【0001】
【発明の属する技術分野】
本発明は、光学機器に使用される光学素子(例えば、カメラレンズや光ディスク装置に用いる集光レンズ)を精密成形法により形成するための光学素子成形型およびその成形方法と成形装置に関するものである。
【0002】
【従来の技術】
近年、光学レンズを研磨工程なしの一発成形により形成する提案が数多くされており、例えば、上下型と胴型とで構成される内部空間にガラス素材を投入して押圧成形しているものがある(例えば、特許文献1参照。)。また、複数個の上下型と貫通孔が複数個設けられた胴型で構成された成形型を用いて光学素子を成形するものある(例えば、特許文献2参照。)。
【0003】
前者は高い形状精度と高い面精度の確保および生産性を加味した低コストレンズを提供し、また後者は、生産性の向上と光学素材の重量許容巾を拡大できる余剰逃げ部を形成した金型と、この金型を用いた成形方法を提供するものである。しかし、カメラレンズや光ディスク装置に用いるレンズは年々、更なる高精度化が要求されており、カメラレンズでは特にレンズ両面の軸偏芯精度、光ディスク装置としてもレーザー光源の短波長化によるレンズ両面の光軸精度向上が必須である。
【0004】
図3は特許文献1の第1図に開示されている成形型であり、上型10,下型11,胴型12およびガラス素材13とで構成した成形ブロックAを示し、該成形ブロックAの上下からヒータ15を埋設した加熱ブロック7を介して加熱と加圧を行うものである。
【0005】
【特許文献1】
特公平7−64571号公報(第1図)
【特許文献2】
特開平9−165226号公報
しかし、成形型を構成する上下型と胴型の部材構成や、加熱の最適な方法や、成形された光学素子の収差性能については開示されておらず不明確であった。
【0006】
【発明が解決しようとする課題】
本発明は、従来技術の課題に鑑み、上述したレンズ両面の偏芯精度と光軸精度の向上を行う、光学素子成形型と、この成形型を用いて成形される光学素子の成形方法と、成形装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に係る光学素子成形型は、光学素子材料を押圧成形するための上下型と上下型を摺動案内する胴型とで構成された光学素子成形型であって、胴型の材料がタングステンカーバイド(WC)を主成分とする超硬合金、サーメット、セラミックッスおよび石英から選択されたいずれかであり、下型の材料がガラス材料であり、胴型と下型における熱膨張量の関係が前記光学素子を押圧成形する温度領域では、下型の材料の熱膨張量が胴型の材料の熱膨張量より大となる、すなわち、下型の熱膨張量>胴型の熱膨張量となる、焼きばめ状態としている。
【0008】
また、上型は、光学素子を押圧成形する温度領域で前記胴型と摺動する関係で最小とする。
【0009】
本発明の請求項3に係る光学素子の成形方法は、上下型と上下型を摺動案内する胴型とで構成される内部空間に光学素子材料を投入し、光学素子材料の軟化温度近傍で下型と胴型とが焼きばめ状態で押圧成形した後、冷却することにより光学素子を得る。
【0010】
本発明の請求項4記載の光学素子成形装置は、上下型と上下型を摺動案内する胴型とで構成される内部空間に光学素子材料を投入した成形型を、上下に配置した加熱板の間に設置し、光学素子材料の軟化温度近傍で押圧して光学素子を成形する光学素子成形装置であって、胴型および上下型の両端面と加熱板とが接触した状態で光学素子材料を加熱軟化させる。
【0011】
また、上加熱板に保温スリーブを連接し、保温スリーブは胴型の周囲に配設するものである。
【0012】
【発明の実施の形態】
(実施の形態1)
本実施の形態に於ける光学素子成形型と、この型を用いた成形方法および成形装置を図1を用いて説明する。
【0013】
図1(A)は成形型の構成を説明する正断面図を示し、上型1、下型2、胴型3およびこれら上下型と胴型3とで構成される内部空間に光学素子材料4を投入した室温での状態を示している。下型2は、ガラス材料からなり、円筒状に精密加工され胴型3の貫通孔に嵌合され、上端には光学素子を得る成形面5が設けられ、所望の形状と表面粗さとに機械加工されている。一方、上型1および胴型3はタングステンカーバイド(WC)を主成分とする超硬合金、サーメット、セラミックスおよび石英などの材料から任意に選択できる材料の組み合わせで構成されており、互いに精密な嵌合状態で摺動可能な所望のクリアランスが設けられ、上型1の下端には光学素子を得る他方の成形面6が下型と同様に所望形状と表面粗さとに機械加工されている。
【0014】
図1(B)は、上記した成形型を成形装置に載置した状態図を示し、同図(A)に示す成形型が、ヒータ21が埋設され、上下に配置した下加熱板22および上加熱板23の間に置かれている。上加熱板23には上下自在に可動できる嵌合状態にフランジ形状の加熱ブロック24が設けられ、上加熱板23の下端面よりも突出している。また、上加熱板23は上下に駆動するプレス軸25に連結され、さらにプレス軸は図示しないエアーシリンダーなどの駆動源に連結され図中の加圧力Fが発生できる構成にしている。プレス軸25の下端と加熱ブロック24の上端との間にはバネ26が配置されている。上加熱板23および下加熱板22には温度検知を行う熱電対を埋設し、温度制御を行う制御手段を備えているが図示は省略している。
【0015】
図1(C)は、プレス軸25を下降させて所定位置で停止させた状態を示し、成形型を上下から均等加熱する状態を図示している。プレス軸25の下降により、上型1の上端面の相対位置は、加熱ブロック24が持ち上げられた状態となる。従って、上型1の上端面と加熱ブロック24の下端面とが接触し、バネ26の圧縮力による圧力が加わっており、光学素子材料4にもその圧力は伝播している。さらに、バネ26の圧縮力にうち勝ってプレス軸25を下降させると、バネ26はさらに圧縮され、プレス軸25の加圧力Fは上型1を介して光学素子材料4に伝播させて成形が行えるものである。
【0016】
本実施の形態では、下型2の材料に熱膨張係数が67×10−7/Kの光学ガラスを用い、その成形面には光学素子材料との溶着防止膜を形成している。また、胴型3と上型1の材料には55×10−7/Kのタングステンカーバイド(WC)を主成分とする超硬合金を用い、互いに嵌合するクリアランスは室温状態で3ミクロンに設定した。また、光学素子材料4には硼珪酸バリューム系(ガラス転移点:516℃、屈伏点:553℃)を所望体積に加工した球形状のものを準備した。成形する光学素子は、焦点距離=3.0mm、NA=0.5の両凸レンズである。
【0017】
まず、図1(A)の状態に準備した成形型を、図1(B)の成形装置に投入し、図1(C)の状態で、上下加熱板の温度を585℃まで昇温し、約2分間保持した後に、加圧力Fを600Nで押圧変形を行う。その後、成形型全体を冷却してから、成形された光学素子を型分解して取り出し、フィゾー型干渉計で透過波面収差を測定したところ0.02λRMS以下の収差性能を確認した。これは、上下型と胴型を同じ材料で構成した成形型を用いて成形したものより、特にコマ収差の低減が顕著にみられた。
【0018】
本実施の形態では、下型2の材料と胴型3の材料との熱膨張係数の大小関係で、成形する温度領域では、下型2は胴型3に完全に焼きばめ状態になるような嵌合のクリアランスに設定され、かつ固定している。即ち、(下型であるガラス材料の熱膨張量)>(胴型の熱膨張量の関係)を満足することで下型2の光軸の傾斜が減少し、光学素子の上下面の光軸精度が向上した理由である。
【0019】
なお、本実施の形態では、胴型3と上型1が互いに嵌合するクリアランスは室温状態で3ミクロンに設定したが、これに限定するものではなく、上型が光学素子を押圧成形する温度領域で胴型と摺動する関係で最小であればよい。
【0020】
(実施の形態2)
実施の形態2では下型2を実施の形態1と同様のガラス材料を用い、上型1と胴型3にTiNからなるサーメットを用いて成形型を作成する。用いたサーメットの熱膨張係数は76×10−7/Kであり、上型1と胴型3の嵌合クリアランスを3ミクロン、上型1に形成した成形面6の形状も実施の形態1と同様にしている。また、光学素子材料4も同様の球形状に加工したものを用いている。
【0021】
上加熱板23の温度を595℃、下加熱板22を575℃に設定して押圧成形を行い、下型2と胴型3の嵌合は、ほぼ零になるように設定して加工する。その理由は下型2の熱膨張係数が67×10−7/Kであるために成形温度領域において理論上は胴型3に焼きばめ出来ないためである。しかし、成形された光学素子の収差性能を数十個測定したが特にコマ収差は安定性を示した。また、トータルの波面収差は0.023λRMSを示し、実施の形態1よりも若干悪化したものの実用上問題のない光学素子を得ることが出来た。
【0022】
(実施の形態3)
本実施の形態では、下型2の材料を固定し、上型1と胴型3の組み合わせを、(表1)の超硬合金、サーメット、セラミックスおよび石英の中から選択し、それぞれの組み合わせにおいて最適な嵌合クリアランスを熱膨張係数(成形温度領域に於ける膨張量)と加工寸法を設定した。(表1)は、上下型と胴型材料に用いた熱膨張係数と、成形温度が600℃、胴型の内径寸法を4mmとして熱膨張量を算出したものである。
【0023】
【表1】
【0024】
実施の形態1および実施の形態2と同様の成形型を準備し、同様の光学素子を同様の成形条件で押圧成形すると、波面収差の内、球面収差および非点収差については成形型固有の数値を示したが、光軸精度の指標であるコマ収差については、いずれも下型を胴型に焼きばめする成形型で得られた光学素子の方が低減と安定性を示した。
【0025】
図2に本実施の形態で用いた成形装置を示す。図2に示すように、上加熱板23に連結した金属製の保温スリーブ27を配接し、成形型全体の加熱効率を高めて成形を行う。その結果、設定した上加熱板23,下加熱板22の設定温度を実施の形態1よりも約6℃低く行えることができ、成形型の長寿命化に対して効果出来ることが判明した。ここで、加圧力Fは実施の形態1と同様である。
【0026】
以上のことから、実施の形態1および実施の形態3で説明したように、上下型と胴型で構成される光学素子成形型において、下型と胴型が成形温度領域で焼きばめ状態となるように熱膨張係数の異なる材料と、嵌合クリアランスの組み合わせで実現すれば光軸精度の高い光学素子の成形が行うことができる。
【0027】
また、上型と胴型との嵌合クリアランスにおいても成形温度領域で上型が摺動する範囲で小さく設定すれば、光軸精度および偏芯精度の向上が図れるものである。
【0028】
さらに、押圧成形においては加圧機構や上下加熱板とは分離されたチャンバー内で不活性ガス中で行なったことを付記する。
【0029】
なお、本実施の形態では、胴型と上型の材料としてタングステンカーバイン(WC)を主成分とする超硬合金、TiNからなるサーメット、を用いたが、これに限定するものではなく、成形温度領域の範囲において、最小のクリアランスで、勘合と摺動ができれば別段ガラス材料であっても良いことは言うまでもない。また、胴型と下型における熱膨張量の関係が、光学素子を押圧成形する温度領域で、下型の熱膨張量が前記胴型の熱膨張量より大となる材料であればよい。
【0030】
また、下型の材料として熱膨張係数が67×10−7Kの光学ガラスを用いたが、胴型と下型における熱膨張量の関係が、光学素子を押圧成形する温度領域で、下型の熱膨張量が前記胴型の熱膨張量より大となる他のガラス材料でも同様の効果が得られる。
【0031】
【発明の効果】
以上のように、本発明によれば、成形型の一方を成形温度領域において、下型と胴型とを焼きばめ状態に設定することで、光学素子の性能安定性を実現し、歩留まり向上と安価な光学素子を市場に提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における光学素子成形型、光学素子、および光学素子成形装置を示す正断面図
【図2】本発明の実施の形態3における光学素子成形装置の構成を示す正断面図
【図3】従来の光学素子成形型の構成を示す正断面図
【符号の説明】
1 上型
2 下型
3 胴型
4 光学素子材料
22 下加熱板
23 上加熱板
24 加熱ブロック
25 プレス軸
26 バネ
27 保温スリーブ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical element molding die for forming an optical element (for example, a condenser lens used for a camera lens or an optical disk device) used in an optical apparatus by a precision molding method, and a molding method and a molding apparatus therefor. .
[0002]
[Prior art]
In recent years, there have been many proposals for forming an optical lens by one-shot molding without a polishing step. For example, there is a method in which a glass material is charged into an internal space formed by an upper and lower mold and a body mold and pressed. (For example, see Patent Document 1). Further, there is a method in which an optical element is molded using a molding die composed of a plurality of upper and lower dies and a body mold provided with a plurality of through holes (for example, see Patent Document 2).
[0003]
The former provides a low-cost lens that ensures high shape accuracy, high surface accuracy, and productivity, and the latter provides a mold with an extra relief that can improve productivity and increase the allowable weight of optical materials. And a molding method using the mold. However, the lens used in camera lenses and optical disc devices is required to have higher accuracy year by year. In the case of camera lenses, the eccentricity of the lens surfaces is particularly high. It is essential to improve the optical axis accuracy.
[0004]
FIG. 3 shows a molding die disclosed in FIG. 1 of Patent Document 1, which shows a molding block A composed of an upper die 10, a lower die 11, a body die 12, and a glass material 13. Heating and pressurizing are performed from above and below via a heating block 7 in which a heater 15 is embedded.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 7-64571 (Fig. 1)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 9-165226, however, does not disclose the configuration of members of the upper and lower molds and the barrel mold constituting the molding die, the optimal method of heating, and the aberration performance of the molded optical element. Was.
[0006]
[Problems to be solved by the invention]
In view of the problems of the prior art, the present invention improves the eccentricity accuracy and optical axis accuracy of both surfaces of the lens described above, an optical element molding die, and a molding method of an optical element molded using the molding die, An object is to provide a molding device.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an optical element molding die according to claim 1 of the present invention comprises an upper and lower mold for press-molding an optical element material and a barrel mold for slidingly guiding the upper and lower molds. A molding die, wherein a material of the body is any one selected from a cemented carbide, cermet, ceramics and quartz having tungsten carbide (WC) as a main component, a material of the lower mold is a glass material, In a temperature region where the relationship between the thermal expansion amount of the mold and the lower mold is such that the optical element is pressed and molded, the thermal expansion of the material of the lower mold is larger than the thermal expansion of the material of the barrel mold. The shrink-fit state is such that the amount of expansion> the amount of thermal expansion of the barrel.
[0008]
In addition, the upper mold is minimized because it slides with the body mold in a temperature range where the optical element is pressed and molded.
[0009]
In the method for molding an optical element according to claim 3 of the present invention, an optical element material is charged into an internal space defined by an upper and lower mold and a body mold that slides and guides the upper and lower molds, and the optical element material is heated near the softening temperature of the optical element material. After the lower mold and the body mold are press-formed in a shrink-fit state, the optical element is obtained by cooling.
[0010]
An optical element molding apparatus according to a fourth aspect of the present invention is characterized in that a molding die in which an optical element material is charged into an internal space formed by an upper and lower mold and a body mold that slides and guides the upper and lower molds is disposed between heating plates arranged vertically. An optical element molding apparatus for molding an optical element by pressing the optical element near the softening temperature of the optical element material, and heating the optical element material in a state where both end surfaces of the barrel mold and the upper and lower molds are in contact with the heating plate. Soften.
[0011]
Further, a heat retaining sleeve is connected to the upper heating plate, and the heat retaining sleeve is disposed around the body mold.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
An optical element molding die, a molding method and a molding apparatus using this mold in this embodiment will be described with reference to FIG.
[0013]
FIG. 1A is a front sectional view for explaining the configuration of a molding die, and an optical element material 4 is placed in an inner space formed by an upper die 1, a lower die 2, a trunk die 3 and these upper and lower dies and a trunk die 3. Shows the state at room temperature in which. The lower mold 2 is made of a glass material, is precision machined into a cylindrical shape, is fitted into a through-hole of the body mold 3, is provided with a molding surface 5 for obtaining an optical element at the upper end, and has a mechanical shape of a desired shape and surface roughness. It has been processed. On the other hand, the upper mold 1 and the body mold 3 are made of a combination of materials that can be arbitrarily selected from materials such as cemented carbide, cermet, ceramics, and quartz having tungsten carbide (WC) as a main component. A desired clearance slidable in the combined state is provided, and the other molding surface 6 for obtaining the optical element is machined to the desired shape and surface roughness at the lower end of the upper mold 1 like the lower mold.
[0014]
FIG. 1 (B) shows a state diagram in which the above-described forming die is placed on a forming apparatus. The forming die shown in FIG. 1 (A) has a heater 21 embedded therein and a lower heating plate 22 and an upper heating plate 22 arranged vertically. It is located between the heating plates 23. The upper heating plate 23 is provided with a flange-shaped heating block 24 in a fitted state that can be freely moved up and down, and protrudes from the lower end surface of the upper heating plate 23. The upper heating plate 23 is connected to a press shaft 25 that is driven up and down, and the press shaft is connected to a drive source such as an air cylinder (not shown) to generate a pressing force F in the drawing. A spring 26 is arranged between the lower end of the press shaft 25 and the upper end of the heating block 24. A thermocouple for detecting temperature is embedded in the upper heating plate 23 and the lower heating plate 22, and control means for controlling temperature is provided, but is not shown.
[0015]
FIG. 1C illustrates a state in which the press shaft 25 is lowered and stopped at a predetermined position, and illustrates a state in which the mold is uniformly heated from above and below. Due to the lowering of the press shaft 25, the relative position of the upper end surface of the upper die 1 is in a state where the heating block 24 is lifted. Therefore, the upper end surface of the upper die 1 and the lower end surface of the heating block 24 come into contact with each other, and a pressure due to the compressive force of the spring 26 is applied, and the pressure is also transmitted to the optical element material 4. Further, when the press shaft 25 is lowered by overcoming the compressive force of the spring 26, the spring 26 is further compressed, and the pressing force F of the press shaft 25 is transmitted to the optical element material 4 via the upper die 1 so that molding is performed. You can do it.
[0016]
In the present embodiment, an optical glass having a thermal expansion coefficient of 67 × 10 −7 / K is used for the material of the lower mold 2, and a film for preventing adhesion with the optical element material is formed on the molding surface. The material of the body mold 3 and the upper mold 1 is made of a cemented carbide mainly composed of 55 × 10 −7 / K tungsten carbide (WC), and the clearance for fitting with each other is set to 3 μm at room temperature. did. In addition, a spherical material prepared by processing a borosilicate value-based material (glass transition point: 516 ° C., yield point: 553 ° C.) into a desired volume was prepared as the optical element material 4. The optical element to be molded is a biconvex lens with a focal length of 3.0 mm and an NA of 0.5.
[0017]
First, the mold prepared in the state shown in FIG. 1A is put into the molding apparatus shown in FIG. 1B, and the temperature of the upper and lower heating plates is raised to 585 ° C. in the state shown in FIG. After holding for about 2 minutes, pressing deformation is performed at a pressing force F of 600 N. Thereafter, after the entire mold was cooled, the molded optical element was disassembled and taken out, and the transmitted wavefront aberration was measured with a Fizeau interferometer. As a result, an aberration performance of 0.02λRMS or less was confirmed. In particular, coma aberration was remarkably reduced as compared with the case where the upper and lower molds and the body mold were molded using the same mold.
[0018]
In the present embodiment, the lower mold 2 is completely shrink-fitted to the body mold 3 in the molding temperature range due to the magnitude relationship of the thermal expansion coefficient between the material of the lower mold 2 and the material of the body mold 3. It is set to the clearance of proper fitting and is fixed. That is, by satisfying (the amount of thermal expansion of the glass material as the lower mold)> (the relationship of the amount of thermal expansion of the barrel mold), the inclination of the optical axis of the lower mold 2 is reduced, and the optical axes of the upper and lower surfaces of the optical element are reduced. That is why the accuracy has improved.
[0019]
In the present embodiment, the clearance at which the body mold 3 and the upper mold 1 are fitted to each other is set to 3 microns at room temperature. However, the present invention is not limited to this. What is necessary is just a minimum in relation to sliding with the body mold in the region.
[0020]
(Embodiment 2)
In the second embodiment, a lower mold 2 is made of the same glass material as that of the first embodiment, and a molding die is formed by using a cermet made of TiN for the upper mold 1 and the body mold 3. The thermal expansion coefficient of the cermet used was 76 × 10 −7 / K, the clearance between the upper mold 1 and the body mold 3 was 3 μm, and the shape of the molding surface 6 formed on the upper mold 1 was the same as in the first embodiment. I do the same. Also, the optical element material 4 used is processed into a similar spherical shape.
[0021]
Press forming is performed with the temperature of the upper heating plate 23 set to 595 ° C. and the lower heating plate 22 set to 575 ° C., and the lower die 2 and the body die 3 are set so that the fitting is almost zero. The reason is that since the thermal expansion coefficient of the lower mold 2 is 67 × 10 −7 / K, it cannot theoretically be fitted to the body mold 3 in the molding temperature range. However, several tens of aberration performances of the molded optical element were measured, and especially, coma showed stability. Further, the total wavefront aberration was 0.023λ RMS, and although it was slightly worse than that of the first embodiment, an optical element having no practical problem could be obtained.
[0022]
(Embodiment 3)
In the present embodiment, the material of the lower mold 2 is fixed, and the combination of the upper mold 1 and the body mold 3 is selected from cemented carbide, cermet, ceramics and quartz shown in (Table 1). The optimum fitting clearance was set by the coefficient of thermal expansion (the amount of expansion in the molding temperature range) and the processing dimensions. Table 1 shows the thermal expansion coefficients used for the upper and lower molds and the body mold material, and the amount of thermal expansion calculated at a molding temperature of 600 ° C. and an inner diameter of the body mold of 4 mm.
[0023]
[Table 1]
[0024]
When the same mold as in Embodiments 1 and 2 is prepared and the same optical element is pressed and molded under the same molding conditions, the spherical aberration and astigmatism among the wavefront aberrations are numerical values specific to the mold. As for the coma aberration, which is an index of the optical axis accuracy, the optical element obtained by the molding die in which the lower die is shrink-fitted to the barrel die shows lowering and stability.
[0025]
FIG. 2 shows a molding apparatus used in the present embodiment. As shown in FIG. 2, a metal heat insulating sleeve 27 connected to the upper heating plate 23 is disposed, and the molding is performed while increasing the heating efficiency of the entire mold. As a result, it has been found that the set temperatures of the upper heating plate 23 and the lower heating plate 22 can be set lower than that of the first embodiment by about 6 ° C., which is effective for extending the life of the molding die. Here, the pressing force F is the same as in the first embodiment.
[0026]
From the above, as described in the first and third embodiments, in the optical element molding die composed of the upper and lower dies and the trunk die, the lower die and the trunk die are shrink-fitted in the molding temperature range. If it is realized by a combination of a material having a different thermal expansion coefficient and a fitting clearance, an optical element with high optical axis accuracy can be formed.
[0027]
Also, if the clearance between the upper die and the body die is set to be small within the range in which the upper die slides in the molding temperature range, the accuracy of the optical axis and the eccentricity can be improved.
[0028]
Furthermore, it is noted that the press molding was performed in an inert gas in a chamber separated from the pressing mechanism and the upper and lower heating plates.
[0029]
In the present embodiment, a cemented carbide made of tungsten carbide (WC) as a main component and a cermet made of TiN are used as materials for the body mold and the upper mold. However, the present invention is not limited to this. It goes without saying that another glass material may be used as long as the fitting and sliding can be performed with the minimum clearance in the range of the region. Further, any material may be used as long as the relationship between the thermal expansion amount of the lower die and the thermal expansion amount of the lower die is greater than the thermal expansion amount of the lower die in a temperature range in which the optical element is pressed.
[0030]
Although optical glass having a coefficient of thermal expansion of 67 × 10 −7 K was used as the material of the lower mold, the relationship between the thermal expansion amount in the body mold and the lower mold is limited by the temperature range in which the optical element is pressed and molded. The same effect can be obtained by using another glass material having a thermal expansion amount larger than that of the body mold.
[0031]
【The invention's effect】
As described above, according to the present invention, by setting one of the molds in the molding temperature range and setting the lower mold and the body mold in a shrink fit state, the performance stability of the optical element is realized, and the yield is improved. And an inexpensive optical element can be provided to the market.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an optical element molding die, an optical element, and an optical element molding apparatus according to a first embodiment of the present invention. FIG. 2 shows a configuration of an optical element molding apparatus according to a third embodiment of the present invention. FIG. 3 is a front sectional view showing the configuration of a conventional optical element molding die.
DESCRIPTION OF SYMBOLS 1 Upper mold 2 Lower mold 3 Body mold 4 Optical element material 22 Lower heating plate 23 Upper heating plate 24 Heating block 25 Press shaft 26 Spring 27 Heat insulation sleeve