JP2004277201A - Carbon nanotube - Google Patents

Carbon nanotube Download PDF

Info

Publication number
JP2004277201A
JP2004277201A JP2003068397A JP2003068397A JP2004277201A JP 2004277201 A JP2004277201 A JP 2004277201A JP 2003068397 A JP2003068397 A JP 2003068397A JP 2003068397 A JP2003068397 A JP 2003068397A JP 2004277201 A JP2004277201 A JP 2004277201A
Authority
JP
Japan
Prior art keywords
wall
carbon
carbon nanotube
film
hetero element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003068397A
Other languages
Japanese (ja)
Inventor
Akira Tomita
彰 富田
Takashi Kyotani
隆 京谷
Ika Kyo
維華 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003068397A priority Critical patent/JP2004277201A/en
Publication of JP2004277201A publication Critical patent/JP2004277201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube which has a controlled amount of hetero elements on the surface of its outer or inner wall. <P>SOLUTION: The carbon nanotube contains 1-10 wt.% hetero elements in average, has an outer diameter of 1-300 nm and has a composition wherein the hetero element concentration in its inner or outer wall is ≥1.2- or ≤0.8-fold larger than the average. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブに関する。特に、形状が均一で、ヘテロ元素を含有し、且つこのヘテロ元素濃度が、外壁表面/内壁表面で一定の比率を有するカーボンナノチューブとその製法に関するものである。
【0002】
【従来の技術】
カーボンナノチューブはその特異な形状と性質のためにさまざまな分野での応用が試みられている。期待される用途の一つに、その微細な黒鉛結晶体としての粒径と孔構造に基づいて、アミノ酸、タンパク質等の物質をチューブ構造内に担持させて分散媒体として利用することが挙げられる。ここで、物質の担持または母材中での分散等の機能の実現には、担持される物質または母材となる物質に応じてチューブ壁の表面エネルギーのバランスをとることが必要であるが、カーボンナノチューブは黒鉛質炭素からなるために壁表面が極めて疎水性で、担持させるべき物質との相互作用による吸着・保持が極めて難しい。また、分散体としても、カーボンと分散母材との表面エネルギーの差が大きいために、一般的に、カーボンナノチューブの均一な分散は困難である。
【0003】
これらの問題に対して、界面活性剤の併用により分散効率を調整する技術やチューブ壁に官能基を化学的に付与するなどの方法で炭素以外の酸素、窒素等の任意のヘテロ元素を含有した官能基を導入したカーボンナノチューブやその方法が提案されている(非特許文献1、2参照)。
【0004】
【非特許文献1】
Chem.Phys.Lett.,Vol.316,365(2000)
【非特許文献2】
J.Mater.Chem.,Vol.112,2335
【0005】
【発明が解決しようとする課題】
しかしながら、前者は、界面活性剤使用による他の特性劣化の問題がある。また、後者に於いては、チューブの内壁および外壁表面における官能基の導入量、すなわち表面エネルギーをいかに制御するかという課題が残されている。
【0006】
【課題を解決するための手段】
本発明者等は、以上の実績を鑑み、その機能に応じてヘテロ元素の導入量を調整することにより、内壁および外壁表面の表面エネルギーを制御することが可能なカーボンナノチューブ、すなわち、内壁または外壁のいずれかの表面に親水性の官能基を選択的に有するカーボンナノチューブについて鋭意研究した。この結果、アルミ陽極酸化被膜表面の微細構造を鋳型として、ヘテロ元素濃度が異なる炭素源物質を段階的に蒸着することにより、本発明の目的が達成されることを見出し本発明を完成した。
【0007】
即ち、本発明の第一の要旨は、カーボンナノチューブおいて、全体平均で1〜10重量%のヘテロ元素を含み、外径が1〜300nmであり、該カーボンナノチューブの組成について、内壁または外壁のいずれかのヘテロ元素濃度が、前記平均値に対し1.2倍以上または0.8倍以下であることを特徴とするカーボンナノチューブに存する。本発明の第二の要旨は、内壁および外壁の表面N/C元素組成比について、内壁/外壁または外壁/内壁のいずれか一方の比率が1.5以上であることを特徴とする前述のカーボンナノチューブに存する。本発明の第三の要旨は、表面多孔性物質上に組成が異なる2種類以上の熱分解性物質を段階的に堆積させて得るカーボンナノチューブであり、外径が1〜300nmであり、全体平均で1〜10重量%のヘテロ元素を含むことを特徴とする前述のカーボンナノチューブに存する。本発明の第四の要旨は、表面に存在するヘテロ元素が窒素であり、該窒素が四級窒素またはピリジン窒素であることを特徴とする前述のカーボンナノチューブに存する。本発明の第五の要旨は、いずれかの末端が開口していることを特徴とする前述のカーボンナノチューブに存する。
【0008】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明のカーボンナノチューブの製造方法は、所定範囲のカーボンナノチューブができれば特に限定されないが、通常、表面多孔性物質上に組成が異なる2種類以上の熱分解性有機物質を段階的に堆積させて得る方法が好ましい。
【0009】
以下、好ましい製造方法について説明する。まず、アルミニウムなどの金属又は合金に電解質溶液中で一定電圧を印可することにより、表面に無数のほぼ均一なナノサイズ径、例えば1〜300nmの略直線状の細孔を有する陽極酸化被膜を表面多孔性物質として作製する。陽極酸化条件は、一般的に陽極酸化被膜を形成するためのもので特に制限されないが、例えば、電解液に20重量%硫酸を用いて、セル電圧20Vで0〜5℃の範囲で2時間印可することにより、孔径30nm、深さ75μmの直線的な孔が厚み方向に均一に空いた酸化膜を形成できる。電解液は、硫酸のほか硝酸等の一般的な電解液が使用可能である。この細孔の両端の一端が、望ましくは両端ともが外部に開放した構造であると、炭素源のガスが細孔の内部に通しやすくなるために好ましい。また、金属酸化被膜の代わりに、ゼオライト、セピオライト等の粘土鉱物のように、略直線上の細孔を有していて、後述の炭化処理で壊れたり、炭素源と反応をしたりせず、炭素膜から除去可能なものを表面多孔性物質として使用しても良い。
【0010】
得られた表面多孔性物質の細孔を鋳型として利用し、細孔表面に限らず表面多孔性物質の表面全体に組成が異なる2種類以上の熱分解性有機物質を段階的に堆積させる。熱分解性有機物質は、何らかの方法で気化または液化できるものであり、堆積後に炭素化できる物質又は堆積と同時に炭素化できる物質であり、特に、堆積と同時に炭素化できる物質が好ましい。組成の相違は、使用する化合物の相違、混合物の組成比等であり、特に一方が炭化水素化合物、他方がC、H以外のヘテロ元素を含む化合物が好ましい。炭化水素化合物としては、化学的気相成長法(CVD)の場合、メタン、エタン、プロパン、エチレン、ベンゼン、プロピレンなどの常温で気体となる化合物が好ましく、また、二酸化炭素等の含炭素ガスと水素ガス等とを組み合わせてその場で炭化水素を合成しても良い。本発明におけるヘテロ元素とは、C、H以外の元素を指し、特に使用し易さからN等の第5B族元素が好ましい。ヘテロ元素を含む化合物は、アセトニトリルのように、窒素などの第5B族元素を含んだ化合物などが用いられる。これらの熱分解性有機化合物は、一般的に、窒素などの不活性キャリアガス中濃度0.5〜5%の範囲で使用される。
【0011】
表面多孔性物質として陽極酸化被膜を用いた例を、多孔性物質の断面を示す図1により説明する。(a)に示すように、陽極酸化被膜(1)に細孔(2)があり、この上に、例えばプロピレンでCVDを行って炭素被膜(3)を作製し(b)、さらにこの表面に、ヘテロ元素を含んだ化合物、例えばアセトニトリルでCVDを行うことにより、ヘテロ元素を含有する2層目の炭素被膜(4)を作製する(c)。本発明では、このように、ヘテロ元素を含むものと含まないものの2種類の炭素源物質を2段階で積層させ、ヘテロ元素濃度の異なる2種類の炭素被膜を表面多孔性物質上の微細構造を鋳型として作製することが好ましい。炭素化は、鋳型の多孔性物質が壊れたり、得られた炭素膜と反応したりしないいかなる方法でも良い。CVDにより炭素化する場合、熱分解性有機物質の組成や濃度にも依存するが、通常、500〜1300℃、好ましくは600〜1000℃の温度範囲で0.5から5時間行う。温度があまり低すぎると、得られた炭素被膜の黒鉛化度が低く、本来のカーボンナノチューブの特性が得られない。逆に、温度があまり高すぎると、基材および酸化被膜の化学的な安定性が得られずに細孔形状が崩れてしまい、所望の形状のカーボンナノチューブが得られなくなってしまう。また、ヘテロ元素を含有した炭素被膜を先に作製してから含まない炭素被膜を作製する、すなわち、2種類の炭素被膜の作製順序を入れ替えることにより、外壁側にヘテロ元素を選択的に有するカーボンナノチューブを合成することも可能である。この他、ヘテロ元素の有無に限らず、組成や濃度が異なる2種類以上の炭素源の堆積を2工程以上組み合わせて行い、所望の特性の炭素被膜が2層以上積層した膜構成にすることも可能である。
【0012】
得られた2種類の炭素被膜を有する表面多孔性物質について、多孔性物質のみを除去し、目的とするカーボンナノチューブを得る。表面多孔性物質が陽極酸化被膜を有するアルミニウムの場合、水酸化ナトリウム水溶液などのアルカリまたはフッ酸などの酸で処理することにより、陽極酸化被膜を含むアルミニウム全体を除去して、2種類の炭素層が積層、すなわち内壁又は外壁面にのみヘテロ元素を含有するカーボンナノチューブを合成できる。陽極酸化被膜の除去法は、例えば、2〜15モル/lの水酸化ナトリウム水溶液中で100〜180℃に加熱して溶解させる、または、同様の温度に加熱しながらフッ酸で分離させる、等の方法が挙げられる。図1で示せば、(d)のステップにてカーボンナノチューブ(5)が得られた状態である。
【0013】
以上のようにして得られたカーボンナノチューブには、必要に応じて、表面への酸素プラズマ照射による非黒鉛質炭素などの不純物除去や精製を施してもよい。本発明は、また、界面活性剤や官能基付与の化学処理を行っていた従来の方法に対し、後処理をせずともカーボンナノチューブ製膜時にヘテロ元素を導入出来るため簡便であるという利点も有しているが、用途に応じて、これに更に官能基の付与などの後処理を施してもよい。
【0014】
このようにして得られるカーボンナノチューブの形状は、表面多孔性物質の有する細孔の微細構造を鋳型としているため、カーボンナノチューブの外径と長さには、被膜の微細構造、すなわち孔の径と深さが反映されている。上述の細孔の形状は公知の種々の方法により制御すればよく、陽極酸化被膜の場合、元の形状は、陽極酸化時の電圧と通電時間によって制御され、一般的に、孔径は10〜500nmの範囲、陽極酸化膜厚すなわち孔の深さは10〜150μmの範囲で任意に制御可能である。このようにして得た微細構造上に作製するため、炭素被膜はカーボンナノチューブの壁を形成し、炭素膜が蒸着されない陽極酸化膜の細孔中央部分はカーボンナノチューブの孔を形成している。
【0015】
本発明で得られるカーボンナノチューブは、以下のような特徴を有する。
形状については、鋳型の細孔形状と製膜条件により、極めて均一なものを生成することが出来る。得られる形状の範囲は、外径1〜300nmであり、より好ましくは10〜100nm、長さ10〜150μm、壁厚1〜10nmである。チューブの先端は、一端または両端が開放した形状のものが含まれている。これは被膜を表面多孔性物質に付着したまま鋳型として用いて炭素膜を形成すれば一端が開放したチューブが得られ、表面多孔性物質から単離させた被膜に炭素膜を形成すれば両端が開放したチューブが得られるものである。組成については、カーボンナノチューブ全体の平均として、ヘテロ元素を1〜10重量%、より好ましくは1.5〜6.0重量%含むことを特徴とするが、更なる特徴は、内壁側と外壁側の表面ヘテロ元素濃度が異なることであり、内壁または外壁のヘテロ元素濃度は、全体平均値に対して1.2倍以上または0.8倍以下で、特に、内壁表面/外壁表面または外壁表面/内壁表面のいずれかの濃度比が1.5以上あることが好ましい。また、内壁または外壁のいずれか一方の同元素濃度が0〜1.0重量%の範囲で、他方の同元素濃度が1.5〜20重量%の範囲であることが好ましい。また、総ヘテロ元素量が多過ぎると安定した黒鉛構造が得られず、カーボンナノチューブ独自の特性が損なわれる。逆に、少なすぎるとヘテロ元素含有に起因する表面特性上の効果が小さい。含まれるヘテロ元素の定量方法は特に限定されるものではないが、総量は元素分析で定量され、内壁/外壁の表面濃度比はXPSのヘテロ元素/C比を用いるなどの方法で測定される。本発明のカーボンナノチューブに導入されるヘテロ元素の状態については、窒素を導入した場合、通常、X線光電子分光法(XPS)のC1sのピーク位置を285eVとすると、401eVに検出される四級窒素または398eVに検出されるピリジン窒素として導入される。また、想定される用途としては、チューブの内側と外側とで表面エネルギーが異なる特性を活かし、マトリックスに対して表面エネルギーの異なる物質を高分散させる時の高機能異分子担持分散媒体として活用することが期待できる。具体的には、例えば、タンパク質などの天然物をチューブ内に保持する機能をもつ分散剤等が考えられる。
【0016】
【実施例】
次に、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
(実施例1) 内壁に窒素を多く含むカーボンナノチューブ
アルミニウム板を20重量%硫酸中で10℃、20V、2時間陽極酸化することにより、細孔径30nm、厚さ70umの陽極酸化被膜を作製した。この被膜上に、プロピレンガス(窒素中1.2体積%)存在下で800℃、2時間の条件でCVDで蒸着を行うことにより炭素膜を蒸着し、炭素/陽極酸化被膜(複合膜1)を作製した。次に、この複合膜1上にアセトニトリルガス(窒素中4.2体積%)存在下で800℃、5時間の条件でCVDを行うことにより2層目の炭素膜を蒸着し、炭素/炭素/陽極酸化被膜(複合膜2)を作製した。この複合膜2を10モル/lの水酸化ナトリウム水溶液で150℃、6時間処理して基板である陽極酸化被膜とアルミニウム板を除去することで、外径22nm、内径13nm、長さ60μmのカーボンナノチューブ(CNT1)を得た。CNT1の透過型電子顕微鏡(TEM)写真を図2に示す。
【0017】
複合膜1及び複合膜2からアルミナを除去して得られた炭素膜のTEM写真から、複合膜1の炭素膜の膜厚は2.5nm、複合膜2の2層の炭素膜の膜厚は4.4nmと測定された。次に、複合膜1および複合膜2からアルミナを除去して得られた炭素膜の組成分析結果を表1に示す。元素分析の結果、複合膜1の炭素膜の窒素が検出限界以下であること、及び、複合膜2の2層の炭素膜には窒素が3.2重量%含まれることが確認された。なお、複合膜1はCNT1の外壁を構成するため、CNT1の外壁には窒素が含まれない、または検出限界以下の極微量しか含まれない、複合膜2の元素分析結果はCNT1の炭素膜2層の元素分析結果を示すため、CNT1の平均窒素濃度は3.2重量%と各々みなした。さらに、基板除去前/後のCNT1をXPSで分析して表面のN/C比を求めたところ、基板除去前が0.06、除去後が0.009であった。ここで、細長いチューブをXPSで分析する場合、基板除去前はチューブが立った状態になるため内壁側の情報を、基板除去後はチューブが倒れた状態で主に外壁側の情報を、各々検出したものとみなすと、N/C比は、チューブ内壁/外壁で6となり、内壁側のN濃度の方が外壁側より著しく高かった。
(実施例2) 外壁に窒素を多く含むカーボンナノチューブ
実施例1と同様の方法で得た陽極酸化被膜上に、アセトニトリルガス(窒素中4.2体積%)存在下で800℃、5時間の条件でCVDで蒸着を行うことにより炭素膜を蒸着し、炭素/陽極酸化被膜(複合膜3)を作製した(図3(1)のTEM写真参照)。次に、この複合膜3上にプロピレンガス(窒素中1.2体積%)存在下で800℃、3時間の条件でCVDを行うことにより2層目の炭素膜を蒸着し、炭素/炭素/陽極酸化被膜(複合膜4)を作製した。この複合膜4から実施例1と同様の処理で基板である陽極酸化被膜とアルミニウム板を除去することで、外径24nm、内径18nm、長さ60μmのカーボンナノチューブ(CNT2)を得た。
【0018】
複合膜3および複合膜4を実施例1と同様に分析した結果は、表1の通りであった。TEM写真における炭素膜の膜厚は、複合膜3が1.7nm、複合膜4が3.3nmであった。炭素膜中の総窒素量は、複合膜3が7.6重量%、複合膜4が3.5重量%であった。ここで、CNT2の外壁に含有される窒素量は、複合膜3がCNT2の外壁を構成することから7.6重量%であり、CNT2の2層の炭素膜に含まれる平均窒素濃度は、複合膜4の元素分析結果から3.5重量%であるとみなすと、外壁のN濃度は平均濃度の2.2倍であった。また、XPSの分析結果から求めたCNT2の表面N/C比は、基板除去前が0.01、除去後が0.04で、チューブ外壁/内壁は4となり、CNT2のNは外壁側に表面濃化していた。なお、更に、複合膜3から基板を除去した炭素膜をXPS分析した結果は、表面N/C比が、基板除去前0.06、除去後0.07で、Nは内壁/外壁でほぼ一定であった。
【0019】
【表1】

Figure 2004277201
【0020】
【発明の効果】
本発明により、外壁表面または内壁表面に制御された量のヘテロ元素を有するカーボンナノチューブとその製法を提供することができる。
【図面の簡単な説明】
【図1】本発明のカーボンナノチューブを得る一態様を示す図である。
【図2】実施例1で得られた本発明のカーボンナノチューブの断面形状を示す図である。
【符号の説明】
1 陽極酸化被膜
2 細孔
3 ヘテロ元素を含まない炭素皮膜
4 ヘテロ元素を含む炭素皮膜
5 カーボンナノチューブ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to carbon nanotubes. In particular, the present invention relates to a carbon nanotube having a uniform shape, containing a hetero element, and having a constant hetero element concentration at the outer wall surface / inner wall surface, and a method for producing the same.
[0002]
[Prior art]
Due to its unique shape and properties, carbon nanotubes have been applied in various fields. One of the expected uses is to use substances such as amino acids and proteins in a tube structure and use them as a dispersion medium based on the particle size and pore structure of the fine graphite crystals. Here, in order to realize functions such as supporting or dispersing the substance in the base material, it is necessary to balance the surface energy of the tube wall according to the substance to be supported or the base material, Since carbon nanotubes are made of graphitic carbon, the wall surface is extremely hydrophobic, and it is extremely difficult to adsorb and hold them by interaction with the substance to be supported. Also, even in the case of a dispersion, it is generally difficult to uniformly disperse the carbon nanotubes because the difference in surface energy between carbon and the dispersion base material is large.
[0003]
In response to these problems, any hetero element such as oxygen or nitrogen other than carbon was contained by a technique such as adjusting the dispersion efficiency by using a surfactant in combination or by chemically adding a functional group to the tube wall. Carbon nanotubes into which functional groups have been introduced and methods thereof have been proposed (see Non-Patent Documents 1 and 2).
[0004]
[Non-patent document 1]
Chem. Phys. Lett. , Vol. 316, 365 (2000)
[Non-patent document 2]
J. Mater. Chem. , Vol. 112,2335
[0005]
[Problems to be solved by the invention]
However, the former has another problem of property deterioration due to the use of a surfactant. In the latter case, there remains a problem of how to control the amount of functional groups introduced on the inner and outer wall surfaces of the tube, that is, how to control the surface energy.
[0006]
[Means for Solving the Problems]
In view of the above results, the present inventors have adjusted the amount of the hetero element introduced in accordance with the function thereof, so that the surface energy of the inner wall and the outer wall surface can be controlled, that is, the inner wall or the outer wall. We have made extensive studies on carbon nanotubes having a hydrophilic functional group selectively on either surface. As a result, the inventors have found that the object of the present invention can be achieved by stepwise vapor deposition of carbon source materials having different hetero element concentrations using the fine structure of the aluminum anodic oxide film surface as a template, and completed the present invention.
[0007]
That is, the first gist of the present invention is that a carbon nanotube contains a hetero element in an overall average of 1 to 10% by weight and has an outer diameter of 1 to 300 nm. A carbon nanotube characterized in that any one of the hetero element concentrations is 1.2 times or more and 0.8 times or less the average value. According to a second aspect of the present invention, there is provided the above-described carbon, wherein the ratio of one of the inner wall / outer wall and the outer wall / inner wall is 1.5 or more with respect to the surface N / C element composition ratio of the inner wall and the outer wall. Exists in nanotubes. A third aspect of the present invention is a carbon nanotube obtained by stepwise depositing two or more types of thermally decomposable substances having different compositions on a surface porous substance, having an outer diameter of 1 to 300 nm, and an overall average. Wherein the carbon nanotube contains 1 to 10% by weight of a hetero element. A fourth gist of the present invention resides in the above-mentioned carbon nanotube, wherein the hetero element existing on the surface is nitrogen, and the nitrogen is quaternary nitrogen or pyridine nitrogen. The fifth gist of the present invention resides in the above-mentioned carbon nanotube, characterized in that one of the ends is open.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The method for producing carbon nanotubes of the present invention is not particularly limited as long as carbon nanotubes in a predetermined range can be formed, but are usually obtained by stepwise depositing two or more kinds of thermally decomposable organic substances having different compositions on a surface porous substance. The method is preferred.
[0009]
Hereinafter, a preferred manufacturing method will be described. First, by applying a constant voltage to a metal or alloy such as aluminum in an electrolyte solution, an anodic oxide film having a myriad of substantially uniform nano-sized diameters, for example, approximately linear pores of 1 to 300 nm on the surface is formed. Made as a porous material. The anodic oxidation conditions are generally for forming an anodic oxide film, and are not particularly limited. For example, 20% by weight sulfuric acid is used as an electrolyte at a cell voltage of 20 V and a temperature of 0 to 5 ° C. for 2 hours. This makes it possible to form an oxide film in which linear holes having a diameter of 30 nm and a depth of 75 μm are uniformly formed in the thickness direction. As the electrolytic solution, a general electrolytic solution such as nitric acid in addition to sulfuric acid can be used. It is preferable that one end of each of both ends of the pore is desirably a structure in which both ends are open to the outside, because the gas of the carbon source can easily pass through the inside of the pore. In addition, instead of a metal oxide film, zeolite, like clay minerals such as sepiolite, has substantially linear pores, does not break in the carbonization treatment described below, does not react with the carbon source, What can be removed from the carbon film may be used as the surface porous material.
[0010]
Using the obtained pores of the superficially porous substance as a template, two or more kinds of thermally decomposable organic substances having different compositions are deposited stepwise on the entire surface of the superficially porous substance, not only on the pore surface. The thermally decomposable organic substance is a substance that can be vaporized or liquefied by any method, and is a substance that can be carbonized after deposition or a substance that can be carbonized at the same time as deposition. Particularly, a substance that can be carbonized at the same time as deposition is preferable. The difference in the composition is the difference in the compound used, the composition ratio of the mixture, and the like. In particular, one is preferably a hydrocarbon compound and the other is a compound containing a hetero element other than C and H. As the hydrocarbon compound, in the case of chemical vapor deposition (CVD), a compound which becomes a gas at normal temperature, such as methane, ethane, propane, ethylene, benzene, and propylene, is preferable, and a carbon-containing gas such as carbon dioxide is used. Hydrocarbons may be synthesized in situ by combining with hydrogen gas or the like. The hetero element in the present invention refers to an element other than C and H, and a Group 5B element such as N is particularly preferable from the viewpoint of ease of use. As the compound containing a hetero element, a compound containing a Group 5B element such as nitrogen, such as acetonitrile, is used. These thermally decomposable organic compounds are generally used at a concentration of 0.5 to 5% in an inert carrier gas such as nitrogen.
[0011]
An example in which an anodic oxide film is used as the surface porous material will be described with reference to FIG. 1 showing a cross section of the porous material. As shown in (a), the anodized film (1) has pores (2), on which a carbon film (3) is produced by CVD using, for example, propylene (b), and further has a surface on the surface. Then, a second carbon coating (4) containing a hetero element is formed by performing CVD with a compound containing a hetero element, for example, acetonitrile (c). In the present invention, as described above, two types of carbon source materials, one containing a hetero element and the other containing no hetero element, are laminated in two stages, and two types of carbon coatings having different hetero element concentrations are formed on the surface porous material to form a fine structure. It is preferable to make it as a template. The carbonization may be any method that does not break the porous material of the template or react with the obtained carbon film. When carbonizing by CVD, it depends on the composition and concentration of the thermally decomposable organic substance, but is usually performed in a temperature range of 500 to 1300 ° C, preferably 600 to 1000 ° C for 0.5 to 5 hours. If the temperature is too low, the degree of graphitization of the obtained carbon coating is low, and the original properties of carbon nanotubes cannot be obtained. Conversely, if the temperature is too high, the chemical stability of the base material and the oxide film is not obtained, and the pore shape is broken, so that a carbon nanotube having a desired shape cannot be obtained. In addition, the carbon film containing the hetero element is first prepared, and then the carbon film not containing the hetero element is prepared. That is, the carbon film having the hetero element selectively on the outer wall side is formed by changing the production order of the two types of carbon films. It is also possible to synthesize nanotubes. In addition, not only the presence or absence of the hetero element but also the deposition of two or more carbon sources having different compositions and concentrations in two or more steps may be performed to form a film configuration in which two or more carbon films having desired characteristics are stacked. It is possible.
[0012]
With respect to the obtained surface porous material having two types of carbon coatings, only the porous material is removed to obtain a target carbon nanotube. When the surface porous material is aluminum having an anodized film, the entire aluminum including the anodized film is removed by treating with an alkali such as an aqueous sodium hydroxide solution or an acid such as hydrofluoric acid to form two types of carbon layers. Can be synthesized, that is, a carbon nanotube containing a hetero element only on the inner wall or the outer wall can be synthesized. The method of removing the anodic oxide film is, for example, dissolving by heating to 100 to 180 ° C. in a 2 to 15 mol / l aqueous solution of sodium hydroxide, or separating with hydrofluoric acid while heating to the same temperature. Method. FIG. 1 shows a state where the carbon nanotube (5) is obtained in the step (d).
[0013]
The carbon nanotubes obtained as described above may be subjected to removal or purification of impurities such as non-graphitic carbon by irradiating the surface with oxygen plasma, if necessary. The present invention also has an advantage that the hetero element can be introduced at the time of carbon nanotube film formation without post-treatment, which is simpler than the conventional method in which a chemical treatment for imparting a surfactant or a functional group is performed. However, post-treatment such as addition of a functional group may be further performed depending on the application.
[0014]
The shape of the carbon nanotubes obtained in this manner is based on the microstructure of the pores of the surface porous material as a template, so that the outer diameter and length of the carbon nanotubes correspond to the microstructure of the coating, that is, the diameter of the pores. The depth is reflected. The shape of the above-mentioned pores may be controlled by various known methods, and in the case of an anodic oxide film, the original shape is controlled by the voltage and energization time during anodic oxidation, and generally, the pore size is 10 to 500 nm. And the thickness of the anodic oxide film, that is, the depth of the holes, can be arbitrarily controlled within the range of 10 to 150 μm. In order to manufacture on the microstructure thus obtained, the carbon coating forms the wall of the carbon nanotube, and the central part of the pore of the anodic oxide film where the carbon film is not deposited forms the pore of the carbon nanotube.
[0015]
The carbon nanotube obtained by the present invention has the following features.
Regarding the shape, an extremely uniform shape can be produced depending on the pore shape of the mold and the film forming conditions. The range of the obtained shape is an outer diameter of 1 to 300 nm, more preferably 10 to 100 nm, a length of 10 to 150 μm, and a wall thickness of 1 to 10 nm. The distal end of the tube includes one with one end or both ends open. This is because a tube with an open end can be obtained by forming a carbon film using the coating as a template with the film attached to the surface porous material, and by forming a carbon film on the film isolated from the surface porous material, both ends can be obtained. An open tube is obtained. The composition is characterized by containing a hetero element in an amount of 1 to 10% by weight, more preferably 1.5 to 6.0% by weight as an average of the entire carbon nanotube. Are different from each other, and the heteroelement concentration of the inner wall or the outer wall is 1.2 times or more or 0.8 times or less with respect to the overall average value, particularly, the inner wall surface / outer wall surface or the outer wall surface / It is preferable that any concentration ratio on the inner wall surface is 1.5 or more. It is preferable that the concentration of the same element on one of the inner wall and the outer wall is in the range of 0 to 1.0% by weight, and the concentration of the other element is in the range of 1.5 to 20% by weight. On the other hand, if the total amount of the hetero elements is too large, a stable graphite structure cannot be obtained, and the unique characteristics of the carbon nanotubes are impaired. Conversely, if the amount is too small, the effect on the surface characteristics due to the inclusion of the hetero element is small. The method for quantifying the contained hetero element is not particularly limited, but the total amount is determined by elemental analysis, and the surface concentration ratio of the inner wall / outer wall is measured by a method such as using a hetero element / C ratio of XPS. Regarding the state of the hetero element introduced into the carbon nanotube of the present invention, when nitrogen is introduced, the quaternary nitrogen detected at 401 eV is usually determined when the peak position of C1s in X-ray photoelectron spectroscopy (XPS) is 285 eV. Or introduced as pyridine nitrogen detected at 398 eV. In addition, as an envisioned application, it is possible to take advantage of the property that the surface energy is different between the inside and the outside of the tube, and utilize it as a high-functional heterogeneous molecule-supported dispersion medium when highly dispersing substances with different surface energies into the matrix. Can be expected. Specifically, for example, a dispersant having a function of retaining a natural product such as a protein in a tube can be considered.
[0016]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
(Example 1) An anodized film having a pore diameter of 30 nm and a thickness of 70 μm was prepared by anodizing a carbon nanotube aluminum plate containing a large amount of nitrogen on the inner wall thereof in 20% by weight sulfuric acid at 10 ° C and 20 V for 2 hours. A carbon film is deposited on this film by CVD under the condition of 800 ° C. for 2 hours in the presence of propylene gas (1.2% by volume in nitrogen), and a carbon / anodized film (composite film 1) Was prepared. Next, a second carbon film is deposited on the composite film 1 by performing CVD at 800 ° C. for 5 hours in the presence of acetonitrile gas (4.2% by volume in nitrogen) to deposit carbon / carbon / An anodic oxide film (composite film 2) was produced. The composite film 2 is treated with a 10 mol / l aqueous solution of sodium hydroxide at 150 ° C. for 6 hours to remove the anodic oxide film and the aluminum plate as the substrate, thereby obtaining a carbon having an outer diameter of 22 nm, an inner diameter of 13 nm and a length of 60 μm. A nanotube (CNT1) was obtained. FIG. 2 shows a transmission electron microscope (TEM) photograph of CNT1.
[0017]
From a TEM photograph of the carbon film obtained by removing alumina from the composite films 1 and 2, the thickness of the carbon film of the composite film 1 is 2.5 nm, and the thickness of the two carbon films of the composite film 2 is It measured 4.4 nm. Next, Table 1 shows the results of composition analysis of carbon films obtained by removing alumina from the composite films 1 and 2. As a result of elemental analysis, it was confirmed that nitrogen in the carbon film of the composite film 1 was below the detection limit, and that the two-layer carbon film of the composite film 2 contained 3.2% by weight of nitrogen. Since the composite film 1 forms the outer wall of the CNT 1, the outer wall of the CNT 1 does not contain nitrogen or contains only a trace amount below the detection limit. In order to show the results of elemental analysis of the layer, the average nitrogen concentration of CNT1 was assumed to be 3.2% by weight. Further, CNT1 before and after substrate removal was analyzed by XPS to determine the N / C ratio of the surface. As a result, it was 0.06 before substrate removal and 0.009 after substrate removal. Here, when analyzing a long and thin tube by XPS, the information on the inner wall side is detected before the substrate is removed because the tube is in a standing state, and the information on the outer wall side is mainly detected after the substrate is removed when the tube is tilted. Assuming that the N / C ratio was 6 on the inner wall / outer wall of the tube, the N concentration on the inner wall side was significantly higher than that on the outer wall side.
(Example 2) Carbon nanotubes containing a large amount of nitrogen on the outer wall On an anodic oxide film obtained by the same method as in Example 1, in the presence of acetonitrile gas (4.2% by volume in nitrogen) at 800 ° C for 5 hours. Then, a carbon film was deposited by performing vapor deposition by CVD to produce a carbon / anodized film (composite film 3) (see the TEM photograph in FIG. 3A). Next, a second carbon film is deposited on the composite film 3 by performing CVD at 800 ° C. for 3 hours in the presence of propylene gas (1.2% by volume in nitrogen) to deposit carbon / carbon / An anodic oxide film (composite film 4) was produced. By removing the anodic oxide film and the aluminum plate as substrates from the composite film 4 in the same manner as in Example 1, carbon nanotubes (CNT2) having an outer diameter of 24 nm, an inner diameter of 18 nm, and a length of 60 μm were obtained.
[0018]
The results of analyzing the composite membrane 3 and the composite membrane 4 in the same manner as in Example 1 are as shown in Table 1. The thickness of the carbon film in the TEM photograph was 1.7 nm for the composite film 3 and 3.3 nm for the composite film 4. The total amount of nitrogen in the carbon film was 7.6% by weight for the composite film 3 and 3.5% by weight for the composite film 4. Here, the amount of nitrogen contained in the outer wall of CNT2 is 7.6% by weight because the composite film 3 constitutes the outer wall of CNT2, and the average nitrogen concentration contained in the two carbon films of CNT2 is Assuming that it was 3.5% by weight from the result of elemental analysis of the film 4, the N concentration on the outer wall was 2.2 times the average concentration. The surface N / C ratio of CNT2 obtained from the XPS analysis results was 0.01 before the substrate was removed, 0.04 after the substrate was removed, and the outer / inner wall of the tube was 4. The N of CNT2 was the surface on the outer wall side. Had thickened. Furthermore, the result of XPS analysis of the carbon film from which the substrate was removed from the composite film 3 showed that the surface N / C ratio was 0.06 before and 0.07 after the removal of the substrate, and N was almost constant between the inner wall and the outer wall. Met.
[0019]
[Table 1]
Figure 2004277201
[0020]
【The invention's effect】
According to the present invention, it is possible to provide a carbon nanotube having a controlled amount of a hetero element on an outer wall surface or an inner wall surface and a method for producing the same.
[Brief description of the drawings]
FIG. 1 is a view showing one embodiment of obtaining a carbon nanotube of the present invention.
FIG. 2 is a view showing a cross-sectional shape of the carbon nanotube of the present invention obtained in Example 1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anodized film 2 Pore 3 Carbon film not containing hetero element 4 Carbon film containing hetero element 5 Carbon nanotube

Claims (5)

カーボンナノチューブおいて、全体平均で1〜10重量%のヘテロ元素を含み、外径が1〜300nmであり、該カーボンナノチューブの組成について、内壁または外壁のいずれかのヘテロ元素濃度が、前記平均値に対し1.2倍以上または0.8倍以下であることを特徴とするカーボンナノチューブ。The carbon nanotubes contain an average of 1 to 10% by weight of a hetero element and have an outer diameter of 1 to 300 nm. For the composition of the carbon nanotube, the concentration of the hetero element on either the inner wall or the outer wall is the average value. The carbon nanotube is 1.2 times or more or 0.8 times or less of the carbon nanotube. 内壁および外壁の表面N/C元素組成比について、内壁/外壁または外壁/内壁のいずれか一方の比率が1.5以上であることを特徴とする請求項1または2に記載のカーボンナノチューブ。3. The carbon nanotube according to claim 1, wherein a ratio of one of the inner wall / outer wall and the outer wall / inner wall is 1.5 or more with respect to a surface N / C element composition ratio of the inner wall and the outer wall. 4. 表面多孔性物質上に組成が異なる2種類以上の熱分解性物質を段階的に堆積させて得るカーボンナノチューブであり、外径が1〜300nmであり、全体平均で1〜10重量%のヘテロ元素を含むことを特徴とする請求項1または2に記載のカーボンナノチューブ。A carbon nanotube obtained by stepwise depositing two or more kinds of thermally decomposable substances having different compositions on a superficially porous substance, having an outer diameter of 1 to 300 nm and an average of 1 to 10% by weight of a hetero element in total. The carbon nanotube according to claim 1, further comprising: 表面に存在するヘテロ元素が窒素であり、該窒素が四級窒素またはピリジン窒素であることを特徴とする請求項1乃至3の何れかに記載のカーボンナノチューブ。4. The carbon nanotube according to claim 1, wherein the hetero element existing on the surface is nitrogen, and the nitrogen is quaternary nitrogen or pyridine nitrogen. いずれかの末端が開口していることを特徴とする請求項1乃至5の何れかに記載のカーボンナノチューブ。The carbon nanotube according to any one of claims 1 to 5, wherein one end is open.
JP2003068397A 2003-03-13 2003-03-13 Carbon nanotube Pending JP2004277201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068397A JP2004277201A (en) 2003-03-13 2003-03-13 Carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068397A JP2004277201A (en) 2003-03-13 2003-03-13 Carbon nanotube

Publications (1)

Publication Number Publication Date
JP2004277201A true JP2004277201A (en) 2004-10-07

Family

ID=33285744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068397A Pending JP2004277201A (en) 2003-03-13 2003-03-13 Carbon nanotube

Country Status (1)

Country Link
JP (1) JP2004277201A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310514A (en) * 2005-04-28 2006-11-09 Tohoku Univ Electrode material for electric double layer capacitor
JP2007056295A (en) * 2005-08-23 2007-03-08 Univ Of Electro-Communications Carbon tube and method for manufacturing carbon tube
JP2007268692A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Carbon nanotube connected body, its manufacturing method, and element and method for detecting target
JP2012232870A (en) * 2011-04-28 2012-11-29 Tohoku Univ Method for producing silica material with carbon-coated surface, carbon-coated silica material produced by the method and use thereof
WO2014192956A1 (en) * 2013-05-29 2014-12-04 東京エレクトロン株式会社 Method for producing graphene
JP2016520510A (en) * 2013-06-07 2016-07-14 コベストロ・ドイチュラント・アクチェンゲゼルシャフト Multi-walled carbon nanotube production method, multi-walled carbon nanotube and carbon nanotube powder
US10738377B2 (en) 2015-09-02 2020-08-11 Tokyo Electron Limited Method for manufacturing graphene and apparatus for manufacturing graphene

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310514A (en) * 2005-04-28 2006-11-09 Tohoku Univ Electrode material for electric double layer capacitor
JP2007056295A (en) * 2005-08-23 2007-03-08 Univ Of Electro-Communications Carbon tube and method for manufacturing carbon tube
JP4625955B2 (en) * 2005-08-23 2011-02-02 国立大学法人電気通信大学 Carbon tube and carbon tube manufacturing method
JP2007268692A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Carbon nanotube connected body, its manufacturing method, and element and method for detecting target
JP2012232870A (en) * 2011-04-28 2012-11-29 Tohoku Univ Method for producing silica material with carbon-coated surface, carbon-coated silica material produced by the method and use thereof
WO2014192956A1 (en) * 2013-05-29 2014-12-04 東京エレクトロン株式会社 Method for producing graphene
JP2014231455A (en) * 2013-05-29 2014-12-11 東京エレクトロン株式会社 Method for producing graphene
KR20160011638A (en) * 2013-05-29 2016-02-01 도쿄엘렉트론가부시키가이샤 Method for producing graphene
US9822009B2 (en) 2013-05-29 2017-11-21 Tokyo Electron Limited Method for producing graphene
KR102220272B1 (en) * 2013-05-29 2021-02-24 도쿄엘렉트론가부시키가이샤 Method for producing graphene
JP2016520510A (en) * 2013-06-07 2016-07-14 コベストロ・ドイチュラント・アクチェンゲゼルシャフト Multi-walled carbon nanotube production method, multi-walled carbon nanotube and carbon nanotube powder
US10738377B2 (en) 2015-09-02 2020-08-11 Tokyo Electron Limited Method for manufacturing graphene and apparatus for manufacturing graphene

Similar Documents

Publication Publication Date Title
Chen et al. Novel boron nitride hollow nanoribbons
Gao et al. Diamond-based supercapacitors: realization and properties
Presser et al. Carbide‐derived carbons–from porous networks to nanotubes and graphene
Welz et al. Carbon structures in silicon carbide derived carbon
US10953467B2 (en) Porous materials comprising two-dimensional nanomaterials
Cheng et al. Synthesis of graphene paper from pyrolyzed asphalt
KR100455297B1 (en) Manufacturing method of inorganic nano tube
Yushin et al. Carbide derived carbon
US20060222850A1 (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
Mu et al. Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition
US20060289351A1 (en) Nanostructures synthesized using anodic aluminum oxide
WO2018168346A1 (en) Method for producing surface-treated carbon nano-structure
JP2014531306A (en) Ceramic membranes containing carbon nanotubes
Bai Growth of nanotube/nanofibre coils by CVD on an alumina substrate
JP4245438B2 (en) Carbon thin film and field emission electron source and working electrode using the same
JP2004277201A (en) Carbon nanotube
Zeeshan et al. Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes
WO2006085925A2 (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
Qiu et al. Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism
JP2005047763A (en) Carbon nano- and micro-meter structures and method for manufacturing them
Eswaramoorthi et al. Anodic titanium oxide: a new template for the synthesis of larger diameter multi-walled carbon nanotubes
JP2004175618A (en) Method for manufacturing boron nitride nanotube for hydrogen storage
US11578404B2 (en) Synthesis of carbon-based nanostructures using eutectic compositions
JP3440591B2 (en) Manufacturing method of carbon tube
Shin et al. Synthesis of crystalline carbon nanotube arrays on anodic aluminum oxide using catalyst reduction with low pressure thermal chemical vapor deposition