JP2004278420A - Fluid pressure feed device - Google Patents

Fluid pressure feed device Download PDF

Info

Publication number
JP2004278420A
JP2004278420A JP2003071513A JP2003071513A JP2004278420A JP 2004278420 A JP2004278420 A JP 2004278420A JP 2003071513 A JP2003071513 A JP 2003071513A JP 2003071513 A JP2003071513 A JP 2003071513A JP 2004278420 A JP2004278420 A JP 2004278420A
Authority
JP
Japan
Prior art keywords
fluid
inclined disk
disk
conical
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003071513A
Other languages
Japanese (ja)
Inventor
Akihiro Ando
昭宏 安藤
Toru Kawakami
亨 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2003071513A priority Critical patent/JP2004278420A/en
Publication of JP2004278420A publication Critical patent/JP2004278420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly accurate and highly versatile fluid pressure feed device for eliminating generation of frictional heat and dust. <P>SOLUTION: A conical projection part 6 is projected in a pump room 5 of a housing 3. A semicircular partition plate 12 is rockably fitted to a fitting groove 8 passing through the apex of the conical projection part 6. An inclined face 13c on the tip of a rotary shaft 13 is opposed in a noncontact state to an inclined disk 11 arranged in the pump room 5. The inclined disk 11 is brought into line contact with the conical projection part 6. An outer peripheral surface part is slidingly contacted with a spherical surface-shaped inner peripheral wall part 7 of the pump room 5. Torque is transmitted to the inclined disk 11 by using resiliency of a permanent magnet 17 by rotating the rotary shaft 13, and the inclined disk 11 is rocked in all directions in an inclined attitude with the apex of the conical projection part 6 as the center. The pump chamber 5 is partitioned into a plurality of volume variable fluid chambers by the inclined disk 11 and the partition plate 12 according to the inclined attitude of the inclined disk 11, and fluid is pressure fed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ポンプ、ブロワ、コンプレッサ及びモータ等に好適な流体圧送装置の改良に関するものである。
【0002】
【従来の技術】
本出願人は、次のような流体圧送装置を開発し出願している。その構成は、ハウジングのポンプ室内に円錐隆起部を突設するとともに、該円錐隆起部の頂点を通る嵌合溝に半円形状の仕切板を二方向に揺動可能なように嵌合させ、かつ上記ポンプ室内に配置した傾斜円板に回転軸先端の傾斜面を当接させて該傾斜円板を上記円錐隆起部と線接触させるとともに、その外周面部をポンプ室の球面形状の内周壁部に摺接させ、上記回転軸を回転させて傾斜円板を傾斜姿勢で円錐隆起部の頂点を中心とする全方向に揺動させることにより、傾斜円板の傾斜姿勢に応じて該傾斜円板と仕切板とでポンプ室を複数の容積可変な流体室に仕切り、流体を圧送するようになっている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−87885号公報(第3,4頁、図1,7)
【0004】
【発明が解決しようとする課題】
しかしながら、上記の特許文献1では、高速で回転する回転軸の軸心回りの回転運動を傾斜円板の円錐隆起部の外面に沿った揺動運動に変換しているため、両者間には摺接による摩擦熱が発生して流体が膨張し、圧送効率の低下を招く。
【0005】
また、摺接により両部材が摩耗して粉塵が発生するとシール性が低下し、さらには粉塵の噛み込みにより動作に悪影響を及ぼすため、製品寿命が短くなるとともにクリーン性が要求される真空ポンプには適用し難い。
【0006】
この発明はかかる点に鑑みてなされたものであり、その目的とするところは、摩擦熱や粉塵の発生をなくして高精度で汎用性に富んだ流体圧送装置を提供することである。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、この発明は、回転軸の傾斜円板に対する回転力伝達に工夫を凝らしたことを特徴とする。
【0008】
具体的には、この発明は、頂点を通るように嵌合溝が形成された円錐隆起部と、該円錐隆起部をその頂点を中心として取り囲む球面形状の内周壁部とで形成されたポンプ室を有するハウジングと、上記ポンプ室内に配置され、一側面部が上記円錐隆起部と線接触するとともに、外周面部が上記内周壁部に摺接した傾斜姿勢で円錐隆起部の頂点を中心とする全方向に揺動する傾斜円板と、上記円錐隆起部の頂点を中心として二方向に揺動可能なように嵌合溝に嵌合され、上記傾斜円板の傾斜姿勢に応じて該傾斜円板とで上記ポンプ室を複数の容積可変な流体室に仕切る半円形状の仕切板と、上記円錐隆起部の傾斜角と同じ傾斜角の傾斜面を有し、該傾斜面を上記傾斜円板の他側面部に対面させて軸心回りに回転することで傾斜円板を円錐隆起部の頂点を中心とする全方向に揺動させる回転軸とを備えた流体圧送装置を対象とし、次のような解決手段を講じた。
【0009】
すなわち、請求項1に記載の発明は、上記回転軸の回転力は、その傾斜面を傾斜円板に接触させない状態で、回転力伝達手段により傾斜円板に伝達されるようになっていることを特徴とする。
【0010】
上記の構成により、請求項1に記載の発明では、傾斜円板が円錐隆起部の頂点を中心とする全方向に揺動することにより、傾斜円板と円錐隆起部との線接触部分の移動方向側の流体室では、容積が次第に減少していき、最終的には“0”となる。この容積減少によって当該流体室内の流体が吐出される。一方、上記線接触部分を挟んで反対側に隣接する流体室では、容積が次第に増大していき、この容積増大によって当該流体室内に流体が吸入される。このように線接触部分の両側の流体室で容積増減が繰り返されることで流体が圧送される。
【0011】
この際、回転軸の傾斜面と傾斜円板とは非接触状態であって摺接しないことから、両者間には摺接による摩擦熱は発生せず、摩擦熱による流体膨張が回避されて流体が効率良く圧送される。
【0012】
また、上述の如く回転軸の傾斜面と傾斜円板とが摺接しないため、両部材の摩耗による粉塵が発生せず、シール性が高まり、さらには粉塵の噛み込みによる動作不良がなく高精度になり、製品寿命が長くなるとともに、クリーン性が要求される真空ポンプへの適用が可能になって汎用性が高まる。
【0013】
請求項2に記載の発明は、請求項1に記載の発明において、回転力伝達手段は、回転軸の傾斜面と傾斜円板の他側面部との各々に固着された同極の永久磁石で構成されていることを特徴とする。
【0014】
上記の構成により、請求項2に記載の発明では、回転軸の傾斜面と傾斜円板とが各々に同極の永久磁石を固着するだけで簡単に非接触状態となる。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態について図面に基づいて説明する。
【0016】
図1ないし図4はこの発明の実施の形態に係る流体圧送装置を示す。この流体圧送装置は、下側ハウジング構成部材1と上側ハウジング構成部材2とからなるハウジング3を備えている。上記下側ハウジング構成部材1の上端周縁部には、ネジ孔1aが4箇所形成され、上記上側ハウジング構成部材2の周縁部には、上下方向に貫通する貫通孔2aが4箇所形成され、これらネジ孔1aと貫通孔2aとが対応するように下側ハウジング構成部材1と上側ハウジング構成部材2とを上下に突き合わせた状態で、ボルト4を貫通孔2aに挿入してネジ孔1aに螺合させることにより、下側ハウジング構成部材1と上側ハウジング構成部材2とを一体に組み合わせ、内部にポンプ室5が形成されたハウジング3を構成するようになっている。
【0017】
上記ポンプ室5は、下側ハウジング構成部材1から上側ハウジング構成部材2側に隆起する円錐隆起部6と、該円錐隆起部6の基端全周から上側ハウジング構成部材2側に亘って形成された内周壁部7とで形成され、該内周壁部7は、上記円錐隆起部6をその頂点を中心として球面形状に形成されている。一方、上記円錐隆起部6にはその頂点を通るようにスリット状の嵌合溝8が形成され、該嵌合溝8の底面は、上記内周壁部7の曲率と同じ曲率で半円弧状に形成されて円錐隆起部6を2分している。また、円錐隆起部6の嵌合溝8両側には、流体吸入口9と流体吐出口10とがそれぞれ対角線上に位置するように2つずつ形成されている。
【0018】
上記ポンプ室5内には、傾斜円板11が配置されている。この傾斜円板11は、後述する回転軸13により一側面部(下面部)が上記円錐隆起部6と線接触するとともに、外周面部が上記内周壁部7に摺接した傾斜姿勢で円錐隆起部6の頂点を中心とする全方向に揺動するようになっている。上記線接触部分に符号Cを付して示す。
【0019】
上記円錐隆起部6の嵌合溝8には、半円形状の仕切板12が半円弧部12aを下に向けて円錐隆起部6の頂点を中心として二方向に揺動可能なように嵌合されている。この仕切板12の弦部12bは、上記傾斜円板11の下面部と接触し、該傾斜円板11の傾斜姿勢に応じて傾斜円板11とで上記ポンプ室5を2つ又は3つの容積可変な流体室A,B、(A1,A2,B)、(A,B1,B2)に仕切るようになっている(図3及び図5参照)。
【0020】
上記上側ハウジング構成部材2の上面中央には、軸孔2bが上下方向に貫通形成され、該軸孔2bには、回転軸13の軸部13aがスラスト軸受14及びラジアル軸受15を介して回転自在に挿入配置されている。上記回転軸13の軸部13a下端には大径部13bが一体に形成され、該大径部13b下端は、上記円錐隆起部6の傾斜角と同じ傾斜角の傾斜面13cに形成され、この傾斜面13cにより上記傾斜円板11の傾斜姿勢を保持するようになっている。なお、上記大径部13bと上側ハウジング構成部材2との間には、シール性を確保するためにOリング16が介装されている。
【0021】
上記回転軸13の傾斜面13cと上記傾斜円板11の他側面部(上面部)との各々には、回転力伝達手段としての同極(図1,2では正極)の永久磁石17がそれぞれ固着され、上記回転軸13の回転力は、傾斜面13cを上記傾斜円板11の上面部に対面させて、上記永久磁石17による磁力の反発力を利用して傾斜面13cを傾斜円板11の上面部に接触させない状態で、傾斜円板11に伝達され、これにより、傾斜円板11を円錐隆起部6の頂点を中心とする全方向に揺動させるようになっている。なお、回転力伝達手段は、回転軸13の回転力を非接触で傾斜円板11に伝達できる手段であれば、永久磁石17に限らず、例えば電気エネルギーによる反発力や、気体又は液体による吹き付け圧力等であってもよい。
【0022】
したがって、回転軸13を時計回り又は反時計回り方向に回転させると、回転軸13の傾斜面13cにより傾斜姿勢が保持されている傾斜円板11は、その傾斜方向(傾斜円板11と円錐隆起部6との線接触部分Cの移動方向)が、順次、同速度にて移動する。この際、ポンプ室5の中心と円錐隆起部6の頂点とを一致させ、かつ該一致点にて傾斜円板11の下面部と仕切板12の弦部12bとを一致させているので、傾斜円板11がいずれの方向に傾斜していても、仕切板12の弦部12bは傾斜円板11の下面部とで流体を確実に封止できるように密接する。この仕切板12の弦部12bは、傾斜円板11の傾斜方向に対して直交している図1の状態では水平であるが、傾斜円板11の傾斜方向に沿っている図2の状態では傾斜円板11と共に傾動する。つまり、傾斜円板11の傾斜方向が回転軸13の回転に従って順次移動すると、仕切板12も水平から左(右)に傾斜しつつ弦部12bの両端の一方が上死点、他方が下死点に達した後、再び水平に戻り、該水平位置から右(左)傾斜を開始する如く、シーソー状に揺動する。そして、仕切板12により仕切られた2つの流体室A,Bは、それぞれ円錐隆起部6と傾斜円板11との線接触部分Cと、傾斜円板11に接触する仕切板12の弦部12bとにより囲まれた閉空間となる。しかも、これら2つの流体室A,Bは、仕切板12の弦部12bの位置が一定であるので、線接触部分Cの移動により最大から最小“0”まで変化することとなる。この間、上記流体室Aは2つの流体室A1,A2に、流体室Bは2つの流体室B1,B2にそれぞれ容積が増減する。そして、傾斜円板11の傾斜方向の移動により流体吸入口9から流入した流体は、徐々に流体吐出口10へ集められ、流体吐出口10より勢いよく吐出される。なお、流体吸入口9と流体吐出口10の区別は、傾斜円板11の傾斜方向の移動方向によって決定され、該移動方向が逆方向になると流体吸入口が流体吐出口に、流体吐出口が流体吸入口に変更される。
【0023】
この際、回転軸13の傾斜面13cと傾斜円板11とを永久磁石15の反発力で非接触状態に保って上記傾斜面13cと傾斜円板11が摺接しないようにしていることから、両者間に摺接による摩擦熱を発生しないようにすることができ、摩擦熱による流体膨張を回避して流体を効率良く圧送することができる。
【0024】
また、上述の如く回転軸13の傾斜面13cと傾斜円板11とを摺接しないようにしているので、両部材の摩耗による粉塵発生がなく、シール性を高めることができ、さらには粉塵の噛み込みによる動作不良をなくすことができ、高精度でしかも製品寿命を長くすることができるとともに、クリーン性が要求される真空ポンプへの適用を可能にして汎用性を拡大することができる。
【0025】
さらに、永久磁石15を回転軸13の傾斜面13cと傾斜円板11とにそれぞれ固着するだけでよいので、簡単に上述の如き作用効果を奏することができる。
【0026】
次に、上述の如く構成された流体圧送装置の作動を図5(a)〜(i)の作動工程図に基づいて説明する。
【0027】
<(a)工程>
傾斜円板11に接する仕切板12の弦部12bが90°〜270°方向にあり、円錐隆起部6と傾斜円板11との線接触部分Cが0°方向にある。この状態では、流体室A内は線接触部分Cを境に流体室A1,A2に2等分されている。一方、流体室Bは傾斜円板11が円錐隆起部6に接触していないので、大容積を占めている。この状態を明確にするため、流体室A1に存在する流体を○印、流体室A2に存在する流体を△印でそれぞれ示す。
【0028】
<(b)工程>
(a)工程の状態を出発点として線接触部分Cが反時計方向に30°移動した状態を示している。この状態では、流体室A2の容積が減少して内部の流体が流体吐出口10から吐出され、その分だけ流体室A1の容積が増大して流体が流体吸入口9から吸入されていることが、△印と○印の数の増減で判る。
【0029】
<(c)工程>
線接触部分Cがさらに反時計方向に80°の位置まで移動した状態を示している。この状態では、流体室A2の容積がさらに狭くなって内部の流体が流体吐出口10から吐出され続け、一方、流体室A1では容積がさらに増大して流体の吸入が続行されている。
【0030】
<(d)工程>
線接触部分Cがさらに移動して90°の位置に至り、前記仕切板12の弦部12bと重なった状態を示している。この状態では、流体室A2に存在していた△印の流体は流体吐出口10から全部吐出され、流体室A(A1)内は○印の流体で占められている。一方、上記(a)〜(d)までは、流体室Bでは、流体の吸入・吐出は行われず、流体室Bはハッチングで示す1つの流体により占められた状態を保っている。
【0031】
<(e)工程>
線接触部分Cが120°の位置に至り、流体室B内は線接触部分Cを境に流体室B1と流体室B2との分けられ、流体室B1には◎印で示した新たな流体が流体吸入口9から吸入されるとともに、流体室B2では上記流体室B1の容積分だけ狭くなり、その分だけハッチングで示す流体が流体吐出口10から吐出される。
【0032】
<(f)工程>
線接触部分Cがさらに反時計方向に150°の位置まで移動した状態を示している。この状態では、流体室B1の容積がさらに増大して内部の流体が流体吸入口9から吸入され続け、一方、流体室B2では容積がさらに減少して流体の吐出が続行される。
【0033】
<(g)工程>
線接触部分Cが180°の位置に至り、流体室B内が◎印の流体室B1と、ハッチングの流体室B2が等分になっている状態を示している。
【0034】
<(h)工程>
線接触部分Cがさらに反時計方向に240°の位置まで移動した状態を示している。この状態では、流体室B1ではさらに容積増大を続けて◎印で示した新たな流体が流体吸入口9から吸入されるとともに、流体室B2では逆に容積減少を続けてハッチングで示す流体が流体吐出口10から吐出される。
【0035】
<(i)工程>
線接触部分Cがさらに移動して270°の位置に至り、前記仕切板12の弦部12bと重なった状態を示している。この状態では、流体室B2に存在していたハッチングの流体は流体吐出口10より全部吐出され、流体室B(B1)内には◎印の流体で占められている。一方、上記(d)〜(i)までは流体室Aでは、流体の吸入・吐出は行われず、流体室Aは○印で示す1つの流体により占められた状態を保っている。
【0036】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、仕切板とでポンプ室を複数の容積可変な流体室に仕切る傾斜円板に回転軸の傾斜面を非接触状態で対向させた状態で、上記回転軸の回転力を回転力伝達手段により傾斜円板に伝達するようにしたので、摩擦熱や摩耗に起因する圧送効率の低下やシール性の低下、さらには動作不良をなくし、高精度で寿命の長い流体圧送装置とすることができるとともに、粉塵の噛み込みをなくしてクリーン性が要求される真空ポンプに適用でき、汎用性を拡大することができる。
【0037】
請求項2に係る発明によれば、回転軸の傾斜面及び傾斜円板に同極の永久磁石を固着するだけで請求項1に記載の作用効果を簡単に達成することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態に係る流体圧送装置において傾斜板と円錐隆起部との関係を示す縦断面図である。
【図2】この発明の実施の形態に係る流体圧送装置において傾斜板と仕切板との関係を示す縦断面図である。
【図3】この発明の実施の形態に係る流体圧送装置において下側ハウジング構成部材の平面図である。
【図4】この発明の実施の形態に係る流体圧送装置の分解斜視図である。
【図5】この発明の実施の形態に係る流体圧送装置の作動説明図である。
【符号の説明】
3 ハウジング
5 ポンプ室
6 円錐隆起部
7 内周壁部
8 嵌合溝
11 傾斜円板
12 仕切板
13 回転軸
13c 傾斜面
17 永久磁石(回転力伝達手段)
A,A1,A2 流体室
B,B1,B2 流体室
C 線接触部分
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a fluid pumping device suitable for a pump, a blower, a compressor, a motor, and the like.
[0002]
[Prior art]
The present applicant has developed and applied for the following fluid pumping device. The configuration is such that a conical ridge is projected in the pump chamber of the housing, and a semicircular partition plate is fitted in a fitting groove passing through the apex of the conical ridge so as to be swingable in two directions, In addition, the inclined surface at the tip of the rotating shaft is brought into contact with the inclined disk disposed in the pump chamber to bring the inclined disk into line contact with the conical ridge, and the outer peripheral surface is formed into a spherical inner peripheral wall of the pump chamber. The inclined disk is slid in all directions around the apex of the conical raised portion in the inclined posture by rotating the rotation shaft, whereby the inclined disk is tilted in accordance with the inclined posture of the inclined disk. The pump chamber is partitioned into a plurality of variable-volume fluid chambers by the and the partition plate, and the fluid is pressure-fed (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2000-87885 (pages 3, 4; FIGS. 1, 7)
[0004]
[Problems to be solved by the invention]
However, in Patent Document 1 described above, since the rotational motion about the axis of the rotating shaft that rotates at high speed is converted into a swinging motion along the outer surface of the conical ridge of the inclined disk, sliding between the two occurs. The frictional heat generated by the contact causes the fluid to expand, leading to a reduction in the pumping efficiency.
[0005]
Also, when dust is generated due to abrasion of both members due to sliding contact, the sealing performance is reduced, and the operation is adversely affected by dust being caught, so that the vacuum pump which shortens product life and requires cleanliness is required. Is difficult to apply.
[0006]
The present invention has been made in view of such a point, and an object of the present invention is to provide a highly accurate and versatile fluid pumping device which eliminates generation of frictional heat and dust.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized by devising the transmission of rotational force of a rotating shaft to an inclined disk.
[0008]
Specifically, the present invention provides a pump chamber formed by a conical ridge having a fitting groove formed to pass through the vertex, and a spherical inner peripheral wall surrounding the conical ridge centering on the vertex. And a housing disposed in the pump chamber, one side of which is in line contact with the conical ridge, and the outer peripheral surface of which is slidably in contact with the inner peripheral wall, the entirety of which is centered on the vertex of the conical ridge. The inclined disk swinging in the direction, and the fitting groove is fitted in the fitting groove so as to be able to swing in two directions about the vertex of the conical raised portion, and the inclined disk is tilted in accordance with the inclined posture of the inclined disk. A semi-circular partition plate that partitions the pump chamber into a plurality of variable-volume fluid chambers, and an inclined surface having the same inclination angle as the inclination angle of the conical raised portion; The inclined disk is conical raised by rotating around the axis while facing the other side. Intended for fluid pumping device that includes a rotary shaft to swing in all directions around the apex, it took solving means as follows.
[0009]
That is, according to the first aspect of the present invention, the rotational force of the rotating shaft is transmitted to the inclined disk by the rotational force transmitting means in a state where the inclined surface does not contact the inclined disk. It is characterized by.
[0010]
According to the first aspect of the present invention, the inclined disk swings in all directions around the apex of the conical ridge, thereby moving the line contact portion between the inclined disk and the conical ridge. In the fluid chamber on the direction side, the volume gradually decreases, and eventually becomes “0”. The fluid in the fluid chamber is discharged by this volume reduction. On the other hand, in the fluid chamber adjacent on the opposite side across the line contact portion, the volume gradually increases, and the fluid is sucked into the fluid chamber by this volume increase. As described above, the fluid is pumped by repeatedly increasing and decreasing the volume in the fluid chambers on both sides of the line contact portion.
[0011]
At this time, since the inclined surface of the rotating shaft and the inclined disk are not in contact with each other and do not make sliding contact, no frictional heat is generated between the two by sliding contact, and fluid expansion due to frictional heat is avoided and fluid Is efficiently pumped.
[0012]
In addition, since the inclined surface of the rotating shaft and the inclined disk do not slide on each other as described above, dust is not generated due to abrasion of both members, the sealing performance is improved, and there is no malfunction due to dust being caught and high accuracy. , The product life is prolonged, and application to vacuum pumps that require cleanliness becomes possible, increasing versatility.
[0013]
According to a second aspect of the present invention, in the first aspect of the invention, the rotational force transmitting means is a permanent magnet of the same polarity fixed to each of the inclined surface of the rotating shaft and the other side surface of the inclined disk. It is characterized by comprising.
[0014]
According to the above configuration, according to the second aspect of the invention, the inclined surface of the rotating shaft and the inclined disk can easily be brought into a non-contact state simply by fixing permanent magnets having the same polarity to each other.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
1 to 4 show a fluid pumping device according to an embodiment of the present invention. This fluid pumping device includes a housing 3 including a lower housing component 1 and an upper housing component 2. Four screw holes 1a are formed at the upper peripheral edge of the lower housing component 1, and four through holes 2a penetrating vertically are formed at the peripheral edge of the upper housing component 2. The bolt 4 is inserted into the through hole 2a and screwed into the screw hole 1a in a state where the lower housing component 1 and the upper housing component 2 are butted up and down so that the screw hole 1a and the through hole 2a correspond to each other. By doing so, the lower housing constituent member 1 and the upper housing constituent member 2 are integrally combined to form the housing 3 in which the pump chamber 5 is formed.
[0017]
The pump chamber 5 is formed from a conical ridge 6 protruding from the lower housing component 1 to the upper housing component 2 and from the entire periphery of the base end of the conical ridge 6 to the upper housing component 2. The inner peripheral wall 7 is formed in a spherical shape with the vertex of the conical ridge 6 as a center. On the other hand, a slit-shaped fitting groove 8 is formed in the conical ridge 6 so as to pass through the vertex thereof, and the bottom surface of the fitting groove 8 has a semi-circular shape with the same curvature as that of the inner peripheral wall 7. It is formed to bisect the conical ridge 6. Further, two fluid suction ports 9 and two fluid discharge ports 10 are formed on both sides of the fitting groove 8 of the conical ridge 6 so as to be located on diagonal lines.
[0018]
An inclined disk 11 is disposed in the pump chamber 5. The inclined disk 11 has one side surface (lower surface) in line contact with the conical ridge 6 by a rotating shaft 13 to be described later, and a conical ridge with an inclined posture in which the outer peripheral surface is in sliding contact with the inner peripheral wall 7. It swings in all directions around the apex of No. 6. The line contact portion is denoted by reference numeral C.
[0019]
A semicircular partition plate 12 is fitted into the fitting groove 8 of the conical ridge 6 so that the semicircular portion 12a can be turned downward and swinged in two directions about the vertex of the conical ridge 6. Have been. The chord portion 12b of the partition plate 12 comes into contact with the lower surface of the inclined disk 11, and the pump chamber 5 is divided into two or three volumes by the inclined disk 11 according to the inclined posture of the inclined disk 11. The fluid chambers A, B, (A1, A2, B), and (A, B1, B2) are partitioned (see FIGS. 3 and 5).
[0020]
A shaft hole 2b is formed in the center of the upper surface of the upper housing component 2 in the vertical direction. A shaft portion 13a of the rotating shaft 13 is rotatable in the shaft hole 2b via a thrust bearing 14 and a radial bearing 15. It is inserted and arranged. A large diameter portion 13b is integrally formed at the lower end of the shaft portion 13a of the rotating shaft 13, and the lower end of the large diameter portion 13b is formed on an inclined surface 13c having the same inclination angle as the inclination angle of the conical ridge 6. The inclined surface 13c maintains the inclined posture of the inclined disk 11. An O-ring 16 is interposed between the large-diameter portion 13b and the upper housing component 2 in order to ensure sealing.
[0021]
On each of the inclined surface 13c of the rotating shaft 13 and the other side surface portion (upper surface portion) of the inclined disc 11, a permanent magnet 17 of the same polarity (positive in FIGS. The rotating force of the rotating shaft 13 is fixed, and the inclined surface 13c faces the upper surface of the inclined disk 11, and the inclined surface 13c is moved by using the repulsive force of the magnetic force of the permanent magnet 17. Is transmitted to the inclined disk 11 in a state where the inclined disk 11 is not brought into contact with the upper surface of the conical ridge 6. The rotational force transmitting means is not limited to the permanent magnet 17 as long as it can transmit the rotational force of the rotating shaft 13 to the inclined disk 11 in a non-contact manner. For example, a repulsive force by electric energy, or spraying by gas or liquid is used. Pressure or the like may be used.
[0022]
Therefore, when the rotating shaft 13 is rotated clockwise or counterclockwise, the inclined disk 11 held in the inclined position by the inclined surface 13c of the rotating shaft 13 is moved in the inclined direction (the inclined disk 11 and the conical bulge). The moving direction of the line contact portion C with the part 6) sequentially moves at the same speed. At this time, since the center of the pump chamber 5 and the apex of the conical ridge 6 coincide with each other, and the lower surface of the inclined disk 11 and the chord 12b of the partition plate 12 coincide with each other at the coincident point, Regardless of the direction in which the disk 11 is inclined, the chords 12b of the partition plate 12 are in close contact with the lower surface of the inclined disk 11 so as to reliably seal the fluid. The chord portion 12b of the partition plate 12 is horizontal in the state of FIG. 1 which is orthogonal to the inclination direction of the inclined disk 11, but is horizontal in the state of FIG. It tilts with the tilting disk 11. That is, when the inclination direction of the inclined disk 11 sequentially moves according to the rotation of the rotary shaft 13, the partition plate 12 also inclines from horizontal to left (right), one of both ends of the chord portion 12b is at the top dead center, and the other is at the bottom dead center. After reaching the point, it returns to horizontal again and swings in a seesaw shape so as to start tilting right (left) from the horizontal position. The two fluid chambers A and B separated by the partition plate 12 respectively have a line contact portion C between the conical ridge 6 and the inclined disk 11, and a chord portion 12b of the partition plate 12 contacting the inclined disk 11. And a closed space surrounded by In addition, in these two fluid chambers A and B, the position of the chord portion 12b of the partition plate 12 is constant, so that the movement from the line contact portion C changes from the maximum to the minimum "0". During this time, the volume of the fluid chamber A increases and decreases to two fluid chambers A1 and A2, and the volume of the fluid chamber B increases and decreases to two fluid chambers B1 and B2. Then, the fluid flowing from the fluid suction port 9 due to the movement of the inclined disk 11 in the tilt direction is gradually collected at the fluid discharge port 10 and discharged from the fluid discharge port 10 vigorously. The distinction between the fluid inlet 9 and the fluid outlet 10 is determined by the direction of movement of the inclined disk 11 in the direction of inclination. When the direction of movement is reversed, the fluid inlet is the fluid outlet and the fluid outlet is the fluid outlet. Changed to fluid inlet.
[0023]
At this time, the inclined surface 13c of the rotating shaft 13 and the inclined disk 11 are kept in a non-contact state by the repulsive force of the permanent magnet 15 so that the inclined surface 13c and the inclined disk 11 do not slide. Friction heat due to sliding contact between the two can be prevented from being generated, and fluid expansion due to frictional heat can be avoided and fluid can be efficiently pumped.
[0024]
Further, as described above, since the inclined surface 13c of the rotating shaft 13 and the inclined disk 11 are not in sliding contact with each other, dust is not generated due to abrasion of both members, so that the sealing property can be improved, and furthermore, the dust can be removed. It is possible to eliminate malfunctions caused by biting, to extend the life of the product with high accuracy and to extend the versatility by applying to a vacuum pump requiring cleanliness.
[0025]
Further, since it is only necessary to fix the permanent magnets 15 to the inclined surface 13c of the rotating shaft 13 and the inclined disk 11, respectively, the above-described effects can be easily obtained.
[0026]
Next, the operation of the fluid pumping device configured as described above will be described with reference to the operation process diagrams of FIGS.
[0027]
<(A) process>
The chord portion 12b of the partition plate 12 which is in contact with the inclined disk 11 is in the 90 ° to 270 ° direction, and the line contact portion C between the conical raised portion 6 and the inclined disk 11 is in the 0 ° direction. In this state, the inside of the fluid chamber A is divided into two fluid chambers A1 and A2 with the line contact portion C as a boundary. On the other hand, the fluid chamber B occupies a large volume because the inclined disk 11 does not contact the conical ridge 6. In order to clarify this state, the fluid existing in the fluid chamber A1 is indicated by a circle, and the fluid existing in the fluid chamber A2 is indicated by a triangle.
[0028]
<Step (b)>
(A) shows a state in which the line contact portion C has been moved counterclockwise by 30 ° starting from the state of the process. In this state, the volume of the fluid chamber A2 is reduced and the internal fluid is discharged from the fluid discharge port 10, and the volume of the fluid chamber A1 is increased by that amount and the fluid is sucked from the fluid suction port 9. It can be seen from the increase or decrease in the number of △ and ○ marks.
[0029]
<(C) process>
This shows a state where the line contact portion C has further moved counterclockwise to a position of 80 °. In this state, the volume of the fluid chamber A2 is further narrowed, and the internal fluid is continuously discharged from the fluid discharge port 10. On the other hand, the volume of the fluid chamber A1 is further increased and the suction of the fluid is continued.
[0030]
<(D) process>
The line contact portion C further moves to reach the position of 90 °, and shows a state where the line contact portion C overlaps the chord portion 12b of the partition plate 12. In this state, all of the fluid indicated by the triangle marked in the fluid chamber A2 is discharged from the fluid discharge port 10, and the fluid chamber A (A1) is occupied by the fluid marked with the circle. On the other hand, in (a) to (d) above, fluid is not sucked and discharged in the fluid chamber B, and the fluid chamber B is kept occupied by one fluid indicated by hatching.
[0031]
<(E) process>
The line contact portion C reaches a position of 120 °, and the inside of the fluid chamber B is divided into a fluid chamber B1 and a fluid chamber B2 with the line contact portion C as a boundary, and a new fluid indicated by ◎ is placed in the fluid chamber B1. While being sucked from the fluid suction port 9, the fluid chamber B2 becomes narrower by the volume of the fluid chamber B1, and the fluid indicated by hatching is discharged from the fluid discharge port 10 by that amount.
[0032]
<(F) process>
The state where the line contact portion C has further moved counterclockwise to a position of 150 ° is shown. In this state, the volume of the fluid chamber B1 further increases and the internal fluid continues to be sucked from the fluid suction port 9, while the volume of the fluid chamber B2 further decreases and the discharge of the fluid continues.
[0033]
<(G) process>
This shows a state in which the line contact portion C reaches the position of 180 °, and the inside of the fluid chamber B is equally divided into the fluid chamber B1 marked with ◎ and the fluid chamber B2 hatched.
[0034]
<(H) process>
The state where the line contact portion C has further moved counterclockwise to a position of 240 ° is shown. In this state, in the fluid chamber B1, the volume is further increased, and a new fluid indicated by ◎ is sucked from the fluid suction port 9, and in the fluid chamber B2, the volume is continuously decreased and the fluid indicated by hatching is changed. It is discharged from the discharge port 10.
[0035]
<(I) Step>
The state where the line contact portion C further moves to reach the position of 270 ° and overlaps the chord portion 12b of the partition plate 12 is shown. In this state, the hatched fluid existing in the fluid chamber B2 is entirely discharged from the fluid discharge port 10, and the fluid chamber B (B1) is occupied by the fluid indicated by ◎. On the other hand, in the above (d) to (i), the fluid is not sucked or discharged in the fluid chamber A, and the fluid chamber A is kept occupied by one fluid indicated by a circle.
[0036]
【The invention's effect】
As described above, according to the invention of claim 1, a state in which the inclined surface of the rotary shaft is opposed to the inclined disk that partitions the pump chamber into a plurality of variable volume fluid chambers with the partition plate in a non-contact state. Therefore, the rotational force of the rotating shaft is transmitted to the inclined disk by the rotational force transmitting means, so that a reduction in pumping efficiency and a decrease in sealing performance due to frictional heat and abrasion, as well as a malfunction are eliminated. It is possible to provide a fluid pumping device that is accurate and has a long service life, and can be applied to a vacuum pump that requires cleanliness by eliminating the entrapment of dust, thereby expanding versatility.
[0037]
According to the second aspect of the present invention, the function and effect described in the first aspect can be easily achieved only by fixing the permanent magnet having the same polarity to the inclined surface and the inclined disk of the rotating shaft.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a relationship between an inclined plate and a conical ridge in a fluid pumping device according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a relationship between an inclined plate and a partition plate in the fluid pumping device according to the embodiment of the present invention.
FIG. 3 is a plan view of a lower housing component in the fluid pumping device according to the embodiment of the present invention.
FIG. 4 is an exploded perspective view of the fluid pumping device according to the embodiment of the present invention.
FIG. 5 is an explanatory diagram of the operation of the fluid pumping device according to the embodiment of the present invention.
[Explanation of symbols]
3 Housing 5 Pump chamber 6 Conical ridge 7 Inner peripheral wall 8 Fitting groove 11 Inclined disk 12 Partition plate 13 Rotary shaft 13c Inclined surface 17 Permanent magnet (rotational force transmitting means)
A, A1, A2 Fluid chamber B, B1, B2 Fluid chamber C Line contact part

Claims (2)

頂点を通るように嵌合溝が形成された円錐隆起部と、該円錐隆起部をその頂点を中心として取り囲む球面形状の内周壁部とで形成されたポンプ室を有するハウジングと、
上記ポンプ室内に配置され、一側面部が上記円錐隆起部と線接触するとともに、外周面部が上記内周壁部に摺接した傾斜姿勢で円錐隆起部の頂点を中心とする全方向に揺動する傾斜円板と、
上記円錐隆起部の頂点を中心として二方向に揺動可能なように嵌合溝に嵌合され、上記傾斜円板の傾斜姿勢に応じて該傾斜円板とで上記ポンプ室を複数の容積可変な流体室に仕切る半円形状の仕切板と、
上記円錐隆起部の傾斜角と同じ傾斜角の傾斜面を有し、該傾斜面を上記傾斜円板の他側面部に対面させて軸心回りに回転することで傾斜円板を円錐隆起部の頂点を中心とする全方向に揺動させる回転軸とを備えた流体圧送装置であって、
上記回転軸の回転力は、その傾斜面を傾斜円板に接触させない状態で、回転力伝達手段により傾斜円板に伝達されるようになっていることを特徴とする流体圧送装置。
A housing having a pump chamber formed by a conical ridge in which a fitting groove is formed so as to pass through the vertex, and a spherical inner peripheral wall surrounding the conical ridge centering on the vertex;
The conical ridge is arranged in the pump chamber, and one side surface is in line contact with the conical ridge, and the outer peripheral surface is slid in all directions around the apex of the conical ridge in an inclined posture in sliding contact with the inner peripheral wall. An inclined disk,
The pump chamber is fitted into the fitting groove so as to be able to swing in two directions about the vertex of the conical ridge, and the pump chamber is made into a plurality of variable volumes with the inclined disk according to the inclined posture of the inclined disk. A semicircular partition plate for partitioning into a fluid chamber,
It has an inclined surface having the same inclination angle as the inclined angle of the conical raised portion, and the inclined disk faces the other side surface of the inclined disk and is rotated around an axis so that the inclined disk has a conical raised portion. A fluid pumping device comprising a rotating shaft that swings in all directions around a vertex,
A fluid pumping device characterized in that the rotational force of the rotating shaft is transmitted to the inclined disk by a rotational force transmitting means in a state where the inclined surface is not brought into contact with the inclined disk.
請求項1記載の流体圧送装置において、
回転力伝達手段は、回転軸の傾斜面と傾斜円板の他側面部との各々に固着された同極の永久磁石で構成されていることを特徴とする流体圧送装置。
The fluid pumping device according to claim 1,
A fluid pumping device characterized in that the torque transmitting means is constituted by permanent magnets of the same polarity fixed to each of the inclined surface of the rotating shaft and the other side surface of the inclined disc.
JP2003071513A 2003-03-17 2003-03-17 Fluid pressure feed device Pending JP2004278420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071513A JP2004278420A (en) 2003-03-17 2003-03-17 Fluid pressure feed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071513A JP2004278420A (en) 2003-03-17 2003-03-17 Fluid pressure feed device

Publications (1)

Publication Number Publication Date
JP2004278420A true JP2004278420A (en) 2004-10-07

Family

ID=33287937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071513A Pending JP2004278420A (en) 2003-03-17 2003-03-17 Fluid pressure feed device

Country Status (1)

Country Link
JP (1) JP2004278420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989638A (en) * 2015-08-06 2015-10-21 奉化市溪口威尔特制泵厂 Disc stack type high-pressure oil pump
CN113586405A (en) * 2021-06-28 2021-11-02 宁波工程学院 Piezoelectric pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989638A (en) * 2015-08-06 2015-10-21 奉化市溪口威尔特制泵厂 Disc stack type high-pressure oil pump
CN113586405A (en) * 2021-06-28 2021-11-02 宁波工程学院 Piezoelectric pump
CN113586405B (en) * 2021-06-28 2023-08-15 宁波工程学院 Magnetic pump

Similar Documents

Publication Publication Date Title
JPH09112468A (en) Vane guide apparatus of rotary compressor
JP2004278420A (en) Fluid pressure feed device
US6120272A (en) Pump-motor for fluid with elliptical members
US4629404A (en) Nutating disc type fluid device
JP4516641B2 (en) Fluid pressure feeder
JP2015535056A (en) Vane pump and method of operating the same
KR101873158B1 (en) A pump
JP2021042725A (en) Swash plate type axial piston pump motor
JPS6223582A (en) Variable capacity radial compressor
DK2171214T3 (en) Machine with oscillating piston
JPH094559A (en) Radial piston pump
JP7444705B2 (en) rotary positive displacement pump
JP2004278422A (en) Fluid pressure feed device
KR950027197A (en) Rotary Cylinder Compressor
JPH0518376A (en) Rotary compressor
JP2000087885A (en) Fluid forced feeder
JP2019513946A (en) Spherical compressor
JPH06173900A (en) Pump provided with swinging disk
JPH11107954A (en) Vane compressor
JP6239545B2 (en) Fluid pump
JP2923740B2 (en) Water pump
JP2006002718A (en) Rotary pump
CN115614274A (en) Plane universal synchronous disk double-end sliding groove shaft vane rotor pump
JP2008223630A (en) Vane pump
JPS6335121Y2 (en)