JP2004277206A - Method of producing electroconductive ceramics - Google Patents

Method of producing electroconductive ceramics Download PDF

Info

Publication number
JP2004277206A
JP2004277206A JP2003069155A JP2003069155A JP2004277206A JP 2004277206 A JP2004277206 A JP 2004277206A JP 2003069155 A JP2003069155 A JP 2003069155A JP 2003069155 A JP2003069155 A JP 2003069155A JP 2004277206 A JP2004277206 A JP 2004277206A
Authority
JP
Japan
Prior art keywords
mass
boat
less
powder
titanium diboride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003069155A
Other languages
Japanese (ja)
Inventor
Atsuki Igarashi
厚樹 五十嵐
Kentaro Iwamoto
健太郎 岩元
Tetsumi Otsuka
哲美 大塚
Isao Sugimoto
勲 杉本
Shojiro Watanabe
祥二郎 渡辺
Yuji Matsuo
裕二 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003069155A priority Critical patent/JP2004277206A/en
Publication of JP2004277206A publication Critical patent/JP2004277206A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide electroconductive ceramics which can further improve boat characteristics (a boat life, temperature rising properties on resistance heating, and wettability with respect to molten metal). <P>SOLUTION: In the method of producing electroconductive ceramics, raw material powder containing, by mass, 30 to 60% titanium diboride (in which the content of oxygen is controlled to ≤0.7%), 15 to 70% boron nitride, 0 to 45% aluminum nitride and alkaline-earth metallic compounds by 0 to 5% expressed in terms of metal is molded, and is thereafter sintered at 1,700 to 2,200°C under the pressure of ≤30 MPa in a non-oxidizing atmosphere to control its relative density to ≥90%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属蒸発用容器として好適な導電性セラミックスの製造方法に関する。
【0002】
【従来の技術】
従来、二硼化チタン(TiB)又は二硼化ジルコニウム(ZrB)の導電性成分と、窒化硼素(BN)、窒化アルミニウム(AlN)等の電気絶縁性成分を含む導電性セラミックスからなる金属蒸発用容器(以下、「ボート」という。)に、アルミニウム(Al)等の金属を入れ、真空中で抵抗加熱により金属を蒸発させ、フィルム等に蒸着させることが行われている。
【0003】
ボートには、TiB−BNからなる2成分系ボートと、TiB−BN−AlNからなる3成分系ボートがあるが、これらには一長一短がある。2成分系ボートは、3成分系ボートに比べ、熱衝撃に強いが、大気中の湿度によって抵抗が高まりやすく、また昇温速度が小さいので蒸着させるまでには長時間が必要となる。これに対し、3成分系ボートは、熱伝導率の高い窒化アルミニウムを含むため昇温特性に優れる反面、窒化硼素の含有量が少なくなるので熱衝撃に弱くなり、使用条件にもよるが、2成分系ボートよりも短寿命である。
【0004】
そこで、昇温速度に優れ、しかも大気湿度の影響をなくした長寿命のボートとして、二硼化チタン48%、窒化硼素49.5%、酸化カルシウム1%、窒化アルミニウム1.5%からなるものが提案されたが(特許文献1の実施例)、まだ不十分である。
【0005】
【特許文献1】
特開2001−302352公報
【0006】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたもので、ボート特性(ボート寿命、抵抗加熱時の昇温特性及び溶融金属に対する濡れ性)を更に向上させることのできる導電性セラミックスを提供することである。本発明の目的は、2成分系ボート、3成分系ボートを問わず、導電性成分として二硼化チタン粉末を用いる導電性セラミックスの製造において、酸素量0.7質量%以下の二硼化チタン粉末を用いることによって達成することができる。これは、この分野で用いられた二硼化チタン粉末の酸素量が1.2質量%以上であったことと比べて特異的である。
【0007】
【課題を解決するための手段】
すなわち、本発明は、酸素量0.7質量%以下の二硼化チタン30〜60質量%、窒化硼素15〜70質量%、窒化アルミニウム0〜45質量%、アルカリ土類金属化合物を金属換算で0〜5質量%を含む原料粉末を成型した後、非酸化性雰囲気下、温度1700〜2200℃、圧力30MPa以下で焼結し、相対密度を90%以上とすることを特徴とする導電性セラミックスの製造方法である。
【0008】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0009】
本発明で用いる二硼化チタン粉末は、揮発性チタン塩(例えば、ハロゲン化チタン等)を原料とした気相法、金属チタンの直接硼化法、チタン化合物(例えば、二酸化チタン、窒化チタン)を原料とした還元法によって製造することができる。二硼化チタンの酸素量は、製造時における原料(主に還元剤:水素、炭素、金属マグネシウム、金属カルシウム、酸化マグネシウム、酸化カルシウム、及びそれらの組合せ等)の配合、焼成雰囲気(ヘリウム、アルゴン等の不活性ガス雰囲気ではガス流量、真空雰囲気では真空度)の調整等に加え、得られた二硼化チタンのアルコール及び/又は酸洗浄等により、酸素量0.7%以下を実現できる。酸素量が0.7質量%を超えると、十分なボート特性の向上効果が得られなくなる。すなわち、ボートの導電性を支配している二硼化チタン粒子表面が、二硼化チタン原料に由来する硼素の酸化物で覆われていると、その電気絶縁性の表面層がミクロな抵抗源となり、抵抗加熱時においてボートに局所的な負荷、温度分布を与え、ボート特性を悪化させる。なお、このような硼素酸化物による悪影響は、二硼化チタンの酸化により生じたチタン酸化物又は亜酸化物によっても起こり得るので、焼結に際しては、非酸化性性雰囲気下の焼結が必須となり、雰囲気中の酸素量は最大でも500μg/g以下とする配慮が必要である。二硼化チタン粉末の純度は99質量%以上が好ましく、平均粒径は0.5〜20μm、特に9〜15μmが好ましい。平均粒径は、例えば日機装社製マイクロトラック等で求めることができる。
【0010】
また、本発明で用いる窒化硼素粉末は、市販品で良いが、好ましくは純度99質量%以上、平均粒径5μm以下である。平均粒径が5μm超では、窒化硼素粒子の多くが粒成長の結果で鱗片状となるため異方性が大となり、溶融アルミニウム等の溶融金属に対する耐食性が低下する。また、窒化アルミニウム粉末は、市販品で良いが、好ましくは純度99質量%以上、平均粒径5μm以下である。平均粒径が5μm超では、90%以上の相対密度を持つ導電性セラミックスを製造することが困難となる。さらには、アルカリ土類金属化合物は、例えばカルシウム、ストロンチウム、バリウム等の酸化物、炭酸塩、塩化物等であり、その粉末の純度は99質量%以上、平均粒径は10μm以下であることが好ましい。平均粒径が10μm超では、焼結の際に生じる液相が不均一となり、相対密度90%以上の導電性セラミックスを製造することが困難となる。
【0011】
本発明において、原料粉末中の二硼化チタン粉末の割合が30質量%未満であると、ボートの比抵抗が急激に増加し、一般的な真空蒸着装置が有する電圧範囲(8〜15V)において、金属蒸着に十分な温度(Al蒸着では、約1500℃)を実現することができず、満足な膜圧の金属膜を生成させることができない。60質量%超であると、ボートの比抵抗が低下し、蒸着時に印可する出力に対する温度の変動幅が大となるため、ボート温度が不安定となり、ボート寿命を著しく低下させる。また、窒化硼素粉末の割合が15質量%未満であると、熱衝撃性が低下することに加え、加工性も悪化する。70質量%超であると、ボートの比抵抗が急激に増加し、抵抗加熱による昇温が困難となる。アルカリ土類金属化合物粉末が金属換算で5質量%超では、生じたアルカリ土類金属化合物を主成分とする液相がボート表面に析出し、染みを生じて商品価値を低下させる。窒化アルミニウム粉末が45質量%超では加工が困難となる。なお、ボート中のこれらの成分割合は、EPMAを用いて求めることができる。
【0012】
原料粉末の混合は、ボールミル、振動ミル、ボールトンミル、ヘンシェルミキサー等を使用することができる。原料粉末は、0.5〜2mmに造粒してから成型することが好ましい。造粒によって、成型物の相対密度と、充填時の均一性が高まる。成型は、一軸加圧又は冷間等方圧加圧において実施され、特に前者については、30MPa以下、好ましくは10〜20MPaにて実施される。焼結は、窒素、ヘリウム、アルゴン、真空等の非酸化性雰囲気下、温度1700〜2200℃、圧力30MPa以下、好ましくは10〜20MPaで行われる。温度が1700℃未満では相対密度90%を実現することができず、2200℃超ではBN、AlNの熱分解が起きボート特性が失われることに加え、周囲の黒鉛材と反応して焼き付き、商品価値が損なわれる。圧力が30MPa超では、設備が大規模になり経済的に好ましくないことに加え、作製したボートが黒鉛材と反応し易く、収率が低下する。非酸化性雰囲気中の酸素濃度は、最大でも500μg/g以下とする。
【0013】
本発明において、導電性セラミックスの相対密度が90%以下であると、溶融金属に対する耐食性が劣ることに加え、密度分布が大きくなることにより比抵抗が不均一となり、金属の蒸発速度に分布が生じるため好ましくない。相対密度は、原料配合及び焼結条件によって調整することができる。
【0014】
【実施例】
以下、本発明を実施例をあげてさらに具体的に説明する。
【0015】
実施例1
二硼化チタン粉末(純度99質量%、酸素量0.53質量%、平均粒径14.5μm)50.0質量%、窒化硼素粉末(純度99質量%、平均粒径1.2μm)46.5質量%、酸化カルシウム粉末(純度99質量%、平均粒径5.5μm)3.5質量%を、ボールミルにて120rpm、3時間混合して原料粉末を得た。この原料粉末を500MPaの圧力で冷間等方圧成型してから黒鉛容器中に埋め込み、高周波炉にて1900℃、30MPa、90分間、窒素雰囲気(酸素濃度500μg/g以下)にて焼結した。得られた導電性セラミックスの外観、相対密度、比抵抗、耐熱衝撃性、耐食性、昇温特性、濡れ性を測定した。製造条件を表1、結果を表2に示す。
【0016】
実施例2〜6 比較例1〜7
二硼化チタン粉末の酸素量、アルカリ土類金属化合物種、原料粉末の割合、焼結温度と圧力を種々変たこと以外は、実施例1と同様にして焼結体を製造した。
【0017】
実施例7
実施例1で得た原料粉末を乾式造粒機を用いて造粒し、その中から粒径0.5〜1.0mmの造粒物を選別したものを用いたこと以外は、実施例1と同様にして焼結体を製造した。
【0018】
実施例8
原料粉末として、二硼化チタン粉末48.0質量%、窒化硼素粉末31.0質量%、窒化アルミニウム粉末(純度99質量%、平均粒径4.2μm)21.0質量%からなる混合粉末を用いたこと以外は、実施例1と同様にして焼結体を製造した。
【0019】
実施例9、10 比較例8〜14
二硼化チタン粉末の酸素量、原料粉末の割合、焼結温度と圧力を種々変たこと以外は、実施例8と同様にして焼結体を製造した。
【0020】
(1)酸素量:島津社製酸素窒素同時分析計を用いて測定した。
(2)外観:成型体の外観を目視にて観察した。
○:良好(シミ、斑点が認められない)
×:不良(シミ、斑点が認められる)
(3)相対密度:実測密度と理論密度より算出した。
(4)比抵抗:室温にて電極間の総抵抗を測定し、1式による算出した。
ρ=R×W×T/l・・・・(1)
但し、ρ:比抵抗(μΩ・cm)、R:電極間の総抵抗(μΩ)、W、T:サンプル幅および厚み(cm)、l:電極間距離(cm)、である。
【0021】
(5)耐熱衝撃性:JIS R1601に準じた試験片(幅4mm×厚み3mm×全長60mm)に加工し、JIS R1615記載の熱衝撃試験装置を用いて、ΔT=1000℃にて熱衝撃試験を行った。続いて、試験片をJIS R1601に準じた3点曲げ強さを室温にて測定し、熱衝撃試前後における変化を比較した。
◎:非常に良好(熱衝撃試験前後における曲げ強さの低下率が15%未満)
○:良好(熱衝撃試験前後における曲げ強さの低下率が15%以上30%未満)
×:不良(熱衝撃試験前後における曲げ強さの低下率が30%以上)
【0022】
(6)耐食性:ボート形状(幅6mm×厚み4mm×全長110mm、溝:幅4mm×厚み2mm×全長40mm)に加工し、金属アルミニウムを80mg投入し、2×10−2Pa以下の真空中、ボート温度1700℃まで抵抗加熱した。このサイクル試験を120回行った後、又はアルミニウムの蒸着ができなくなった時点のサンプルの外観を目視にて観察した。さらに、サンプル中央部を切断し、SEMを用いて、ボート深さ方向に対するアルミニウムの浸食距離を観察した。
○:良好(外観のクラック少、アルミニウム浸食深さが50μm未満)
×:不良(外観のクラック多、アルミニウム浸食深さが50μm以上)
【0023】
(7)昇温特性:上記耐食性試験の第一回目のサイクルおける抵抗加熱時の電流−電圧プロファイルにおいて、通電開始から電流増加が開始するまで(すなわちアルミニウムの溶融が開始した時間)に要する時間を測定し、ボートの昇温特性とした。
○:良好(溶融時間が12秒未満)
×:不良(溶融時間が12秒以上)
【0024】
(8)濡れ性:上記耐食性試験の第一回目のサイクルおける抵抗加熱時の電流−電圧プロファイルにおいて、電流増加開始(すなわちアルミニウムの溶融が開始した時間)から最大電流値を示すまで(すなわち溶融アルミニウムが溝全体に濡れ広がった時間)に要する時間を測定し、ボートの濡れ性とした。
○:良好(濡れ広がり時間が8秒未満)
×:不良(濡れ広がり時間が8秒以上)
【0025】
【表1】

Figure 2004277206
【0026】
【表2】
Figure 2004277206
【0027】
表1、2より、二硼化チタン粉末の酸素量を0.7質量%以下とすることにより、TiB−BNの2成分系ボート(実施例1〜7)では溶融アルミニウムに対する耐食性、濡れ性、抵抗加熱時の昇温特性が一段と向上し、またTiB−BN−AlNの3成分系ボート(実施例8〜10)においては、溶融アルミニウムに対する耐食性に加え、耐熱衝撃性が一段と向上した。
【0028】
【発明の効果】
本発明によれば、ボート特性(ボート寿命、抵抗加熱時の昇温速度及び溶融金属に対する濡れ性)に優れたボートを製造することのできる導電性セラミックスが提供される。本発明の導電性セラミックスは、種々の金属の蒸発容器として使用できるが、特にアルミニウム蒸着用のボートに好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a conductive ceramic suitable for a metal evaporation container.
[0002]
[Prior art]
Conventionally, a metal made of a conductive ceramic containing a conductive component of titanium diboride (TiB 2 ) or zirconium diboride (ZrB 2 ) and an electrically insulating component such as boron nitride (BN) and aluminum nitride (AlN) 2. Description of the Related Art A metal such as aluminum (Al) is put in an evaporation container (hereinafter, referred to as a “boat”), and the metal is evaporated by resistance heating in a vacuum to deposit the metal on a film or the like.
[0003]
The boat, a two-component boat made of TiB 2 -BN, there are three-component system boat made of TiB 2 -BN-AlN, these are both merits and demerits. The two-component boat is more resistant to thermal shock than the three-component boat, but tends to increase in resistance due to atmospheric humidity, and requires a long time before vapor deposition because the rate of temperature rise is low. On the other hand, a ternary boat contains aluminum nitride having a high thermal conductivity and thus has excellent temperature-raising properties, but has a low content of boron nitride, and thus is weak against thermal shock. Shorter life than component boats.
[0004]
Therefore, as a long-life boat excellent in temperature rising rate and without influence of atmospheric humidity, a boat made of titanium diboride 48%, boron nitride 49.5%, calcium oxide 1%, aluminum nitride 1.5% Has been proposed (Example of Patent Document 1), but it is still insufficient.
[0005]
[Patent Document 1]
JP 2001-302352 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a conductive ceramic which can further improve boat characteristics (boat life, heating characteristics during resistance heating, and wettability to molten metal). An object of the present invention is to produce a conductive ceramic using titanium diboride powder as a conductive component, regardless of whether it is a two-component boat or a three-component boat. This can be achieved by using a powder. This is unique as compared to the titanium diboride powder used in this field having an oxygen content of 1.2% by mass or more.
[0007]
[Means for Solving the Problems]
That is, in the present invention, 30 to 60% by mass of titanium diboride having an oxygen content of 0.7% by mass or less, 15 to 70% by mass of boron nitride, 0 to 45% by mass of aluminum nitride, and an alkaline earth metal compound are calculated in terms of metal. Conductive ceramics characterized in that after molding a raw material powder containing 0 to 5% by mass, it is sintered in a non-oxidizing atmosphere at a temperature of 1700 to 2200 ° C. and a pressure of 30 MPa or less to make the relative density 90% or more. Is a manufacturing method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0009]
The titanium diboride powder used in the present invention can be obtained by a vapor phase method using a volatile titanium salt (eg, titanium halide) as a raw material, a direct boride method of titanium metal, a titanium compound (eg, titanium dioxide, titanium nitride). Can be produced by a reduction method using as a raw material. The oxygen content of titanium diboride can be determined by mixing the raw materials (mainly reducing agents: hydrogen, carbon, metallic magnesium, metallic calcium, magnesium oxide, calcium oxide, and combinations thereof) during the production, and firing atmosphere (helium, argon). In addition to the adjustment of the gas flow rate in an inert gas atmosphere, the degree of vacuum in a vacuum atmosphere, etc.), the obtained titanium diboride can be washed with an alcohol and / or an acid to achieve an oxygen amount of 0.7% or less. If the amount of oxygen exceeds 0.7% by mass, a sufficient effect of improving boat characteristics cannot be obtained. In other words, if the surface of the titanium diboride particles that govern the conductivity of the boat is covered with a boron oxide derived from the titanium diboride raw material, the electrically insulating surface layer becomes a micro-resistance source. This gives a local load and temperature distribution to the boat during resistance heating, thereby deteriorating the boat characteristics. Incidentally, such an adverse effect due to boron oxide can also be caused by titanium oxide or suboxide generated by oxidation of titanium diboride, so that sintering in a non-oxidizing atmosphere is essential for sintering. It is necessary to consider that the amount of oxygen in the atmosphere is at most 500 μg / g or less. The purity of the titanium diboride powder is preferably 99% by mass or more, and the average particle size is preferably 0.5 to 20 μm, particularly preferably 9 to 15 μm. The average particle size can be determined by, for example, a micro track manufactured by Nikkiso Co., Ltd.
[0010]
The boron nitride powder used in the present invention may be a commercially available product, but preferably has a purity of 99% by mass or more and an average particle size of 5 μm or less. When the average particle size exceeds 5 μm, most of the boron nitride particles become scaly as a result of grain growth, so that the anisotropy becomes large and the corrosion resistance to molten metal such as molten aluminum decreases. The aluminum nitride powder may be a commercially available product, but preferably has a purity of 99% by mass or more and an average particle size of 5 μm or less. If the average particle size exceeds 5 μm, it becomes difficult to produce a conductive ceramic having a relative density of 90% or more. Further, the alkaline earth metal compound is, for example, an oxide such as calcium, strontium, or barium, a carbonate, or a chloride, and the powder has a purity of 99% by mass or more and an average particle size of 10 μm or less. preferable. If the average particle size exceeds 10 μm, the liquid phase generated during sintering becomes non-uniform, making it difficult to produce a conductive ceramic having a relative density of 90% or more.
[0011]
In the present invention, when the proportion of the titanium diboride powder in the raw material powder is less than 30% by mass, the specific resistance of the boat rapidly increases, and in a voltage range (8 to 15 V) of a general vacuum deposition apparatus. In addition, a temperature sufficient for metal vapor deposition (about 1500 ° C. for Al vapor deposition) cannot be realized, and a metal film having a satisfactory film pressure cannot be generated. If it exceeds 60% by mass, the specific resistance of the boat decreases, and the fluctuation range of the temperature with respect to the output applied at the time of vapor deposition becomes large, so that the boat temperature becomes unstable and the life of the boat is remarkably reduced. When the proportion of the boron nitride powder is less than 15% by mass, not only the thermal shock resistance is reduced but also the workability is deteriorated. If it exceeds 70% by mass, the specific resistance of the boat rapidly increases, and it becomes difficult to increase the temperature by resistance heating. If the alkaline earth metal compound powder exceeds 5% by mass in terms of metal, the resulting liquid phase containing the alkaline earth metal compound as a main component precipitates on the boat surface, causing stains and reducing the commercial value. If the aluminum nitride powder exceeds 45% by mass, processing becomes difficult. The proportion of these components in the boat can be determined using EPMA.
[0012]
For mixing the raw material powder, a ball mill, a vibration mill, a ball-ton mill, a Henschel mixer, or the like can be used. It is preferable that the raw material powder is granulated after being granulated to 0.5 to 2 mm. Granulation increases the relative density of the molded article and the uniformity during filling. The molding is carried out by uniaxial pressing or cold isostatic pressing, and in particular, the former is carried out at 30 MPa or less, preferably 10 to 20 MPa. The sintering is performed in a non-oxidizing atmosphere such as nitrogen, helium, argon, or vacuum at a temperature of 1700 to 2200 ° C. and a pressure of 30 MPa or less, preferably 10 to 20 MPa. If the temperature is lower than 1700 ° C., a relative density of 90% cannot be achieved. If the temperature is higher than 2200 ° C., thermal decomposition of BN and AlN occurs, and boat characteristics are lost. Value is lost. If the pressure exceeds 30 MPa, the equipment becomes large-scale, which is not economically favorable. In addition, the produced boat easily reacts with the graphite material, and the yield decreases. The oxygen concentration in the non-oxidizing atmosphere is at most 500 μg / g or less.
[0013]
In the present invention, when the relative density of the conductive ceramic is 90% or less, the specific resistance becomes non-uniform due to the large density distribution in addition to the poor corrosion resistance to the molten metal, and a distribution occurs in the metal evaporation rate. Therefore, it is not preferable. The relative density can be adjusted according to the raw material composition and the sintering conditions.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0015]
Example 1
50.0% by mass of titanium diboride powder (purity: 99% by mass, oxygen content: 0.53% by mass, average particle size: 14.5 μm), boron nitride powder (purity: 99% by mass, average particle size: 1.2 μm) 5 mass% and 3.5 mass% of calcium oxide powder (purity 99 mass%, average particle size 5.5 μm) were mixed in a ball mill at 120 rpm for 3 hours to obtain a raw material powder. This raw material powder was cold isostatically molded at a pressure of 500 MPa, embedded in a graphite container, and sintered in a high frequency furnace at 1900 ° C., 30 MPa for 90 minutes in a nitrogen atmosphere (oxygen concentration 500 μg / g or less). . The appearance, relative density, specific resistance, thermal shock resistance, corrosion resistance, temperature rise characteristics, and wettability of the obtained conductive ceramics were measured. The production conditions are shown in Table 1 and the results are shown in Table 2.
[0016]
Examples 2 to 6 Comparative Examples 1 to 7
A sintered body was manufactured in the same manner as in Example 1, except that the oxygen content of the titanium diboride powder, the kind of alkaline earth metal compound, the ratio of the raw material powder, and the sintering temperature and pressure were variously changed.
[0017]
Example 7
Example 1 Example 1 was repeated except that the raw material powder obtained in Example 1 was granulated using a dry granulator, and a granulated product having a particle size of 0.5 to 1.0 mm was selected therefrom. A sintered body was manufactured in the same manner as described above.
[0018]
Example 8
As a raw material powder, a mixed powder consisting of 48.0% by mass of titanium diboride powder, 31.0% by mass of boron nitride powder, and 21.0% by mass of aluminum nitride powder (purity: 99% by mass, average particle size: 4.2 μm) A sintered body was manufactured in the same manner as in Example 1 except that the sintered body was used.
[0019]
Examples 9 and 10 Comparative Examples 8 to 14
A sintered body was manufactured in the same manner as in Example 8, except that the amount of oxygen in the titanium diboride powder, the ratio of the raw material powder, the sintering temperature and the pressure were variously changed.
[0020]
(1) Oxygen content: Measured using an oxygen and nitrogen simultaneous analyzer manufactured by Shimadzu Corporation.
(2) Appearance: The appearance of the molded article was visually observed.
:: good (no spots or spots are observed)
×: Poor (stains and spots are observed)
(3) Relative density: calculated from the measured density and the theoretical density.
(4) Specific resistance: The total resistance between the electrodes was measured at room temperature, and calculated by one formula.
ρ = R × W × T / l (1)
Here, ρ: specific resistance (μΩ · cm), R: total resistance (μΩ) between electrodes, W, T: sample width and thickness (cm), l: distance between electrodes (cm).
[0021]
(5) Thermal shock resistance: A test piece (width 4 mm × thickness 3 mm × overall length 60 mm) according to JIS R1601 was processed and subjected to a thermal shock test at ΔT = 1000 ° C. using a thermal shock test apparatus described in JIS R1615. went. Subsequently, the three-point bending strength of the test piece was measured at room temperature according to JIS R1601, and changes before and after the thermal shock test were compared.
:: very good (decrease rate of bending strength before and after thermal shock test is less than 15%)
:: good (decrease rate of bending strength before and after thermal shock test is 15% or more and less than 30%)
×: Poor (decrease in bending strength before and after thermal shock test is 30% or more)
[0022]
(6) Corrosion resistance: processed into a boat shape (width 6 mm x thickness 4 mm x total length 110 mm, groove: width 4 mm x thickness 2 mm x total length 40 mm), 80 mg of metal aluminum was charged, and in a vacuum of 2 x 10-2 Pa or less, Resistance heating was performed to a boat temperature of 1700 ° C. After the cycle test was performed 120 times, or when aluminum could not be deposited, the appearance of the sample was visually observed. Furthermore, the sample central part was cut, and the erosion distance of aluminum in the boat depth direction was observed using SEM.
:: good (small cracks in appearance, aluminum erosion depth is less than 50 μm)
×: defective (large number of cracks in appearance, aluminum erosion depth is 50 μm or more)
[0023]
(7) Temperature rise characteristics: In the current-voltage profile at the time of resistance heating in the first cycle of the corrosion resistance test, the time required from the start of energization to the start of the current increase (that is, the time at which the melting of aluminum started). The measured values were used as the temperature rise characteristics of the boat.
:: good (melting time is less than 12 seconds)
×: Poor (melting time 12 seconds or more)
[0024]
(8) Wettability: In the current-voltage profile at the time of resistance heating in the first cycle of the corrosion resistance test, from the start of current increase (that is, the time at which the melting of aluminum starts) to the time when the maximum current value is exhibited (that is, molten aluminum). The time required for the water to spread over the entire groove) was measured, and the wettability of the boat was measured.
:: good (wet spreading time is less than 8 seconds)
×: Poor (wet spreading time is 8 seconds or more)
[0025]
[Table 1]
Figure 2004277206
[0026]
[Table 2]
Figure 2004277206
[0027]
From Tables 1 and 2, it can be seen from Tables 1 and 2 that by setting the oxygen content of the titanium diboride powder to 0.7% by mass or less, the corrosion resistance and wettability with respect to molten aluminum in the two-component TiB 2 -BN boat (Examples 1 to 7). In addition, the temperature rise characteristics during resistance heating were further improved, and in the case of the three-component TiB 2 -BN-AlN boat (Examples 8 to 10), the thermal shock resistance was further improved in addition to the corrosion resistance to molten aluminum.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the conductive ceramic which can manufacture a boat excellent in boat characteristics (boat life, the rate of temperature rise at the time of resistance heating, and wettability to molten metal) is provided. The conductive ceramic of the present invention can be used as an evaporation container for various metals, and is particularly suitable for boats for aluminum deposition.

Claims (1)

酸素量0.7質量%以下の二硼化チタン30〜60質量%、窒化硼素15〜70質量%、窒化アルミニウム0〜45質量%、アルカリ土類金属化合物を金属換算で0〜5質量%を含む原料粉末を成型した後、非酸化性雰囲気下、温度1700〜2200℃、圧力30MPa以下で焼結し、相対密度を90%以上とすることを特徴とする導電性セラミックスの製造方法。30 to 60% by mass of titanium diboride having an oxygen content of 0.7% by mass or less, 15 to 70% by mass of boron nitride, 0 to 45% by mass of aluminum nitride, and 0 to 5% by mass of an alkaline earth metal compound in terms of metal. A method for producing a conductive ceramic, comprising molding a raw material powder containing the mixture, sintering the mixture in a non-oxidizing atmosphere at a temperature of 1700 to 2200 ° C. and a pressure of 30 MPa or less to make the relative density 90% or more.
JP2003069155A 2003-03-14 2003-03-14 Method of producing electroconductive ceramics Pending JP2004277206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069155A JP2004277206A (en) 2003-03-14 2003-03-14 Method of producing electroconductive ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069155A JP2004277206A (en) 2003-03-14 2003-03-14 Method of producing electroconductive ceramics

Publications (1)

Publication Number Publication Date
JP2004277206A true JP2004277206A (en) 2004-10-07

Family

ID=33286266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069155A Pending JP2004277206A (en) 2003-03-14 2003-03-14 Method of producing electroconductive ceramics

Country Status (1)

Country Link
JP (1) JP2004277206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113465A1 (en) * 2004-05-24 2005-12-01 Denki Kagaku Kogyo Kabushiki Kaisha Ceramics, method for production thereof and use thereof
CN103805822A (en) * 2013-09-26 2014-05-21 山东鹏程特种陶瓷有限公司 High-performance four-component conductive ceramics evaporating boat and production process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113465A1 (en) * 2004-05-24 2005-12-01 Denki Kagaku Kogyo Kabushiki Kaisha Ceramics, method for production thereof and use thereof
CN103805822A (en) * 2013-09-26 2014-05-21 山东鹏程特种陶瓷有限公司 High-performance four-component conductive ceramics evaporating boat and production process thereof
CN103805822B (en) * 2013-09-26 2016-04-20 山东鹏程特种陶瓷有限公司 High-performance Four composition conductive ceramic evaporation boat and production technique thereof

Similar Documents

Publication Publication Date Title
JP2005330178A (en) High thermoconductivity high strength silicon nitride ceramic and manufacturing method therefor
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
EP2676946A1 (en) Ti3sic2 material, electrode, spark plug, and processes for production thereof
US9346715B2 (en) Lanthanum hexaboride sintered body, target and lanthanum hexaboride film each comprising same, and process for production of the sintered body
KR100445050B1 (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
JP2002293642A (en) Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board
US20030153452A1 (en) Aluminum nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JP5292130B2 (en) Sputtering target
JP4728811B2 (en) Ceramic sintered body, method for producing ceramic sintered body, heating element for metal vapor deposition
US7319079B2 (en) Container for evaporation of metal and method to manufacture thereof
JP2004277206A (en) Method of producing electroconductive ceramics
CN115304383A (en) Aluminum nitride substrate and preparation method and application thereof
JP2000272968A (en) Silicon nitride sintered compact and its production
JP3877630B2 (en) Method for producing conductive ceramics
JPH06298566A (en) Electrically conductive sintered ceramic material and its use
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
JP4264236B2 (en) Method for producing aluminum nitride sintered body
JP4181359B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP2007254159A (en) Ceramic, its manufacturing method and its use
JP2024053480A (en) Method for producing sintered silicon nitride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212