JP2004277264A - Woody cement board and its manufacturing method - Google Patents

Woody cement board and its manufacturing method Download PDF

Info

Publication number
JP2004277264A
JP2004277264A JP2003074462A JP2003074462A JP2004277264A JP 2004277264 A JP2004277264 A JP 2004277264A JP 2003074462 A JP2003074462 A JP 2003074462A JP 2003074462 A JP2003074462 A JP 2003074462A JP 2004277264 A JP2004277264 A JP 2004277264A
Authority
JP
Japan
Prior art keywords
wood
cement board
core layer
shirasu balloon
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003074462A
Other languages
Japanese (ja)
Other versions
JP4412909B2 (en
Inventor
Isao Watariki
勲 渡木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP2003074462A priority Critical patent/JP4412909B2/en
Publication of JP2004277264A publication Critical patent/JP2004277264A/en
Application granted granted Critical
Publication of JP4412909B2 publication Critical patent/JP4412909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Finishing Walls (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a woody cement board satisfying performances such as crack resistance, thermal stability, and strength required to improve the fire resistance and refractoriness of load-bearing and non-load-bearing wall structures in case of a fire or a spread of fire. <P>SOLUTION: The woody cement board is composed of front and back layers and a core layer comprising cement, a woody reinforcing material, a siliceous material containing shirasu balloon, a flat mineral, and a hydroxide, where shirasu balloon is added at a required ratio and curing in an autoclave is applied to satisfy these performances. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、建物の外壁材等に使用される木質セメント板とその製造方法に関するものであり、特に建物の火災もしくは延焼火災発生時における壁構造の防耐火性能として、耐力壁や非耐力壁に施工される外壁材等の火災時の耐クラック性や耐寸法安定性を格段に向上させた木質セメント板とその製造方法に関するものである。
【0002】
【従来の技術】
従来、木質補強材によって補強された木質セメント板を壁構造に使用した場合の火災時の防耐火性能に関しては様々な手法が検討されている。
火災などの燃焼条件下においては構造内部に火が回らないような工夫が必要であり、そのためには燃焼時の基材自体の発熱量を抑制すると同時に、基材伸縮または反りを少なくする必要がある。
その代表的な手法としては、基材の配合中に石綿を添加する方法があるが、石綿は発ガン性物質の一つであり、また石綿微粉末の飛散による環境汚染が問題であり、基材配合上取り扱いが困難である。
また、石綿無配合の木質セメント板においては、無機系物質を配合することによって基材の発熱量をある程度抑えるものがあるが、燃焼時において基材中の無機系物質と木質成分との収縮率の違いにより、反りやクラックが発生しやすく、これら反りやクラックの発生部位、具体的には木質セメント板の接合部やクラックの隙間から火炎が進入したり、また木質セメント板が躯体から脱落したりする可能性があった。
【0003】
木質セメント板に求められる防耐火性能を向上させるため、マイカなどの偏平状鉱物と水酸化物を添加したものが提案されている。下記公知文献に示すようなマイカや水酸化物などを主体とした配合のものがあるが、これら配合では強度の点で問題があり、火災時において躯体から基材が脱落する恐れがある。また、マイカを多量に配合した基材は表面に塗装をすると、基材と塗膜の密着性不良により塗膜が剥がれ落ちることがあった。
【0004】
また、セメントや骨材を多く含むものや木質分を多く含む場合、基材強度の向上は見られるものの、上記の防耐火性能を格段に向上するには至らずクラックや反りが発生するといった問題があった。
【0005】
【特許文献1】特開昭61−286279
【特許文献2】特開昭64−87585
【0006】
【発明が解決しようとする課題】
木質セメント板に求められる防耐火性能を考えた場合、製品の強度と基材収縮率はいわば二律背反な関係であるため、その配合はどうしてもその中間的な性能を有するものにならざるを得なかった。火災時の反り量は、特にエンボス板の場合には、表裏面の表面積の違いから反り量の進行が著しくなる傾向があり、大半がエンボス板としている外壁材製品にとって重要な課題となっていた。
【0007】
即ち、本発明は燃焼時や燃焼後に殆どクラックや反りが発生せず、且つ必要強度を有する木質セメント板を提供するものであり、従来の防耐火性能を格段に向上させた木質セメント板とその製造方法にある。
【0008】
【課題を解決するための手段】
第1の発明は、セメント、木質補強材、シラスバルーンを含む珪酸含有物質、偏平状鉱物、水酸化物、を配合した表裏層と芯層からなる木質セメント板であって、珪酸含有物質全体におけるシラスバルーンの割合を10〜45%とした木質セメント板について提供するものである(請求項1)。
【0009】
本発明の木質セメント板は、珪酸含有物質全体におけるシラスバルーンの配合の割合を所定の比率とすることで、防耐火性能を格段に向上させたものである。すなわち、珪酸含有物質全体のうちシラスバルーンの割合を10〜45%としている。
【0010】
上記構成によれば、シラスバルーン中に含まれる珪酸質がバインダー形成部として反応し、特に珪酸質中のガラス質成分が多いため熱に強い骨格構造を反応形成して、相乗的に高強度となり、また基材収縮を抑制する部分としても活躍するからである。よって、防耐火性能を向上させるため、配合中にマイカや水酸化物を多量に配合したときに発生しやすい従来技術の問題点を解決することができる。
【0011】
また第2の発明は、予め粒径の細かい木質補強材とシラスバルーンを除く粉体とを混合したのち上記混合物にシラスバルーンを混合した表裏層用原料、粒径の粗い木質補強材とシラスバルーンを除く粉体とを混合したのち上記混合物にシラスバルーンを混合した芯層用原料、をそれぞれ調合準備しておき、
表裏層用原料混合物を散布積層して表層とする工程、上記表層に芯層用原料混合物を散布積層して芯層とする工程、さらにその上に表裏層用原料混合物を散布積層して裏層とする工程、上記積層物を圧締して水分存在下でオートクレーブ養生する工程、とを備えていることを特徴とする木質セメント板の製造方法にある(請求項4)。
【0012】
本発明の木質セメント板の製造方法は、原料を調合準備する際、シラスバルーンは後工程において混合するものである。
すなわち、原料を調合準備する際、木質補強材にセメント、シラスバルーンを除く珪酸含有物質、偏平状鉱物や水酸化物を投入混合した後、シラスバルーンを投入混合するものであり、シラスバルーンの混合時間を短くしている。
そのため、シラスバルーンは混合時の圧搾によって形状が変化することが無くその形状を保持することができるため、防耐火性能を格段に向上させた木質セメント板を製造することができる。
【0013】
【発明の実施の形態】
本発明の好ましい実施形態を以下に詳細に説明する。
本発明に係わる木質セメント板は例えば量産を行う窯業系建築板がある。
また、上記木質セメント板は芯層と表裏層から構成されており、原料混合物はセメントと木片などの木質補強材とを主体とする混合物とし、更に上記原料混合物は木質補強材の大きさを変えている。即ち、表裏層用の原料混合物中には細かめの木質補強材を使用することが好ましく、例えば、木粉や木片を使用することが好ましく、特に好ましいのは20〜50メッシュの木粉や、幅0.5〜2.0mm、長さ1.0〜10.0mm、アスペクト比(長さ/厚み)20〜30の木片である。
表裏層に細かめの木質補強材を使用することで、エンボス面の意匠性が向上するばかりでなく、表裏層の密度が緻密になり防火性向上に寄与する。
【0014】
芯層には粗めの木質補強材を使用することが好ましい。
例えば、木片や木質繊維束を使用することが好ましく、特に好ましいのは幅0.5〜3.0mm、長さ1.0〜20.0mm、アスペクト比(長さ/厚み)20〜30の木片や、径0.1〜2.0mm、長さ2.0〜35.0mmの分枝および/または彎曲および/または折曲した木質繊維束である。
これにより、木質セメント板にクッション性が付与され、表面に凹凸模様を付した場合に極めて鮮明で深い凹凸模様が形成できる。
【0015】
表裏層と芯層の各配合中に含まれる木質補強材はそれぞれ8〜20%の配合量としていることが好ましい(請求項2)。
この場合、更に木質補強材の補強効果が向上し、燃焼時や燃焼後に木質セメント板のクラックや反りを抑えることができる。
【0016】
また、上記木質セメント板をオートクレーブ養生する際、165℃〜190℃の温度で養生することが好ましい(請求項3)。
この場合には、木質補強材を劣化させずに、よりバインダーの反応性を向上させることができ、また基材発熱量を抑えることができ、更に燃焼時や燃焼後に木質セメント板のクラックや反りを抑えることができる。
【0017】
セメントとしては、例えばポルトランドセメント、高炉スラグセメント、シリカセメント、フライアッシュセメント、アルミナセメント等がある。
また、木質補強材としては、表裏層は例えば木粉、および/または木片を、芯層は木片、および/または木質繊維束を使用することが好ましい。また、これ以外に、木毛、木質繊維、木質パルプ、解体古材、ドライパルプ、ケナフ、竹繊維、麻繊維、バガス、籾殻、稲わら等が使用されてもよい。
【0018】
本発明に用いられる珪酸含有物質は無機充填材であり、珪砂、珪石粉、シリカ粉、シリカフューム、フライアッシュ、高炉スラグ、パーライト、珪藻土、ドロマイト、シラスバルーン等のものがある。本発明ではこれら物質のうち、シラスバルーンを含む二種またはそれ以上の物質を用い配合している。
シラスバルーンは酸性火山噴出物の一種であるシラスを選鉱、粒度調整し焼成することによって製造され、内部に気体が封入された中空球の微小中空ガラス質の発泡体で非晶質物質である。粒径、比重は適宜選択されるが、反応性を考慮すると、ガラス質の含有割合は比較的高い方が好ましい。
【0019】
偏平状鉱物は、平均粒径150μm以上、アスペクト比65以上のフレーク状のものであり、特に平均粒径340μm以上、アスペクト比80以上のものがよく、特にマイカが好ましい。
平均粒径150μm未満では、粒径が細かいので、相互の接着面積が小さく、十分な基材収縮抑制による寸法安定性が得られにくい。
マイカは通常層状構造を有し、吸湿性がなく、剛性を有する高弾性体であり、木質補強材を含む木質セメント板の寸法安定性を大幅に向上させることができるものであるが、一方で表面塗膜との密着性が若干劣る。従って、配合量は過多にならないことが好ましく、1〜10%の配合量としていることが望ましい。
【0020】
水酸化物は、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛等があるが、水酸化アルミニウムは200〜300℃付近の高熱下で酸化アルミニウムと水に分解反応を起こし、この反応が吸熱反応であるので、燃焼熱を緩和し、板内の他の物質(木質補強材など)への熱の影響を遅らせる効果があり、不燃性能が向上するので、特に好ましい。
【0021】
本発明の木質セメント板原料としては、上記以外の成分として、木質セメント板の廃材粉砕物や、ベントナイト、バーミキュライト等の鉱物粉末や、ロウ、ワックス、パラフィン、シリコン、界面活性剤等の防水剤、撥水剤や、発泡性熱可塑性プラスチックビーズ、プラスチック発泡体等や塩化カルシウム、塩化マグネシウム、硫酸カリウム、硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、アルミン酸ナトリウム、アルミン酸カリウム、蟻酸カルシウム、酢酸カルシウム、水ガラス等のセメント硬化促進剤が添加されてもよい。
【0022】
木質セメント板の表裏層、及び芯層における組成において、珪酸含有物質中におけるシラスバルーンの割合を10〜45%としたときの配合が最適な条件であり、珪酸含有物質単独、または珪酸含有物質全体に対するシラスバルーンの割合を10%未満とした場合や、珪酸含有物質全体に対するシラスバルーンの割合を45%よりも大きくした場合では、強度および燃焼時の基材収縮率が悪化する。珪酸含有物質中におけるシラスバルーンの割合を10%未満とした場合は、珪酸質の反応性が弱くバインダーを構成する部分は高強度ではなくなり、また断熱性を有する中空ガラス球が少ないため熱伝導率が大きくなる。一方、珪酸含有物質中におけるシラスバルーンの割合を45%よりも大きくした場合では、シラスバルーン中のガラス質の占める体積が大きくなり基材の熱伝導率は小さくなるものの、燃焼時に基材中の無機系物質と木質成分との収縮率の違いにより発生しようとする力を保持するバインダーの体積が相対的に小さくなる為、反りやクラックが発生しやすくなると推察される。
なお、珪酸含有物質中におけるシラスバルーンの割合は表裏層と芯層とも同一であることが好ましいが、これに限らず、上記範囲内であれば比率が異なっていても良い。
【0023】
また、表裏層と芯層の各配合中に含まれる木質補強材はそれぞれ8〜20%の配合量としている。この場合、表層の配合量が多いことが好ましいが、同一の配合量、または芯層の配合量を多くしても差し支えない。この場合、上記範囲内において木質補強材がセメント板の配合中に多くすれば、基材強度の向上につながる傾向がある。
木質補強材の配合量が8%未満の場合には、木質補強材の補強効果が十分でなく、また炭化して生じる断熱部分が十分でなく全体として熱伝導率が高くなる。また、木質補強材の配合量が20%よりも大きい場合には、木質分過多により燃焼時の発熱量が大きくなってしまうとともに、バインダーを構成する体積が小さくなるので、寸法収縮や反りが大きくなる。
即ち、本配合量により木質補強材の補強効果が向上し、燃焼時や燃焼後に殆どクラックや反りが発生せず、且つ強度を向上させることができる。
【0024】
木質セメント板をオートクレーブ硬化養生する際の養生温度は、165〜190℃の温度であることが好ましい。
養生温度が165℃未満の場合には、反応して生じるバインダー自体が脆弱となり強度低下をもたらし、また190℃よりも大きいと、木質分が脆弱劣化することにより、強度不良を生じるとともに耐クラック性が低下する。
【0025】
本発明の製造方法としては、乾式又は半乾式の製造方法が好ましい。
半乾式製造方法においては、まず、上記セメント、粒径の細かい木質補強材、シラスバルーンを除く珪酸含有物質、偏平状鉱物、水酸化物を含有する原料混合物に所定量の水分を添加混合し、そののちシラスバルーンを添加した表裏層用原料混合物を型板上に散布して表層とした後、その上にセメント、粒径の粗い木質補強材、シラスバルーンを除く珪酸含有物質、偏平状鉱物、水酸化物を含有する原料混合物に所定量の水分を添加混合し、そののちシラスバルーンを添加した芯層用原料混合物を散布積層して芯層とし、更にその上に上記表裏層用原料混合物を散布積層して、裏層とした三層構造の積層物マットを散布成形する。
ここで、型板とは、エンボス柄模様を形成したもの、搬送板的なもの等、散布する原料を受け取り、マットが形成される支持板であれば特に限定されない。
即ち、表裏層用原料混合物を平らな搬送板上に散布して裏層とした後、その上に芯層用原料混合物を散布積層して芯層とし、更にその上に上記表裏層用原料混合物を散布積層して、表層とした三層構造の積層物マットを散布成形するようにしてもよい。
【0026】
尚、乾式製造方法においては、上記の原料混合物を水分を添加することなく型板上に散布して積層物マットを形成し、このマットに所定量の水を添加する。
【0027】
この表裏層用原料混合物および芯層用原料混合物を準備する際、木質補強材にセメント、シラスバルーンを除く珪酸含有物質、偏平状鉱物や水酸化物を先に混合し、そののちシラスバルーンを混合することが好ましい。すなわち、シラスバルーンの混合時間を他の原料物質より短くしていることが好ましい。
上記構成によれば、原料の混合時の圧搾によってシラスバルーンの形状が変化することが無く、その形状を保持することができるため、配合中にシラスバルーンが有効に寄与することになり、防耐火性能を格段に向上させた木質セメント板を製造することができる。
【0028】
【実施例】
以下、本発明の実施例について説明する。
〔実施例〕
木質セメント板の原料として表1に示す組成の混合物を準備した。
表裏層用の原料として、木質補強材としては、直径1.0〜10.0mm、短径0.5〜2.0mm、アスペクト比20〜30、の木片を使用し、偏平状鉱物としてはマイカを使用し平均粒径340μm、アスペクト比80のものを使用し、水酸化物としては水酸化アルミニウムを使用し、添加水は全固形分対比で外添、硬化剤はセメント対比での外添で水ガラスを使用した。また、珪砂はブレーン値が3500cm/gのものを使用した。
芯層用の原料として、木質補強材としては直径10〜20mm、短径0.5〜3.0mm、アスペクト比20〜30の木片と、直径0.1〜2.0mm、長さ2〜35mmの分枝および/または彎曲および/または折曲された木質繊維束を使用し、他の原料は上記表裏層用の原料と同じものを使用した。
まず、表裏層の原料のうち、木片と水酸化アルミニウムとをアイリッヒミキサーなどの攪拌装置で攪拌混合し、次に、シラスバルーンを除く原料を混合し、そののちシラスバルーンを混合して、表裏層用原料混合物とした。
これとは別に、芯層用原料のうち、木片と木質繊維束と水酸化アルミニウムとを攪拌混合し、次に、シラスバルーンを除く原料を混合し、そののちシラスバルーンを混合して、芯層用原料混合物とした。
そして、複数枚の型板をコンベア上に並べて型板を搬送しつつ、この表裏層用原料混合物を逐次型板上に散布して表層とし、その上に芯層用原料混合物を散布積層して芯層とし、さらにその上に表裏層用原料混合物を散布積層して裏層として三層構造のマットとした。
この散布成形されたマットを、3MPaの圧力で圧締して、70℃−10時間の条件で硬化一次養生し、型板を脱型後、更に185℃−7時間の条件でオートクレーブによる二次養生を行った。但し、実施例7のみ、165℃−7時間の条件でオートクレーブによる二次養生を行った。
【0029】
〔比較例〕
表2に示す原料混合物で、実施例同様の条件で木質セメント板を製造した。但し、比較例5のみ、200℃−7時間の条件でオートクレーブによる二次養生を行った。
【0030】
【表1】

Figure 2004277264
【0031】
【表2】
Figure 2004277264
【0032】
曲げ強度は、JIS A 1408に準じた。
燃焼収縮は、燃焼試験(電気炉内で900℃−1時間燃焼、試験片7×20cm)前後での反り量を測定し、外観評価を行った。
燃焼時クラックは、燃焼試験後の試験片表面および小口のクラックの様子を外観評価した。
外観評価は、◎=良好、○=問題にならない、△=やや問題になる、×=不良、の4段階で評価した。
【0033】
実施例に示す如く、珪酸含有物質全体に対するシラスバルーンの割合を10〜45%とした場合は、曲げ強度の低下はなく、燃焼時の反り量、クラックの発生も殆ど無く良好であった。また、表裏層と芯層に含まれる木質補強材の配合量をそれぞれ8〜20%とした場合やオートクレーブ二次養生の養生温度を165℃にした場合についても、同様に良好であった。
一方、珪酸含有物質を珪砂単独の配合とした比較例1や、珪酸含有物質全体に対するシラスバルーンの割合を45%よりも大きくした比較例2では、曲げ強度、および燃焼時の反りやクラックが何れも悪化した。
【0034】
【発明の効果】
したがって本発明の木質セメント板とその製造方法によれば、マイカなどの偏平状鉱物と水酸化物を過剰に添加することなく、基材強度を確保することができ、また火災時において基材の反りやクラックがほとんど発生せず、接合部やクラックの隙間から火炎が進入したり、また基材が躯体から脱落したりする恐れが無く、熱的安定性に優れ防耐火性能を格段に向上させることが可能となる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a wood cement board used for building outer wall materials and the like, and a method for manufacturing the same, and particularly as a fireproof performance of a wall structure when a fire of a building or a fire spreads, it is applied to a load-bearing wall or a non-bearing wall. The present invention relates to a wood cement board and a method for producing the same, in which crack resistance and dimensional stability at the time of a fire of an outer wall material to be constructed are greatly improved.
[0002]
[Prior art]
Conventionally, various methods have been studied with regard to fire-proof performance at the time of fire when a wood cement board reinforced with a wood reinforcing material is used for a wall structure.
Under combustion conditions such as fire, it is necessary to devise measures to prevent the fire from turning inside the structure. To that end, it is necessary to suppress the amount of heat generated by the base material itself during combustion and to reduce the base material expansion / contraction or warpage. is there.
As a representative method, there is a method of adding asbestos during compounding of the base material. Asbestos is one of carcinogenic substances, and environmental pollution due to scattering of asbestos fine powder is a problem. It is difficult to handle due to the material composition.
In addition, some wood cement boards without asbestos contain inorganic substances to suppress the heat generation of the substrate to some extent, but the shrinkage rate between the inorganic substance and the wood component in the substrate during combustion Due to the difference, warpage and cracks are likely to occur, and flames enter from these warpage and crack occurrence sites, specifically the joints and cracks of the wood cement boards, and the wood cement boards fall off from the frame. There was a possibility.
[0003]
In order to improve the fire and fire resistance required for wood cement boards, the addition of flat minerals such as mica and hydroxides has been proposed. There are blends mainly composed of mica and hydroxide as shown in the following publicly known documents. However, these blends have a problem in strength, and the base material may fall off from the casing in the event of a fire. In addition, when a base material containing a large amount of mica is coated on the surface, the coating film may be peeled off due to poor adhesion between the base material and the coating film.
[0004]
In addition, if the material contains a large amount of cement or aggregate or contains a large amount of wood, the strength of the base material can be improved, but the above fireproof performance cannot be significantly improved, and cracks and warpage occur. was there.
[0005]
[Patent Document 1] JP 61-286279 A
[Patent Document 2] Japanese Patent Laid-Open No. 64-87585
[0006]
[Problems to be solved by the invention]
Considering the fireproof performance required for wood cement boards, the strength of the product and the shrinkage of the base material are in a contradictory relationship, so the composition has to have an intermediate performance. . The amount of warpage at the time of fire, especially in the case of embossed plates, has a tendency for the amount of warpage to progress remarkably due to the difference in surface area between the front and back surfaces, and it has become an important issue for outer wall materials that are mostly embossed plates. .
[0007]
That is, the present invention provides a wood cement board that hardly generates cracks and warpage at the time of combustion and after combustion, and has a necessary strength, and a wood cement board having a markedly improved fireproof performance and its In the manufacturing method.
[0008]
[Means for Solving the Problems]
1st invention is a wood cement board which consists of the front and back layers and core layer which mix | blended the silicic acid containing material containing a cement, a wood reinforcement material, a shirasu balloon, a flat mineral, and a hydroxide, Comprising: The present invention provides a wood cement board having a shirasu balloon ratio of 10 to 45% (claim 1).
[0009]
The woody cement board of the present invention has the fireproof performance significantly improved by setting the ratio of the Shirasu balloon in the entire silicic acid-containing material to a predetermined ratio. That is, the ratio of the shirasu balloon in the entire silicic acid-containing material is 10 to 45%.
[0010]
According to the above configuration, the siliceous substance contained in the shirasu balloon reacts as a binder forming part, and particularly because there are many glassy components in the siliceous substance, a heat-resistant skeletal structure is formed by reaction, resulting in synergistic high strength. This is because it also plays an active part as a part for suppressing shrinkage of the substrate. Therefore, in order to improve fireproof performance, it is possible to solve the problems of the prior art that are likely to occur when a large amount of mica or hydroxide is blended during blending.
[0011]
The second invention is a raw material for front and back layers in which a wood reinforcing material having a small particle diameter and a powder excluding a glass balloon are mixed in advance, and a glass balloon is mixed with the above mixture, a wood reinforcing material having a coarse particle diameter and a glass balloon. After mixing with the powder excluding the above, the core layer raw material in which the shirasu balloon is mixed with the above mixture is prepared and prepared.
A step of spraying and laminating the raw material mixture for the front and back layers to form a surface layer, a step of spraying and laminating the raw material mixture for the core layer to the core layer to form a core layer, and a layer of the raw material mixture for the front and back layers being spread and laminated thereon And a step of autoclaving in the presence of moisture by pressing the laminate, and a method for producing a wood cement board, characterized in that (4).
[0012]
In the method for producing a wood cement board of the present invention, when preparing the raw materials, the shirasu balloon is mixed in a subsequent step.
That is, when preparing and preparing the raw materials, cement, a siliceous material excluding shirasu balloons, flat minerals and hydroxides are introduced and mixed into the wood reinforcement, and then shirasu balloons are introduced and mixed. The time is shortened.
Therefore, since the shape of the shirasu balloon can be maintained without being changed by the compression during mixing, a wood cement board with significantly improved fireproof performance can be manufactured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the invention are described in detail below.
The wood cement board according to the present invention includes, for example, a ceramic building board for mass production.
The wood cement board is composed of a core layer and front and back layers. The raw material mixture is a mixture mainly composed of cement and wood reinforcing material such as wood chips, and the raw material mixture changes the size of the wood reinforcing material. ing. That is, it is preferable to use a fine wood reinforcing material in the raw material mixture for the front and back layers, for example, it is preferable to use wood flour and wood pieces, particularly preferably 20-50 mesh wood flour, It is a wood piece having a width of 0.5 to 2.0 mm, a length of 1.0 to 10.0 mm, and an aspect ratio (length / thickness) of 20 to 30.
By using a fine wood reinforcing material for the front and back layers, not only the design of the embossed surface is improved, but the density of the front and back layers becomes dense and contributes to the improvement of fire resistance.
[0014]
It is preferable to use a coarse wooden reinforcement for the core layer.
For example, it is preferable to use a piece of wood or a wood fiber bundle, and particularly preferred is a piece of wood having a width of 0.5 to 3.0 mm, a length of 1.0 to 20.0 mm, and an aspect ratio (length / thickness) of 20 to 30. Or, it is a branched and / or bent and / or bent wood fiber bundle having a diameter of 0.1 to 2.0 mm and a length of 2.0 to 35.0 mm.
Thereby, cushioning properties are imparted to the wood cement board, and when the surface is provided with an uneven pattern, an extremely clear and deep uneven pattern can be formed.
[0015]
It is preferable that the wood reinforcing material contained in the blending of the front and back layers and the core layer is 8 to 20% in each case (Claim 2).
In this case, the reinforcing effect of the wood reinforcing material is further improved, and cracks and warpage of the wood cement board can be suppressed during and after combustion.
[0016]
Moreover, when autoclaving the said wood cement board, it is preferable to cure at the temperature of 165 degreeC-190 degreeC (Claim 3).
In this case, it is possible to further improve the reactivity of the binder without deteriorating the wood reinforcing material, to suppress the calorific value of the base material, and to further crack or warp the wood cement board during or after combustion. Can be suppressed.
[0017]
Examples of the cement include Portland cement, blast furnace slag cement, silica cement, fly ash cement, and alumina cement.
As the wood reinforcing material, it is preferable to use, for example, wood powder and / or wood pieces for the front and back layers, and wood pieces and / or wood fiber bundles for the core layer. In addition, wood wool, wood fiber, wood pulp, demolition old wood, dry pulp, kenaf, bamboo fiber, hemp fiber, bagasse, rice husk, rice straw and the like may be used.
[0018]
The silicic acid-containing substance used in the present invention is an inorganic filler, such as silica sand, silica powder, silica powder, silica fume, fly ash, blast furnace slag, pearlite, diatomaceous earth, dolomite, and shirasu balloon. In the present invention, among these substances, two or more kinds of substances including shirasu balloon are used.
Shirasu Balloon is manufactured by beneficiation of Shirasu, which is a kind of acidic volcanic ejecta, adjusting the particle size and firing, and is a hollow hollow micro-hollow glassy foam with an enclosed gas and is an amorphous substance. The particle size and specific gravity are appropriately selected, but considering the reactivity, it is preferable that the glassy content is relatively high.
[0019]
The flat mineral is flaky with an average particle size of 150 μm or more and an aspect ratio of 65 or more, particularly preferably an average particle size of 340 μm or more and an aspect ratio of 80 or more, and mica is particularly preferable.
If the average particle size is less than 150 μm, the particle size is small, the mutual adhesion area is small, and it is difficult to obtain dimensional stability due to sufficient substrate shrinkage suppression.
Mica usually has a layered structure, is not hygroscopic, is a highly elastic body with rigidity, and can greatly improve the dimensional stability of the wood cement board containing wood reinforcement, Adhesion with the surface coating film is slightly inferior. Therefore, it is preferable that the blending amount is not excessive, and it is desirable that the blending amount is 1 to 10%.
[0020]
Examples of hydroxides include aluminum hydroxide, magnesium hydroxide, and zinc hydroxide. Aluminum hydroxide undergoes a decomposition reaction with aluminum oxide and water under high heat around 200 to 300 ° C., and this reaction is an endothermic reaction. Therefore, it is particularly preferable because it has the effect of relaxing the heat of combustion and delaying the influence of heat on other substances (wooden reinforcing material, etc.) in the plate and improving the nonflammability.
[0021]
As the raw material of the wood cement board of the present invention, as components other than the above, pulverized waste material of wood cement board, mineral powder such as bentonite and vermiculite, waterproofing agents such as wax, wax, paraffin, silicon, surfactant, Water repellent, foaming thermoplastic beads, plastic foam, calcium chloride, magnesium chloride, potassium sulfate, calcium sulfate, magnesium sulfate, aluminum sulfate, sodium aluminate, potassium aluminate, calcium formate, calcium acetate, water A cement hardening accelerator such as glass may be added.
[0022]
In the composition of the front and back layers and the core layer of the wood cement board, the composition is optimal when the ratio of the shirasu balloon in the silicic acid-containing material is 10 to 45%, the silicic acid-containing material alone or the entire silicic acid-containing material When the ratio of the shirasu balloon to is less than 10%, or when the ratio of the shirasu balloon to the entire silicic acid-containing substance is greater than 45%, the strength and the shrinkage ratio of the base material during combustion deteriorate. When the ratio of the shirasu balloon in the silicic acid-containing material is less than 10%, the silicic acid reactivity is weak and the portion constituting the binder is not high in strength, and there are few hollow glass spheres with heat insulation, so that the thermal conductivity Becomes larger. On the other hand, when the ratio of the shirasu balloon in the silicic acid-containing substance is larger than 45%, the volume occupied by the vitreous in the shirasu balloon is increased and the thermal conductivity of the substrate is reduced, but the ratio of It is presumed that warping and cracking are likely to occur because the volume of the binder that holds the force to be generated due to the difference in shrinkage between the inorganic material and the wood component is relatively small.
The ratio of the shirasu balloon in the silicic acid-containing material is preferably the same for both the front and back layers and the core layer. However, the ratio is not limited to this, and the ratio may be different as long as it is within the above range.
[0023]
Moreover, the amount of wood reinforcement contained in each blend of the front and back layers and the core layer is 8 to 20%. In this case, it is preferable that the amount of the surface layer is large, but the same amount or the amount of the core layer may be increased. In this case, if the amount of the wood reinforcing material is increased during the blending of the cement board within the above range, the strength of the base material tends to be improved.
When the blending amount of the wooden reinforcing material is less than 8%, the reinforcing effect of the wooden reinforcing material is not sufficient, and the heat insulating portion generated by carbonization is not sufficient, and the thermal conductivity as a whole becomes high. In addition, when the blending amount of the wood reinforcing material is larger than 20%, the amount of heat generated at the time of combustion is increased due to excessive wood content, and the volume constituting the binder is reduced, so that dimensional shrinkage and warpage are large. Become.
In other words, the present compounding amount improves the reinforcing effect of the wood reinforcing material, hardly causes cracking or warping during or after combustion, and can improve the strength.
[0024]
It is preferable that the curing temperature at the time of curing the wood cement board by autoclave is 165 to 190 ° C.
When the curing temperature is lower than 165 ° C., the binder itself produced by the reaction becomes brittle and causes a decrease in strength. When the curing temperature is higher than 190 ° C., the wood is weakly deteriorated, resulting in poor strength and crack resistance. Decreases.
[0025]
The production method of the present invention is preferably a dry or semi-dry production method.
In the semi-dry manufacturing method, first, a predetermined amount of water is added to and mixed with the raw material mixture containing the above cement, a fine wood reinforcing material, a siliceous material excluding shirasu balloon, a flat mineral, and a hydroxide, After that, the raw material mixture for the front and back layers to which the shirasu balloon was added was sprinkled on the mold plate to form the front layer, and then cement, coarse grained wood reinforcing material, silicic acid-containing substance excluding the shirasu balloon, flat minerals, A predetermined amount of water is added to and mixed with the raw material mixture containing hydroxide, and then the raw material mixture for the core layer to which the shirasu balloon is added is spread and laminated to form a core layer, and the raw material mixture for the front and back layers is further formed thereon. A laminated mat having a three-layer structure as a back layer is spread and formed by spraying.
Here, the template is not particularly limited as long as it is a support plate on which a raw material to be spread is received and a mat is formed, such as an embossed pattern or a conveying plate.
That is, after the raw material mixture for the front and back layers is spread on a flat conveying plate to form a back layer, the raw material mixture for the core layer is spread and laminated thereon to form a core layer, and the raw material mixture for the front and back layers is further formed thereon. The laminate mat having a three-layer structure as a surface layer may be spray-molded.
[0026]
In the dry production method, the above raw material mixture is spread on a template without adding moisture to form a laminate mat, and a predetermined amount of water is added to the mat.
[0027]
When preparing the raw material mixture for the front and back layers and the raw material mixture for the core layer, cement, a siliceous material excluding shirasu balloons, flat minerals and hydroxides are first mixed with the wooden reinforcement, and then shirasu balloons are mixed. It is preferable to do. That is, it is preferable that the mixing time of the shirasu balloon is shorter than that of other raw materials.
According to the above configuration, the shape of the shirasu balloon does not change due to the squeezing at the time of mixing the raw materials, and the shape can be maintained. A wood cement board with significantly improved performance can be manufactured.
[0028]
【Example】
Examples of the present invention will be described below.
〔Example〕
A mixture having the composition shown in Table 1 was prepared as a raw material for the wood cement board.
As a raw material for the front and back layers, a wood reinforcing material uses a piece of wood having a diameter of 1.0 to 10.0 mm, a minor axis of 0.5 to 2.0 mm, an aspect ratio of 20 to 30, and a flat mineral is mica. Using an average particle size of 340 μm and an aspect ratio of 80, using hydroxide as the hydroxide, adding water to the total solids and adding the hardener to the cement. Water glass was used. Silica sand having a brane value of 3500 cm 2 / g was used.
As a raw material for the core layer, the wood reinforcing material has a diameter of 10 to 20 mm, a minor axis of 0.5 to 3.0 mm, an aspect ratio of 20 to 30 wood pieces, a diameter of 0.1 to 2.0 mm, and a length of 2 to 35 mm. Branched and / or bent and / or bent wood fiber bundles were used, and the other raw materials were the same as those for the front and back layers.
First, among the raw materials for the front and back layers, wood pieces and aluminum hydroxide are mixed with stirring by an agitator such as an Eirich mixer, then the raw materials excluding the shirasu balloon are mixed, and then the shirasu balloon is mixed. It was set as the raw material mixture for layers.
Separately, among the raw materials for the core layer, the wood piece, the wood fiber bundle and the aluminum hydroxide are mixed with stirring, then the raw material excluding the shirasu balloon is mixed, and then the shirasu balloon is mixed, A raw material mixture was prepared.
Then, while arranging a plurality of templates on a conveyor and conveying the templates, this front and back layer raw material mixture is sequentially spread on the template to form a surface layer, and the core layer raw material mixture is spread and laminated thereon. A core layer was formed, and a raw material mixture for the front and back layers was further spread and laminated thereon to form a three-layer mat as a back layer.
The spray-molded mat is pressed at a pressure of 3 MPa, cured and cured under a condition of 70 ° C. for 10 hours, the mold plate is removed from the mold, and further subjected to secondary treatment by autoclaving at a condition of 185 ° C. for 7 hours. Cured. However, only Example 7 was subjected to secondary curing by autoclaving at 165 ° C. for 7 hours.
[0029]
[Comparative Example]
With the raw material mixture shown in Table 2, a wood cement board was produced under the same conditions as in the Examples. However, only the comparative example 5 performed the secondary curing by an autoclave on the conditions of 200 degreeC-7 hours.
[0030]
[Table 1]
Figure 2004277264
[0031]
[Table 2]
Figure 2004277264
[0032]
The bending strength conformed to JIS A 1408.
Combustion shrinkage was evaluated by measuring the amount of warpage before and after a combustion test (900 ° C. for 1 hour in an electric furnace, test piece 7 × 20 cm).
As for cracks during combustion, the appearance of the surface of the test piece and the small cracks after the combustion test was evaluated.
Appearance evaluation was evaluated in four stages: ◎ = good, ◯ = not problematic, △ = somewhat problematic, and x = defect.
[0033]
As shown in the examples, when the ratio of the shirasu balloon to the entire silicic acid-containing material was 10 to 45%, the bending strength did not decrease, and the amount of warpage during combustion and generation of cracks were almost satisfactory. Moreover, it was similarly good also when the compounding quantity of the wood reinforcement contained in the front and back layers and the core layer was 8 to 20%, respectively, and when the curing temperature of the autoclave secondary curing was 165 ° C.
On the other hand, in Comparative Example 1 in which the silicic acid-containing material is composed of silica sand alone and in Comparative Example 2 in which the ratio of the shirasu balloon to the entire silicic acid-containing material is greater than 45%, bending strength, warping and cracks during combustion are all increased. Also worsened.
[0034]
【The invention's effect】
Therefore, according to the wood cement board of the present invention and the method for producing the same, the strength of the base material can be secured without excessive addition of flat minerals such as mica and hydroxide, and the base material can be used in a fire. There is almost no warping or cracking, there is no risk of a flame entering from the joint or crack gap, and there is no risk of the base material falling off the housing, and it has excellent thermal stability and dramatically improves fireproof performance. It becomes possible.

Claims (4)

セメント、木質補強材、シラスバルーンを含む珪酸含有物質、偏平状鉱物、水酸化物、を配合した表裏層と芯層からなる木質セメント板であって、珪酸含有物質全体におけるシラスバルーンの割合を10〜45%とした木質セメント板。A wood cement board comprising front and back layers and a core layer containing a cement, a wood reinforcing material, a silicic acid-containing substance containing shirasu balloon, a flat mineral, and a hydroxide. Wood cement board with ~ 45%. 表裏層と芯層の各配合中に含まれる木質補強材はそれぞれ8〜20%の配合量としていることを特徴とする請求項1の木質セメント板。The wood cement board according to claim 1, wherein the wood reinforcing material contained in each of the front and back layers and the core layer is 8 to 20%. オートクレーブ養生をする際の温度は165〜190℃としていることを特徴とする請求項1から3の木質セメント板。The wood cement board according to claims 1 to 3, wherein the temperature for curing the autoclave is 165 to 190 ° C. 予め粒径の細かい木質補強材とシラスバルーンを除く粉体とを混合したのち上記混合物にシラスバルーンを混合した表裏層用原料、粒径の粗い木質補強材とシラスバルーンを除く粉体とを混合したのち上記混合物にシラスバルーンを混合した芯層用原料、をそれぞれ調合準備しておき、
表裏層用原料混合物を散布積層して表層とする工程、上記表層に芯層用原料混合物を散布積層して芯層とする工程、さらにその上に表裏層用原料混合物を散布積層して裏層とする工程、上記積層物を圧締して水分存在下でオートクレーブ養生する工程、とを備えていることを特徴とする木質セメント板の製造方法。
After mixing the fine wood particle reinforcing material and the powder excluding Shirasu Balloon in advance, mix the raw material for the front and back layers in which the Shirasu Balloon is mixed with the above mixture, the coarse particle wood reinforcing material and the powder excluding the Shirasu Balloon. After that, preparing the raw material for the core layer in which the mixture is mixed with the shirasu balloon,
A step of spraying and laminating the raw material mixture for the front and back layers to form a surface layer, a step of spraying and laminating the raw material mixture for the core layer to the core layer to form a core layer, and a layer of the raw material mixture for the front and back layers being spread and laminated thereon And a step of pressing the laminate and curing the autoclave in the presence of moisture. A method for producing a wood cement board, comprising:
JP2003074462A 2003-03-18 2003-03-18 Wood cement board and manufacturing method thereof Expired - Fee Related JP4412909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074462A JP4412909B2 (en) 2003-03-18 2003-03-18 Wood cement board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074462A JP4412909B2 (en) 2003-03-18 2003-03-18 Wood cement board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004277264A true JP2004277264A (en) 2004-10-07
JP4412909B2 JP4412909B2 (en) 2010-02-10

Family

ID=33290088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074462A Expired - Fee Related JP4412909B2 (en) 2003-03-18 2003-03-18 Wood cement board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4412909B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247651A (en) * 2007-03-29 2008-10-16 Kubota Matsushitadenko Exterior Works Ltd Cement board
JP2013018671A (en) * 2011-07-08 2013-01-31 Kmew Co Ltd Inorganic building material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345508A (en) * 1993-06-11 1994-12-20 Kubota Corp Cement board
JPH08198689A (en) * 1995-01-24 1996-08-06 Daiken Trade & Ind Co Ltd Lightweight inorganic formed body and its production
JP2001206762A (en) * 2000-01-21 2001-07-31 Ube Ind Ltd Calcium silicate-based formed body excellent in frost damage resistance and workability
JP2003267769A (en) * 2002-03-13 2003-09-25 Daiken Trade & Ind Co Ltd Wood cement board and method of manufacturing it
JP2004091230A (en) * 2002-08-30 2004-03-25 Nichiha Corp Woody cement plate and its manufacturing process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345508A (en) * 1993-06-11 1994-12-20 Kubota Corp Cement board
JPH08198689A (en) * 1995-01-24 1996-08-06 Daiken Trade & Ind Co Ltd Lightweight inorganic formed body and its production
JP2001206762A (en) * 2000-01-21 2001-07-31 Ube Ind Ltd Calcium silicate-based formed body excellent in frost damage resistance and workability
JP2003267769A (en) * 2002-03-13 2003-09-25 Daiken Trade & Ind Co Ltd Wood cement board and method of manufacturing it
JP2004091230A (en) * 2002-08-30 2004-03-25 Nichiha Corp Woody cement plate and its manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247651A (en) * 2007-03-29 2008-10-16 Kubota Matsushitadenko Exterior Works Ltd Cement board
JP2013018671A (en) * 2011-07-08 2013-01-31 Kmew Co Ltd Inorganic building material

Also Published As

Publication number Publication date
JP4412909B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
US20060043627A1 (en) Wood cement board and method for the manufacturing thereof
CN1117032A (en) Process for preparing solidified material containing coal ash
CN110776301B (en) Microwave modified inorganic cementing material, preparation method and application thereof
KR100853754B1 (en) The refractory material of high strength for construction and the making method thereof
JP7515639B2 (en) Inorganic board and its manufacturing method
JP4648668B2 (en) Inorganic board and method for producing the same
CN106082884B (en) A kind of insulating light wall slab and preparation process containing solid waste cinder
CN1076035C (en) Coating composition for fireproofing and sound-absorbing and construction method thereof
JP4180861B2 (en) Wood cement board and manufacturing method thereof
JP4412909B2 (en) Wood cement board and manufacturing method thereof
JP5129941B2 (en) Inorganic molded body and method for producing the same
KR101085557B1 (en) Infilled type hybrid insulating materials and insulation wall construction method using the same
KR101580537B1 (en) Non cement lightweight panel using polysilicon sludge
KR100554718B1 (en) Incombustible and Heat-Resistant Panel for Structures using Clay Minerals and Method for Manufacturing thereof
KR20010014221A (en) Refractory liquid and method of manufacturing the same, and refractory material, refractory building material and refractory adhesive each manufactured from the refractory liquid
JP2008247651A (en) Cement board
JPH0640777A (en) Lightweight fiberproof composite panel and its production
JP2006069807A (en) Inorganic board and its manufacturing method
JP2002321305A (en) Cemented chip laminated board
JPH0569787B2 (en)
JP2007290946A (en) Heat insulating composition, method of manufacturing the same and method of constructing heat insulating structure
JPH0322965Y2 (en)
CN117799244A (en) Non-combustible heat-insulating sound-insulating functional board, decorative board and preparation method thereof
JP2006069806A (en) Inorganic board and its manufacturing method
JP2005194143A (en) Method for producing inorganic board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees