JP2004275862A - Laboratory instrument for controlling adsorption of sugar chain compound - Google Patents

Laboratory instrument for controlling adsorption of sugar chain compound Download PDF

Info

Publication number
JP2004275862A
JP2004275862A JP2003069553A JP2003069553A JP2004275862A JP 2004275862 A JP2004275862 A JP 2004275862A JP 2003069553 A JP2003069553 A JP 2003069553A JP 2003069553 A JP2003069553 A JP 2003069553A JP 2004275862 A JP2004275862 A JP 2004275862A
Authority
JP
Japan
Prior art keywords
sugar chain
chain compound
adsorption
contact
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003069553A
Other languages
Japanese (ja)
Inventor
Hayao Tanaka
速雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003069553A priority Critical patent/JP2004275862A/en
Publication of JP2004275862A publication Critical patent/JP2004275862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laboratory instrument in which adsorption of a sugar chain compound to the wall surface is suppressed and the sensitivity and accuracy of estimation analysis are enhanced in a research for sugar chain engineering. <P>SOLUTION: In the laboratory instrument for controlling the adsorption of the sugar chain compound, a super hydrophilic material is applied on a surface in contact with the sugar chain compound, preferably, the contact angle of the surface in contact with the sugar chain compound is 0° and the super hydrophilic material is a polyhydroxy alkylmethacrylate, a polyoxy 2-4C alkylene group-containing methacrylate polymer or a copolymer containing the same, a polyvinyl pyrrolidone, a phospholipid-polymer complex, a 2-methacryloyl oxyethyl phosphorylcholine polymer or a copolymer containing the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生化学実験・臨床検査・薬剤の開発研究において糖蛋白、糖脂質等の溶液を扱う際に使用する実験器具類に関する。
【0002】
【従来の技術】
近年、ゲノミクス/プロテオミクスの進展を受け、分子生物学的見地からの生命現象の理解には糖蛋白質・糖脂質の機能解析や遊離させた糖鎖の構造解析といった糖鎖工学が重要である事は明らかとなり、その糖鎖工学の進展に伴い糖鎖構造・機能解析技術が大幅に進歩して来た。
現在、糖鎖工学分野においては、生化学実験分野と同様ガラス若しくはポリプロピレン/ポリスチレンといったプラスチックで成型されたディスポーザブルの器具類が一般的に用いられている。
構造・解析技術の進展に伴い測定機器の感度は大幅に向上し、微量物質を扱うケースが増加してきた事から、溶液中の糖鎖化合物が実験用器具類への吸着が問題としてクローズアップされてきた。
実験用器具類への吸着が引き起こす問題は溶液中の物質濃度の変化であり、特にサンプルの損失は溶質の濃度が薄くなればなるほど深刻な問題となる。
自動分析器の性能が向上し、微量な糖鎖化合物の測定が理論上可能になって来たにも係らず、実際にはその様な微量の糖鎖化合物を扱う実験器具が無い事が分析の大きな妨げになっている。
糖鎖化合物は特に従来使用されているガラス、ポリプロピレン樹脂に対して強い吸着性を示し、一部で販売されている低吸着タイプの撥水性処理を施した器具類を用いても殆ど吸着防止効果が得られないのが現状である。
更に、DNAチップやプロテインチップと同様に糖鎖工学分野においても糖鎖化合物を用いた分析手法がチップ化に進むであろう事は容易に考えられる、しかしチップにおいてより微量の糖鎖化合物を微小な流路を通す事になれば、吸着の問題がチップ化の大きな妨げになる事は間違いない。
【0003】
【特許文献1】
国際公開第00/39582号公報
【0004】
【発明が解決しようとする課題】
本発明の目的は、糖鎖化合物の吸着を防止する事で糖鎖工学の実験に好的に用いられる実験器具提供する事である。
【0005】
【課題を解決するための手段】
即ち本発明は、
(1)糖鎖化合物が接触する表面に超親水性材料がコーティングされている事を特徴とする糖鎖化合物吸着制御実験器具、
(2)糖鎖化合物が接触する表面の接触角が0度である(1)記載の糖鎖化合物吸着制御実験器具、
(3)超親水性材料がポリヒドロキシアルキルメタクリレート、ポリオキシC−Cアルキレン基含有メタクリレート重合体又はこれを含む共重合体、ポリビニルピロリドン、及びリン脂質・高分子複合体から選ばれる少なくとも1つである(1)又は(2)記載の糖鎖化合物吸着制御実験器具、
(4)超親水性材料が2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体である(1)又は(2)記載の糖鎖化合物吸着制御実験器具、
である。
【0006】
【発明の実施の形態】
従来溶液中の蛋白質は、その物質中の疎水性部位と容器表面の疎水性部位との間に発生する疎水性相互作用により吸着する為容器基材表面を超親水性に改質する事でその吸着を防止出来る事は本発明者も既に見出しており、国際公開第00/39582号においてその技術を開示している。
しかし、糖鎖化合物の様に多くの親水性基を持つ物質の吸着は疎水性相互作用に依らず、親水性表面に対しては親水性基の相互作用によって吸着してしまうと理論的には考えられていた。
本発明の最も重要な点は、多くの親水性基を持つ糖鎖化合物も水との接触角が0度となる超親水性表面に対しては蛋白質・ペプチドと同様に吸着しないという事を見いだした点で、2−メタクリロイルオキシエチルホスホリルコリン重合体に対して特に吸着量が低下する事を見いだした点である。
【0007】
本発明において、超親水性材料をコーティングする際に重要な点は、コーティング層の厚みである。
コーティング層で基材表面が完全に覆われている状態が好ましいが、その厚みが増すと吸着防止性能は低下してゆく。その理由は、超親水性材料の層が厚くなれば自由水を含みその自由水と一緒に糖鎖化合物の分子が表面に残留するためであると考えられる。
よって、コーティングの際にはコーティング溶液の溶質つまり超親水性材料の濃度及びその溶媒、加えて乾燥条件を充分に検討し、コーティング層が出来るだけ薄い状態で容器表面を満遍なく覆っている状態を構築する事でより高い吸着防止性能を得る事が出来る。
【0008】
本発明に用いる超親水性材料としては、ポリヒドロキシアルキルメタクリレート、ポリオキシC−Cアルキレン基含有メタクリレート重合体又はこれを含む共重合体、ポリビニルピロリドン、リン脂質・高分子複合体から選ばれる少なくとも1つであることが好ましく、更に好ましくは2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体である。
【0009】
2−メタクリロイルオキシエチルホスホリルコリンを含む化合物の共重合体としては特に限定するものでは無いが、2−メタクリロイルオキシエチルホスホリルコリン・ブチルメタクリレート共重合体(「ハイドロゲルの血液適合性に及ぼす親水性基構造の影響」生体材料Vol.9、No.6 石原一彦、中林宣男他参照)を好適に使用する事が出来る。
2−メタクリロイルオキシエチルホスホリルコリン重合体又は共重合体においては、共重合体中の2−メタクリロイルオキシエチルホスホリルコリンの含有率が高いほど優れた吸着制御効果が期待できるが、2−メタクリロイルオキシエチルホスホリルコリンの含有率が高ければ共重合体は水溶性となる為、目的に応じて共重合比率を調節する必要がある。
【0010】
【実施例】
以下、実施例によって本発明を更に具体的に説明する。
(実施例)
ポリプロピレン製15mL遠沈管(住友ベークライト製 SUMILON MS−56150)に2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート共重合体の0.5wt/vol%エタノール溶液を分注し、5分間静置した後に真空ポンプに接続した吸引用ノズルで60秒間吸引後、70℃で4Hr真空乾燥させた。
2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート共重合体は、「リン脂質類似構造を有するハイドロゲル膜からの薬物放出 高分子論文集,46,591−595(1989)」の内容に従い2−メタクリロイルオキシエチルホスホリルコリンとブチルメタクリレート比=3/7の共重合体を合成し使用した。
【0011】
(比較例)
ポリプロピレン製15mL遠沈管(住友ベークライト製 SUMILON MS−56150)を比較例とした。
【0012】
(水との接触角の比較)
実施例及び比較例の容器内面の水との接触角を測定した結果を表1に示す。
【0013】
【表1】

Figure 2004275862
【0014】
(糖鎖化合物吸着性の評価)
実施例及び比較例の糖鎖化合物吸着性の評価を実施した、評価には糖蛋白質としてエリトロポイエチン(ERYTHROPOIETIN BIMEDICALLABORATORIES社 11965−1)及び糖鎖としてコンドロイチン硫酸(Chondroitn sulfate A Bovine Trachea CALBIOCHEM社 23067)の各10nmol/lの水溶液を使用した。
実施例及び比較例の遠沈管にエリトロポイエチン又はコンドロイチン硫酸の水溶液を10mlずつ分注し、37℃で1時間静置後0.05%Tween20含有水溶液で洗浄、乾燥後原子間力顕微鏡(走査型プローブ顕微鏡システム:デジタルインスツルメンツ ナノスコープIII)で表
面を観察した。
結果は図1〜6のとおりで、比較例にはエリトロポイエチン、コンドロイチン硫酸の強い吸着が確認されたが、実施例には吸着は確認されなかった。
【0015】
【発明の効果】
本発明の実験器具は、糖鎖化合物の吸着が無く、糖鎖工学に関連する実験を感度及び精度良く行なう事が出来る。
【図面の簡単な説明】
【図1】実施例の表面を原子間力顕微鏡で観察した像である。
【図2】実施例にエリトロポイエチン水溶液を接触させた後、その表面を原子間力顕微鏡で観察した像である、エリトロポイエチン分子の残留は観察されない。
【図3】実施例にコンドロイチン硫酸水溶液を接触させた後、その表面を原子間力顕微鏡で観察した像である、コンドロイチン硫酸分子の残留は観察されない。
【図4】比較例の表面を原子間力顕微鏡で観察した像である。
【図5】比較例にエリトロポイエチン水溶液を接触させた後、その表面を原子間力顕微鏡で観察した像である、エリトロポイエチン分子が強く残留している事が観察される。
【図6】実施例にコンドロイチン硫酸水溶液を接触させた後、その表面を原子間力顕微鏡で観察した像である、コンドロイチン硫酸分子が強く残留している事が観察される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to laboratory instruments used for handling solutions of glycoproteins and glycolipids in biochemical experiments, clinical tests, and drug development research.
[0002]
[Prior art]
In recent years, with the progress of genomics / proteomics, it is important for understanding biological phenomena from the molecular biological point of view that glycotechnology such as functional analysis of glycoproteins and glycolipids and structural analysis of released sugar chains are important. It became clear, and with the progress of the sugar chain engineering, the sugar chain structure / function analysis technology has greatly advanced.
At present, in the field of sugar chain engineering, disposable instruments molded of glass or plastic such as polypropylene / polystyrene are generally used as in the field of biochemical experiments.
The sensitivity of measuring instruments has been greatly improved with the advancement of structural and analytical technologies, and the number of cases where small amounts of substances have been handled has increased.Therefore, the problem of adsorption of sugar chain compounds in solution to laboratory instruments has been highlighted as a problem. Have been.
The problem caused by adsorption to laboratory instruments is a change in the concentration of the substance in the solution, and particularly the loss of the sample becomes more serious as the concentration of the solute becomes lower.
Despite the improved performance of automatic analyzers and the possibility of measuring trace amounts of glycan compounds in theory, the fact that there is no experimental equipment to handle such trace amounts of glycan compounds has been analyzed. Is a major hindrance.
Sugar chain compounds exhibit strong adsorptive properties especially to conventionally used glass and polypropylene resins, and almost no anti-adhesive effect even when using low-adsorption type water-repellent treatment equipment sold in part. Is currently not available.
Furthermore, it is easy to think that analysis methods using sugar chain compounds will proceed to chip formation in the field of sugar chain engineering as well as DNA chips and protein chips. There is no doubt that the problem of adsorption will greatly hinder chip formation if the flow is passed through a simple flow path.
[0003]
[Patent Document 1]
WO 00/39582 [0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an experimental device which is preferably used for an experiment of sugar chain engineering by preventing adsorption of a sugar chain compound.
[0005]
[Means for Solving the Problems]
That is, the present invention
(1) a sugar chain compound adsorption control experiment device characterized in that a superhydrophilic material is coated on a surface to be contacted with the sugar chain compound;
(2) The sugar chain compound adsorption control experimental instrument according to (1), wherein the contact angle of the surface with which the sugar chain compound contacts is 0 degree.
(3) The superhydrophilic material is at least one selected from polyhydroxyalkyl methacrylate, polyoxy C 2 -C 4 alkylene group-containing methacrylate polymer or copolymer containing the same, polyvinylpyrrolidone, and phospholipid / polymer composite (1) or (2), the sugar chain compound adsorption control experiment device,
(4) The sugar chain compound adsorption control experiment device according to (1) or (2), wherein the superhydrophilic material is a 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing the polymer.
It is.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Conventionally, proteins in a solution are adsorbed by the hydrophobic interaction that occurs between the hydrophobic site in the substance and the hydrophobic site on the surface of the container. The present inventor has already found that adsorption can be prevented, and the technique is disclosed in WO 00/39582.
However, the adsorption of a substance having many hydrophilic groups, such as a sugar chain compound, does not depend on the hydrophobic interaction, but it is theoretically adsorbed on the hydrophilic surface by the interaction of the hydrophilic group. Was thought.
The most important point of the present invention is that sugar chain compounds having many hydrophilic groups do not adsorb to a superhydrophilic surface having a contact angle with water of 0 degree as well as proteins and peptides. In particular, it has been found that the amount of adsorption to the 2-methacryloyloxyethyl phosphorylcholine polymer decreases particularly.
[0007]
In the present invention, an important point when coating the superhydrophilic material is the thickness of the coating layer.
It is preferable that the surface of the substrate is completely covered with the coating layer, but as the thickness increases, the anti-adhesion performance decreases. It is considered that the reason is that if the layer of the superhydrophilic material becomes thicker, free water is contained and molecules of the sugar chain compound remain on the surface together with the free water.
Therefore, when coating, carefully consider the solute of the coating solution, that is, the concentration of the superhydrophilic material and its solvent, and also the drying conditions, and establish a state in which the coating layer covers the container surface as thinly as possible. By doing so, higher adsorption prevention performance can be obtained.
[0008]
As the superhydrophilic material used in the present invention, at least one selected from polyhydroxyalkyl methacrylate, polyoxy C 2 -C 4 alkylene group-containing methacrylate polymer or a copolymer containing the same, polyvinylpyrrolidone, phospholipid / polymer composite It is preferably one, and more preferably a 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing the same.
[0009]
The copolymer of the compound containing 2-methacryloyloxyethyl phosphorylcholine is not particularly limited, but a 2-methacryloyloxyethyl phosphorylcholine / butyl methacrylate copolymer (“having a hydrophilic group structure that affects the blood compatibility of a hydrogel”). Influence "Biomaterial Vol. 9, No. 6 Kazuhiko Ishihara, Nobuo Nakabayashi et al.) Can be suitably used.
In the 2-methacryloyloxyethyl phosphorylcholine polymer or copolymer, the higher the content of 2-methacryloyloxyethyl phosphorylcholine in the copolymer, the higher the adsorption control effect can be expected, but the higher the content of 2-methacryloyloxyethyl phosphorylcholine, the better. If the ratio is high, the copolymer becomes water-soluble, so it is necessary to adjust the copolymerization ratio according to the purpose.
[0010]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example)
A 0.5 wt / vol% ethanol solution of 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate copolymer was dispensed into a polypropylene 15 mL centrifuge tube (SUMILON MS-56150, manufactured by Sumitomo Bakelite), and allowed to stand for 5 minutes. After suctioning for 60 seconds with the suction nozzle connected, vacuum drying was performed at 70 ° C. for 4 hours.
2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate copolymer is a 2-methacryloyloxyethyl compound according to the content of “Drug Release from Hydrogel Membrane Having Phospholipid-Like Structure, Journal of Polymers, 46, 591-595 (1989)”. A copolymer having a phosphorylcholine / butyl methacrylate ratio of 3/7 was synthesized and used.
[0011]
(Comparative example)
A 15 mL centrifuge tube made of polypropylene (SUMILON MS-56150, manufactured by Sumitomo Bakelite) was used as a comparative example.
[0012]
(Comparison of contact angle with water)
Table 1 shows the results of measuring the contact angles of the inner surfaces of the containers with water in the examples and comparative examples.
[0013]
[Table 1]
Figure 2004275862
[0014]
(Evaluation of sugar chain compound adsorption)
The evaluation of the sugar chain compound adsorptivity of Examples and Comparative Examples was carried out. Erythropoietin (ERYTHROPOIETIN BIMEDICAL LABORATORIES 11965-1) was used as a glycoprotein and chondroitin sulfate (Chondroitn sulfate ABovine CHACHECHACH BCH CHEMO) was used as a glycoprotein. ) Were used.
10 ml of an aqueous solution of erythropoietin or chondroitin sulfate was dispensed into the centrifuge tubes of Examples and Comparative Examples, and the mixture was allowed to stand at 37 ° C. for 1 hour, washed with an aqueous solution containing 0.05% Tween 20, dried, and then subjected to an atomic force microscope ( Scanning probe microscope system: The surface was observed with Digital Instruments Nanoscope III).
The results are as shown in FIGS. 1 to 6. In the comparative example, strong adsorption of erythropoietin and chondroitin sulfate was confirmed, but in the example, no adsorption was confirmed.
[0015]
【The invention's effect】
The experimental apparatus of the present invention can perform experiments related to sugar chain engineering with high sensitivity and accuracy without adsorption of sugar chain compounds.
[Brief description of the drawings]
FIG. 1 is an image obtained by observing the surface of an example with an atomic force microscope.
FIG. 2 shows an image obtained by contacting an example with an aqueous solution of erythropoietin and then observing the surface with an atomic force microscope. No residual erythropoietin molecules are observed.
FIG. 3 shows an image obtained by contacting an example with an aqueous solution of chondroitin sulfate and then observing the surface with an atomic force microscope. No residual chondroitin sulfate molecules are observed.
FIG. 4 is an image obtained by observing the surface of a comparative example with an atomic force microscope.
FIG. 5 shows that an erythropoietin molecule, which is an image obtained by contacting an aqueous solution of erythropoietin with the comparative example and observed with an atomic force microscope, shows that erythropoietin molecules remain strongly.
FIG. 6 shows an image obtained by contacting an example with an aqueous solution of chondroitin sulfate and observing the surface with an atomic force microscope. It is observed that chondroitin sulfate molecules remain strongly.

Claims (4)

糖鎖化合物が接触する表面に超親水性材料がコーティングされている事を特徴とする糖鎖化合物吸着制御実験器具。A sugar chain compound adsorption control experimental device, characterized in that a surface to which the sugar chain compound comes into contact is coated with a superhydrophilic material. 糖鎖化合物が接触する表面の接触角が0度である請求項1記載の糖鎖化合物吸着制御実験器具。The sugar chain compound adsorption control experimental device according to claim 1, wherein the contact angle of the surface with which the sugar chain compound comes into contact is 0 degree. 超親水性材料がポリヒドロキシアルキルメタクリレート、ポリオキシC−Cアルキレン基含有メタクリレート重合体又はこれを含む共重合体、ポリビニルピロリドン、及びリン脂質・高分子複合体から選ばれる少なくとも1つである請求項1又は2記載の糖鎖化合物吸着制御実験器具。Superhydrophilic material polyhydroxyalkyl methacrylates, polyoxy C 2 -C 4 alkylene group containing methacrylate polymers or copolymers comprising the same, polyvinylpyrrolidone, and wherein at least one is selected from phospholipids, polymer composite Item 3. An apparatus for controlling sugar chain compound adsorption according to Item 1 or 2. 超親水性材料が2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体である請求項1又は2記載の糖鎖化合物吸着制御実験器具。The sugar chain compound adsorption control experimental device according to claim 1 or 2, wherein the superhydrophilic material is a 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing the same.
JP2003069553A 2003-03-14 2003-03-14 Laboratory instrument for controlling adsorption of sugar chain compound Pending JP2004275862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069553A JP2004275862A (en) 2003-03-14 2003-03-14 Laboratory instrument for controlling adsorption of sugar chain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069553A JP2004275862A (en) 2003-03-14 2003-03-14 Laboratory instrument for controlling adsorption of sugar chain compound

Publications (1)

Publication Number Publication Date
JP2004275862A true JP2004275862A (en) 2004-10-07

Family

ID=33286553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069553A Pending JP2004275862A (en) 2003-03-14 2003-03-14 Laboratory instrument for controlling adsorption of sugar chain compound

Country Status (1)

Country Link
JP (1) JP2004275862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204187A1 (en) * 2016-05-24 2017-11-30 公益財団法人がん研究会 Method of recovering extracellular vesicles and container for extracellular vesicles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204187A1 (en) * 2016-05-24 2017-11-30 公益財団法人がん研究会 Method of recovering extracellular vesicles and container for extracellular vesicles
CN109153882A (en) * 2016-05-24 2019-01-04 公益财团法人癌研究会 Extracellular vesicless recovery method and extracellular vesicless container
JPWO2017204187A1 (en) * 2016-05-24 2019-03-22 公益財団法人がん研究会 Extracellular vesicle collection method and extracellular vesicle container
US10955410B2 (en) 2016-05-24 2021-03-23 Japanese Foundation For Cancer Research Method of recovering extracellular vesicles and container for extracellular vesicles
CN109153882B (en) * 2016-05-24 2022-03-04 公益财团法人癌研究会 Method for recovering extracellular vesicles and container for extracellular vesicles

Similar Documents

Publication Publication Date Title
US9891150B2 (en) Method for measuring or identifying a component of interest in a biological system
Kataoka Current developments and future trends in solid-phase microextraction techniques for pharmaceutical and biomedical analyses
Mirnaghi et al. Optimization of the coating procedure for a high-throughput 96-blade solid phase microextraction system coupled with LC–MS/MS for analysis of complex samples
EP2306176B1 (en) Optical analysis-use chip
CA2523982C (en) Solid phase extraction pipette
WO2020160472A1 (en) High-sensitivity assay
JPH063453U (en) Equipment for centrifugation
JPH03131760A (en) Device for testing molecular specimen in body fluid and method of testing molecular specimen in urine
EP1618940A1 (en) Glass-fiber filter for blood filtration, blood filtration device and blood analysis element
JP5462919B2 (en) Substrate modification method
US9606032B2 (en) Preparation of samples for analysis and sampling device therefor
WO2005097844A1 (en) Polymer particle
JP2007127630A (en) Structure with bonding functional group on substrate for use in bonding acquisition molecule for acquiring target substance
JP2010190602A (en) Monolithic silica column for separating biomicromolecule, method of manufacturing the same, and method of separating biomicromolecule
Altun et al. Surface modified polypropylene pipette tips packed with a monolithic plug of adsorbent for high‐throughput sample preparation
TWI661864B (en) Leukocyte capture or separation polymer, apparatus, manufacturing method and use thereof
CN111474283A (en) Method and kit for qualitative/quantitative detection of target compound
JP2011033341A (en) Method of manufacturing solid phase surface having low binding property
JP4162969B2 (en) Dispensing tip
JP2004275862A (en) Laboratory instrument for controlling adsorption of sugar chain compound
WO2000039582A1 (en) Container for immunologic assay
JP6528378B2 (en) Cell expansion method and kit therefor
JP3495106B2 (en) Blood component adhesion preventing agent, blood test container and blood component adhesion preventing carrier
JP3865614B2 (en) Microcircuit for protein analysis
CN103772728B (en) Dimethyl silicone polymer surface method of modifying based on hydrophobin/methylcellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050908

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A02