JP2004278411A - Driving device of solenoid valve for internal combustion engine - Google Patents

Driving device of solenoid valve for internal combustion engine Download PDF

Info

Publication number
JP2004278411A
JP2004278411A JP2003071209A JP2003071209A JP2004278411A JP 2004278411 A JP2004278411 A JP 2004278411A JP 2003071209 A JP2003071209 A JP 2003071209A JP 2003071209 A JP2003071209 A JP 2003071209A JP 2004278411 A JP2004278411 A JP 2004278411A
Authority
JP
Japan
Prior art keywords
power supply
current
solenoid valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003071209A
Other languages
Japanese (ja)
Inventor
Hiroaki Hoshika
浩昭 星加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003071209A priority Critical patent/JP2004278411A/en
Publication of JP2004278411A publication Critical patent/JP2004278411A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injector driving device capable of realizing an excellent property of fuel injection quantity at low cost even if there exist variations of wire resistance, etc., from an electromagnetic coil or the driving device to the injector. <P>SOLUTION: Time while voltage supply switches from a first power source to a second power source is actively stabilized by controlling pre-energizing current. Fuel flow, maximum operating fuel pressure, and other properties of the injector can be improved without reducing tolerance of the injector and its driving circuit. As the tolerance can be enlarged if the properties are the same, the injector and its driving circuit can be manufactured at low cost. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は燃料噴射弁、詳しくは燃料噴射弁の制御装置およびそのソフトウェアに関する。
【0002】
【従来の技術】
燃料の燃焼によって動力を得る機関、特に内燃機関では、その燃焼や機関の運転を制御するため、加圧した燃料を燃料噴射弁(以下インジェクタ)によって、機関に供給,制御するものがある。このインジェクタの動作原理として電磁コイルの磁気力を使用して燃料制御弁を開閉する形式のものが一般的である。インジェクタから噴射される燃料流量は主に燃料と弁下流の圧力差と、弁開放時間で決まるため、電磁コイルの磁気力を迅速にかつ正確に制御しなければならない。有効な磁気力を迅速に発生させる手段として、電磁コイルを流れる電流値を本来の制御の前に弁を操作するにはまだ十分でないような値に調節設定することが知られている(例えば特許文献1)。又、二種の電源を具備し、駆動初期に大きな電圧である第一電源電圧をかけて電磁コイルの電流を迅速に立ち上げ、その後、それより低い電源電圧の第二電源電圧を供給、ひいては低い電流値に切り替えて保持することにより、閉弁時の電流減少遅れを低減することも一般的である。
【0003】
【特許文献1】
特開昭55−040391号公報
【0004】
【発明が解決しようとする課題】
しかしながら、インジェクタ製造上の制約により電磁コイルの抵抗値や、巻数,磁気回路の特性すなわちインダクタンスがばらつくため、電磁コイルが所定の推力を発生するまでの時間が一定値にならず、燃料噴射弁が通電開始から全開になるまでの時間ばらつき、ひいては燃料噴射量のばらつきを生じさせていた。また、非常に正確な抵抗値やインダクタンスの電磁コイルを製造することは極めて困難で高価なものとなる。
【0005】
本発明の課題は、インジェクタの駆動装置において、電磁コイルや駆動装置からインジェクタまでの配線抵抗等にばらつきがあっても良好な燃料噴射量特性を実現し、しかもこれを安価に実現することである。
【0006】
【課題を解決するための手段】
上記課題は、電源から駆動回路をもって電磁弁を開閉する装置であって、少なくとも2つの電源電圧を持ち、電磁弁に流れる電流の検出手段と、第一の電源電圧から第二の電源電圧に切り替えるための電磁弁電流切替しきい値と、前記検出手段により検出された電流検出値と前記電流切替しきい値の比較手段と、第一の電源電圧で駆動を開始し、電磁弁電流が電流しきい値よりも大きくなった以後に第二の電源電圧に切り替える電源電圧切替手段と、第二の電源電圧に切り替えた後、電磁弁を開放保持する保持電流の制御手段と、第一の電源電圧を与え始めてから、それが終了するまでの時間又は最初の保持電流を開始するまでの間の所定時間を検出する第一電源供給時間検出手段と、電磁弁が完全にまだ応答しない大きさの電流を第一電源電圧を与える前に供給する予電流供給手段と、第一電源供給時間の基準値と前記第一電源供給時間を比較する第一電源供給時間比較手段と、この比較結果に基づいて前記予電流供給時間を調節させる予電流調節手段を持つことを特徴とした内燃機関用電磁弁の駆動装置によって解決される。
【0007】
【発明の実施の形態】
本発明を図示の実施例につき図面を用いて詳細に説明する。
【0008】
実施例の制御対象は、内燃機関におけるインジェクタの電磁コイルである。このインジェクタは一般に燃料を通過させる燃料流路と、噴射時の時間あたり燃料量を一定にするオリフィスと、燃料を必要な時だけ通過させ、それ以外は遮断するプランジャ弁と、非通電時にプランジャ弁を閉じておくためのリターンスプリングと、通電時にプランジャ弁を磁力によって吸引する電磁コイルとを主たる構造とするものである。このインジェクタはプランジャ弁の上流と下流の圧力差が一定の場合は、プランジャ弁が解放している時間に応じて一回あたりの燃料噴射量が決まることを利用して内燃機関の燃料供給量の制御に使用されている。
【0009】
図1において本発明が適用される代表的な内燃機関の制御手法が略示されている。これはピストン式内燃機関であり、燃料は燃料ポンプ5によって加圧され、燃料デリバリ8に高圧のまま蓄えられる。機関の出力軸が回転して所定の時間または角度となったとき、インジェクタ1から燃料が燃焼室近傍に噴射され、点火コイル4で発生する高圧電流を点火プラグ7によって放電させることによって燃焼を行う。燃料圧力は燃料圧力センサ2によって検出され、圧力が目標値となるよう、ECU9(機関制御装置)が燃料ポンプ5を調節制御する。このECU9には、ソフトウェアにより計算を実行するCPUや、ROM,RAM,I/O,タイマー,インジェクタ制御装置等が内蔵されている。
【0010】
図2に、ECU9のインジェクタ制御部が略示されている。先述の請求項記載のV_boostを通電制御する高圧上流トランジスタ101と、VBを通電制御する低圧上流トランジスタ100と、下流側トランジスタ103によって、これらの中間に配置されたインジェクタ1に適切な電源を切替接続する。又、インジェクタを流れる電流を検出して各時点の電流値を調節制御するために電流検出抵抗109がインジェクタ電流の流路中に配置される。この電流検出手法は、ホール素子や、カレントミラー回路等であってもよい。尚、この実施例では2個のインジェクタを上流側トランジスタ100,101を共通とし、下流側トランジスタ103で選択通電する構成のものであり、上流側をそれぞれ独立させる手法もある。これらのトランジスタ群を制御するため、実施例では機関全体の演算制御を行うPCU105から発令されるインジェクタ駆動信号等に基づき電磁コイルへの通電を制御するインジェクタ駆動制御回路104を具備している。この制御回路はたとえばインジェクタ動作信号107,プリチャージ信号108をCPU105から受け取り、かつ、内部又は外部のたとえば電流設定抵抗110,111,112,113によって定められた電流値に基づいて上記トランジスタ群を切替駆動する。トランジスタへ送る信号のなかの一部、たとえば高圧上流側トランジスタ駆動信号106は、本発明の手法を実現するためにCPU105に接続されており、CPUはこの信号から第一電源電圧の供給期間や終了時期を知ることができる。
【0011】
図3は上記インジェクタ駆動制御回路104によって制御されるインジェクタの電磁コイルを流れる電流値および、関連する信号との関係を示している。インジェクタ動作信号107が高レベルかつ、プリチャージ信号が高レベルになると、プリチャージが開始され205のように電流が徐々に上昇する。プリチャージ電流があらかじめ定められた値になるとインジェクタ駆動制御回路104によって、プリチャージ電流204は一定値に保たれる。その後プリチャージ信号108が低レベルになり、インジェクタ動作信号107のみが高レベルの状態になると、図2の高圧上流トランジスタ(101)を動作させて高電圧の供給を開始する。V_boostの供給により電磁コイルの電流は203に示すように著しく増加し、規定された最大電流値211に達するまでV_boostが供給される。その後は図示のようにVBが供給され、供給電圧差に応じて210のように電流が降下する。この後、強制的に電流を降下させるためにたとえば接地動作212を行った後に別途規定された保持電流値215及び217に制御される。電磁コイルへの通電は基本的にこの状態に遷移してから遮断される。尚、215,217の保持電流は単一であってもよい。
【0012】
上記203のV_boostを供給している期間は燃料を遮断しているプランジャ弁を燃料遮断位置から安定噴射位置へ可及的迅速に移動させるために、短期的に供給できる最大限の電流を与えるために存在しており、インジェクタプランジャ弁の動作と密接な関係がある。
【0013】
インジェクタの重要な燃料噴射量特性の中に最低噴射量や最大作動燃料圧力があるが、最低噴射量、つまりインジェクタの開弁時間と噴射量特性の直線性を保つ最低の噴射量は、適正で最小の電磁コイル通電期間できまるのが一般的である。すなわち、少しでもプランジャ弁が安定位置に達している必要があり、これは通常、V_boostの供給が終わり保持電流213を開始する時点である。すなわち、電磁コイルへの通電時間を保持電流213の開始時点より短くできないことを意味する。よって、インジェクタ1,配線,ECU9の製造ばらつきを考慮すると、202のように電磁コイルの電流上昇が遅く保持電流213に移行するまでの時間が遅れる固体組み合わせがあることを想定して電磁コイルへの最低通電時間を大きめに決める必要があった。このため、インジェクタの最低流量特性がこの制約のために見掛け上悪化していた。
【0014】
一方、最大動作燃料圧力は、インジェクタのプランジャ弁を電磁コイルの推力で開弁できる最大の圧力である。ここでの圧力はプランジャ弁の上流と下流の差圧である。この特性はV_boostを供給している期間200の電流積分値、つまりインジェクタ電流波形で言うところのV_boost供給時の電流波形面積で変化し、一般にこの値が大きいと最大動作燃料圧力特性がよくなる。このことから、201のように電磁コイルの電流上昇が早いと、先述の電流積分値が小さくなり、最大動作燃料圧力特性が悪化する。
【0015】
本発明は、上記の問題点を解決するためにプリチャージの動作を操作し、V_boostを供給してから最大電流値211に達するまでの時間T_peak200を正確に能動制御することで、ばらつき209の考慮による電磁コイルの最低通電時間を向上させ、ひいては最小燃料噴射量特性を改善し、最大動作燃料圧力特性においても、十分なV_boost供給中の電流積分値を確保することによって、この特性のばらつきを低減して性能を向上させることができる。又、インジェクタの性能が同等であれば、電磁コイルや、配線電気抵抗,インジェクタ制御回路等の公差を拡大でき、ひいてはこれらを安価に製造することができる。
【0016】
図4はプリチャージによるT_peakの操作方法を2種類の実施例をもとに説明したものである。これらはT_peak408を変化させる事においては同一である。最初の実施例Aはプリチャージ電流の大きさC_pre409を変える方法である。T_peak408とプリチャージ電流C_pre409との関係は403のようになるので、図2のインジェクタ駆動制御回路(104)に段階的又は連続的にプリチャージ電流を可変する手段を設ければ、T_peakが基準値410よりも小さい場合はプリチャージ電流C_pre409を402のように減少させることでT_peakを増大させ、逆にT_peakが基準値410よりも大きい場合はプリチャージ電流C_pre409を400のように増大させることでT_peakを減少させる、いわゆる帰還制御(以下フィードバック制御)が実現でき、実際のT_peak408が常に基準値410近傍となるような電磁コイルの通電制御が可能となる。
【0017】
もうひとつの実施例Bはより簡便な方法で、図2記載の回路はこの実施例に適合する。この方法はプリチャージの制御電流値C_pre409を可変する手段を設けず固定とし、プリチャージの通電時間T_pre405を可変にすることによって、上記プリチャージ電流を可変にするのと同様な効果を得るものである。T_peak408とプリチャージ時間T_pre405との関係は407のようになるので、プリチャージの制御電流を固定でかつ高め、又は電流制御なしとしておけば、プリチャージ電流が電磁コイルのインダクタンスの影響で徐々に上昇していくことを利用して、V_boost供給開始時点でのプリチャージ電流をプリチャージ時間T_pre405変化させて可変できる。この方法はインジェクタ駆動制御回路に可変する電流を規定する抵抗値切替手段や、電流値を指示する信号線及びその回路が不要であるため、ECUを安価に製造することができる。
【0018】
上記、いずれの手法も電気回路の利用によって実現可能であるが、ECU9に内蔵されるCPUのソフトウェア処理で実現するほうがより合理的である。
【0019】
図5は本発明で、図4Bの手法をソフトウェア処理で実現する場合の実施例である。通常、ECU9は機関制御のソフトウェア処理を時分割で実行し、非同期的にその時点で実行しなければならない処理は割込み処理を行う。インジェクタの制御は一般的に所定の燃料噴射開始時期となったときに割込み処理として自動的に起動されるのが一般的である。500はソフトウェア上で燃料噴射の処理をする割込み処理の基点をあらわしており、この時点はインジェクタへの通電を開始すべき時期となっている。一般にこの割込み処理は機関出力軸の回転角度または所定回転角度から所定時間経過したときに起動される。501は各種の計算が行われる燃料噴射処理を示すが、この中で503から512の間に記述された処理が本発明で特に追加されるべき部位である。処理504でプリチャージは前回の燃料噴射処理の時に更新されたT_preの期間だけ通電制御され、時間T_preが経過すると処理505にてV_boostの印加を開始する。処理506,507ではV_boostが、図2のインジェクタ駆動制御回路(104)がV_boostを遮断したかどうかを監視し、V_boost印加からその遮断までの間の時間を計測する。これはすなわち図3のT_peak(200)を計測することである。V_boostの印加が終了すると、処理508で今回の噴射における実T_peakが確定する。このT_peak確定処理は、たとえばタイマー回路の機能を利用して自動的に行ってもよい。処理509であらかじめ定められた、又は別途計算によって求められた目標T_peakと上記実T_peakを比較してこの差が無いか、又は所定の幅を超えていない場合は、T_preを更新せずにT_pre更新処理512で次回噴射のT_preを確定する。判定509で実T_peakが目標T_peakより大きい場合は、処理511でT_preを所定量かつ上限値を限度として増加させ、処理512で次回噴射のT_preを確定する。判定509で実T_peakが目標T_peakより小さい場合は、T_preを所定量かつ下限値を限度として減少させ、処理512で次回噴射のT_preを確定する。処理505から処理512までがT_peakのフィードバック処理であり、この部分を関数計算として処理してもよい。これらの処理をCPU105ではなくインジェクタ駆動制御回路104の内部で行ってもよい。又、電磁コイルやその他の物理特性が劣化等によって変化すると、上記T_peakが変化するため、T_peakを参照して不具合の検出も実現できる。さらにこのプリチャージ時間T_preを主たる電源が遮断された後もCPU内部に記録させておけば、電源通電後最初の燃料噴射から適切なT_peakとなる通電制御が可能となる。
【0020】
本発明は、第一電源電圧(以下V_boost)の供給から、第二電源電圧(以下VB)へ切り替わるまでの時間を、上述の予通電流(以下プリチャージ)の制御によって能動的に安定させるものである。
【0021】
本発明によれば、電磁コイル又は、電源及び制御回路の電気的な要求公差を拡大でき、ひいてはインジェクタ,配線,制御回路を安価にすることが可能である。
【0022】
【発明の効果】
本発明によれば、インジェクタやその駆動回路の公差を縮小せずに、インジェクタの燃料流量,最大動作燃料圧力その他の特性を改善できる。又、特性が同一の場合は公差を拡大できるので、安価なインジェクタやその駆動回路を製造できる。
【図面の簡単な説明】
【図1】本発明が適用可能な機関の一例を示す図面である。
【図2】インジェクタ駆動制御回路構成の例。
【図3】インジェクタ電磁コイルの電流波形と制御信号の関係図。
【図4】プリチャージとT_peakの関係図。
【図5】本発明をソフトウェアで行う場合のフローチャート。
【符号の説明】
1…インジェクタ、5…燃料ポンプ、9…ECU(エンジンコントロールユニット)、100…低圧側で上流のトランジスタ、101…高圧上流のトランジスタ、103…下流側のトランジスタ、104…インジェクタ駆動制御回路、105…CPU(中央演算ユニット)、200…V_boostの供給期間(T_peak)、204…プリチャージ電流(C_pre)、209…T_peakのばらつき、211…最大電流値(C1)、213…第一の保持電流(C2)、216…第二の保持電流(C3)、403…プリチャージ電流C_preとT_peakの特性、407…プリチャージ時間T_preとT_peakの特性、500〜502…燃料噴射の割込み処理、503〜512…T_preの更新処理フロー。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection valve, and more particularly, to a fuel injection valve control device and its software.
[0002]
[Prior art]
2. Description of the Related Art Some engines that obtain power by burning fuel, particularly internal combustion engines, supply and control pressurized fuel to the engine by a fuel injection valve (hereinafter, referred to as an injector) in order to control the combustion and operation of the engine. As a principle of operation of the injector, a type in which a fuel control valve is opened and closed using a magnetic force of an electromagnetic coil is generally used. Since the flow rate of fuel injected from the injector is mainly determined by the pressure difference between the fuel and the downstream of the valve and the valve opening time, the magnetic force of the electromagnetic coil must be quickly and accurately controlled. As a means for quickly generating an effective magnetic force, it is known to adjust the value of the current flowing through the electromagnetic coil to a value that is not yet sufficient to operate the valve before the actual control (for example, see Patent Reference 1). In addition, two types of power supplies are provided, and the first power supply voltage, which is a large voltage, is applied at the initial stage of driving to quickly start the current of the electromagnetic coil, and thereafter, a second power supply voltage of a lower power supply voltage is supplied, and It is also common to reduce the current decrease delay when the valve is closed by switching to and holding a low current value.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 55-040391
[Problems to be solved by the invention]
However, the resistance value of the electromagnetic coil, the number of turns, and the characteristics of the magnetic circuit, that is, the inductance of the magnetic coil vary due to restrictions on the manufacture of the injector. This has caused variations in the time from the start of energization to the full opening, and thus variations in the fuel injection amount. Further, it is extremely difficult and expensive to manufacture an electromagnetic coil having a very accurate resistance value and inductance.
[0005]
It is an object of the present invention to realize a good fuel injection amount characteristic even if there is a variation in a wiring resistance from an electromagnetic coil or a driving device to an injector in an injector driving device, and to realize the same at low cost. .
[0006]
[Means for Solving the Problems]
An object of the present invention is a device for opening and closing a solenoid valve with a drive circuit from a power source, the device having at least two power supply voltages, detecting means for detecting a current flowing through the solenoid valve, and switching from a first power supply voltage to a second power supply voltage. A solenoid valve current switching threshold value, a means for comparing the current detection value detected by the detection means with the current switching threshold value, and starting driving with a first power supply voltage, so that the solenoid valve current becomes Power supply voltage switching means for switching to the second power supply voltage after the threshold value is exceeded; control means for holding current for holding the solenoid valve open after switching to the second power supply voltage; and first power supply voltage. First power supply time detection means for detecting the time from the start of application to the end thereof or the start of the first holding current, and a current of such a magnitude that the solenoid valve does not completely respond yet. The first power supply Pre-current supply means for supplying the pre-current before applying pressure, first power supply time comparison means for comparing the first power supply time with a reference value of the first power supply time, and the pre-current supply based on the comparison result. The problem is solved by a drive device for a solenoid valve for an internal combustion engine, characterized by having a pre-current adjusting means for adjusting the time.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described in detail with reference to the drawings with reference to the exemplary embodiments.
[0008]
The control target of the embodiment is an electromagnetic coil of an injector in an internal combustion engine. This injector generally has a fuel flow path through which fuel passes, an orifice that keeps the amount of fuel per injection time constant, a plunger valve that allows fuel to pass only when necessary, and shuts off the rest, and a plunger valve when power is not supplied. The main structure is a return spring for closing the valve and an electromagnetic coil for attracting the plunger valve by magnetic force when energized. When the pressure difference between the upstream and downstream of the plunger valve is constant, this injector takes advantage of the fact that the fuel injection amount per injection is determined according to the time that the plunger valve is open, and the fuel supply amount of the internal combustion engine is determined. Used for control.
[0009]
FIG. 1 schematically shows a typical control method of an internal combustion engine to which the present invention is applied. This is a piston type internal combustion engine. Fuel is pressurized by a fuel pump 5 and stored in a fuel delivery 8 at a high pressure. When the output shaft of the engine rotates and reaches a predetermined time or angle, fuel is injected from the injector 1 to the vicinity of the combustion chamber, and combustion is performed by discharging a high-voltage current generated in the ignition coil 4 by the ignition plug 7. . The fuel pressure is detected by the fuel pressure sensor 2, and the ECU 9 (engine control device) controls the fuel pump 5 so that the pressure becomes a target value. The ECU 9 includes a CPU that executes calculations by software, a ROM, a RAM, an I / O, a timer, an injector control device, and the like.
[0010]
FIG. 2 schematically shows an injector control unit of the ECU 9. The high-voltage upstream transistor 101 for controlling the energization of V_boost, the low-voltage upstream transistor 100 for controlling the energization of VB, and the downstream transistor 103 described in the preceding claims switch and connect an appropriate power supply to the injector 1 disposed therebetween. I do. Further, a current detection resistor 109 is disposed in the flow path of the injector current to detect the current flowing through the injector and control the current value at each time. This current detection method may be a Hall element, a current mirror circuit, or the like. In this embodiment, the two injectors share the upstream transistors 100 and 101 and are selectively energized by the downstream transistor 103. There is also a method in which the upstream is independent. In order to control these transistor groups, the embodiment includes an injector drive control circuit 104 that controls the energization of the electromagnetic coil based on an injector drive signal or the like issued from the PCU 105 that performs arithmetic control of the entire engine. This control circuit receives, for example, an injector operation signal 107 and a precharge signal 108 from the CPU 105, and switches the transistor group based on current values determined by internal or external current setting resistors 110, 111, 112, 113, for example. Drive. A part of the signal to be sent to the transistor, for example, the high-voltage upstream transistor drive signal 106 is connected to the CPU 105 in order to implement the method of the present invention. You can know when.
[0011]
FIG. 3 shows the relationship between the current value flowing through the electromagnetic coil of the injector controlled by the injector drive control circuit 104 and related signals. When the injector operation signal 107 is at a high level and the precharge signal is at a high level, precharge is started, and the current gradually increases as indicated by 205. When the precharge current reaches a predetermined value, the injector drive control circuit 104 keeps the precharge current 204 at a constant value. Thereafter, when the precharge signal 108 goes low and only the injector operation signal 107 goes high, the high voltage upstream transistor (101) in FIG. 2 is operated to start supplying a high voltage. The supply of V_boost causes the current in the electromagnetic coil to increase significantly, as shown at 203, and V_boost is supplied until the specified maximum current value 211 is reached. Thereafter, VB is supplied as shown, and the current decreases as indicated by 210 in accordance with the supply voltage difference. Thereafter, in order to forcibly reduce the current, for example, after the grounding operation 212 is performed, the holding current values 215 and 217 are separately controlled. The energization of the electromagnetic coil is basically shut off after transitioning to this state. Incidentally, the holding currents of 215 and 217 may be single.
[0012]
In order to move the plunger valve shutting off the fuel from the fuel shutoff position to the stable injection position as quickly as possible during the period of supplying V_boost of the above 203, in order to provide the maximum current that can be supplied in a short term. And has a close relationship with the operation of the injector plunger valve.
[0013]
Among the important fuel injection amount characteristics of the injector are the minimum injection amount and the maximum operating fuel pressure, the minimum injection amount, that is, the minimum injection amount that maintains the linearity of the injector opening time and the injection amount characteristic, is appropriate. Generally, a minimum electromagnetic coil energization period is set. That is, the plunger valve needs to reach the stable position at least a little, usually at the point where the supply of V_boost ends and the holding current 213 starts. That is, it means that the energizing time to the electromagnetic coil cannot be shorter than the start time of the holding current 213. Therefore, when the manufacturing variation of the injector 1, the wiring, and the ECU 9 is taken into consideration, it is assumed that there is a solid combination such as 202, in which the current rise of the electromagnetic coil is slow and the time until the transition to the holding current 213 is delayed. The minimum energization time had to be determined relatively large. For this reason, the minimum flow characteristic of the injector was apparently deteriorated due to this restriction.
[0014]
On the other hand, the maximum operating fuel pressure is the maximum pressure at which the plunger valve of the injector can be opened by the thrust of the electromagnetic coil. The pressure here is the differential pressure between the upstream and downstream of the plunger valve. This characteristic changes with the current integral value during the period 200 during which V_boost is supplied, that is, the current waveform area at the time of V_boost supply in terms of the injector current waveform. Generally, the larger this value is, the better the maximum operating fuel pressure characteristic is. From this, when the current of the electromagnetic coil rises quickly as in 201, the above-described current integrated value decreases, and the maximum operating fuel pressure characteristic deteriorates.
[0015]
In order to solve the above problem, the present invention operates the precharge operation, accurately controls the time T_peak 200 from when V_boost is supplied to when the maximum current value 211 is reached, and considers the variation 209. To reduce the variation of this characteristic by securing the sufficient current integration value during V_boost supply by improving the minimum energizing time of the electromagnetic coil, and consequently improving the minimum fuel injection amount characteristic, and also ensuring the maximum operating fuel pressure characteristic. Performance can be improved. If the injectors have the same performance, the tolerances of the electromagnetic coil, wiring electric resistance, injector control circuit, and the like can be increased, and these can be manufactured at low cost.
[0016]
FIG. 4 illustrates a method of operating T_peak by precharging based on two types of embodiments. These are the same in changing T_peak 408. The first embodiment A is a method of changing the magnitude C_pre 409 of the precharge current. Since the relationship between T_peak 408 and precharge current C_pre 409 is as indicated by 403, if the injector drive control circuit (104) of FIG. 2 is provided with a means for varying the precharge current stepwise or continuously, the T_peak becomes the reference value. When T_peak is smaller than 410, T_peak is increased by decreasing the precharge current C_pre 409 as indicated by 402. Conversely, when T_peak is larger than the reference value 410, T_peak is increased by increasing the precharge current C_pre 409 as indicated by 400. So-called feedback control (hereinafter referred to as feedback control) can be realized, and the energization control of the electromagnetic coil such that the actual T_peak 408 is always close to the reference value 410 can be performed.
[0017]
Another embodiment B is a simpler method, and the circuit shown in FIG. 2 is suitable for this embodiment. In this method, a means for changing the control current value C_pre 409 of the precharge is fixed without being provided, and the same effect as that of making the precharge current variable is obtained by making the precharge energizing time T_pre405 variable. is there. Since the relationship between T_peak 408 and precharge time T_pre 405 is as indicated by 407, if the precharge control current is fixed and increased or no current control is performed, the precharge current gradually increases due to the influence of the inductance of the electromagnetic coil. Utilizing this, the precharge current at the start of V_boost supply can be varied by changing the precharge time T_pre405. This method does not require a resistance value switching means for specifying a variable current for the injector drive control circuit, a signal line for indicating the current value, and a circuit therefor, so that the ECU can be manufactured at low cost.
[0018]
Although any of the above methods can be realized by using an electric circuit, it is more reasonable to realize the method by software processing of a CPU built in the ECU 9.
[0019]
FIG. 5 shows an embodiment of the present invention in which the method of FIG. 4B is realized by software processing. Normally, the ECU 9 executes the engine control software processing in a time-division manner, and executes an interrupt processing for processing that must be executed asynchronously at that time. In general, the control of the injector is generally automatically started as an interruption process when a predetermined fuel injection start timing comes. Reference numeral 500 denotes a base point of an interrupt process for performing a fuel injection process on software, and this time is a time to start energizing the injector. Generally, this interrupt processing is started when a predetermined time has elapsed from the rotation angle of the engine output shaft or a predetermined rotation angle. Reference numeral 501 denotes a fuel injection process in which various calculations are performed. In the fuel injection process, a process described between 503 and 512 is a part to be particularly added in the present invention. In the process 504, the precharge is controlled to be energized for the period of T_pre updated at the time of the previous fuel injection process, and when the time T_pre elapses, the application of V_boost is started in the process 505. In processes 506 and 507, V_boost monitors whether or not the injector drive control circuit (104) in FIG. 2 has cut off V_boost, and measures the time from the application of V_boost to the cutoff. This means measuring T_peak (200) in FIG. When the application of V_boost is completed, the actual T_peak in the current injection is determined in process 508. This T_peak determination process may be automatically performed using, for example, a function of a timer circuit. The target T_peak determined in advance in the process 509 or separately calculated is compared with the actual T_peak, and if there is no difference or does not exceed a predetermined width, the T_pre is updated without updating the T_pre. In process 512, T_pre for the next injection is determined. If the actual T_peak is larger than the target T_peak in the judgment 509, T_pre is increased by a predetermined amount and an upper limit in a process 511, and a T_pre for the next injection is determined in a process 512. If the actual T_peak is smaller than the target T_peak in the judgment 509, the T_pre is decreased by a predetermined amount and the lower limit as a limit, and in the process 512, the T_pre for the next injection is determined. Processes 505 to 512 are T_peak feedback processes, and this portion may be processed as a function calculation. These processes may be performed inside the injector drive control circuit 104 instead of the CPU 105. Further, when the electromagnetic coil and other physical characteristics change due to deterioration or the like, the above T_peak changes. Therefore, it is possible to detect a defect by referring to the T_peak. Further, if the precharge time T_pre is recorded in the CPU even after the main power supply is cut off, it is possible to control the power supply so that an appropriate T_peak is obtained from the first fuel injection after the power supply is supplied.
[0020]
The present invention actively stabilizes the time from supply of a first power supply voltage (hereinafter, V_boost) to switching to a second power supply voltage (hereinafter, VB) by controlling the above-described pre-current (hereinafter, precharge). It is.
[0021]
ADVANTAGE OF THE INVENTION According to this invention, the electrical required tolerance of an electromagnetic coil or a power supply and a control circuit can be expanded, and also an injector, wiring, and a control circuit can be inexpensive.
[0022]
【The invention's effect】
According to the present invention, the fuel flow rate, the maximum operating fuel pressure, and other characteristics of the injector can be improved without reducing the tolerance of the injector and its drive circuit. In addition, if the characteristics are the same, the tolerance can be increased, so that an inexpensive injector and its driving circuit can be manufactured.
[Brief description of the drawings]
FIG. 1 is a drawing showing an example of an organization to which the present invention can be applied.
FIG. 2 is an example of an injector drive control circuit configuration.
FIG. 3 is a relationship diagram between a current waveform of an injector electromagnetic coil and a control signal.
FIG. 4 is a diagram showing a relationship between precharge and T_peak.
FIG. 5 is a flowchart when the present invention is performed by software.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Injector, 5 ... Fuel pump, 9 ... ECU (engine control unit), 100 ... Low-voltage side upstream transistor, 101 ... High-voltage upstream transistor, 103 ... Downstream side transistor, 104 ... Injector drive control circuit, 105 ... CPU (Central Processing Unit), 200: V_boost supply period (T_peak), 204: precharge current (C_pre), 209: variation of T_peak, 211: maximum current value (C1), 213: first holding current (C2) , 216: second holding current (C3), 403: characteristics of precharge current C_pre and T_peak, 407: characteristics of precharge time T_pre and T_peak, 500 to 502: interruption of fuel injection, 503 to 512: T_pre Update processing flow.

Claims (9)

電源から駆動回路をもって電磁弁を開閉する装置であって、少なくとも2つの電源電圧を持ち、電磁弁に流れる電流の検出手段と、第一の電源電圧から第二の電源電圧に切り替えるための電磁弁電流切替しきい値と、前記検出手段により検出された電流検出値と前記電流切替しきい値の比較手段と、第一の電源電圧で駆動を開始し、電磁弁電流が電流しきい値よりも大きくなった以後に第二の電源電圧に切り替える電源電圧切替手段と、第二の電源電圧に切り替えた後、電磁弁を開放保持する保持電流の制御手段と、第一の電源電圧を与え始めてから、それが終了するまでの時間又は最初の保持電流を開始するまでの間の所定時間を検出する第一電源供給時間検出手段と、電磁弁が完全にまだ応答しない大きさの電流を第一電源電圧を与える前に供給する予電流供給手段と、第一電源供給時間の基準値と前記第一電源供給時間を比較する第一電源供給時間比較手段と、この比較結果に基づいて前記予電流供給時間を調節させる予電流調節手段を持つことを特徴とした内燃機関用電磁弁の駆動装置。Apparatus for opening and closing an electromagnetic valve with a drive circuit from a power supply, having at least two power supply voltages, means for detecting current flowing through the electromagnetic valve, and an electromagnetic valve for switching from a first power supply voltage to a second power supply voltage A current switching threshold, a means for comparing the current detection value detected by the detection means with the current switching threshold, and starting driving with the first power supply voltage, wherein the solenoid valve current is lower than the current threshold. Power supply voltage switching means for switching to the second power supply voltage after the increase, after switching to the second power supply voltage, holding current control means for opening and holding the solenoid valve, after starting to apply the first power supply voltage A first power supply time detecting means for detecting a time until it ends or a predetermined time until the first holding current is started, and a first power supply for supplying a current of a magnitude that the solenoid valve does not completely respond to yet. Give voltage And a first power supply time comparing means for comparing the first power supply time with a reference value of the first power supply time, and adjusting the precurrent supply time based on the comparison result. A drive device for an electromagnetic valve for an internal combustion engine, comprising a pre-current adjusting means. 前記予電流調節は、前記予電流供給時間又は電流値で行うことを特徴とする請求項1記載の電磁弁駆動装置。2. The solenoid valve driving device according to claim 1, wherein the precurrent adjustment is performed based on the precurrent supply time or the current value. 前記第一電源供給時間比較手段と、この比較結果に基づいて第一電源電圧の大きさを調節する請求項1記載の内燃機関用電磁弁の駆動装置。2. The driving apparatus for an electromagnetic valve for an internal combustion engine according to claim 1, wherein the first power supply time comparison means adjusts the magnitude of the first power supply voltage based on a result of the comparison. 第一電源供給停止後から第二電源供給開始までの間に、電磁弁電流を強制的に低減させる手段を有し、前記第一電源供給時間比較手段と、この比較結果に基づいて前記強制的に低減させる電磁弁電流の強制電流低減期間を調節することを特徴とする請求項1記載の内燃機関用電磁弁の駆動装置。Means for forcibly reducing the solenoid valve current during the period from the first power supply stop to the second power supply start, the first power supply time comparing means, and 2. The driving apparatus for an electromagnetic valve for an internal combustion engine according to claim 1, wherein a forced current reduction period of the electromagnetic valve current to be reduced is adjusted. 第二電源電圧供給中に2つ以上の電流値に制御する場合において、片方の電流から他方に切り替える時点を、前記第一電源供給時間比較手段と、この比較結果に基づいて切り替えることを特徴とする請求項1記載の内燃機関用電磁弁の駆動装置。In the case of controlling to two or more current values during the supply of the second power supply voltage, the point of switching from one current to the other is switched based on the first power supply time comparison means and the comparison result. The drive device for an electromagnetic valve for an internal combustion engine according to claim 1. 前記電磁弁は、流体制御用の電磁弁であって、前記第一電源供給時間比較手段と、この比較結果に基づいて流体の圧力を調節する請求項1記載の内燃機関用電磁弁の駆動装置。2. The electromagnetic valve for an internal combustion engine according to claim 1, wherein the solenoid valve is a fluid control solenoid valve, and the first power supply time comparison unit and the pressure of the fluid are adjusted based on the comparison result. . 前記第一電源電圧の大きさは、第一電源供給時間比較手段と、この比較結果に基づいて電圧の大きさを調節することを特徴とする請求項1記載の内燃機関用電磁弁の駆動装置。2. The solenoid valve driving device for an internal combustion engine according to claim 1, wherein the magnitude of the first power supply voltage is adjusted by a first power supply time comparison unit and the magnitude of the voltage based on the comparison result. . 前記電磁弁の異常は、前記第一電源供給時間比較手段と、この比較結果の結果が予め定める所定の相違量よりも大きいまたは小さい場合に電磁弁の異常として検出することを特徴とする請求項1記載の内燃機関用電磁弁の駆動装置。The abnormality of the solenoid valve is detected as the abnormality of the solenoid valve when the first power supply time comparison means and the result of the comparison result are larger or smaller than a predetermined difference. 2. The driving device for an electromagnetic valve for an internal combustion engine according to claim 1. 制御装置の主たる電源を遮断しても値を保持する記憶手段を有し、前記記憶手段に前記第一電源供給時間及び基準値の相違量、又は瞬間的か平均的な第一電源供給時間、を記憶させる請求項1記載の内燃機関用電磁弁の駆動装置。The storage device has a storage unit that retains a value even when the main power supply of the control device is shut off, and the storage unit has a difference between the first power supply time and the reference value, or an instantaneous or average first power supply time, The driving device for an electromagnetic valve for an internal combustion engine according to claim 1, which stores:
JP2003071209A 2003-03-17 2003-03-17 Driving device of solenoid valve for internal combustion engine Withdrawn JP2004278411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071209A JP2004278411A (en) 2003-03-17 2003-03-17 Driving device of solenoid valve for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071209A JP2004278411A (en) 2003-03-17 2003-03-17 Driving device of solenoid valve for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004278411A true JP2004278411A (en) 2004-10-07

Family

ID=33287700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071209A Withdrawn JP2004278411A (en) 2003-03-17 2003-03-17 Driving device of solenoid valve for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004278411A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039918A1 (en) 2007-09-19 2009-03-25 Hitachi Ltd. Fuel injection control apparatus for internal combustion engine
JP2009108686A (en) * 2007-10-26 2009-05-21 Hitachi Ltd Control device for internal combustion engine
JP2010043603A (en) * 2008-08-12 2010-02-25 Hitachi Ltd Fuel injection system for internal combustion engine
WO2013031019A1 (en) * 2011-09-02 2013-03-07 トヨタ自動車株式会社 Fuel supply device for internal combustion engine
WO2016021122A1 (en) * 2014-08-06 2016-02-11 株式会社デンソー Fuel injection control device for internal combustion engine
WO2016051755A1 (en) * 2014-10-03 2016-04-07 株式会社デンソー Control device for internal combustion engine
JP2016205401A (en) * 2016-08-11 2016-12-08 株式会社デンソー Fuel injection control device and fuel injection system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039918A1 (en) 2007-09-19 2009-03-25 Hitachi Ltd. Fuel injection control apparatus for internal combustion engine
JP2009108686A (en) * 2007-10-26 2009-05-21 Hitachi Ltd Control device for internal combustion engine
EP2053225A3 (en) * 2007-10-26 2017-05-03 Hitachi, Ltd. Control unit for internal combustion engine
JP2010043603A (en) * 2008-08-12 2010-02-25 Hitachi Ltd Fuel injection system for internal combustion engine
CN103748353B (en) * 2011-09-02 2016-04-13 丰田自动车株式会社 The fuel supplying device of internal-combustion engine
JPWO2013031019A1 (en) * 2011-09-02 2015-03-23 トヨタ自動車株式会社 Fuel supply device for internal combustion engine
CN103748353A (en) * 2011-09-02 2014-04-23 丰田自动车株式会社 Fuel supply device for internal combustion engine
WO2013031019A1 (en) * 2011-09-02 2013-03-07 トヨタ自動車株式会社 Fuel supply device for internal combustion engine
WO2016021122A1 (en) * 2014-08-06 2016-02-11 株式会社デンソー Fuel injection control device for internal combustion engine
JP2016037870A (en) * 2014-08-06 2016-03-22 株式会社デンソー Fuel injection control device of internal combustion engine
US10197002B2 (en) 2014-08-06 2019-02-05 Denso Corporation Fuel injection control device for internal combustion engine
WO2016051755A1 (en) * 2014-10-03 2016-04-07 株式会社デンソー Control device for internal combustion engine
JP2016075171A (en) * 2014-10-03 2016-05-12 株式会社デンソー Control device of internal combustion engine
JP2016205401A (en) * 2016-08-11 2016-12-08 株式会社デンソー Fuel injection control device and fuel injection system

Similar Documents

Publication Publication Date Title
JP6677792B2 (en) Drive unit for fuel injection device
US6129073A (en) Electromagnetic fuel injector and control method thereof
US6571773B1 (en) Fuel injector and internal combustion engine
US9970376B2 (en) Fuel injection controller and fuel injection system
JP6337098B2 (en) Control device for electromagnetic fuel injection valve
US20180245534A1 (en) Fuel injection controller and fuel injection system
JP6520814B2 (en) Fuel injection control device
JP2010255444A (en) Device and method for fuel injection control of internal combustion engine
JP4550862B2 (en) Improvements in fuel injector control
JP5772788B2 (en) Fuel injection control device and fuel injection system
JP2009074373A (en) Fuel injection controller of internal combustion engine
JP2017201160A (en) Fuel injection control device
JP3505453B2 (en) Fuel injection control device
JP2004278411A (en) Driving device of solenoid valve for internal combustion engine
JP2002227698A (en) Fuel injection valve drive device
US6606978B2 (en) Internal combustion engine fuel injection apparatus and control method thereof
US8091529B2 (en) Regulating method for a volume control
JPH11117795A (en) Method and device for controlling load
WO2016170739A1 (en) Fuel injection control device
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
JP3768723B2 (en) Fuel injection control device
JPH0688545A (en) Method and device for driving electromagnetic load
JP7110736B2 (en) Control device for fuel injection valve and fuel injection system
JPH11141381A (en) Solenoid valve drive circuit
JPH11141382A (en) Solenoid valve drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070326

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070427