in the closing direction, and the spring driving force Cooperate to close the shut-off valve. When the operation valve portion is in the open state, the back pressure becomes the secondary pressure, the differential pressure driving force becomes the driving force in the opening direction, and opens the shutoff valve portion against the spring driving force. Accordingly, the main valve can be opened / closed by the opening / closing operation of the shut-off valve unit by the operation valve unit.
[0017]
When the shut-off valve is in the open state, the primary pressure acts on the first pressure receiving surface, and the secondary pressure and the same pressure act on the second pressure receiving surface and the back pressure receiving surface. At this time, the differential pressure between the secondary pressure and the primary pressure is kept substantially constant by the differential pressure generating valve section. Therefore, an electromagnetic shut-off valve device that achieves stable operation of the shut-off valve section can be realized.
[0018]
When the shutoff valve is in the closed state, the differential pressure driving force is a driving force in the closing direction, and this differential pressure driving force acts as a receipt force for keeping the shutoff valve in the closed state. When the primary pressure increases, the differential pressure driving force when the shut-off valve portion is in the closed state increases, and the receipt force increases.Thus, even when the primary pressure is high, a high receipt property is ensured and the closing force is increased. The state can be reliably maintained.
[0019]
According to the third aspect of the present invention, the operation valve portion includes:
An operating valve housing in which a valve seat is formed;
An operation valve body that is provided in the operation valve housing so as to be displaceable in an opening direction and a closing direction and that opens and closes a pilot passage while being seated and separated from a valve seat. It receives a driving force in the closing direction from the space to be cut.
[0020]
According to the present invention, when the operation valve portion is in the closed state, the operation valve body receives the driving force in the closing direction from the space in the back-off pressure in the shutoff valve portion. The back pressure at this time is the same as the primary pressure. As described above, the driving force based on the back pressure which is the same as the primary pressure is the driving force in the closing direction, and this driving force acts as a receipt force for keeping the operation valve portion in the closed state. When the primary pressure increases, the driving force when the operation valve section is in the closed state increases, and the receipt force increases.Thus, even when the primary pressure is high, a high receipt property is secured and the closed state is maintained. It can be securely held.
[0021]
According to a fourth aspect of the present invention, the differential pressure generating valve section comprises:
A differential pressure valve housing,
A differential pressure valve body which is held in the differential pressure valve housing so as to be displaceable in an opening direction and a closing direction and receives a fluid pressure driving force based on a primary pressure in an opening direction;
The differential pressure valve body includes a differential pressure spring force generating means for applying a spring driving force in the closing direction.
[0022]
According to the present invention, the differential pressure valve element of the differential pressure generating valve portion receives the fluid pressure driving force based on the primary pressure in the opening direction and receives the spring driving force from the differential pressure spring force generating means in the closing direction. Such a differential pressure generating valve section can generate a differential pressure corresponding to the spring driving force by the differential pressure spring force generating means between the primary port side and the secondary port side. Therefore, the primary pressure and the secondary pressure when the shutoff valve is in the open state can be maintained at a substantially constant differential pressure.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view showing an electromagnetic shut-off valve device 20 according to one embodiment of the present invention. FIG. 2 is a fluid pressure circuit diagram showing the electromagnetic shut-off valve device 20. The electromagnetic shut-off valve device 20 is a valve device that is provided in a fluid pressure device including, for example, a high-pressure gas device, is interposed in a flow path in which fluid flows down from the primary side to the secondary side, and opens and closes this flow path. In the present embodiment, the fluid is a compressible fluid having compressibility. The compressible fluid may be a gas such as air, a liquid containing bubbles, or any other fluid that is compressed by an external pressure.
[0024]
The electromagnetic shut-off valve device 20 is configured to include a shut-off valve portion 21, an operation valve portion 22, and a differential pressure generating valve portion 23. The electromagnetic shut-off valve device 20 is a two-stage shut-off valve device using a pilot pressure, and has a housing body 24, in which a main passage 25 and a pilot passage 26 are formed. . A shutoff valve portion 21 and a differential pressure generating valve portion 23 are interposed in the main passage 25, and an operation valve portion 22 is interposed in the pilot passage 26.
[0025]
A primary port 27 connected to the primary side of the flow path and a secondary port 28 connected to the secondary side of the flow path are formed in the housing body 24, and these ports 27, 28 communicate with each other. Main passage 25 is formed as described above. The shutoff valve 21 is interposed in the middle of the main passage 25. The shut-off valve section 21 opens and closes the main passage 25 using the pressure difference ΔP between the primary pressure Pin and the secondary pressure Pout. The primary pressure Pin is the pressure of the fluid at the primary port 27, and the secondary pressure Pout is the pressure of the fluid at the secondary port.
[0026]
The shutoff valve section 21 includes a shutoff valve housing 30, a shutoff valve body 31, and shutoff spring force generating means 32. The shutoff valve housing 30 is constituted by a part of the housing body 24. In the shut-off valve housing 30, a shut-off valve body 31 and a shut-off spring force generating means 32 are provided.
[0027]
A valve seat 33 is formed in the shutoff valve housing 30, and the shutoff valve body 31 is provided so as to be displaceable in a direction approaching the valve seat 33 and a direction away from the valve seat 33. When the shutoff valve body 31 is seated on the valve seat 33, the main passage 25 is closed, and when the shutoff valve body 31 is separated from the valve seat 33, the main passage 25 is opened. Therefore, the direction approaching the valve seat 33 is the closing direction, and the direction away from the valve seat 33 is the opening direction. Further, the shutoff valve element 31 is configured to be seated on the valve seat 33 from the primary port 27 side.
[0028]
The shut-off valve body 31 has a substantially cylindrical shaft portion 35 and a substantially short cylindrical flange portion 36 coaxially connected to one axial end of the shaft portion 35, and is displaceable in the axial direction. The shaft portion 35 achieves sealing with the shut-off valve housing 30 at an intermediate portion between both ends in the axial direction, and has an opening / closing portion 37 at the other end portion in the axial direction. The opening / closing portion 37 opens and closes the main passage 25 by seating and separating the seat portion 38 provided on the end face portion from the valve seat 33. The opening / closing portion 37 has a smaller diameter than the remaining portion of the shaft portion 35. The flange portion 36 has a larger diameter than the shaft portion 35 and achieves a seal with the shutoff valve housing 30.
[0029]
Such a shutoff valve element 31 and the shutoff valve housing 30 cooperate to form a first pressure chamber 40, a second pressure chamber 41, and a back pressure chamber 42. The first pressure chamber 40 is formed by a portion between the sealing portion of the shaft portion 35 of the shutoff valve body 31 and the sealing portion of the flange portion 36, and the shutoff valve housing 30. The first pressure chamber 40 is communicated with a position closer to the primary port 21 than the shutoff valve portion 21 and the differential pressure generating valve portion 23 in the main passage 25 by a primary pressure introduction passage 47, and the primary pressure P1 is led. .
[0030]
The second pressure chamber 41 is formed by a portion of the shaft portion 35 of the shut-off valve body 31 closer to one end in the axial direction than the sealed portion, and the shut-off valve housing 30. The second pressure chamber 41 accommodates the opening / closing section 37 and is partitioned into a primary side area 44 and a secondary side area 45 in a state where the seat portion 38 is seated on the valve seat 33. The primary side region 44 is a region where a portion on the radially outward side of the seating portion of the opening / closing portion 37 faces, and is continuous with a portion near the primary port 27 of the main passage 25. The secondary side region 45 is a region facing a portion radially inward of the seating portion of the opening / closing portion 37 and is continuous with a portion of the main passage 25 near the secondary port 28.
[0031]
The back pressure chamber 42 is formed by a portion of the flange portion 36 of the shutoff valve body 31 opposite to the shaft portion 35 with respect to the sealing portion, and the shutoff valve housing 30. The back pressure chamber 42 is connected by a connection passage 48 to the first pressure chamber 40, which is a space into which the primary pressure P1 is led. The connection passage 48 is formed in the shutoff valve body 31 and has a fixed throttle 49 interposed.
[0032]
A first pressure receiving surface 50, a second pressure receiving surface 51, and a back pressure receiving surface 52 are formed on the shutoff valve body 31 forming the pressure chambers 40 to 42 in cooperation with the shutoff valve housing 30. The first pressure receiving surface 50 is formed of an end surface of the flange portion 36 on the shaft portion 35 side, and has a pressure receiving area A1-A2 obtained by subtracting the shaft perpendicular cross-sectional area A2 of the flange portion 36 from the shaft perpendicular cross-sectional area A1. . The first pressure receiving surface 50 faces the first pressure chamber 40 and receives a fluid pressure driving force in the opening direction from the fluid in the first pressure chamber 40. The fluid pressure driving force (hereinafter, sometimes referred to as “first fluid pressure driving force”) F1 received by the first pressure receiving surface 50 is a driving force P1 × based on the first pressure P1 which is the pressure of the fluid in the first pressure chamber 40. (A1-A2).
[0033]
The second pressure receiving surface 51 is formed of the outer surface of the opening / closing portion 37 and has the same pressure receiving area A2 as the cross-sectional area A2 perpendicular to the axis of the shaft portion 35. Of the second pressure receiving surface 51, the pressure receiving surface portion inside the seating portion that sits on the valve seat 33 has the area of the circle of the seating portion, that is, the same area A3 as the diameter of the circle of the valve seat 33. The pressure receiving surface portion having the pressure receiving surface A3 and having an area A2-A3 obtained by subtracting the area of the internal pressure receiving surface portion A3 from the pressure receiving area A2 of the entire second pressure receiving surface 51 is provided.
[0034]
The second pressure receiving surface 51 faces the second pressure chamber 41 and receives a fluid pressure driving force in the opening direction from the fluid in the second pressure chamber 41. The fluid pressure driving force received by the second pressure receiving surface 51 is a resultant force of the fluid driving forces received by the inner and outer pressure receiving surface portions. The fluid pressure driving force (hereinafter, sometimes referred to as “inner second fluid pressure driving force”) F2i received by the inner pressure receiving surface portion is based on the secondary-side second pressure P2o which is the pressure of the fluid in the secondary region 45. The driving force P2o × A3, and the fluid pressure driving force F2o received by the outer pressure receiving surface portion (hereinafter, also referred to as “outer second fluid pressure driving force”) F2o is the primary pressure which is the pressure of the fluid in the primary region 44. The driving force is P2i × (A2-A3) based on the first pressure P2i.
[0035]
The back pressure receiving surface 52 is formed of an end surface of the flange portion 36 on the side opposite to the shaft portion 35, and has the same pressure receiving area A1 as the axial cross-sectional area A1 of the flange portion 36. The back pressure receiving surface 52 faces the back pressure chamber 42 and receives a fluid pressure driving force in the closing direction from the fluid in the back pressure chamber 42. The fluid pressure driving force Fr received by the back pressure receiving surface 52 (hereinafter, may be referred to as “back fluid pressure driving force”) Fr is a driving force Pr × A1 based on the back pressure Pr which is the pressure of the fluid in the back pressure chamber 42.
[0036]
The shut-off spring force generating means 32 is a means for applying a spring driving force Fspr in the closing direction to the shut-off valve body 31, and is realized by a spring member, for example, a compression coil spring. The shut-off spring force generating means 32 is provided at the back pressure 42, one end is supported by the shut-off valve housing 30, and the other end is supported by the shut-off valve body 31.
[0037]
When the back pressure Pr is equal to the primary pressure Pin, the spring driving force Fspr of the cut-off spring force generating means 32 is the fluid driving force F1, F2i, F2o, Fr and the spring driving force received on each of the pressure receiving surfaces 50 to 52. When the total driving force Ft, which is the resultant of Fspr, becomes the driving force in the closing direction and the back pressure Pr is the same as the secondary pressure Pout, the total driving force Ft becomes the driving force in the opening direction. Having.
[0038]
Strictly speaking, the total driving force Ft takes into account the sliding resistance force Fseal between the shutoff valve housing 30 and the shutoff valve body 31. The sliding resistance Fseal is, for example, a seal member for achieving a seal between the shaft portion 35 of the shut-off valve body 31 and the valve housing 30 and a seal member between the flange portion 36 of the valve cut-off body 31 and the valve housing 30. Is largely caused by a seal member or the like for achieving the above, and can be determined as appropriate in consideration of the arrangement and the number of the members. Needless to say, the sliding resistance force Fseal is a force acting on the shutoff valve body 31 in a direction opposite to the direction of displacement.
[0039]
The pilot passage 26 is formed so as to communicate a position closer to the secondary port 28 than the shutoff valve portion 21 and the differential pressure generating valve portion 23 of the main passage 25 and the back pressure chamber 42 of the shutoff valve portion 21. . The operation valve section 22 is interposed in the middle of the pilot passage 26.
[0040]
The operation valve section 22 is realized by an electromagnetic valve, and includes an operation valve housing 55, an operation valve body 56, an operation spring force generation unit 57, and a drive solenoid unit 58. The operating spring force generating means 57 and the driving solenoid means 58 constitute driving means for the operating valve section 22. The operation valve housing 55 is constituted by a part of the housing body 24. In the operation valve housing 55, an operation valve body 56 and an operation spring force generating means 57 are provided, and a drive solenoid means 58 is provided so as to surround the operation valve housing 55.
[0041]
A valve seat 60 is formed in the operation valve housing 55, and the operation valve body 56 is provided so as to be displaceable in a direction approaching the valve seat 60 and a direction away from the valve seat 60. When the operation valve body 56 is seated on the valve seat 60, the pilot passage 26 is closed, and when the operation valve body 56 is separated from the valve seat 60, the pilot passage 26 is opened. Therefore, the direction approaching the valve seat 60 is the closing direction, and the direction away from the valve seat 60 is the opening direction. The operation valve body 56 is seated on the valve seat 60 from the back pressure chamber 42 side.
[0042]
The operation valve body 56 has a substantially cylindrical shaft portion 58 and a substantially short cylindrical plunger portion 59 coaxially connected to one axial end of the shaft portion 58, and is displaceable in the axial direction. The shaft portion 58 has an opening / closing portion 62 at the other end in the axial direction, and the opening / closing portion 62 opens and closes the pilot passage 26 by seating and separating the seat portion 63 provided on the end surface portion of the shaft portion from the valve seat 60.
[0043]
The operation valve body 56 is loosely held with respect to the operation valve housing 55, and has a gap between the operation valve body 56 and the operation valve housing 55 through which a fluid can flow. In the closed state in which the operation valve body 56 is seated on the valve seat 60, the space 64 in which the portion on the radially outer side of the seating portion of the opening / closing portion 62 is disposed, the back pressure is lower than the operation valve portion 22 of the pilot passage 26. The pressure P64 of the space 64 to which the back pressure Pr is guided is guided to the other axial end of the operating valve body 56 through the gap, and the pressure P64 of the other end in the axial direction is connected to the portion near the chamber 42. It is received as a driving force in the closing direction on the pressure receiving surface. This driving force is a driving force based on the pressure P64 of the space 64.
[0044]
The operating spring force generating means 57 is means for applying a spring driving force in the closing direction to the operating valve body 56, and is realized by a spring member, for example, a compression coil spring. The operating spring force generating means 57 is provided on the other end side in the axial direction of the operating valve body 56, one end is supported by the operating valve housing 55, and the other end is supported by the operating valve body 56.
[0045]
The drive solenoid means 58 is provided so as to surround the plunger portion 59 of the operation valve body 56, and is a means for applying an electromagnetic driving force to the operation valve body 56 in the opening direction, and is realized by a solenoid coil. When the drive current I is supplied, the drive solenoid means 58 applies an electromagnetic drive force for displacing the operation valve body 56 in the opening direction against the spring drive force of the operation spring force generation means 57, and And the operation valve body 56 is driven in the opening direction. When the supply of the drive current I is stopped, the drive solenoid means 58 stops generating the electromagnetic drive force. In this state, the operation valve body 56 is closed by the spring drive force of the operation spring force generation means 57. Driven in the direction.
[0046]
As described above, the driving means applies a spring driving force to the shutoff valve body 56 in one of the opening direction and the closing direction by the spring force generating means 57, and the drive solenoid means 58 applies the opening and closing directions to the shutoff valve body 56. An electromagnetic driving force greater than the spring driving force is selectively applied to one of the other, so that the pilot passage 26 can be opened and closed. The spring driving force and the electromagnetic driving force may be driving forces in directions opposite to each other, and the spring driving force may be applied in the opening direction and the electromagnetic driving force may be applied in the closing direction.
[0047]
The differential pressure generating valve portion 23 is interposed in the main passage 25 closer to the primary port 27 than the shutoff valve portion 21 of the main passage 25 and closer to the secondary port 28 than the connection point of the primary pressure introducing passage 47. The differential pressure generating valve section 23 includes a differential pressure valve housing 70, a differential pressure valve body 71, and a differential pressure spring force generating means 72. The differential pressure valve housing 70 is constituted by a part of the housing body 24. In the differential pressure valve housing 70, a differential pressure valve body 71 and a differential pressure spring force generating means 72 are provided.
[0048]
A valve seat 73 is formed in the differential pressure valve housing 70, and the differential pressure valve body 71 is provided so as to be displaceable in a direction approaching the valve seat 73 and a direction away from the valve seat 73. When the differential pressure valve body 71 is seated on the valve seat 73, the main passage 25 is closed, and when the differential pressure valve body 71 is separated from the valve seat 73, the main passage 25 is opened. Therefore, the direction approaching the valve seat 73 is the closing direction, and the direction away from the valve seat 73 is the opening direction. The differential pressure valve body 71 is seated on the valve seat 73 from the secondary port 28 side.
[0049]
The differential pressure valve body 71 is a substantially columnar member, and is displaceable in the axial direction. The differential pressure valve body 71 has a seat portion 75 at one end in the axial direction, and opens and closes the main passage 25 by seating and separating the seat portion 75 from the valve seat 73. In the differential pressure valve body 71, a portion inside the seating portion at one end in the axial direction on the valve seat 73 faces a space connected to a portion near the primary port 27 of the main passage 25, and a seating portion at one end in the axial direction. Is connected to a portion of the main passage 25 near the primary port 27 via a passage formed in the differential pressure valve body 71.
[0050]
Such a differential pressure valve body 71 has an open pressure receiving surface 77 having an area obtained by projecting a seating portion seated on the valve seat 73 onto a surface perpendicular to the axial direction, and a closed pressure receiving surface having the same area as the open pressure receiving surface 77. 78. The open pressure receiving surface 77 receives the fluid pressure driving force in the opening direction based on the pressure of the fluid from a portion of the main passage 25 on the primary port 27 side with respect to the differential pressure valve portion 23. The closing pressure receiving surface 78 receives a fluid pressure driving force in the closing direction based on the fluid pressure from a portion of the main passage 25 on the secondary port 28 side with respect to the differential pressure valve portion 23.
[0051]
The differential pressure spring force generating means 72 is a means for applying a spring driving force in the closing direction to the differential pressure valve body 71, and is realized by a spring member, for example, a compression coil spring. The differential pressure spring force generating means 72 is provided on the secondary port 28 side of the differential pressure valve body 71, one end is supported by the differential pressure valve housing 70, and the other end is supported by the differential pressure valve body 71.
[0052]
In such a differential pressure valve portion 23, the hydraulic pressure driving force that the differential pressure valve body 71 receives on the open pressure receiving surface 77 and the hydraulic pressure driving force that the differential pressure valve body 71 receives on the closed pressure receiving surface 78 and the differential pressure spring force generating means receive the hydraulic pressure driving force. The main passage 25 is opened and closed so that the resultant force of the spring driving force is balanced. As a result, the differential pressure valve portion 23 causes the spring force generated by a spring force generating means 72 called cracking pressure or the like between the portion on the primary port 27 side and the portion on the secondary port 28 side with respect to the differential pressure valve portion 23 in the main passage 25. The main passage 25 is opened and closed so that a differential pressure corresponding to the set pressure corresponding to the pressure is generated. That is, with respect to the differential pressure valve portion 23 in the main passage 25, a set constant differential pressure can be generated between the portion on the primary port 27 side and the portion on the secondary port 28 side, and the differential pressure can be maintained. The setting of the differential pressure can be arbitrarily and easily set by selecting the spring force generating means 72.
[0053]
In such an electromagnetic shutoff valve device 20, the drive current I is supplied to the drive solenoid means 58 from the state where the shutoff valve section 21 and the operation valve section 22 are in the closed state, and the operation valve section 22 is opened. Then, the back pressure Pr of the back pressure chamber 40 passes through the pilot passage 26, and the fixed throttle 49 generates a pressure difference between the first pressure P1 and the back pressure Pr. The relational expression of the driving force acting on the shutoff valve element 31 at this time is expressed by the following equation (1).
[0054]
(Equation 1)
Figure 2004278627
[0055]
At this time, since the fluid does not flow down the main passage 25, the primary port 27 side and the secondary port 28 side of the differential pressure generating valve portion 23 have the same pressure, and the primary second pressure Pi is equal to the primary pressure. It is the same as Pin. The first pressure P1 is the same as the primary pressure Pin, and the back pressure Pr and the secondary-side second pressure P2o are the same as the secondary pressure Pout. In addition, the secondary pressure Pout when the shut-off valve unit 21 is in the closed state is sufficiently smaller than the primary pressure Pin, and the fluid pressure driving force based on the secondary pressure Pout is used to drive the shut-off valve body 31. It has little effect and can be ignored. Therefore, the above equation (1) becomes the following equation (2), and the shutoff valve section 21 overcomes the spring driving force Fspr and the sliding resistance force Fseal to perform the opening operation, and opens the main passage 25.
Fspr + Fseal <Pin (A1-A3) (2)
[0056]
When the shut-off valve portion 21 is thus opened, the fluid flows down the main passage 25, so that the difference between the primary port 27 side and the secondary port 28 side with respect to the differential pressure generating valve portion 23 is set. Pressure develops. Regarding the differential pressure generating valve section 23, the pressure on the primary port 27 side is a primary pressure Pin, and the pressure on the secondary port 28 side is a secondary pressure Pout. The relational expression of the driving force acting on the shutoff valve element 31 at this time is expressed by the following equation (3).
[0057]
(Equation 2)
Figure 2004278627
[0058]
At this time, the first pressure P1 is the primary pressure Pin, and each of the second pressures P2i, P2o and the back pressure Pr is Pout. Therefore, the above equation (3) becomes the following equation (4), and the state in which the driving force in the opening direction is larger than the driving force in the closing direction is maintained, so that the open state is maintained.
Fspr + Pout × (A1-A2) <Pin (A1-A2)
Fspr <(Pin-Pout) × (A1-A2)
Fspr <ΔP × (A1-A2) (4)
[0059]
Here, ΔP is a differential pressure between the primary pressure Pin and the secondary pressure Pout, and a pressure loss ΔP that satisfies Expression (4) is generated by the differential pressure generating valve section 23.
[0060]
When the supply of the drive current I to the drive solenoid means 58 is stopped from the state in which the shutoff valve section 21 and the operation valve section 22 are in the open state and the operation valve section 22 is closed, the back pressure chamber is closed. The back pressure Pr at 40 increases and becomes equal to the first pressure P1. The relational expression of the driving force acting on the shutoff valve element 31 at this time is expressed by the following equation (5).
[0061]
[Equation 3]
Figure 2004278627
[0062]
At this time, since the fluid flows down the main passage 25, the set differential pressure is generated between the primary port 27 side and the secondary port 28 side with respect to the differential pressure generating valve section 23. Regarding the differential pressure generating valve section 23, the pressure on the primary port 27 side is a primary pressure Pin, and the pressure on the secondary port 28 side is a secondary pressure Pout. The first pressure P1 and the back pressure Pr are primary pressures Pin, and the second pressures P2i and P2o are secondary pressures Pout. Therefore, the above equation (5) becomes the following equation (6), and the shutoff valve section 21 overcomes the sliding resistance force Fseal, performs the closing operation, and opens the main passage 25.
Fspr + ΔP × A2> Fseal (6)
[0063]
Here, ΔP is a differential pressure between the primary pressure Pin and the secondary pressure Pout. When the shut-off valve portion 21 is closed in this manner, the fluid does not flow down the main passage 25, so that the primary port 27 side and the secondary port 28 side have the same pressure with respect to the differential pressure generating valve portion 23. . The relational expression of the driving force acting on the shutoff valve element 31 at this time is expressed by the following equation (7).
[0064]
(Equation 4)
Figure 2004278627
[0065]
At this time, the first pressure P1, the primary-side second pressure P2i, and the back pressure Pr become the primary pressure Pin, and the secondary-side second pressure P2o becomes the secondary pressure Pout. Therefore, the above equation (7) becomes the following equation (8), and the state in which the driving force in the opening direction is larger than the driving force in the closing direction is maintained, so that the open state is maintained.
Fspr + Pin × A3> Pout × A3 (8)
[0066]
As described above, in the electromagnetic shut-off valve device 20, by opening and closing the operation valve unit 22, the back pressure Pr as the pilot pressure of the shut-off valve unit 21 can be operated to open and close the shut-off valve unit 21. The shut-off valve unit 21 is opened and closed using a differential pressure ΔP between the primary pressure Pin and the secondary pressure Pout. Specifically, since the secondary pressure Pout when the shut-off valve 21 is closed is extremely small, the differential pressure ΔP when the shut-off valve 21 is closed is And the opening operation is performed based on the primary pressure Pin corresponding to the differential pressure as shown in Expression (2). The differential pressure ΔP when the shut-off valve section 21 is in the closed state is a differential pressure set by the differential pressure generating valve section 23, and is closed based on the differential pressure ΔP as shown in Expression (6). It is working.
[0067]
FIG. 3 is a graph showing the relationship between the flow rate Q of the fluid flowing down the main passage 25 and the pressure loss from the primary port 27 to the secondary port 28. FIG. 4 is a graph showing the relationship between the primary pressure Pin and the pressure loss from the primary port 27 to the secondary port 28. FIG. 5 is a graph showing the relationship between the flow rate Q of the fluid flowing down the main passage 25, the primary pressure Pin, and the pressure loss from the primary port 27 to the secondary port 28.
[0068]
3 and 4, solid lines 80 and 81 indicate the relationship in the present embodiment, and virtual lines 82 and 83 indicate the relationship in the related art. In FIG. 5, a solid line 85 indicates the relationship between the flow rate Q and the pressure loss when the primary pressure Pin is relatively high, and a broken line 86 indicates the flow rate Q and the pressure when the primary pressure Pin is relatively low. This shows the relationship with the loss. Due to the pressure loss from the primary port 27 to the secondary port 28, a pressure difference ΔP is generated between the primary pressure Pin and the secondary pressure Pout.
[0069]
In the electromagnetic shut-off valve device 20, the shut-off valve portion 21 interposed in the main passage 25 uses the differential pressure ΔP between the primary pressure Pin and the secondary pressure Pout in accordance with the operation of the operation valve portion 22, and uses the differential pressure ΔP The opening and closing operation is performed by the driving force based on. A differential pressure generating valve section 23 is interposed closer to the primary port than the shutoff valve section 21 of the main passage 25. The differential pressure generating valve section 23 changes its opening degree in accordance with the primary pressure Pin and the flow rate Q even when the shutoff valve section 21 is in the open state and a fluid having compressibility flows down the shutoff valve section 21. Then, the pressure difference ΔP between the primary pressure Pin and the secondary pressure Pout is kept substantially constant. Therefore, since the differential pressure ΔP shown in the above equations (4) and (6) is kept constant, the driving force for closing the shutoff valve portion 21 is substantially constant even if the primary pressure Pin and the flow rate Q fluctuate. , And a stable closing operation can be performed. Since the stable operation of the shutoff valve unit 21 is thus possible, the electromagnetic shutoff valve device 20 can be suitably used in a wide primary pressure range and a wide flow rate range. There is also an advantage that the setting of the differential pressure ΔP can be easily changed by changing only the configuration of the differential pressure generating valve section 23, particularly by changing the differential pressure spring force generating means 72.
[0070]
Further, by operating the back pressure Pr as pilot pressure and driving the shutoff valve portion 21 by the operation valve portion 22, fluid pressure can be used to drive the shutoff valve portion 21. The portion 21 only needs to be able to open and close the pilot passage 26, and can be made compact. In other words, the seat diameter in the operation valve portion 22, that is, the diameter of the seating portion can be reduced, and the receipt force for keeping the operation valve portion 22 in the closed state can be suppressed to a small value. Can be realized in a small size. That is, a shutoff valve that can be suitably used in a wide primary pressure range and a wide flow rate range can be realized in a small size.
[0071]
Further, first and second pressure receiving surfaces 50 and 51 and a back pressure receiving surface 52 are formed in the shutoff valve body 31 of the shutoff valve portion 21, and the shutoff valve body 31 is separated from the fluid by the respective pressure receiving surfaces 50 to 52. It receives the fluid pressure driving forces F1, F2i, F2o, and Fr. Further, the shutoff valve section 21 is provided with a spring force generating means 32, and the shutoff valve element 31 receives the spring driving force Fspr from the spring force generating means 32. The shut-off valve portion 21 is driven by a total drive force Ft, which is a combined force of the fluid pressure drive forces F1, F2i, F2o, Fr and the spring drive force Fspr, and opens and closes the main passage 25.
[0072]
When the back pressure Pr is the same as the primary pressure Pin, the total driving force Ft becomes the driving force toward the closing direction, and when the back pressure Pr is the same as the secondary pressure Pout, The driving force Ft is determined to be the driving force in the opening direction. When the operation valve portion 22 is in the closed state, the back pressure Pr becomes the same as the primary pressure Pin, and the differential pressure driving force which is the resultant force of the fluid pressure driving forces F1, F2i, F2o, and Fr received on each pressure receiving surface is in the closing direction. , And closes the shutoff valve 21 in cooperation with the spring driving force Fspr. When the operation valve portion 22 is in the open state, the back pressure Pr becomes the secondary pressure Pout, and the differential pressure driving force becomes a driving force toward the opening direction, and opens the shut-off valve portion 21 against the spring driving force Fspr. Therefore, the main valve 25 can be opened and closed by operating the shut-off valve 21 by the operation valve 22.
[0073]
When the shut-off valve portion 21 is in the open state, the primary pressure Pin acts on the first pressure receiving surface 50, and the secondary pressure Pout acts on the second pressure receiving surface 51 and the back pressure receiving surface 52. At this time, the differential pressure ΔP between the secondary pressure Pout and the primary pressure Pin is kept substantially constant by the differential pressure generating valve section 23. Therefore, the electromagnetic shut-off valve device 20 that achieves stable operation of the shut-off valve section 21 can be realized.
[0074]
When the shutoff valve portion 21 is in the closed state, the differential pressure driving force is a driving force in the closing direction, and this differential pressure driving force acts as a receipt force for keeping the shutoff valve portion 21 in the closed state. When the primary pressure Pin increases, the differential pressure driving force when the shutoff valve portion 21 is in the closed state increases, and the receipt force increases. Therefore, even when the primary pressure Pin is high, a high receipt property is ensured. Thus, the closed state can be reliably maintained.
[0075]
When the operation valve portion 22 is in the closed state, the operation valve body 56 receives a driving force in the closing direction from a space 64 in the shutoff valve portion 21 where the back pressure Pr is guided. The back pressure Pr at this time is the same as the primary pressure Pin. As described above, the driving force based on the primary pressure Pin is the driving force in the closing direction, and this driving force acts as a receipt force for keeping the operation valve portion 22 in the closed state. When the primary pressure Pin increases, the driving force when the operation valve portion 22 is in the closed state increases, and the receipt force increases.Thus, even when the primary pressure Pin is high, a high receipt property is ensured. The closed state can be reliably maintained.
[0076]
The above embodiments are merely examples of the present invention, and the configuration can be changed within the scope of the present invention. For example, the connection passage 48 may have a configuration formed other than the shut-off valve body 31, or may include a passage that connects a portion of the main passage 25 maintained at the primary pressure Pin and the back pressure chamber 42 to the housing body 24. And a configuration in which a fixed throttle is interposed in this passage.
[0077]
【The invention's effect】
According to the present invention, the shut-off valve portion is opened and closed by a driving force based on a differential pressure between the primary pressure and the secondary pressure. By operating the pilot pressure guided to the shut-off valve unit, the operation valve unit can change the manner in which the differential pressure acts on the shut-off valve unit, and can open and close the shut-off valve unit. According to this opening / closing drive operation, the shut-off valve section opens and closes. A differential pressure generating valve is interposed closer to the primary port than the shutoff valve in the main passage. When the shutoff valve is in an open state and a fluid having a compressibility flows down the shutoff valve, the differential pressure generating valve changes the opening degree according to the primary pressure and the flow rate, and changes the primary pressure and the secondary pressure. The differential pressure from the next pressure is kept almost constant.
[0078]
As a result, even if the primary pressure and the flow rate fluctuate, the differential pressure is kept substantially constant, and the driving force based on the differential pressure does not fluctuate. Therefore, the shut-off valve section operates stably without being affected by fluctuations in the primary pressure and the flow rate. Since the stable operation of the shut-off valve portion is thus possible, it can be suitably used in a wide primary pressure range and a wide flow rate range. Further, by changing only the configuration of the differential pressure generating valve section, there is an advantage that the setting of the differential pressure between the primary pressure and the secondary pressure can be changed.
[0079]
Further, by operating the pilot pressure by the operation valve unit and driving the shut-off valve unit, the fluid pressure can be used to drive the shut-off valve unit, and the operation valve unit opens and closes the pilot passage. If possible, it can be downsized. Therefore, the shut-off valve device can be realized in a small size. That is, a shutoff valve that can be suitably used in a wide primary pressure range and a wide flow rate range can be realized in a small size.
[0080]
According to the present invention, the first and second pressure receiving surfaces and the back pressure receiving surface are formed in the shutoff valve body of the shutoff valve portion. Receive. The shutoff valve section is provided with spring force generating means, and the shutoff valve receives spring driving force from the spring force generating means. The shut-off valve portion is driven by a total drive force that is a combined force of the fluid pressure drive force and the spring drive force to open and close the main passage.
[0081]
The spring driving force is such that when the back pressure is the same as the primary pressure, the total driving force is a driving force toward the closing direction, and when the back pressure is the same as the secondary pressure, the total driving force is the opening direction. It is determined to be the driving force toward. When the operation valve portion is in the closed state, the back pressure becomes the same as the primary pressure, and the differential pressure driving force, which is the resultant force of the fluid pressure driving forces received on each pressure receiving surface, becomes the driving force in the closing direction, and the spring driving force Cooperate to close the shut-off valve. When the operation valve portion is in the open state, the back pressure becomes the secondary pressure, the differential pressure driving force becomes the driving force in the opening direction, and opens the shutoff valve portion against the spring driving force. Accordingly, the main valve can be opened / closed by the opening / closing operation of the shut-off valve unit by the operation valve unit.
[0082]
When the shut-off valve is in the open state, the primary pressure acts on the first pressure receiving surface, and the secondary pressure and the same pressure act on the second pressure receiving surface and the back pressure receiving surface. At this time, the differential pressure between the secondary pressure and the primary pressure is kept substantially constant by the differential pressure generating valve section. Therefore, an electromagnetic shut-off valve device that achieves stable operation of the shut-off valve section can be realized.
[0083]
When the shutoff valve is in the closed state, the differential pressure driving force is a driving force in the closing direction, and this differential pressure driving force acts as a receipt force for keeping the shutoff valve in the closed state. When the primary pressure increases, the differential pressure driving force when the shut-off valve portion is in the closed state increases, and the receipt force increases.Thus, even when the primary pressure is high, a high receipt property is ensured and the closing force is increased. The state can be reliably maintained.
[0084]
Further, according to the present invention, when the operation valve portion is in the closed state, the operation valve body receives the driving force in the closing direction from the space in the shutoff valve portion where the back pressure is guided. The back pressure at this time is the same as the primary pressure. As described above, the driving force based on the back pressure which is the same as the primary pressure is the driving force in the closing direction, and this driving force acts as a receipt force for keeping the operation valve portion in the closed state. When the primary pressure increases, the driving force when the operation valve section is in the closed state increases, and the receipt force increases.Thus, even when the primary pressure is high, a high receipt property is secured and the closed state is maintained. It can be securely held.
[0085]
Further, according to the present invention, the differential pressure valve element of the differential pressure generating valve section receives the fluid pressure driving force based on the primary pressure in the opening direction and receives the spring driving force from the differential pressure spring force generating means in the closing direction. Such a differential pressure generating valve section can generate a differential pressure corresponding to the spring driving force by the differential pressure spring force generating means between the primary port side and the secondary port side. Therefore, the primary pressure and the secondary pressure when the shutoff valve is in the open state can be maintained at a substantially constant differential pressure.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an electromagnetic shut-off valve device 20 according to an embodiment of the present invention.
FIG. 2 is a fluid pressure circuit diagram showing the electromagnetic shut-off valve device 20.
FIG. 3 is a graph showing a relationship between a flow rate Q of a fluid flowing down a main passage 25 and a pressure loss from a primary port 27 to a secondary port 28;
FIG. 4 is a graph showing a relationship between a primary pressure Pin and a pressure loss from a primary port 27 to a secondary port 28;
5 is a graph showing a relationship between a flow rate Q of a fluid flowing down a main passage 25, a primary pressure Pin, and a pressure loss from a primary port 27 to a secondary port 28. FIG.
FIG. 6 is a sectional view showing a conventional electromagnetic shut-off valve device 1.
FIG. 7 is a hydraulic circuit diagram showing the electromagnetic shut-off valve device 1.
FIG. 8 is a graph showing a relationship between a flow rate q and a pressure loss when a compressible fluid flows down a shutoff valve section 3;
FIG. 9 is a graph showing a relationship between a primary pressure p1 and a pressure loss when a compressible fluid flows down a shutoff valve unit 3.
[Explanation of symbols]
20 Electromagnetic shut-off valve device
21 Shut-off valve
22 Operating valve section
23 Differential pressure generating valve
27 Primary port
28 Secondary port

Claims (4)

一次ポートおよび二次ポートを連通するメイン通路に介在されてメイン通路を開閉する遮断弁部であって、一次ポートにおける流体の圧力である一次圧力と二次ポートにおける流体の圧力である二次圧力との差圧を利用して開閉動作する遮断弁部と、
遮断弁部にパイロット圧を導くパイロット通路に介在され、パイロット圧を操作して、遮断弁部を開閉駆動操作する操作弁部と、
前記メイン通路に遮断弁部よりも一次ポート寄りの位置に介在され、遮断弁部が開状態にあるとき、一次圧力および流量に応じて開度を変化させ、一次圧力と二次圧力との差圧をほぼ一定に保持する差圧発生弁部とを含むことを特徴とする遮断弁装置。
A shut-off valve portion that is interposed in a main passage communicating with the primary port and the secondary port to open and close the main passage, and is a primary pressure that is a pressure of the fluid at the primary port and a secondary pressure that is a pressure of the fluid at the secondary port. A shut-off valve part that opens and closes using the pressure difference between
An operation valve section that is interposed in a pilot passage that guides pilot pressure to the shutoff valve section and that operates the pilot pressure to open and close the shutoff valve section;
The main passage is interposed at a position closer to the primary port than the shut-off valve portion, and when the shut-off valve portion is in an open state, the opening degree is changed according to the primary pressure and the flow rate, and the difference between the primary pressure and the secondary pressure is changed. A differential pressure generating valve section for maintaining the pressure substantially constant.
遮断弁部は、
弁座が形成される遮断弁ハウジングと、
遮断弁ハウジング内に、開方向および閉方向へ変位自在に設けられ、弁座に対して着座および離間してメイン通路を開閉する開閉部を有する遮断弁体であって、弁ハウジングと協働して、一次圧力が導かれる第1圧力室と、一次圧力が導かれる空間に固定絞りを介して連なる背圧力室と、開閉部が配置される第2圧力室とを形成し、第1圧力室の流体から開方向の流体圧駆動力を受ける第1受圧面と、背圧力室の流体から閉方向の流体圧駆動力を受ける背受圧面と、第2圧力室の流体から開方向の流体圧駆動力を受ける第2受圧面とが形成される遮断弁体と、
遮断弁体に閉方向のばね駆動力を与える遮断ばね力発生手段であって、ばね駆動力は、背圧力室の流体の圧力である背圧力が一次圧力と同一である場合、前記各受圧面で受ける流体圧駆動力およびばね駆動力の合力である総合駆動力が、閉方向に向かう駆動力となり、背圧力が二次圧力と同一である場合、前記総合駆動力が、開方向に向かう駆動力となる大きさを有する遮断ばね力発生手段とを備え、
操作弁部は、背圧力室と二次ポートとを連通するパイロット通路に介在され、予め定める操作入力に基づいて、パイロット通路を開閉することを特徴とする請求項1記載の遮断弁装置。
The shut-off valve is
A shut-off valve housing in which a valve seat is formed;
A shutoff valve body that is provided in a shutoff valve housing so as to be displaceable in an opening direction and a closing direction, and has an opening / closing portion that opens and closes a main passage while being seated and separated from a valve seat, and cooperates with the valve housing. Forming a first pressure chamber into which the primary pressure is introduced, a back pressure chamber connected to the space through which the primary pressure is introduced via a fixed throttle, and a second pressure chamber in which an opening / closing unit is arranged; A first pressure receiving surface that receives a fluid pressure driving force in the opening direction from the fluid of the first pressure chamber, a back pressure receiving surface that receives a fluid pressure driving force in the closing direction from the fluid in the back pressure chamber, and a fluid pressure in the opening direction from the fluid in the second pressure chamber. A shutoff valve body formed with a second pressure receiving surface for receiving a driving force;
A shut-off spring force generating means for applying a spring drive force in a closing direction to the shut-off valve body, wherein the spring drive force is such that when the back pressure, which is the pressure of the fluid in the back pressure chamber, is the same as the primary pressure, each of the pressure receiving surfaces When the total driving force, which is the combined force of the fluid pressure driving force and the spring driving force received in the step (a), becomes the driving force in the closing direction, and the back pressure is the same as the secondary pressure, the driving force in the opening direction is increased. Breaking spring force generating means having a magnitude to be a force,
2. The shut-off valve device according to claim 1, wherein the operation valve portion is interposed in a pilot passage communicating the back pressure chamber and the secondary port, and opens and closes the pilot passage based on a predetermined operation input.
操作弁部は、
弁座が形成される操作弁ハウジングと、
操作弁ハウジング内に、開方向および閉方向へ変位自在に設けられ、弁座に対して着座および離間してパイロット通路を開閉する操作弁体であって、閉状態にあるとき、背圧力が導かれる空間から閉方向の駆動力を受けることを特徴とする請求項2記載の遮断弁装置。
The operating valve is
An operating valve housing in which a valve seat is formed;
An operation valve body that is provided in the operation valve housing so as to be displaceable in an opening direction and a closing direction and that opens and closes a pilot passage while being seated and separated from a valve seat. 3. The shut-off valve device according to claim 2, wherein the shut-off valve device receives a driving force in a closing direction from the space to be cut.
差圧発生弁部は、
差圧弁ハウジングと、
差圧弁ハウジング内に、開方向および閉方向へ変位自在に保持され、一次圧力に基づく流体圧駆動力を開方向へ受ける差圧弁体と、
差圧弁体に、閉方向へばね駆動力を与える差圧ばね力発生手段とを含むことを特徴とする請求項1〜3のいずれかに記載の遮断弁装置。
The differential pressure generating valve is
A differential pressure valve housing,
A differential pressure valve body which is held in the differential pressure valve housing so as to be displaceable in an opening direction and a closing direction and receives a fluid pressure driving force based on a primary pressure in an opening direction;
The shutoff valve device according to any one of claims 1 to 3, wherein the differential pressure valve body includes a differential pressure spring force generating unit that applies a spring driving force in a closing direction.
JP2003069715A 2003-03-14 2003-03-14 Shut-off valve device Expired - Fee Related JP3788975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069715A JP3788975B2 (en) 2003-03-14 2003-03-14 Shut-off valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069715A JP3788975B2 (en) 2003-03-14 2003-03-14 Shut-off valve device

Publications (2)

Publication Number Publication Date
JP2004278627A true JP2004278627A (en) 2004-10-07
JP3788975B2 JP3788975B2 (en) 2006-06-21

Family

ID=33286667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069715A Expired - Fee Related JP3788975B2 (en) 2003-03-14 2003-03-14 Shut-off valve device

Country Status (1)

Country Link
JP (1) JP3788975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117823480A (en) * 2023-11-24 2024-04-05 上海衡拓液压控制技术有限公司 Lightweight aviation hydraulic solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117823480A (en) * 2023-11-24 2024-04-05 上海衡拓液压控制技术有限公司 Lightweight aviation hydraulic solenoid valve

Also Published As

Publication number Publication date
JP3788975B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP4696188B2 (en) Diaphragm type solenoid valve with closing force enhancement mechanism
AU657661B2 (en) Boom control valve
US7334770B2 (en) Solenoid isolation valve
JP6974834B2 (en) regulator
JP6148239B2 (en) Volume booster with seating load bias
JP2013204441A (en) Gas fuel pressure control device
JP2002071044A (en) Bidirectional pilot type electromagnetic open/ close valve and bidirectional piping
JP4801375B2 (en) Air operated valve
JP4029417B2 (en) Pressure regulating valve for solenoid valve assembly and solenoid valve assembly including the same
US7117889B2 (en) Three-way valve
JP3788975B2 (en) Shut-off valve device
JP2012073886A (en) Regulator
JP2010127446A (en) Diaphragm-driven valve
JP4052881B2 (en) 3-way selector valve
JP2004019718A (en) Three-way switching valve
WO2014136649A1 (en) Pressure control valve
US8651139B2 (en) Valve
JP2015210746A (en) Pressure reduction valve
KR101942903B1 (en) Control valve
JP5722164B2 (en) Decompressor
JP2004162771A (en) Composite valve
JP2004069045A (en) Solenoid valve
JP2002181208A (en) Pressure reducing valve for gas
JP6114423B1 (en) Pressure reducing valve, isobaric valve and gas mixer provided with the same
JP4858402B2 (en) solenoid valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent or registration of utility model

Ref document number: 3788975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees