JP2004277590A - Base material for microchemical process and method for producing the same - Google Patents

Base material for microchemical process and method for producing the same Download PDF

Info

Publication number
JP2004277590A
JP2004277590A JP2003071769A JP2003071769A JP2004277590A JP 2004277590 A JP2004277590 A JP 2004277590A JP 2003071769 A JP2003071769 A JP 2003071769A JP 2003071769 A JP2003071769 A JP 2003071769A JP 2004277590 A JP2004277590 A JP 2004277590A
Authority
JP
Japan
Prior art keywords
water
polymer gel
substrate
microchemical
organic monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071769A
Other languages
Japanese (ja)
Other versions
JP4255297B2 (en
Inventor
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2003071769A priority Critical patent/JP4255297B2/en
Publication of JP2004277590A publication Critical patent/JP2004277590A/en
Application granted granted Critical
Publication of JP4255297B2 publication Critical patent/JP4255297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base material for a microchemical process, having a fine complicated outer shape, surface ruggedness, inner passages, inner voids or the like, and providing improved functionality and treatability; and to provide a method for producing the base material. <P>SOLUTION: The base material for the microchemical process comprises a polymer gel containing a water-swellable clay mineral, includes the passages in the interior, and/or has the ruggedness on the surface. The base material is produced by pouring an aqueous solution containing a water-soluble organic monomer and the finely dispersed water-swellable clay mineral in a mold, polymerizing the water-soluble organic monomer to provide the polymer gel, and removing the polymer gel from the mold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複雑な流路や微細表面形状などを有するマイクロ化学プロセス用基材及びその製造方法に関する。
【0002】
【従来の技術】
少量の溶液や検体液を用いて反応、培養、分別、精製、吸着、分析などを行ったり、微細パターンを転写したり、微小刺激に応答して駆動したりすることが可能なマイクロ化学プロセスが、迅速性、正確性、低コスト、安全性、環境対応性などの観点から、注目され、種々の目的に対して開発が進められている(例えば、非特許文献1参照)。
近年マイクロ化学プロセスとして、目的によりマイクロリアクター、マイクロアナリシス、バイオチップ、マイクロフィルトレーション、マイクロマシン、リソグラフィーなどの名前で呼ばれるものが含まれるようになってきている。このようなマイクロ化学プロセスのためには、微小で複雑な外形形状を有したり、微少量の液体やガスを流すことができるように設計された微細な流路を有したり、表面に微細な凹凸パターン等を有するマイクロ化学プロセス用基材が必要となっている。
そのようなマイクロ化学プロセス用基材としては、外形形状が目的に応じた形に加工されたものであること、表面に微細凹凸パターンを有するものであること、基材の一部に圧力や歪み、または加温や冷却が加えられるもの、また、例えば、直線部、曲線部、分岐部、拡大部、縮小部などを含む単純または複雑に入り込んだ流路が形成されており、更に流路内またはその近傍に必要に応じて混合器、濾過器、停止弁、流路変更弁、液溜まり、吸着部、加温/冷却部などを有するものであることなどが必要とされる。
一方、高分子ゲルとしては有機高分子の三次元架橋物が水または有機溶媒を含んで膨潤したものであり、ソフトマテリアル(柔軟材料)、振動制御材料、高吸水性材料、薬剤放出制御剤、アクチュエータなどとして、医療・医薬、食品、土木、バイオエンジニアリング、スポーツ関連などの分野で広く応用が検討されている(例えば、非特許文献2参照)。
しかしながら、これまでマイクロ化学プロセス用基材の殆どは、固体状のガラス、金属、またはプラスチックからなるものであり、例えばマイクロリアクターにおいて、温度応答性高分子ゲルの微粒子を弁の一部の材料として用いることなどが検討された例はあっても、高分子ゲルを主材料または主材料の一つとするマイクロ化学プロセス用基材は得られていなかった。これは一つには、高分子ゲルがソフトマテリアルで、一般に脆く、壊れやすいこと、また分岐部や曲線部や拡大部/縮小部などを含む複雑な流路を内部に形成したり、微細な表面凹凸や外形形状を安定して形成することが困難だったためである。また他の部材との接合や埋め込みなどが十分行えない場合もあった。
【非特許文献1】W.Ehrfeld編、「Maicroreaction Technology:Industrial Prospects(IMRET3)」Springer社、Berlin−Heidelberg(2000)
【非特許文献2】「ゲルハンドブック」長田義仁、梶原莞爾編:エヌ・ティー・エヌ株式会社、1997年
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、微細で複雑な外形形状、表面凹凸、内部流路、内部空隙などを有し、機能性及び取り扱い性に優れたマイクロ化学プロセス用基材及びその製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、水溶性有機モノマーを粘土鉱物共存下の水溶液中で重合して得られる高分子ゲルを用いて、微細で複雑な流路、空隙、表面凹凸、外形形状などを有する、優れたマイクロ化学プロセス用基材が調製できることを見出し、本発明を完成するに至った。
即ち、本発明は、水膨潤性粘土鉱物を含有する高分子ゲルからなり、流路を内部に含む、及び/又は表面に凹凸を有することを特徴とするマイクロ化学プロセス用基材に関する。
また、本発明は、前記マイクロ化学プロセス用基材を成形することができる一つまたは複数の鋳型に、水溶性有機モノマーと微分散した水膨潤性粘土鉱物を含む水溶液中を注入し,該水溶性有機モノマーを重合させて高分子ゲルを調製した後,該高分子ゲルを該鋳型から離型することを特徴とするマイクロ化学プロセス用基材の製造方法に関する。
【0005】
【発明の実施の形態】
本発明におけるマイクロ化学プロセス用基材は、水膨潤性粘土鉱物を含有する高分子ゲルを主成分とするもの、好ましくは水膨潤性粘土鉱物と高分子が三次元網目を形成しているものであって、他の成分も含有することができる。
【0006】
なお、水膨潤性粘土鉱物を含有する高分子ゲルと共に用いられる他成分としては、特に限定されず、マイクロ化学プロセス用基材の一部として有効なものが一つまたは複数組み合わせて用いられる。具体的には、例えば、シリカガラスや石英、シリコン、銅、アルミニウム等の金属、チタニアやアルミナなどの金属酸化物、ポリエチレン、ポリプロピレンなどのオレフィン樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル、テトラフルオロエチレンなどのフッ素樹脂、ポリメチルメタクリレートやポリヒドロキシエチルアクリレートなどのアクリル樹脂、ナイロン6やナイロン66などのアミド樹脂、エポキシ樹脂などがあげられる。
【0007】
本発明におけるマイクロ化学プロセス用基材は、好ましくは内部に曲線形状、分岐形状、拡大部及び/又は縮小部を有する形状から選ばれる形状の部分を一つ以上を含む流路、及び/または表面に凹凸を有するものである。これらの形状と共に、直線状の形状からなる流路部分を有するものも使用することができる。特に曲線形状、分岐形状、拡大部及び/又は縮小部を有する形状から選ばれる形状の部分を有したり、外表面に複雑で微細な凹凸を有するマイクロ化学プロセス用基材は、使用される水膨潤性粘土鉱物を含有する高分子ゲルの特性、即ち高い靭性や強度を活用することで製造が可能となる。
【0008】
本発明におけるマイクロ化学プロセス用基材に形成される流路としては、一つの連続する流路からなり、拡大部及び/又は縮小部を有する形状の部分を有する場合には、その拡大部の断面積(a)と最小部の断面積(b)の比(a/b)が好ましくは1.1〜200、より好ましくは1.5〜150、特に好ましくは2〜100、最適には3〜50である。かかる(a/b)の比が上記範囲であれば、流路の形状変化の効果が発揮され易く、且つマイクロ化学プロセス用基材の調製がより容易となる。
また、本発明において上記流路の大きさは、その断面の直径または一片の長さがナノメーターサイズからセンチメーターサイズまで、広い範囲から目的に応じて選択でき、特に限定されないが、好ましくは、1mm以下のマイクロメーターまたはナノメーターレベルである。
【0009】
本発明におけるマイクロ化学プロセス用基材は、その表面に凹凸があるものでも使用することができる。かかる凹凸としては、凹部の深さ/幅の比、または凸部の高さ/幅の比が好ましくは0.1〜30であり、より好ましくは凹部または凸部の幅が0.05ミクロンから50mmの範囲にあり、それらの表面凹凸を一つ以上、好ましくは連続して含むものが通常用いられる。
【0010】
本発明の高分子ゲルは水膨潤性粘土鉱物を含有する高分子ゲルであるが、好ましくは水溶性有機モノマーの重合物と層状に剥離した水膨潤性粘土鉱物からなる高分子ゲルであり、より好ましくは両成分が分子レベルで相互作用することにより水中で三次元網目を形成してなるゲルである.従来の有機架橋剤を用いて三次元網目を形成した高分子ゲルの場合は,強度的に脆いため,鋳型を取り除く際やその後の取り扱いにおいて,高分子ゲルが破壊したり,ゲル表面の構造が壊れ,鋳型の形状や表面凹凸を反映したものにならないことが多い。特に好ましくは、有機架橋剤を用いずに調製された水膨潤性粘土鉱物を含む高分子ゲルである。
【0011】
本発明の高分子ゲルに用いる水溶性有機モノマーとしては、水に溶解する性質を有し、且つ水膨潤性粘土鉱物と相互作用を有するものが好ましく、例えば、かかる粘土鉱物と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましく用いられる。これらの官能基を有する水溶性有機モノマーとしては、具体的には、アミド基、アミノ基、エステル基、水酸基、カルボキシル基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する水溶性有機モノマーが挙げられ、なかでもアミド基やエステル基を有する水溶性有機モノマーが好ましい。なお、本発明で言う水には、水単独以外に、水と混和する有機溶媒をとの混合溶媒で水を主成分とするものが含まれる。
【0012】
上記アミド基を有する水溶性有機モノマーの具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類、が挙げられる。ここでアルキル基としては炭素数が1〜4のものが特に好ましく選択される。またエステル基を有する水溶性有機モノマーの具体例としては、メトキシエチルアクリレート、エトキしエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどがあげられる。
【0013】
かかる水溶性有機モノマー重合物としては、例えば、ポリ(N−メチルアクリルアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(アクリロイルモルフォリン)、ポリ(メタクリルアミド)、ポリ(N−メチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(N,N−ジメチルアミノプロピルアクリルアミド)、ポリ(N−メチル−N−エチルアクリルアミド)、ポリ(N−メチル−N−イソプロピルアクリルアミド)、ポリ(N−メチル−N−n−プロピルアクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−アクリロイルピロリディン)、ポリ(N−アクリロイルピペリディン)、ポリ(N−アクリロイルメチルホモピペラディン)、ポリ(N−アクリロイルメチルピペラディン)、ポリ(アクリルアミド)、ポリ(メトキシエチルアクリレート)、ポリ(エトキしエチルアクリレート)、ポリ(メトキシエチルメタクリレート)、ポリ(エトキシエチルメタクリレート)が例示される。
【0014】
また、水溶性有機モノマー重合物としては、以上のような単一水溶性有機モノマーからの重合物の他、これらから選ばれる複数の異なる水溶性有機モノマーを重合して得られる共重合体を用いることも有効である。また上記水溶性有機モノマーとそれ以外の水溶性有機モノマーまたは有機溶媒可溶性有機モノマーとの共重合体も、得られた重合体が水膨潤性粘土鉱物との複合体を形成する限り使用することができる。
【0015】
本発明における水溶性有機モノマーの重合物は、水溶性や水を吸湿する性質を有する親水性または両親媒性を有するものであり、その内、熱、pHや光に応答する等といった機能性や、生体吸収性を含む生体適合性や生分解性などの特性を有しているものは、用途に応じてより好ましく用いられる。例えば、水溶液中でのポリマー物性(例えば親水性と疎水性)が下限臨界共溶温度(Lower Critical Solution Temperature:LCST)前後のわずかな温度変化により大きく変化する特性を有する水溶性有機モノマー重合物などであり、具体的にはポリ(N−イソプロピルアクリルアミド)やポリ(N,N−ジエチルアクリルアミド)などが挙げられる。また生体適合性に優れたものとしては、ポリ(メトキシエチルアクリレート)やポリ(2−ヒドロキシエチルメタクリレート)などがあげられる.なお,本発明の高分子ゲルには,目的に応じて,色素,タンパク質,糖類,医薬成分,芳香成分などを含ませたり,ゲル界面より放出するようにしておくこともできる.
【0016】
本発明の高分子ゲルに用いる粘土鉱物は、水に膨潤性を有するものであり、好ましくは水によって層間が膨潤する性質を有するものが用いられる。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。
【0017】
本発明の高分子ゲルに用いる溶媒は、水または有機溶剤であるが、それらの混合溶媒であっても良い。また、塩などを含む水溶液も使用可能である。有機溶剤としては、メタノール、エタノール、プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド及びそれらの混合溶媒が挙げられる。
【0018】
本発明での高分子ゲルの生成は,まず、水溶性有機モノマーと水膨潤性粘土鉱物を含む水溶液を鋳型と接触させた後,該水溶性有機モノマーを重合させることで行われる。次いで、生成した高分子ゲルを鋳型から離型することにより、鋳型の形状、即ち内部の流路や表面の凹凸を形成したマイクロ化学プロセス用基材が得られる。また、本発明での高分子ゲルの生成には、水溶性有機モノマーと水膨潤性粘度鉱物を含む水溶液中に一つまたは複数の鋳型を独立または連結した状態で浸し,該水溶性有機モノマーを重合させて高分子ゲルを調製する.次いで、生成した高分子ゲル中から鋳型の一部または全部を取り除くことにより,三次元的に複雑な形状を有するマイクロ化学プロセス用基材を得ることができる。
【0019】
上記高分子ゲルの生成の際の水溶性有機モノマーの重合反応は例えば、過酸化物の存在、加熱または紫外線照射など慣用の方法を用いたラジカル重合により行わせることができる。ラジカル重合開始剤および触媒としては、慣用のラジカル重合開始剤および触媒のうちから適宜選択して用いることができる。好ましくは水に分散性を有し、系全体に均一に含まれるものが用いられる。特に好ましくは層状に剥離した水膨潤性粘土鉱物と強い相互作用を有するカチオン系ラジカル重合開始剤である。具体的には、重合開始剤として水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、和光純薬工業株式会社製のVA−044、V−50、V−501などが好ましく用いられる。その他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤なども用いられる。
【0020】
また触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどが好ましく用いられる。重合温度は、用いる水溶性有機高分子、重合触媒および開始剤の種類などに合わせて0℃〜100℃の範囲に設定する。重合時間も触媒、開始剤、重合温度、重合溶液量(厚み)などの重合条件によって異なり、一概に規定できないが、一般に数十秒〜十数時間の間で行う。
【0021】
本発明における高分子ゲルを構成する水溶性有機モノマーの重合物と水膨潤性粘土鉱物との割合は、該重合物と該粘土鉱物とからなるゲル構造体が調製されば良く、また用いる水溶性有機モノマーや該粘土鉱物の種類によっても異なり、必ずしも限定されるものではないが、ゲル合成が容易であることや均一性に優れることなどから、高分子ゲルを構成する固形分の1〜90質量%が水膨潤性粘土鉱物であることが好ましく,より好ましくは3〜70質量%,特に好ましくは10〜50質量%である.かかる量が上記範囲であれば、容易に微細または複雑形状のものが得られ易く、高分子ゲルの調製も容易で、また得られる高分子ゲルも物性により優れている。
【0022】
また本発明における高分子ゲルの含水率は、広い範囲で設定でき、具体的には、水溶性有機モノマーの重合時には30〜99質量%が好ましく、より好ましくは40〜95質量%,特に好ましくは50〜90質量%である.しかし,本発明においては,高分子ゲルを調製後,乾燥することによって低水含有率の高分子ゲルとすることもでき,具体的には高分子ゲルの含水率としては0〜99質量%の範囲を取り得る。
【0023】
本発明のマイクロ化学プロセス用基材を製造するために用いる鋳型としては、球や棒,立方体や楕円形,星形やくさび形などの基本的な形を始めとして,目的とする様々な形状を有するもの,更に表面凹凸を有するものが選択して使用できる。鋳型形状としては、例えば,ミリメーターからナノメーターレベルの大きさの微粒子,ら旋形態を有する細線,異なった大きさを部分的に含む棒,種々の突起部を有する直方体など、更にそれらの形の組合わさった複雑形状があげられる。また鋳型の表面についても,凹凸のない平滑な面から微細な凹凸を有するもの,単一凹凸から繰り返しパターンの凹凸を有するもの、単純な溝状やくぼみ状の凹凸から複雑な凹凸を有するものまで多種多様なものが使用できる.例えば、凹部または凸部の幅が0.05ミクロン〜50mmの範囲にある表面凹凸を含む鋳型は好ましく用いられる。かかる鋳型の形状や表面凹凸の形成には,機械的切削加工、リソグラフィー技術,分子の自己組織化技術,天然物の形態利用など,多くの技術の中から選択して用いられる.これらの鋳型と接触して調製されて得られるマイクロ化学プロセス用基材は,その形状及び表面凹凸が鋳型のそれをほぼ完全に反映した形及び表面凹凸を示す特徴を有する。
【0024】
本発明で用いる鋳型は,鋳型の全面または特定面と反応前の水溶液を接触させる他,反応前の水溶液中に一つまたは複数の鋳型を含ませた状態で用いることができる.水溶液中に複数の鋳型を含ませた状態で用いる場合は,個々の鋳型を独立して配置する場合と,連結して配置する場合が目的に応じて選択出来る.複数の鋳型の連結法としては単純な接触,ねじ式や押し込みなどによる結合,型合わせによる方法など公知慣用の方法から任意に選択される.これらの鋳型を取り外す場合は,組み立てた時の逆の順で順次取り外すことができる.
【0025】
本発明で用いる鋳型の材質は有機材料及び無機材料の中から目的に応じて選択でき特に限定されない.有機材料としては,例えば,天然または合成の有機高分子,結晶または非晶質の有機低分子,有機液体または有機ゲルなどがあげられる.無機材料としては,例えば,各種金属,金属酸化物,炭素材料,無機塩などがあげられる.鋳型の材質としては,水に全く溶解しないか,溶解するものでも特定条件では溶解しがたいものであることが必要である.
【0026】
本発明における鋳型は,高分子ゲルを調製後,少なくともその一部を取り除くことが必要である.高分子ゲルから鋳型を取り除く方法としては,鋳型を剥離したり,一方向に引き抜いて取り除く方法,鋳型を溶解させたり,分解したりして取り除く方法,鋳型を収縮,変形させたりしてから取り除く方法などが有効に用いられる.ここで鋳型の溶解や分解は,高分子ゲルを水と混和性のある有機溶媒に浸漬したり,pHを変えたり,加熱したり,特定波長の光や超音波を照射したりする方法があげられる.本発明においては,高分子ゲルが伸縮性に富んだ高強度ゲルであるため,例えば,表面に深い凹凸を有する鋳型の場合でも,また途中で膨んだ形を有する異型棒状鋳型の場合でも,ゲルが破壊されることがなく、鋳型の剥離や引き抜きが行える特徴を有する。
【0027】
このようにして,一つまたは複数の鋳型を水溶液と接触させたり、水溶液中に含ませてから高分子ゲルを合成し,次いでそれらの鋳型の少なくとも一部を取り除く方法により,鋳型形状及び表面凹凸を微細な部分まで写し出したマイクロ化学プロセス用基材や、直線や曲線部さらには溜まり部からなる流路(液体やガスが流れることの出来る空隙の通路)を有するマイクロ化学プロセス用基材が得られ、更に複数の鋳型を組み合わせて用いた場合は,分岐を有する三次元的に複雑な流路を有するマイクロ化学プロセス用基材の製造が可能となる.また本発明において、以上のようにして高分子ゲルを製造した後、その溶媒(水または水と有機溶剤との混合溶媒)を有機溶剤と置換する方法により、有機溶剤を溶媒とする高分子ゲルとすることが可能である。ここで溶媒置換方法としては、多量の有機溶剤に浸漬して溶媒交換を行う方法や、一端、製造した高分子ゲルを乾燥して、有機溶剤に浸漬する方法が用いられる。
【0028】
本発明におけるマイクロ化学プロセス用基材は、慣用の方法で乾燥し、一部または全部の溶媒を除去することにより,溶媒濃度の低いものや乾燥したものとすることができる。また乾燥したものを、水または有機溶剤などの溶媒に浸漬することにより、内部流路や表面凹凸を有するマイクロ化学プロセス用基材に再生することができる。この際、有機溶剤を含むマイクロ化学プロセス用基材は、水中で高分子ゲルを生成した後、多量の有機溶剤中に浸漬する溶媒交換法によっても製造することができる。
【0029】
而して、マイクロ化学プロセス用基材は、微細で複雑な外形形状、表面凹凸、内部流路、内部空隙などを有し、機能性及び取り扱い性に優れていることにより、前記するようなマイクロ化学プロセス、即ちマイクロリアクター、マイクロアナリシス、バイオチップ、マイクロフィルトレーション、マイクロマシン、リソグラフィーなどに有用なものである。
【0030】
【実施例】
次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。
【0031】
(実施例1及び2)
粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na0.66 の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、日本シリカ株式会社製)を用いた。水溶性有機モノマーとして、N−イソプロピルアクリルアミド(NIPA:興人株式会社製)をトルエンとヘキサンの混合溶媒を用いて再結晶し無色針状結晶に精製してから用いた。
重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)をKPS/水=0.192/10(g/g)の割合で純水で希釈し、水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA:関東化学株式会社製)をそのまま使用した。水はイオン交換水を蒸留した純水を用いた。水は全て高純度窒素を用いて含有酸素を除去してから使用した。純水18.96gを入れたガラス容器に攪拌しながら0.662gのラポナイトXLGを加え、これにNIPA2.0gを撹拌しながら添加し、次いで氷浴にてTMEDA16μlとKPS水溶液1.06gを攪拌して加えて無色透明水溶液を得た。得られた水溶液をライン幅120ミクロン,深さ50ミクロン(深さ/幅の比が0.42)ののこぎり刃状パターンが5列形成されたガラス(実施例1)、ライン幅2ミクロン、深さ10ミクロン(深さ/幅の比が3)の直方体状パターンがライン間隔5ミクロンで5列形成されたシリコンウェハ(実施例2)を鋳型として含む基板上に厚みが1mmとなるように流延し,20℃で15時間重合を行った.鋳型から高分子ゲルを剥離して,厚み1mmの高分子ゲルシートを得た.高分子ゲル中の含水率(高分子ゲルに含まれる水の質量分率)は88質量%であり,高分子ゲルに含まれる固形分中の粘度鉱物は24.9質量%であった.得られた高分子ゲルの鋳型と接触した微細形状を走査型レーザー顕微鏡(レーザーテック(株)製1LM15W)を用いて調べた.その結果,ガラス及びシリコンウエハ鋳型のライン幅、形状に対応した凹凸パターンが形成されているのが観測され、高分子ゲルを素材とするマイクロ化学プロセス用基材が得られた。得られたマイクロ化学プロセス用基材はいずれも均一で透明性を有すると共に、例えば、50%の圧縮変形、100%の延伸変形を行っても変形で壊れることはなく、可逆的に元の形状に戻ることが確認された。また、表面に50℃の水を接触させることで、表面が親水性から疎水性に変化することが確認された。
【0032】
(実施例3)
水溶性有機モノマーとして、N,N−ジメチルアクリルアミド(DMAA:和光純薬工業株式会社)を5.28g用いること、及び、無機粘土を0.397g用いることを除くと、実施例1と同様にして重合前の無色透明水溶液を得た。上表面に一片40ミクロン,高さ640ミクロン(高さ/幅の比が16)を隙間間隔で400ミクロンで碁盤の目のように配置したアルミ製鋳型(全体は一片が15mmの正方形)鋳型の上に水溶液を厚み3mmに流延した後,20℃で15時間重合を行った.鋳型から高分子ゲルを剥離し,厚み3mmのシート状高分子ゲルを得た.高分子ゲルの含水率は,78質量%,高分子ゲルの固形分中の粘度鉱物の質量比率は7.0質量%であった.得られた高分子ゲルをマルチヴュアーシステム(キーエンス社製VH5910)を用いて観察した結果,一片が40ミクロン、深さが640ミクロンの規則正しい凹部が調製出来ているのが観測され、高分子ゲルを素材とするマイクロ化学プロセス用基材が得られた。得られたマイクロ化学プロセス用基材は均一で透明性を有すると共に、例えば、50%の圧縮変形、200%の延伸変形を行っても変形で壊れることはなく、可逆的に元の形状に戻ることが確認された。また、50℃の水と接触させても、表面が疎水性となることは無く、親水性を示した。
【0033】
(実施例4)
図1に示した異型形状のアルミ製棒鋳型(表面は平滑)(拡大部の断面積aと最小部の断面積bとの比(a/b)が25)4本を上下方向に向けて一定間隔で保持した一辺50mm、高さ60mmの容器に実施例1と同様にして調製した水溶液を入れた後20℃で15時間保持し,重合を行った.その後,容器から高分子ゲルを取り出し,また棒鋳型を上方向にゆっくりと引き抜いた.得られた高分子ゲルは,棒鋳型の取り外し中に変形はするが破壊することなく,取り外し後に棒鋳型と同じ形状及び表面平滑性を有する空隙(流路)を有する高分子ゲルを素材とするマイクロ化学プロセス用基材が得られた.得られたマイクロ化学プロセス用基材は均一で透明性を有すると共に、例えば、50%の圧縮変形、300%の延伸変形を行っても変形で壊れることはなく、可逆的に元の形状に戻ることが確認された。また、流路に50℃と20℃の水を交互に流通させることで、流路内壁面が疎水性と親水性に交互に変化することが確認された。
【0034】
(実施例5)
細部の直径が0.9mmである以外は図1と同様な異型形状のアルミ製棒鋳型(表面は平滑)(最小部の断面積aと拡大部の断面積bとの比(b/a)が123)を用いること、実施例3と同様にして調製した水溶液を用いること以外は実施例4と同様にして高分子ゲルの製造を行った。その後,容器から高分子ゲルを取り出し,また棒鋳型を上方向にゆっくりと引き抜いた.得られた高分子ゲルは,棒鋳型の取り外し中に変形はするが破壊することなく,取り外し後に棒鋳型と同じ形状及び表面平滑性を有する空隙(流路)を有する高分子ゲルを素材とするマイクロ化学プロセス用基材が得られた.得られたマイクロ化学プロセス用基材は均一で透明性を有すると共に、例えば、50%の圧縮変形、300%の延伸変形を行っても変形で壊れることはなく、可逆的に元の形状に戻ることが確認された。また、流路にメチレンブルーを含む水溶液を流通させた場合、流路の壁面においてメチレンブルーが吸着されていくのが観測された。
【0035】
(実施例6)
図2に示すような形状の,アルミ製の棒(直径2mm及び最大部直径9mm)及び中空Y字型(内径1mm:端は連結する棒で蓋をされている)の組み合わせからなる鋳型を含む一辺60mmの容器を用いる以外は,実施例4と同様にして高分子ゲルの製造を行った.鋳型を含む容器に水溶液を入れ,20℃で15時間保持し,重合を行った後,鋳型を構成する棒をその長さ方向に引き抜き,Y字型の中空鋳型を除く全ての鋳型を取り除いた。鋳型の取り外し中に変形はするが破壊することなく、取り外し後に、中央にアルミの中空流路を持ち、且つそれと連結した三次元の空隙流路を持つ高分子ゲルを素材とするマイクロ化学プロセス用基材が得られた。得られたマイクロ化学プロセス用基材は均一で透明性を有すると共に、例えば、50%の圧縮変形、300%の延伸変形を行っても変形で壊れることはなく、可逆的に元の形状に戻ることが確認された。また、流路の上部(A,B)からそれぞれ異なる液(ヘキサンとヘプタン)を流すことによって、それらが流路内で混合され、混合液が流路の下部(C,D)に排出されるのが観測された。
【0036】
(比較例1)
実施例1と同様にして調製した水溶液を,厚み5mmのガラス板の間に流し込み,20℃で15時間保持して,厚み5mmの高分子ゲルを得た.これの表面をカッターナイフなどを用いて,実施例3で得られた高分子ゲルと同様な形状になるように切削を試みたが,実施例3の高分子ゲルと同様な形状を有するものは得られず、目的とするマイクロ化学プロセス用基材は得られなかった。
【0037】
(比較例2)
粘土鉱物を用いずに、有機架橋剤であるN,N’−メチレンビスアクリルアミド(関東化学株式会社製)を水溶性有機モノマー(DMAA)の1モル%用いること以外は、実施例4と同様にして、高分子ゲルを製造した。得られた高分子ゲルから鋳型を引き抜くとき、ゲルが破壊し、鋳型の形状を反映した流路を持つゲルは得られず、マイクロ化学プロセス用基材として用いることは出来なかった。
【0038】
【発明の効果】
本発明により得られるマイクロ化学プロセス用基材は、三次元的な複雑な微流路、微細な表面凹凸や形状を有すると共に、取り扱い性や耐機械的変形性(対圧縮性や延伸性)また透明性などに優れる特徴を有する。その他、例えば流通液の温度を変化させることで、流路の面の性質を親水性から疎水性に可逆的に変化させることができたり、流通液中に含まれる特定の(例えば、カチオン性の)溶質を壁面から基材に吸着し除去することができる。
また、本発明におけるマイクロ化学プロセス用基材は、微小な反応液を用いた反応実験システムや化学または生化学分析システムにおいて、また微小溶液の精製、吸着、分別システムにおいて用いられる。また、微細な表面凹凸を有するものや内部に精密な形状の空洞や異成分を含有したものは、ミクロ加工に適したソフトリソグラフィー材料としてやミクロンレベルでの形状制御された組織培養基材として、また微小刺激に応答して駆動するマイクロマシン部材や微小振動制御部材など、多様なマイクロ化学プロセス用基材として用いることができる。
【図面の簡単な説明】
【図1】実施例4で用いたアルミ製棒鋳型を示す図である。
【図2】実施例6で用いたアルミ製棒鋳型を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate for a microchemical process having a complicated channel, a fine surface shape, and the like, and a method for producing the same.
[0002]
[Prior art]
A microchemical process that can react, culture, sort, purify, adsorb, analyze, etc. using a small amount of solution or sample solution, transfer fine patterns, or drive in response to microstimulation From the viewpoints of speed, accuracy, low cost, safety, environmental compatibility, and the like, attention has been paid to the development of various purposes (see, for example, Non-Patent Document 1).
In recent years, microchemical processes have come to include those called by their names, such as microreactors, microanalysis, biochips, microfiltration, micromachines, and lithography, depending on the purpose. For such a microchemical process, it has a small and complicated external shape, has a fine flow path designed to allow a small amount of liquid or gas to flow, and has a fine surface There is a need for a substrate for a microchemical process having a fine uneven pattern or the like.
As such a substrate for microchemical processing, the external shape must be processed into a shape according to the purpose, it must have a fine uneven pattern on the surface, and pressure and strain may be applied to a part of the substrate. Or, to which heating or cooling is applied, or, for example, a straight or complicated channel including a straight portion, a curved portion, a branch portion, an enlarged portion, a reduced portion, etc. Alternatively, it is necessary to have a mixer, a filter, a stop valve, a flow path changing valve, a liquid reservoir, an adsorption unit, a heating / cooling unit, and the like in the vicinity thereof as necessary.
On the other hand, a polymer gel is a three-dimensional cross-linked product of an organic polymer swollen with water or an organic solvent, and is made of a soft material (flexible material), a vibration control material, a super absorbent material, a drug release control agent, Applications such as actuators and the like have been widely studied in fields such as medical / medicine, food, civil engineering, bioengineering, and sports (for example, see Non-Patent Document 2).
However, most of the substrates for microchemical processes have so far been made of solid glass, metal, or plastic. For example, in a microreactor, fine particles of a temperature-responsive polymer gel are used as a part of the valve material. Although there was an example in which use was considered, a base material for a microchemical process using a polymer gel as a main material or one of the main materials has not been obtained. One of the reasons is that the polymer gel is a soft material, which is generally brittle and fragile. In addition, complicated flow paths including branches, curves, enlarged / reduced parts, etc. This is because it was difficult to stably form surface irregularities and external shapes. In some cases, bonding or embedding with other members cannot be performed sufficiently.
[Non-Patent Document 1] Edited by Ehrfeld, "Microreaction Technology: Industrial Products (IMRET3)", Springer, Berlin-Heidelberg (2000).
[Non-Patent Document 2] "Gel Handbook", edited by Yoshihito Nagata and Kanji Kajiwara: NTTN Corporation, 1997
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a microchemical process substrate having a fine and complicated external shape, surface irregularities, internal flow paths, internal voids and the like, and having excellent functionality and handleability, and a method for producing the same. To provide.
[0004]
[Means for Solving the Problems]
The present inventors have worked diligently to solve the above problem, and as a result, using a polymer gel obtained by polymerizing a water-soluble organic monomer in an aqueous solution in the presence of a clay mineral, a fine and complicated flow path It has been found that an excellent substrate for a microchemical process having voids, surface irregularities, external shape, and the like can be prepared, and the present invention has been completed.
That is, the present invention relates to a substrate for a microchemical process, comprising a polymer gel containing a water-swellable clay mineral, including a flow channel inside, and / or having irregularities on the surface.
The present invention also provides a method for injecting an aqueous solution containing a water-soluble organic monomer and a finely dispersed water-swellable clay mineral into one or a plurality of molds capable of molding the substrate for microchemical processing. The present invention relates to a method for producing a substrate for a microchemical process, comprising releasing a polymer gel from a template after polymerizing a reactive organic monomer to prepare a polymer gel.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The substrate for a microchemical process in the present invention is mainly composed of a polymer gel containing a water-swellable clay mineral, and is preferably one in which a water-swellable clay mineral and a polymer form a three-dimensional network. Thus, other components can also be included.
[0006]
The other components used together with the polymer gel containing the water-swellable clay mineral are not particularly limited, and one or a combination of those effective as a part of the substrate for the microchemical process is used. Specifically, for example, silica glass and quartz, silicon, copper, metals such as aluminum, metal oxides such as titania and alumina, olefin resins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, tetrafluoro Examples include fluorine resins such as ethylene, acrylic resins such as polymethyl methacrylate and polyhydroxyethyl acrylate, amide resins such as nylon 6 and nylon 66, and epoxy resins.
[0007]
The substrate for a microchemical process in the present invention preferably has a flow path including at least one portion having a shape selected from a curved shape, a branched shape, a shape having an enlarged portion and / or a reduced portion, and / or a surface. Having irregularities. Along with these shapes, those having a flow path portion having a linear shape can also be used. In particular, a substrate for a microchemical process having a portion having a shape selected from a curved shape, a branched shape, a shape having an enlarged portion and / or a reduced portion, or having a complex and fine unevenness on the outer surface is used water. Production can be made by utilizing the properties of the polymer gel containing the swellable clay mineral, that is, high toughness and strength.
[0008]
The channel formed in the substrate for microchemical process in the present invention is composed of one continuous channel, and when there is a portion having a shape having an enlarged portion and / or a reduced portion, disconnection of the enlarged portion. The ratio (a / b) of the area (a) to the cross-sectional area (b) of the minimum part is preferably 1.1 to 200, more preferably 1.5 to 150, particularly preferably 2 to 100, and most preferably 3 to 100. 50. When the ratio of (a / b) is in the above range, the effect of changing the shape of the flow channel is easily exerted, and the preparation of the substrate for a microchemical process becomes easier.
In the present invention, the size of the flow channel, the diameter of the cross section or the length of one piece from nanometer size to centimeter size, can be selected according to the purpose from a wide range, is not particularly limited, preferably, Micrometer or nanometer level of 1 mm or less.
[0009]
The substrate for a microchemical process in the present invention can be used even if its surface has irregularities. As such unevenness, the ratio of the depth / width of the concave portion or the ratio of the height / width of the convex portion is preferably 0.1 to 30, and more preferably the width of the concave portion or the convex portion is from 0.05 μm. Those having a range of 50 mm and containing one or more, preferably continuous, surface irregularities are usually used.
[0010]
The polymer gel of the present invention is a polymer gel containing a water-swellable clay mineral, and is preferably a polymer gel composed of a polymer of a water-soluble organic monomer and a water-swellable clay mineral that has been exfoliated in a layer, and Preferred is a gel formed by forming a three-dimensional network in water by interaction of both components at the molecular level. In the case of a polymer gel in which a three-dimensional network is formed using a conventional organic cross-linking agent, the polymer gel is fragile in strength, so that the polymer gel is broken or the structure of the gel surface is damaged when removing the mold or in subsequent handling. It often breaks and does not reflect the mold shape or surface irregularities. Particularly preferred is a polymer gel containing a water-swellable clay mineral prepared without using an organic crosslinking agent.
[0011]
As the water-soluble organic monomer used for the polymer gel of the present invention, those having the property of dissolving in water and having an interaction with a water-swellable clay mineral are preferable. Those having a functional group capable of forming a coordination bond, a covalent bond, or the like are preferably used. Specific examples of the water-soluble organic monomer having these functional groups include a water-soluble organic monomer having an amide group, an amino group, an ester group, a hydroxyl group, a carboxyl group, a tetramethylammonium group, a silanol group, and an epoxy group. Among them, a water-soluble organic monomer having an amide group or an ester group is preferable. In addition, the water referred to in the present invention includes not only water alone but also a mixture of an organic solvent miscible with water and water as a main component.
[0012]
Specific examples of the water-soluble organic monomer having an amide group include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, acrylamide, N-alkylmethacrylamide, N, N-dialkylmethacrylamide, and methacryl. And methacrylamides such as amides. Here, an alkyl group having 1 to 4 carbon atoms is particularly preferably selected. Specific examples of the water-soluble organic monomer having an ester group include methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, and ethoxyethyl methacrylate.
[0013]
Examples of such a water-soluble organic monomer polymer include poly (N-methylacrylamide), poly (N-ethylacrylamide), poly (N-cyclopropylacrylamide), poly (N-isopropylacrylamide), and poly (acryloylmorpholine). ), Poly (methacrylamide), poly (N-methylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-dimethylaminopropylacrylamide), poly (N-methyl-N-ethylacrylamide), poly (N-methyl-N-isopropylacrylamide), poly (N-methyl-Nn-propylacrylamide), poly (N, N-diethylacrylamide), (N-acryloylpyrrolidin), poly (N-acryloylpiperidin), poly (N-acryloylmethylhomopiperadin), poly (N-acryloylmethylpiperadin), poly (acrylamide), poly (methoxyethyl acrylate) , Poly (ethoxyethyl acrylate), poly (methoxyethyl methacrylate), and poly (ethoxyethyl methacrylate).
[0014]
In addition, as the water-soluble organic monomer polymer, in addition to the polymer from the single water-soluble organic monomer as described above, a copolymer obtained by polymerizing a plurality of different water-soluble organic monomers selected from these is used. It is also effective. Further, a copolymer of the above water-soluble organic monomer and another water-soluble organic monomer or an organic solvent-soluble organic monomer may be used as long as the obtained polymer forms a complex with a water-swellable clay mineral. it can.
[0015]
The polymer of the water-soluble organic monomer in the present invention has hydrophilicity or amphipathic property having water-solubility or water-absorbing property, and among them, functions such as responding to heat, pH and light, and the like. Those having characteristics such as biocompatibility including bioabsorbability and biodegradability are more preferably used depending on applications. For example, a water-soluble organic monomer polymer having the property that the polymer physical properties (for example, hydrophilicity and hydrophobicity) in an aqueous solution are largely changed by a slight temperature change around a lower critical solution temperature (LCST). And specific examples thereof include poly (N-isopropylacrylamide) and poly (N, N-diethylacrylamide). Examples of materials having excellent biocompatibility include poly (methoxyethyl acrylate) and poly (2-hydroxyethyl methacrylate). The polymer gel of the present invention may contain a dye, a protein, a saccharide, a pharmaceutical component, an aromatic component, or the like, or may be released from the gel interface, depending on the purpose.
[0016]
The clay mineral used in the polymer gel of the present invention has water swelling properties, and preferably has the property of swelling between layers with water. More preferably, at least a part of the layered clay mineral can be exfoliated and dispersed in water, and particularly preferably, a layered clay mineral which can be exfoliated and uniformly dispersed in water in a layer having a thickness of 1 to 10 layers or less. For example, water-swellable smectite and water-swellable mica are used, and more specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, and the like. Is mentioned.
[0017]
The solvent used for the polymer gel of the present invention is water or an organic solvent, but may be a mixed solvent thereof. Further, an aqueous solution containing a salt or the like can also be used. Examples of the organic solvent include methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylacetamide, dimethylformamide, dimethylsulfoxide, and a mixed solvent thereof.
[0018]
In the present invention, the polymer gel is formed by first bringing an aqueous solution containing a water-soluble organic monomer and a water-swellable clay mineral into contact with a template, and then polymerizing the water-soluble organic monomer. Next, the resulting polymer gel is released from the mold to obtain a substrate for a microchemical process in which the shape of the mold, that is, the inner flow path and the surface irregularities are formed. In addition, in order to form a polymer gel in the present invention, one or a plurality of templates are immersed in an aqueous solution containing a water-soluble organic monomer and a water-swellable viscosity mineral in an independent or connected state, and the water-soluble organic monomer is Polymer gel is prepared by polymerization. Next, by removing a part or all of the template from the generated polymer gel, a substrate for a microchemical process having a three-dimensionally complicated shape can be obtained.
[0019]
The polymerization reaction of the water-soluble organic monomer at the time of the formation of the polymer gel can be performed, for example, by radical polymerization using a conventional method such as the presence of a peroxide, heating or irradiation with ultraviolet rays. The radical polymerization initiator and the catalyst can be appropriately selected from conventional radical polymerization initiators and catalysts. Preferably, those having dispersibility in water and uniformly contained in the whole system are used. Particularly preferred is a cationic radical polymerization initiator having a strong interaction with the water-swellable clay mineral exfoliated in layers. Specifically, a water-soluble peroxide such as potassium peroxodisulfate or ammonium peroxodisulfate as a polymerization initiator, a water-soluble azo compound, for example, VA-044, V-50 manufactured by Wako Pure Chemical Industries, Ltd. V-501 and the like are preferably used. In addition, a water-soluble radical initiator having a polyethylene oxide chain is also used.
[0020]
As the catalyst, tertiary amine compounds such as N, N, N ', N'-tetramethylethylenediamine and β-dimethylaminopropionitrile are preferably used. The polymerization temperature is set in the range of 0 ° C. to 100 ° C. in accordance with the type of the water-soluble organic polymer used, the polymerization catalyst and the initiator. The polymerization time also varies depending on the polymerization conditions such as the catalyst, initiator, polymerization temperature, and amount (thickness) of the polymerization solution, and cannot be specified unconditionally.
[0021]
The ratio of the polymer of the water-soluble organic monomer and the water-swellable clay mineral constituting the polymer gel in the present invention may be such that a gel structure composed of the polymer and the clay mineral is prepared, and the water-soluble It varies depending on the type of the organic monomer and the clay mineral, and is not necessarily limited. However, since the gel synthesis is easy and the uniformity is excellent, the solid content of the polymer gel is 1 to 90 mass%. % Is preferably a water-swellable clay mineral, more preferably 3 to 70% by mass, and particularly preferably 10 to 50% by mass. When the amount is within the above range, a fine or complex shape can be easily obtained, the preparation of the polymer gel is easy, and the obtained polymer gel has excellent physical properties.
[0022]
Further, the water content of the polymer gel in the present invention can be set in a wide range, and specifically, it is preferably 30 to 99% by mass, more preferably 40 to 95% by mass, particularly preferably at the time of polymerization of the water-soluble organic monomer. 50 to 90% by mass. However, in the present invention, a polymer gel having a low water content can be obtained by drying after preparing the polymer gel. Specifically, the polymer gel has a water content of 0 to 99% by mass. Can range.
[0023]
The mold used to manufacture the substrate for microchemical processes of the present invention has various desired shapes including basic shapes such as spheres, rods, cubes, ellipses, stars and wedges. And those having surface irregularities can be selected and used. Examples of the template shape include fine particles having a size of millimeter to nanometer level, a fine wire having a spiral shape, a rod partially including different sizes, a rectangular parallelepiped having various projections, and the like. Complex shapes combined with In addition, the surface of the mold, from a smooth surface with no irregularities to fine irregularities, from a single irregularity to a pattern with irregularities in a repeated pattern, from a simple groove or depression to a complex irregularity A wide variety can be used. For example, a mold having surface irregularities in which the width of the concave portion or the convex portion is in the range of 0.05 micron to 50 mm is preferably used. For the formation of such a mold shape and surface irregularities, a mechanical cutting process, a lithography technology, a molecular self-organization technology, a morphological utilization of a natural product, and the like are selected and used. The substrate for a microchemical process obtained by contacting these molds has the characteristic that the shape and the surface irregularities almost completely reflect those of the mold and the surface irregularities.
[0024]
The template used in the present invention can be used in a state in which one or more templates are included in the aqueous solution before the reaction, in addition to bringing the entire surface or a specific surface of the template into contact with the aqueous solution before the reaction. When using multiple templates in an aqueous solution, it is possible to select the individual templates according to the purpose, or to arrange them individually. The method of connecting a plurality of molds is arbitrarily selected from known and commonly used methods such as a simple contact, a connection by screwing or pushing, a method of matching a mold, and the like. When removing these molds, they can be sequentially removed in the reverse order of assembly.
[0025]
The material of the mold used in the present invention can be selected from organic materials and inorganic materials according to the purpose, and is not particularly limited. Examples of the organic material include natural or synthetic organic polymers, crystalline or amorphous low-molecular organic compounds, organic liquids and organic gels. Examples of the inorganic material include various metals, metal oxides, carbon materials, and inorganic salts. The material of the template must be completely insoluble in water or difficult to dissolve under specific conditions.
[0026]
In the present invention, it is necessary to remove at least a part of the template after preparing the polymer gel. Methods for removing the mold from the polymer gel include removing the mold by removing it in one direction, dissolving or disassembling the mold, removing the mold, shrinking or deforming the mold before removing The method is used effectively. Here, the dissolution and decomposition of the template include immersing the polymer gel in an organic solvent miscible with water, changing the pH, heating, and irradiating light or ultrasonic waves with a specific wavelength. It is possible. In the present invention, since the polymer gel is a high-strength gel with high elasticity, for example, even in the case of a mold having deep irregularities on the surface, or in the case of a deformed rod-shaped mold having a bulging shape in the middle, It has the feature that the mold can be peeled or pulled out without breaking the gel.
[0027]
In this way, one or more molds are brought into contact with or contained in an aqueous solution, a polymer gel is synthesized, and then at least a part of those molds is removed. For microchemical processing, which has a microscopic part of the surface, and a substrate for microchemical processing, which has a flow path consisting of straight lines, curved parts, and pools (passages of voids through which liquids and gases can flow). In addition, when a plurality of molds are used in combination, it is possible to manufacture a base material for a microchemical process having a three-dimensionally complicated flow path having branches. Further, in the present invention, a polymer gel using an organic solvent as a solvent is prepared by replacing the solvent (water or a mixed solvent of water and an organic solvent) with an organic solvent after producing the polymer gel as described above. It is possible to Here, as the solvent replacement method, a method of immersing in a large amount of an organic solvent to perform solvent exchange, or a method of drying the produced polymer gel at one end and immersing it in an organic solvent is used.
[0028]
The substrate for a microchemical process in the present invention can be made to have a low solvent concentration or to be dried by drying by a conventional method and removing a part or all of the solvent. By immersing the dried product in a solvent such as water or an organic solvent, it can be regenerated into a substrate for microchemical processes having internal channels and surface irregularities. At this time, the substrate for a microchemical process containing an organic solvent can also be produced by a solvent exchange method in which a polymer gel is formed in water and then immersed in a large amount of an organic solvent.
[0029]
Thus, the microchemical process substrate has a fine and complicated external shape, surface irregularities, internal flow paths, internal voids, etc., and is excellent in functionality and handleability. It is useful for chemical processes, ie microreactors, microanalysis, biochips, microfiltration, micromachines, lithography and the like.
[0030]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples described below.
[0031]
(Examples 1 and 2)
Clay minerals include [Mg5.34Li0.66Si8O20(OH)4] Na0.66 +Water-swellable synthetic hectorite (trade name: Laponite XLG, manufactured by Nippon Silica Co., Ltd.) having the following composition: As a water-soluble organic monomer, N-isopropylacrylamide (NIPA: manufactured by Kojin Co., Ltd.) was recrystallized using a mixed solvent of toluene and hexane to be purified into colorless needle crystals before use.
As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Ltd.) was diluted with pure water at a ratio of KPS / water = 0.192 / 10 (g / g) and used as an aqueous solution. As the catalyst, N, N, N ', N'-tetramethylethylenediamine (TMEDA: manufactured by Kanto Chemical Co., Ltd.) was used as it was. As the water, pure water obtained by distilling ion-exchanged water was used. All water was used after removing the contained oxygen using high-purity nitrogen. 0.662 g of Laponite XLG was added to a glass container containing 18.96 g of pure water with stirring, and 2.0 g of NIPA was added thereto with stirring, and then 16 μl of TMEDA and 1.06 g of KPS aqueous solution were stirred in an ice bath. The mixture was added to obtain a colorless transparent aqueous solution. The obtained aqueous solution was glass having a line width of 120 microns and a depth of 50 microns (depth / width ratio of 0.42) in which five rows of saw-toothed patterns were formed (Example 1), a line width of 2 microns and a depth of 5 microns. Flow is performed so that the thickness becomes 1 mm on a substrate including a silicon wafer (Example 2) in which 5 rows of a rectangular parallelepiped pattern of 10 μm (depth / width ratio is 3) are formed at a line interval of 5 μm as a template. And polymerized at 20 ° C. for 15 hours. The polymer gel was peeled from the mold to obtain a polymer gel sheet having a thickness of 1 mm. The water content (mass fraction of water contained in the polymer gel) in the polymer gel was 88% by mass, and the viscosity mineral in the solid content contained in the polymer gel was 24.9% by mass. The fine shape of the obtained polymer gel in contact with the mold was examined using a scanning laser microscope (1LM15W manufactured by Lasertec Co., Ltd.). As a result, it was observed that a concavo-convex pattern corresponding to the line width and shape of the glass and silicon wafer molds was formed, and a substrate for a microchemical process using a polymer gel as a raw material was obtained. Each of the obtained substrates for microchemical processes is uniform and transparent, and is not broken by deformation even when subjected to, for example, 50% compression deformation and 100% stretching deformation, and reversibly retains its original shape. It was confirmed to return to. It was also confirmed that the surface was changed from hydrophilic to hydrophobic by contacting the surface with water at 50 ° C.
[0032]
(Example 3)
As in Example 1, except that 5.28 g of N, N-dimethylacrylamide (DMAA: Wako Pure Chemical Industries, Ltd.) was used as the water-soluble organic monomer and 0.397 g of inorganic clay was used. A colorless and transparent aqueous solution before polymerization was obtained. A 40-micron aluminum mold (height / width ratio: 16) placed on the upper surface with a gap of 400 microns in a grid pattern with a gap interval of 400 mm (a whole 15 mm square). After casting the aqueous solution to a thickness of 3 mm, polymerization was performed at 20 ° C. for 15 hours. The polymer gel was peeled from the mold to obtain a 3 mm thick sheet-like polymer gel. The water content of the polymer gel was 78% by mass, and the mass ratio of the viscous mineral in the solid content of the polymer gel was 7.0% by mass. As a result of observing the obtained polymer gel using a multiviewer system (VH5910 manufactured by KEYENCE CORPORATION), it was observed that a regular concave portion having a size of 40 μm and a depth of 640 μm was prepared. Was obtained as a substrate for microchemical processes. The obtained substrate for microchemical processing is uniform and transparent, and does not break due to deformation even when subjected to, for example, 50% compression deformation and 200% stretching deformation, and reversibly returns to its original shape. It was confirmed that. In addition, even when the surface was brought into contact with water at 50 ° C., the surface did not become hydrophobic and showed hydrophilicity.
[0033]
(Example 4)
Four differently shaped aluminum bar molds (the surface is smooth) shown in FIG. 1 (the ratio (a / b) of the cross-sectional area a of the enlarged portion to the cross-sectional area b of the minimum portion is 25) are directed vertically. An aqueous solution prepared in the same manner as in Example 1 was placed in a container having a side of 50 mm and a height of 60 mm held at regular intervals, and then kept at 20 ° C. for 15 hours to carry out polymerization. Thereafter, the polymer gel was taken out of the container, and the rod mold was slowly pulled upward. The polymer gel obtained is deformed during the removal of the rod mold, but is not destroyed, and is made of a polymer gel having voids (channels) having the same shape and surface smoothness as the rod mold after removal. The substrate for microchemical process was obtained. The obtained substrate for microchemical processing is uniform and transparent, and does not break due to deformation even when subjected to, for example, 50% compression deformation and 300% stretching deformation, and reversibly returns to its original shape. It was confirmed that. In addition, it was confirmed that by alternately flowing water at 50 ° C. and 20 ° C. through the flow channel, the inner wall surface of the flow channel alternately changed to hydrophobic and hydrophilic.
[0034]
(Example 5)
An aluminum bar mold having the same shape as that of FIG. 1 except that the diameter of the details is 0.9 mm (the surface is smooth) (ratio (b / a) of the cross-sectional area a of the minimum part to the cross-sectional area b of the enlarged part). A polymer gel was produced in the same manner as in Example 4 except that No. 123) was used, and an aqueous solution prepared in the same manner as in Example 3 was used. Thereafter, the polymer gel was taken out of the container, and the rod mold was slowly pulled upward. The polymer gel obtained is deformed during the removal of the rod mold, but is not destroyed, and is made of a polymer gel having voids (channels) having the same shape and surface smoothness as the rod mold after removal. The substrate for microchemical process was obtained. The obtained substrate for microchemical processing is uniform and transparent, and does not break due to deformation even when subjected to, for example, 50% compression deformation and 300% stretching deformation, and reversibly returns to its original shape. It was confirmed that. Further, when an aqueous solution containing methylene blue was allowed to flow through the flow channel, it was observed that methylene blue was adsorbed on the wall surface of the flow channel.
[0035]
(Example 6)
Includes a mold composed of a combination of an aluminum rod (diameter 2 mm and maximum diameter 9 mm) and a hollow Y-shape (inner diameter 1 mm: the end is covered with a connecting rod) shaped as shown in FIG. A polymer gel was produced in the same manner as in Example 4 except that a container having a side of 60 mm was used. The aqueous solution was put in a container containing a mold, kept at 20 ° C. for 15 hours, and after polymerization was carried out, a rod constituting the mold was pulled out in its length direction, and all the molds except for the Y-shaped hollow mold were removed. . For microchemical processes using polymer gel as a raw material, which has a hollow aluminum channel in the center and has a three-dimensional void channel connected to it, after the mold is deformed but not destroyed during the removal of the mold. A substrate was obtained. The obtained substrate for a microchemical process is uniform and transparent, and does not break due to deformation even when subjected to, for example, 50% compression deformation and 300% stretching deformation, and reversibly returns to its original shape. It was confirmed that. Further, by flowing different liquids (hexane and heptane) from the upper part (A, B) of the flow path, they are mixed in the flow path, and the mixed liquid is discharged to the lower part (C, D) of the flow path. Was observed.
[0036]
(Comparative Example 1)
The aqueous solution prepared in the same manner as in Example 1 was poured into a glass plate having a thickness of 5 mm and kept at 20 ° C. for 15 hours to obtain a polymer gel having a thickness of 5 mm. An attempt was made to cut the surface using a cutter knife or the like so as to have a shape similar to that of the polymer gel obtained in Example 3, but one having a shape similar to the polymer gel of Example 3 was not used. It was not obtained, and the intended substrate for microchemical processes was not obtained.
[0037]
(Comparative Example 2)
The procedure was performed in the same manner as in Example 4 except that N, N'-methylenebisacrylamide (manufactured by Kanto Chemical Co., Ltd.), which is an organic crosslinking agent, was used at 1 mol% of a water-soluble organic monomer (DMAA) without using a clay mineral. Thus, a polymer gel was produced. When the template was pulled out from the obtained polymer gel, the gel was broken, and a gel having a flow path reflecting the shape of the template was not obtained, so that the gel could not be used as a substrate for a microchemical process.
[0038]
【The invention's effect】
The substrate for a microchemical process obtained by the present invention has three-dimensional complicated fine channels, fine surface irregularities and shapes, and has handleability, mechanical deformation resistance (compressibility and stretchability) and It has features such as excellent transparency. In addition, for example, by changing the temperature of the flowing liquid, the surface property of the channel can be reversibly changed from hydrophilic to hydrophobic, or a specific (for example, cationic) contained in the flowing liquid. ) The solute can be adsorbed to the substrate from the wall surface and removed.
Further, the substrate for a microchemical process in the present invention is used in a reaction experiment system using a minute reaction solution, a chemical or biochemical analysis system, and a purification, adsorption, and separation system of a minute solution. In addition, those with fine surface irregularities and those containing precise shaped cavities and heterogeneous components inside are used as soft lithography materials suitable for micromachining and as tissue culture substrates with shape control at the micron level, In addition, it can be used as a base material for various microchemical processes, such as a micromachine member or a microvibration control member that is driven in response to a microstimulus.
[Brief description of the drawings]
FIG. 1 is a view showing an aluminum bar mold used in Example 4.
FIG. 2 is a view showing an aluminum bar mold used in Example 6.

Claims (10)

水膨潤性粘土鉱物を含有する高分子ゲルからなり、流路を内部に含む、および/または表面に凹凸を有することを特徴とするマイクロ化学プロセス用基材。A base material for a microchemical process, comprising a polymer gel containing a water-swellable clay mineral, including a flow channel inside, and / or having irregularities on the surface. 流路が、曲線形状、分岐形状、拡大部および/または縮小部を有する形状から選ばれる形状の部分を少なくとも一部包含している請求項1記載のマイクロ化学プロセス用基材。The substrate for a microchemical process according to claim 1, wherein the flow path includes at least a part of a shape selected from a curved shape, a branched shape, and a shape having an enlarged portion and / or a reduced portion. 流路が、拡大部および/または縮小部を有する形状の部分を有し、拡大部の断面積(a)と最小部の断面積(b)の比(a/b)が1.1〜200である請求項2記載のマイクロ化学プロセス用基材。The flow path has a portion having a shape having an enlarged portion and / or a reduced portion, and a ratio (a / b) of a sectional area (a) of the enlarged portion to a sectional area (b) of the minimum portion is 1.1 to 200. The substrate for a microchemical process according to claim 2, which is: 凹部の深さ/幅の比、または凸部の高さ/幅の比が0.1〜30である表面凹凸を一つ以上有する高分子ゲルからなる請求項1乃至3のいずれかに記載のマイクロ化学プロセス用基材。The polymer gel according to any one of claims 1 to 3, comprising a polymer gel having one or more surface irregularities having a depth / width ratio of the concave portion or a height / width ratio of the convex portion of 0.1 to 30. Substrate for micro chemical process. 高分子ゲルを構成する固形分の1〜90質量%が水膨潤性粘土鉱物である請求項1乃至4のいずれかに記載のマイクロ化学プロセス用基材。The substrate for a microchemical process according to any one of claims 1 to 4, wherein 1 to 90% by mass of the solid content constituting the polymer gel is a water-swellable clay mineral. 高分子ゲルを構成する水溶性有機モノマーの重合物がアミド基またはエステル基を有する請求項1乃至5のいずれかに記載のマイクロ化学プロセス用基材。The substrate for a microchemical process according to any one of claims 1 to 5, wherein the polymer of the water-soluble organic monomer constituting the polymer gel has an amide group or an ester group. 請求項1乃至6のマイクロ化学プロセス用基材を成形することができる一つまたは複数の鋳型に、水溶性有機モノマーと微分散した水膨潤性粘土鉱物を含む水溶液中を注入し,該水溶性有機モノマーを重合させて高分子ゲルを調製した後,該高分子ゲルを該鋳型から離型することを特徴とするマイクロ化学プロセス用基材の製造方法。An aqueous solution containing a water-soluble organic monomer and a finely dispersed water-swellable clay mineral is injected into one or more molds capable of forming the microchemical process substrate according to claim 1, A method for producing a substrate for a microchemical process, comprising: after polymerizing an organic monomer to prepare a polymer gel, releasing the polymer gel from the template. 水溶性有機モノマーと微分散した水膨潤性粘土鉱物を含む水溶液を、凹部または凸部の幅が0.05μm〜50mmの範囲にある表面凹凸を含む鋳型に注入し,該水溶性有機モノマーを重合させて高分子ゲルを調製した後、該高分子ゲルを鋳型から離型することを特徴とするマイクロ化学プロセス用基材の製造方法。An aqueous solution containing a water-soluble organic monomer and a finely dispersed water-swellable clay mineral is poured into a mold having concaves and convexes having a surface unevenness in the range of 0.05 μm to 50 mm, and the water-soluble organic monomer is polymerized. A method for producing a substrate for a microchemical process, comprising: releasing a polymer gel from a template after preparing the polymer gel by performing the method. 高分子ゲルを構成する固形分の1〜90質量%が水膨潤性粘土鉱物である請求項7又は8のマイクロ化学プロセス用基材の製造方法。9. The method for producing a substrate for a microchemical process according to claim 7, wherein 1 to 90% by mass of the solid content constituting the polymer gel is a water-swellable clay mineral. 高分子ゲルを構成する水溶性有機モノマーの重合物がアミド基またはエステル基を有する請求項7乃至9のいずれかに記載のマイクロ化学プロセス用基材の製造方法。The method for producing a substrate for a microchemical process according to any one of claims 7 to 9, wherein the polymer of the water-soluble organic monomer constituting the polymer gel has an amide group or an ester group.
JP2003071769A 2003-03-17 2003-03-17 SUBSTRATE FOR MICRO CHEMICAL PROCESS AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP4255297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071769A JP4255297B2 (en) 2003-03-17 2003-03-17 SUBSTRATE FOR MICRO CHEMICAL PROCESS AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071769A JP4255297B2 (en) 2003-03-17 2003-03-17 SUBSTRATE FOR MICRO CHEMICAL PROCESS AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2004277590A true JP2004277590A (en) 2004-10-07
JP4255297B2 JP4255297B2 (en) 2009-04-15

Family

ID=33288125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071769A Expired - Fee Related JP4255297B2 (en) 2003-03-17 2003-03-17 SUBSTRATE FOR MICRO CHEMICAL PROCESS AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP4255297B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223106A (en) * 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd Cell culture carrier
JP2007196090A (en) * 2006-01-24 2007-08-09 Seiko Instruments Inc Micro channel device and sending process of liquid
JP2007211134A (en) * 2006-02-09 2007-08-23 Kawamura Inst Of Chem Res Biocompatible gel material and composition for biocompatible gel material
JP2008247961A (en) * 2007-03-29 2008-10-16 Kawamura Inst Of Chem Res Polymer gel complex and method for producing the same
JP2010532269A (en) * 2007-07-03 2010-10-07 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for manufacturing a microfluidic system on a polymer surface
WO2010114102A1 (en) * 2009-04-02 2010-10-07 住友化学株式会社 Methacrylic resin composition, molded object, and manufacturing method therefor
JP2011157500A (en) * 2010-02-02 2011-08-18 Kawamura Institute Of Chemical Research Organic/inorganic compound gel having repetitious concavo-convex structure on the surface, and method for manufacturing the same
JP2011195707A (en) * 2010-03-19 2011-10-06 Kawamura Institute Of Chemical Research Temperature responsive porous body and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223106A (en) * 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd Cell culture carrier
JP2007196090A (en) * 2006-01-24 2007-08-09 Seiko Instruments Inc Micro channel device and sending process of liquid
JP4634309B2 (en) * 2006-01-24 2011-02-16 セイコーインスツル株式会社 Microchannel device and liquid feeding method
JP2007211134A (en) * 2006-02-09 2007-08-23 Kawamura Inst Of Chem Res Biocompatible gel material and composition for biocompatible gel material
JP2008247961A (en) * 2007-03-29 2008-10-16 Kawamura Inst Of Chem Res Polymer gel complex and method for producing the same
JP2010532269A (en) * 2007-07-03 2010-10-07 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for manufacturing a microfluidic system on a polymer surface
WO2010114102A1 (en) * 2009-04-02 2010-10-07 住友化学株式会社 Methacrylic resin composition, molded object, and manufacturing method therefor
JP2011157500A (en) * 2010-02-02 2011-08-18 Kawamura Institute Of Chemical Research Organic/inorganic compound gel having repetitious concavo-convex structure on the surface, and method for manufacturing the same
JP2011195707A (en) * 2010-03-19 2011-10-06 Kawamura Institute Of Chemical Research Temperature responsive porous body and manufacturing method thereof

Also Published As

Publication number Publication date
JP4255297B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
Yu et al. Current status and future developments in preparation and application of nonspherical polymer particles
Helgeson et al. Hydrogel microparticles from lithographic processes: Novel materials for fundamental and applied colloid science
Wang et al. Fabrication of advanced particles and particle‐based materials assisted by droplet‐based microfluidics
Cheng et al. Dispersing nanoparticles in a polymer film via solvent evaporation
Dendukuri et al. The synthesis and assembly of polymeric microparticles using microfluidics
KR100677860B1 (en) Microfabricated Devices and Method of Manufacturing The Same
US8945909B2 (en) Tunable elastomeric nanochannels for nanofluidic manipulation
EP2759512B1 (en) Large area induced assembly of nanostructures
Tang et al. Surface patterning with SiO2@ PNiPAm core–shell particles
Di Benedetto et al. Patterning polyacrylamide hydrogels by soft lithography
CA2625071C (en) A micro-bubble plate for patterning biological and non-biological materials
Kamei et al. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film
WO2009082863A1 (en) A method for forming micro-dots array in micro-channels
JP4255297B2 (en) SUBSTRATE FOR MICRO CHEMICAL PROCESS AND METHOD FOR PRODUCING THE SAME
KR100695134B1 (en) Microarray using laminar flow and preparation method thereof
Kwapiszewska et al. Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly (dimethylsiloxane)
Li et al. Electrowetting assisted air detrapping in transfer micromolding for difficult-to-mold microstructures
Xia et al. Formation of hierarchical nanoparticle pattern arrays using colloidal lithography and two-step self-assembly: Microspheres atop nanospheres
Alqurashi et al. Laser inscription of microfluidic devices for biological assays
Jain et al. Microfluidic device based molecular self-assembly structures
Peng et al. A droplet-based microfluidics route to temperature-responsive colloidal molecules
Panda et al. Tuning curvature in flow lithography: a new class of concave/convex particles
Kimura et al. Selective bonding method for self-assembly of heterogeneous components using patterned surfaces
JP4269107B2 (en) Method for producing clay mineral-containing hydrogel
Hou et al. Near-Infrared Light Responsive Surface with Switchable Wettability in Microstructure and Surface Chemistry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4255297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees