JP2004275835A - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP2004275835A
JP2004275835A JP2003068405A JP2003068405A JP2004275835A JP 2004275835 A JP2004275835 A JP 2004275835A JP 2003068405 A JP2003068405 A JP 2003068405A JP 2003068405 A JP2003068405 A JP 2003068405A JP 2004275835 A JP2004275835 A JP 2004275835A
Authority
JP
Japan
Prior art keywords
heat exchange
air
water
heat
exchange element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003068405A
Other languages
Japanese (ja)
Inventor
Yoshiaki Asada
義明 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiger Vacuum Bottle Co Ltd
Original Assignee
Tiger Vacuum Bottle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiger Vacuum Bottle Co Ltd filed Critical Tiger Vacuum Bottle Co Ltd
Priority to JP2003068405A priority Critical patent/JP2004275835A/en
Publication of JP2004275835A publication Critical patent/JP2004275835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1012Details of the casing or cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance dehumidifier constituted so as to ensure a long heat exchange passage while kept small-sized. <P>SOLUTION: The dehumidifier is equipped with a dehumidifying circulation system A comprising a moisture absorbing material 1, a dehumidifying fan 3, a regeneration heater 5, a regeneration fan 6 and a heat exchanger 7. The heat exchanger 7 is constituted by arranging at least three heat exchange elements 107, 207 and 307 for guiding moist air 4a to a heat exchange passage 7a to subject the same to the heat exchange with indoor air 2 in a multiple state and the mutually opposed surfaces of the heat exchange elements 107, 207 and 307 are connected by air introducing connection parts 107a, 207a and 307a and air discharge connection parts 107a, 207a and 307b so that moist air 4a is parallelly passed through a plurality of the heat exchange elements 207 and 307 on the rear stage side to be returned to the front stage heat exchange element 107. The cross-sectional area of the passage of the air introducing connection part 307a of the heat exchange element 307 on the rear stage is made smaller than that of the passage of the air introducing connection part 207a of the heat exchange element 207 on the front stage in a plurality of the heat exchange elements 207 and 307. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、繰り返し移動する吸湿材を備えた軽量かつコンパクトな除湿機に関し、詳しくは、ファンにより室内空気を吸湿材に通して室内に戻し室内を除湿しながら、加熱した空気を吸湿部に通して吸湿材の水分を奪って再生を図りながら、吸湿材から水分を奪った吸湿空気から熱交換器により水を分離して回収し貯水するようにした除湿機に関するものである。
【0002】
【従来の技術】
この種の除湿機は、繰り返し移動する吸湿材と、室内空気を前記吸湿材に通した後に室内に戻して室内の除湿を行なう除湿ファンと、空気を加熱して前記吸湿材に通して水分を奪い再生させることを循環系にて繰り返す再生ヒータおよび再生ファンと、前記吸湿材に通され水分を奪い再生ヒータ側に戻される途中の吸湿空気と熱交換して水分を分離する熱交換器と、熱交換器によって分離した水を受ける水受けと、水受けの水を着脱できる貯水タンクに送り込んで貯水する貯水ポンプとを、本体に備えたものが知られている(例えば、特許文献1、2参照。)。
【0003】
また、前記熱交換器として、除湿空気を多岐な熱交換路に導いて前記除湿ファンにより吸引される室内空気と熱交換させる扁平な熱交換エレメントを用いることも知られている(例えば、特許文献2、3参照。)。このものは、2枚の熱交換エレメントを吸気通路に前後に重ねて置き、内部に通す吸湿空気と本体に吸引される室内空気とを熱交換させることで、熱交換エレメントがポリプロピレンなどの合成樹脂製でも吸湿空気を効率よく凝縮させて水分を結露させ分離できるようにしている。
【0004】
【特許文献1】
特開平11−300145号公報
【0005】
【特許文献2】
特開平11−304398号公報
【0006】
【特許文献3】
特開平11−333239号公報
【0007】
【発明が解決しようとする課題】
しかし、上記従来のもののように2枚の熱交換エレメントを組み合わせるだけでは、十分な熱交換が図れる長さの熱交換路を確保しようとすると、1つの熱交換エレメントが面積の大きなものとなる。これにより、熱交換エレメントの広さに対応した広がりで室内空気の吸引域が必要になるのと相まって、特許文献2に記載されているように、本体のほぼ全高を使って熱交換器を配し、本体内機器の全てを前後に配置するような構成が必然となる。このような形態では、除湿機が前後に大きく平面スペースを大きくとってしまう。このため、狭い部屋や場所での使用に不便である。
【0008】
本発明の目的は、長い熱交換路を小型なままで確保した高性能な除湿機を提供することにある。
【0009】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の除湿機は、繰り返し移動する吸湿材と、室内空気を前記吸湿材に通した後に室内に戻して室内の除湿を行なう除湿ファンと、空気を加熱して前記吸湿材に通して除湿水を奪い再生させることを循環系にて繰り返す再生ヒータおよび再生ファンと、前記吸湿材に通され除湿水を奪い再生ヒータ側に戻される途中の吸湿空気を熱交換して除湿水を分離し戻す熱交換器と、熱交換器によって分離した除湿水を受ける水受けとを、本体に備え、前記熱交換器は、前記吸湿空気を細いまたはおよび狭い熱交換路に導き前記室内空気と熱交換させる熱交換エレメントを3枚以上多重に配して、後段側の複数の熱交換エレメントには前記吸湿空気を並列に通してそれらの前段の熱交換エレメントに戻すように、空気導入接続部および空気排出接続部にて互いの対向面間を接続し、前記並列に通す複数の熱交換エレメントにおける前段側熱交換エレメントの空気導入接続部の通路断面積に対し、後段側熱交換エレメントの空気導入接続部の通路断面積を小さくしたことを1つの特徴としている。
【0010】
このような構成では、吸湿材、除湿ファン、再生ヒータ、再生ファン、熱交換器の組み合わせにより、室内空気を吸湿材にて除湿することを循環系にて繰り返して、室内空気から吸湿して除湿を繰り返す吸湿材につき加熱した空気を通すことによって除湿水を奪い再生を図って前記室内空気に対する吸湿機能を保証しつつ、吸湿材から除湿水を奪った吸湿空気から熱交換器での室内空気との熱交換によって除湿水を分離し水受けに受けることを継続して、圧縮機を用いるタイプのものよりも小型かつ軽量なものにて除湿機能を満足することができる。
【0011】
特に、前記熱交換器は3枚以上の熱交換エレメントを多重に配して用いるので、面積の小さなものの組み合わせにて室内空気との十分な熱交換が図れる長さの熱交換路が容易に得られるし、熱交換路が細いまたはおよび狭いものであるため従来の2枚の場合に対する全体の増厚度合は、面積の縮小度合に比べて小さく全体に小型化する。従って、熱交換エレメントの面積に対応して必要な室内空気の吸引域の広がりも小さくできることと相まって、高い除湿機能を確保して本体が小さくなる。しかも、他の本体内機器との配置の自由度が高くなるので、他の本体内機器との上下配置も容易で本体の奥行き寸法を抑えて平面スペースを余りとらないようにでき、狭い場所や部屋でも邪魔にならず使用しやすい。
【0012】
しかも、熱交換器は、前記吸湿空気を後段側の複数の熱交換エレメントに対し並列に通して戻すように空気導入接続部および空気排出接続部にて互いの対向面間を接続した、接続構造が熱交換器の外まわりにはみ出ないコンパクトな構成にしながら、前記並列に通す複数の熱交換エレメントにおける前段側熱交換エレメントに空気導入接続部を通じて導入された共通の吸湿空気が前後の複数の熱交換エレメントに分岐して並列に通される際に、後段側熱交換エレメントの空気導入接続部の通路断面積が、前段側熱交換エレメントの空気導入接続部の通路断面積よりも小さい分だけ、前段側熱交換エレメントの空気導入接続部を通じて導入された吸湿空気を絞って導入し、共通の吸湿空気を前後段の複数の熱交換エレメントのそれぞれに流速をほとんど変えずに通して、循環系全体の空気の流れを乱すようなことなく室内空気との熱交換が一挙に図れるので、熱交換効率、除湿効率が高まり除湿機能がより向上する。また、並列に通す複数の熱交換エレメントの熱交換路は、前段の熱交換エレメントの熱交換路よりも通路断面積の小さなものとしてよいので、室内空気との熱交換効率が高まって除湿機能をさらに向上させられる上、よりかさ低いものとなり熱交換器の増厚をさらに小さくすることができる。
【0013】
前記並列に通す複数の熱交換エレメントにおける空気排出接続部の通路断面積は、その空気排出接続部を有している熱交換エレメントの空気導入接続部の通路断面積とほぼ同等にした、さらなる構成では、
吸湿空気を複数の熱交換エレメントに並列に通して室内空気と熱交換させた後に合流させてそれらの前段側に戻すのに、その合流が行われる前段側熱交換エレメントの空気排出接続部の通路断面積が、後段側熱交換エレメントの空気排出接続部の通路断面積よりも大きくなる関係により、前記合流を流速に変化なくスムーズに達成して循環系全体の空気の流れを乱さないので、合流による熱交換効率、除湿効率の低下を防止することができる。
【0014】
本発明の除湿機は、また、繰り返し移動する吸湿材と、室内空気を前記吸湿材に通した後に室内に戻して室内の除湿を行なう除湿ファンと、空気を加熱して前記吸湿材に通して除湿水を奪い再生させることを循環系にて繰り返す再生ヒータおよび再生ファンと、前記吸湿材に通され除湿水を奪い再生ヒータ側に戻される途中の吸湿空気を熱交換して除湿水を分離し除湿空気に戻す熱交換器と、熱交換器によって分離した除湿水を受ける水受けとを、本体に備え、前記熱交換器は、受け入れた吸湿空気を細いまたはおよび狭い熱交換路に導き前記室内空気と熱交換させる熱交換エレメントを3枚以上多重に配して、これら熱交換エレメントに前記吸湿空気を順次に通して戻すように空気導入接続部にて互いの対向面間を接続し、各熱交換エレメントにおける空気導入接続部の通路断面積、および最後段熱交換エレメントの空気排出接続部の通路断面積をそれぞれほぼ同等としたことを別の特徴としている。
【0015】
このような構成では、吸湿材、除湿ファン、再生ヒータ、再生ファン、熱交換器の組み合わせにより、室内空気を吸湿材にて除湿することを循環系にて繰り返して、室内空気から吸湿して除湿を繰り返す吸湿材につき加熱した空気を通すことによって除湿水を奪い再生を図って前記室内空気に対する吸湿機能を保証しつつ、吸湿材から除湿水を奪った吸湿空気から熱交換器での室内空気との熱交換によって除湿水を分離し水受けに受けることを継続して、圧縮機を用いるタイプのものよりも小型かつ軽量なものにて除湿機能を満足することができる。
【0016】
特に、前記熱交換器は3枚以上の熱交換エレメントを多重に配して用いるので、面積の小さなものの組み合わせにて室内空気との十分な熱交換が図れる長さの熱交換路が容易に得られるし、熱交換路が細いまたはおよび狭いものであるため従来の2枚の場合に対する全体の増厚度合は、面積の縮小度合に比べて小さく全体に小型化する。従って、熱交換エレメントの面積に対応して必要な室内空気の吸引域の広がりも小さくできることと相まって、高い除湿機能を確保して本体が小さくなる。しかも、他の本体内機器との配置の自由度が高くなるので、他の本体内機器との上下配置も容易で本体の奥行き寸法を抑えて平面スペースを余りとらないようにでき、狭い場所や部屋でも邪魔にならず使用しやすい。
【0017】
しかも、3つ以上の熱交換エレメントに前記吸湿空気を順次に通して戻すように空気導入接続部にて互いの対向面間を接続した、接続構造が熱交換器の外まわりにはみ出ないコンパクトな構成にしながら、各熱交換エレメントにおける空気導入接続部の通路断面積、および最後段熱交換エレメントの空気排出接続部の通路断面積がそれぞれほぼ同等であることにより、3つ以上の熱交換エレメントによる長い熱交換路全域にてスムーズな空気の流れを得て室内空気との熱交換が図れるので、熱交換効率、除湿効率が高まり除湿機能がより向上する。
【0018】
熱交換エレメントが、個別の空気導入接続部および空気排出接続部を持った複数の熱交換域に別れている、さらなる構成では、
熱交換エレメントが複数の熱交換域に分かれていて、個別の空気導入接続部および空気排出接続部によって吸湿空気を通すことにより、1つの空気導入接続部から導入した吸湿空気を熱交換エレメントの全域に通して後1つの空気排出接続部から排出させる場合のように空気が行き届きにくい部分、空気の流れが低下ないしは淀む部分が生じにくくなるので、熱交換エレメントの全域を有効に利用できて熱交換効率が高まり除湿機能が向上する。
【0019】
熱交換エレメントが、途中に連絡路を有して複数の熱交換域に別れており、連絡路の通路断面積は、その連絡路を有している熱交換エレメントにおける前記空気導入接続部の通路断面積とほぼ同等以上とした、さらなる構成では、
熱交換エレメントが途中に連絡路を有して複数の熱交換域に分かれていることにより、1つの空気導入接続部から導入した空気でも、連絡路を通じ複数に分かれた熱交換域に順次に通されて、熱交換エレメントの全域に一挙に通される場合のように空気が行き届きにくい部分、空気の流れが低下ないしは淀む部分が生じにくくなるので、熱交換エレメントの全域を有効に利用できて熱交換効率が高まり除湿機能が向上する。特に、連絡路の通路断面積がこの連絡路を有している熱交換エレメントにおける前記空気導入接続部の通路断面積とほぼ同等以上であることによって、前段の熱交換域から後段の熱交換域に移る空気を絞ったりしないので、熱交換エレメントの全熱交換域での熱交換効率が高まり除湿機能が向上する。
【0020】
前記熱交換エレメントを、室内空気の吸引方向に多重となるように縦置きし、最後段の熱交換エレメントを室内空気の上流側に向けた、さらなる構成では、
熱交換エレメントを室内空気の吸引方向に多重となるように縦置きしたので、従来に比して面積の小さな熱交換エレメントに対応する本体の吸気口の内側に位置して吸引される室内空気との十分な熱交換を図りながら、本体の上下方向および前後方向に余裕を与えて、他の本体内機器を設置することができるので、本体の全体の大きさおよび前後方向寸法を小さくすることができ、狭い場所や部屋での使用に便利なものとなる。
【0021】
最前段の熱交換エレメントが、それより後段側の熱交換エレメントよりも面積が大きい、さらなる構成では、
最前段の熱交換エレメントは吸湿材を再生させたままの高湿度な吸湿空気を導入されるが、後段側の熱交換エレメントよりも面積が大きいことによって室内空気との熱交換度を高めて除湿水の分離効率を上げられるので、除湿機能が高まる。また、最前段の熱交換エレメントでの熱交換を経た除湿空気を再生ヒータ側に戻す構成の場合には、広い面積を持った最前段の熱交換エレメントでの高い熱交換による最終的な除湿水の分離を図って戻すので、熱交換器から再生ヒータ側に戻る過程で結露が生じ結露水が再生側に侵入するのを防止しやすい。
【0022】
本体の上部前側に着脱できるように設けられた貯水タンクと、前記水受けの水を貯水タンクに送り込む貯水ポンプとを備え、前記熱交換器は本体の貯水タンク装着部の下で、本体の室内空気を吸引する吸気口の内側に位置している、さらなる構成では、
熱交換器の形態に伴い本体が小型化する特徴を損なわずに、貯水タンクを本体の上部に設けて、水受けに集められる除湿水を給水ポンプにより送り込んで貯水することができ、この貯水状態が外観されるようにするので、ユーザーによって除湿が実感され、評価されやすくする。同時に、貯水タンクに関し排水したり、洗浄などの手入れをしたりするのに、本体外のしかもユーザーの最も近くで、かつ着脱しやすい側に貯水タンクが位置しているので、貯水タンクを単独に容易に取り扱って対応することができる。
【0023】
本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面の記載によって明らかになる。本発明の各特徴はそれ単独で、あるいは可能な限り種々な組み合わせで複合して採用することができる。
【0024】
【実施例】
以下、本発明に係る実施例の除湿機につき幾つかの例とともに、図1〜図14を参照しながら詳細に説明し、本発明の理解に供する。以下の説明は、本発明の具体例を示すものであり、特許請求の範囲の記載内容を限定するものではない。
【0025】
本実施例の除湿機は、本実施例における図1〜図8の例で図1、図2にその全体構成を示し、図14に示す例で図14にその全体構成を示すように、繰り返し移動する吸湿材1と、室内空気2を前記吸湿材1に通した後に室内に戻して室内の除湿を行なう除湿ファン3と、再生用の再生空気4を加熱して前記吸湿材1に通し除湿水を奪い再生させることを図1に矢印4、4aを付して示す循環系Aにて繰り返す再生ヒータ5および再生ファン6と、前記吸湿材1に通され除湿水を奪い再生ヒータ5側に戻される途中の吸湿した吸湿空気4aを熱交換して除湿水を分離し戻す熱交換器7と、熱交換器7によって分離した除湿水を受ける水受け8と、を本体12に備えている。
【0026】
このような除湿機は、吸湿材1、除湿ファン3、再生ヒータ5、再生ファン6、熱交換器7の組み合わせにより、室内空気2を吸湿材1にて除湿することを循環系Aにて繰り返す。この際、室内空気2から吸湿して除湿を繰り返す吸湿材1につき加熱した再生空気4を通すことによって除湿水を奪い再生を図って前記室内空気2に対する吸湿機能を保証しつつ、吸湿材1から除湿水を奪った吸湿空気4aにつき熱交換器7での熱交換によって除湿水を分離して再生空気4に戻し、分離した水は水受け8に受けることを継続する。これによって、圧縮機を用いるタイプのものよりも小型かつ軽量なものにて除湿機能を満足することができる。
【0027】
本実施例では、特に、図1〜図8に示す例、図9〜図13に示す例、図14に示す例のように、熱交換器7は、前記吸湿空気4aを図4の例や図9の例に示すように細いまたはおよび狭い熱交換路7aに導き室内空気2と熱交換させる3枚以上の熱交換エレメント107、207、307・・を多重に配している。
【0028】
このように、熱交換器7は3枚以上の熱交換エレメント107、207、307・・を多重に配して用いることにより、面積の小さなものの組み合わせにて室内空気2との十分な熱交換が図れる長さの熱交換路7aが容易に得られる。併せ、熱交換路7aが細いまたはおよび狭いものであるため従来の2枚の場合に対する全体の増厚度合は、面積の縮小度合に比べて小さく全体に小型化する。従って、熱交換エレメント107、207、307の面積に対応して必要な室内空気2の吸引域の広がりも小さくできることと相まって、高い除湿機能を確保して本体12が小さくなる。従って、熱交換エレメント107、207、307はポリプロピレンなどによるブロー成形品として十分な除湿効果が得られる。しかも、本体内機器16の他のものとの配置の自由度が高くなるので、本体内機器16の他のものとの上下配置も容易で本体12の奥行き寸法を抑えて平面スペースを余りとらないようにでき、狭い場所や部屋でも邪魔にならず使用しやすい。熱交換エレメント107、207、307は透明または半透明にしておくと、内部の汚れなどが透視でき、内部洗浄の時期や交換の時期を判断しやすい。また、抗菌剤を添加していると衛生上好適である。
【0029】
図1〜図8の例、および図9〜図13の例の熱交換器7は、特に、後段側の複数の熱交換エレメント207、307・・には前記吸湿空気4aを並列に通して戻すように、空気導入接続部107a、207a、307aおよび空気排出接続部107b、207b、307bにて互いの対向面間を図4、図9に示すように接続している。また、前記並列に通す複数の熱交換エレメント207、307における前段側熱交換エレメント207の空気導入接続部207aの通路断面積に対し、後段側熱交換エレメント307の空気導入接続部307aの通路断面積を小さくしている。
【0030】
このように、熱交換器7は、その熱交換エレメント107、207、307は、空気導入接続部107a、207a、307aおよび空気排出接続部107b、207b、307bにて互いの対向面間を接続した、接続構造が熱交換器7の外まわりにはみ出ないコンパクトな構成になっていて、前段の熱交換エレメント107を経た吸湿空気4aを後段側の複数の熱交換エレメント207、307・・には前記吸湿空気4aを並列に通して再生側に戻すことができる。ここで、後段の複数の熱交換エレメント207、307には、その前段側熱交換エレメント207に空気導入接続部207aを通じて導入された共通の吸湿空気4aは、図1に矢印で示すように前段側熱交換エレメント207にはそのまま、後段側熱交換エレメント307にはその空気導入接続部307aを通じ分岐して、それぞれに並列に通す。この際、後段側熱交換エレメント307の空気導入接続部307aの通路断面積が、前段側熱交換エレメント207の空気導入接続部207aの通路断面積よりも小さい分だけ、具体的には1/2と半減している分だけ、前段側熱交換エレメント207の空気導入接続部207aを通じ導入された吸湿空気4aを空気導入接続部307aで絞って後段側熱交換エレメント307に分岐させ導入する。これによって、熱交換エレメント107からの共通の吸湿空気4aを、前後段となっている複数の熱交換エレメント207、307・・のそれぞれに流速をほとんど変えずに通して、循環系全体の空気の流れを乱すようなことなく室内空気2との熱交換が一挙に図れるので、熱交換効率、除湿効率が高まり除湿機能がより向上する。
【0031】
また、並列に通す複数の熱交換エレメント207、307・・の熱交換路7aは、単段で吸湿空気4aを通す前段の熱交換エレメント107などの熱交換路7aよりも図4、図9に示すように通路断面積の小さなものとしてよく、具体的には1/2としていて、室内空気2との熱交換効率が高まって除湿機能をさらに向上させられる上、よりかさ低いものとなり熱交換器7の増厚をさらに小さくすることができる。
【0032】
また、図1に矢印で示すように、後段側熱交換エレメント307の空気排出接続部307bから出た熱交換後の吸湿空気4aは前段側熱交換エレメント207からその空気排出接続部207bに出る吸湿空気4aと、その空気排出接続部207bにて合流し、これらに対する前段の熱交換エレメント107に戻される。このような合流に対して、本実施例では、前記並列に通す複数の熱交換エレメント207、307における空気排出接続部207b、307bの通路断面積は、それを有している熱交換エレメント207、307の空気導入接続部207a、307aの通路断面積とほぼ同等にしている。
【0033】
これにより、吸湿空気4aを複数の熱交換エレメント207、307に並列に通して室内空気2と熱交換させた後、前段の熱交換エレメント107に戻すのに、前段側熱交換エレメント207の空気排出接続部207bの通路断面積が、後段側熱交換エレメント307の空気排出接続部307bの通路断面積よりも大きくなる関係、具体的にはほぼ2倍になる関係を得て、前記空気排出接続部207bでの吸湿空気4aの合流を流速に変化なくスムーズに達成して循環系A全体の空気の流れを乱さないので、合流による熱交換効率、除湿効率の低下を防止することができる。
【0034】
さらに、熱交換エレメント107は図4、図6の例、図9、図11の例で示すように、個別の空気導入接続部107a,107aおよび空気排出接続部107b、107bを持った複数の熱交換域107c、107dに別れるようにしている。このように、熱交換エレメント107が複数の熱交換域107c、107dに分かれていて、個別の空気導入接続部107a、107aおよび空気排出接続部107b、107bによって吸湿空気4aを通すことにより、1つの空気導入接続部から導入した除湿空気を熱交換エレメントの全域に通して後1つの空気排出接続部から排出させる場合のように空気が行き届きにくい部分、空気の流れが低下ないしは淀む部分が生じにくくなる。この結果、熱交換エレメント107の全域を有効に利用できて熱交換効率が高まり除湿機能が向上する。従って、面積の大きな熱交換エレメントであるほど熱交換域分割の効果は高い。熱交換エレメントの面積に応じて分割数を変えると好適である。
【0035】
また、熱交換エレメント207、307は図7、図8に示すように、途中に連絡路207c、307cを有して複数の熱交換域207d、307dと207e、207eとに別れるようにしている。併せ、連絡路207c、307cの通路断面積は、その連絡路207c、307cを有している熱交換エレメント207、307における前記空気導入接続部207a、307aの通路断面積とほぼ同等以上としている。このように、熱交換エレメント207、307が途中に連絡路207c、307cを有してそれぞれ複数の熱交換域207d、307dと207e、207eに分かれていると、1つの空気導入接続部207a、307aから熱交換エレメント207、307に導入した空気でも、連絡路207c、307cを通じ複数に分かれた熱交換域207d、307dから207e、207eに順次に通されて、熱交換エレメントの全域に一挙に通される場合のように空気が行き届きにくい部分、空気の流れが低下ないしは淀む部分が生じにくくなる。従って、熱交換エレメント207、307の全域を有効に利用できて熱交換効率が高まり除湿機能が向上する。特に、連絡路207c、307cの通路断面積がこの連絡路を有している熱交換エレメント207、307における前記空気導入接続部207a、307aの通路断面積とほぼ同等以上であることによって、前段の熱交換域207d、307dから後段の熱交換域207e、307eに移る空気を絞ったりしないので、熱交換エレメント207、307の全熱交換域での熱交換効率が高まり除湿機能が向上する。
【0036】
なお、複数の熱交換エレメント107、207、307は、前記した2通りの熱交換域分割方式のいずれを採用してもよいし、別の分割方式でもよい。また、各種分割状態をどのように組み合わせて採用してもよい。
【0037】
また、図1、図2、図4、図5の例、図9、図10の例で示すように、前記熱交換エレメント107、207、307を、室内空気2の吸引方向に多重となるように縦置きし、最後段の熱交換エレメント307を室内空気2の上流側に向けてある。このように熱交換エレメント107、207、307を室内空気2の吸引方向に多重となるように縦置きしたので、従来に比して面積の小さな熱交換エレメントに対応する本体12の吸気口22の内側に位置して吸引される室内空気2との十分な熱交換を図りながら、本体12の上下方向および前後方向に余裕を与えて、本体内機器16の他のものを設置することができるので、本体12の全体の大きさおよび前後方向寸法を小さくすることができ、狭い場所や部屋での使用に便利なものとなる。
【0038】
ここで、最前段の熱交換エレメント107は図1、図2に示すように、吸湿材1を再生させたままの高湿度な吸湿空気4aを導入される。しかし、これに対応して、最前段の熱交換エレメント107は後段側の熱交換エレメント207、307よりも面積を大きくしてある。このように、最前段の熱交換エレメント107は後段の熱交換エレメント207、307よりも面積が大きいことによって室内空気2との熱交換度を高めて除湿水の分離効率を上げられるので、除湿機能が高まる。また、図6、図11に示すように最前段の熱交換エレメント107での分割した1つの熱交換域107dを利用するなどした熱交換エレメント107での熱交換を経た除湿水分離後の再生空気4を再生ヒータ5側に戻す構成の場合には、広い面積を持った最前段の熱交換エレメント107での高い熱交換による最終的な除湿水の分離を図って戻すことになる。この結果、熱交換器7から再生ヒータ5側に戻る過程で結露が生じ結露水が再生側に侵入するのを防止しやすい。さらに、最も大きな熱交換エレメント107の外寸は吸湿材1の外寸よりも大きく、それよりも小さい熱交換エレメント207、307などは吸湿材1の外寸よりも小さくしてある。これにより、複数の熱交換エレメント107、207、307などに大きさの違いものとして本体12内に設置するのに、必要不可欠な吸湿材1の外寸から余り大きくせずに設けられる。
【0039】
また、図2に示すように本体12の上部前側に着脱できるように設けられた貯水タンク9と、前記水受け8の水を貯水タンク9に送り込む図3に示すような貯水ポンプ11とをさらに備え、前記熱交換器7は本体12の貯水タンク装着部となる段部15の下で、本体12の室内空気2を吸引する吸気口22の内側に位置するようにしている。これにより、熱交換器7の上記のような多重形態に伴い本体12が小型化する特徴を損なわずに、貯水タンク9を本体12の上部に設けて、水受け8に集められる除湿水を貯水ポンプ11により送り込んで貯水することができ、貯水タンク9を透明はたは、半透明にするかそのようなのぞき窓を設けるかして貯水状態が外観されるようにするので、ユーザーによって除湿が実感され、評価されやすくする。同時に、貯水タンク9に関し排水したり、洗浄などの手入れをしたりするのに、本体12外のしかもユーザーの最も近くで、かつ着脱しやすい側に貯水タンク9が位置しているので、貯水タンク9を単独に容易に取り扱って対応することができる。
【0040】
図1〜図8に示す例の除湿機につき、さらに詳述すると、吸湿材1、除湿ファン3、再生ヒータ5、再生ファン6、熱交換器7の組み合わせからなる循環系A、水受け8および貯水ポンプ11は、除湿機の本体12に例えば図1、図2に示す本体内機器16であり、着脱できる貯水タンク9は本体外機器となる。
【0041】
これにより、本体12側に備えた循環系Aにて除湿機能を発揮しながら、吸湿材1を再生した後の吸湿した再生空気4から分離した除湿水、および連絡路101での結露水は、同じく本体12側に備えた水受け8で受けることにより広域に拡がらせないで貯水ポンプ11による貯水タンク9への送り込みと貯水に供して、本体12の必要スペースを最小限に抑えて満杯回避により長時間の除湿を可能としながら、分離した除湿水が蒸発、逸散して室内を却って加湿してしまうような不都合を防止することができる。貯水ポンプ11から貯水タンク9への図2、図3に示すような送水路26はどのように構成し、どのように接続してもよいが、貯水タンク9の上部から流し込むと逆流が生じないので好適である。しかし、送水路26の途中や貯水タンク9の送水路26を着脱できるように接続する部分に逆止弁を設ければ逆流による問題は解消する。
【0042】
また、図2に示すように、本体12の貯水タンク9の下、つまり貯水タンク9を設ける設置部の下、図示する例では図2に示すような前記段部15の下に、前側から順に、熱交換器7の他、回転する吸湿材1が位置している。この吸湿材1の後ろの上下に再生ヒータ5および再生ファン6が位置して、再生用の空気4が再生ファン6から、再生ヒータ5、吸湿材1、熱交換器7に順次至って後、再生ファン6に戻る循環系Aをなしている。これら再生ヒータ5および再生ファン6の後ろに除湿ファン3がその吸気口3aを吸湿材1を介して本体12の前面の吸気口22に向け開口し、送風口3bを本体12上部の排気口23に繋がるようにして位置している。
【0043】
水受け8は図2に示すような蓋8aを有し、前記熱交換器7にて吸湿空気4aから分離した除湿水、ないしは結露水はこの蓋8aの通水部8bを通じて受け入れる。貯水ポンプ11は図3に示すように水受け8の底部から貯水タンク9に至る送水路26の基部側途中に設けてある。また、図示する例では吸気口22の内側に図1、図2に示すようなフィルタ93が設けられている。吸湿材1は図1、図2に示すように、ゼオライトなどの吸湿剤1aを収容保持したケース1bにギヤ1cを設け、このギヤ1cに図3に示すようなギヤドモータ71に直結するなどしたピニオンギヤ72を噛み合わせることによって所定の速度で回転駆動するようにしてある。
【0044】
以上のような本体内機器16の配置により、吸湿材1が回転して繰り返し室内空気2の除湿とその後の再生を行うので、前記除湿と再生のための室内空気2の図1に示す通過方向に厚みが向く扁平なものでよくなり、その前部に位置する熱交換器7とともに本体12上部の前側に設けられる貯水タンク9の平面スペースを利用した下側に位置して、前後方向および上下方向に無駄なスペースなく設置できる。また、これら上部の貯水タンク9、その下部の熱交換器7および吸湿材1と、これらの後方に位置した再生ヒータ5および再生ファン6とで、互いが無駄に分散するようなことなく前記循環系Aを、これを収納する本体12部分とともに例えば図1、図2に示すようにコンパクトに構成しながら、この循環系Aの後ろに本体12の高さ一杯を利用した図1に示すような十分な大きさの除湿ファン3を、本体12を特に大型化したりしないで設けて、十分な風量と、静かで人に風を感じさせない程度の低速吸気、および低速送風とを確保して、高い除湿機能を発揮することができる。しかし、広域の除湿には吸気および送風のうち少なくとも一方は除湿の必要な範囲まで及ぶ条件を満足する必要がある。
【0045】
本体12内は図1、図2に示すように除湿ファン3を収容した後部と、循環系Aを収容した前部とを合成樹脂製の仕切り壁75によって仕切っている。仕切り壁75は本体後部側に除湿モータ3eを取り付け、そのまわりに吸気口3aを形成している。除湿モータ3eに直結した除湿羽根車3dは後部側に位置して、仕切り壁75に取り付けた合成樹脂製のカバー壁3cで覆ってこれをケーシング用のベルマウスとして除湿ファン3を構成している。また、本体12の前部側には、さらに、吸湿材1側と熱交換器7側とを仕切る図1、図2、図3に示すような合成樹脂製の仕切り壁77を設けている。仕切り壁77はその中央に吸湿材1を図1、図2に示す軸部77aによって回転できるように支持するとともに、前記ギヤドモータ71を取り付け、吸湿材1を仕切り壁77上で回転駆動するようにしている。
【0046】
仕切り壁75、77間には除湿モータ3eのほか、前記再生ヒータ5および再生ファン6が位置している。再生ヒータ5は仕切り壁77に取り付けた図2に示すような加熱部カバー73の後部にある流入口73a内に保持し、加熱部カバー73が前部側に向け、上下左右にラッパ形に広がって形成する流出口73bを吸湿材1の再生を図る範囲に対し適当な隙間を持って対向させている。加熱部カバー73の前記のようなラッパ形状は、小さな流入口73aにて再生ヒータ5と再生空気4との効率のよい接触とそれによる加熱を達成した後、十分に昇温した再生空気4を可能な限り吸湿材1のより広域に通風させて、効率のよい再生が図れるようにしている。加熱部カバー73の後部には、再生ヒータ5に導いた後、吸湿材1を通過させる、図1、図2、図3に示すような再生カバー74を設けてあり、加熱部カバー73とともに仕切り壁77に取り付けてある。再生カバー74は図2に示すように加熱部カバー73の全体を覆った状態で再生空気4を再生ヒータ5に送風するようにしてあり、加熱部からその後側まわりへの熱影響を防止する遮熱カバーにもなっている。
【0047】
再生ファン6は羽根車6aを収容したケーシング6bの吸引口6cが、図2に示すように仕切り壁77に一体成形した連絡路101のダクト103における後部端に図示するように嵌め合わせるなどして接続してあり、ケーシング6bの吹き出し口6dを図1、図3に示すように再生カバー74の導風口74aに接続してある。
【0048】
仕切り壁77は、さらに、図1、図2に示すように、吸湿材1に対応する部分を前部側に開放して、再生ファン6によって吸引される室内空気2を吸湿材1に通風させる通風口78と、吸湿材1の前部側で再生ヒータ5、吸湿材1を通過し、吸湿材1を再生させた後の吸湿空気4aを受け入れる図2に示すような受入室79を形成している。受入室79はその後端が吸湿材1と適当な隙間を持って対向して吸湿空気4aを受入れ、前部には前記熱交換器7における空気導入接続部107aとの接続口80を設けて受け入れた吸湿空気4aを熱交換器7に送り込むようにしてある。
【0049】
本体12の後部上面には図2に示す操作面28と図1、図2に示す除湿ファン3からの送風口3bを経た図2に示す排気口23とを横に並ぶように併設している。排気口23は本体12の上面への矩形な開口23aと、本体12の背面への開口23bとが連続した状態に形成してあり、開口23aに軸64により開閉できるように枢支した風向設定蓋65を設け、操作面28にて設定した風向状態になるように図示しないモータなどのアクチュエータにより駆動するようにしてある。風向設定は例えばほぼ鉛直な全開状態と、図2に示す水平な全閉状態との間の各中間開き状態と、全閉状態と全開状態との間を連続的に往復する風向連続変更状態とがある。全閉状態では開口23bだけが後方向に開かれた状態で、後ろ向き送風となる。全開状態では開口23aの全域が開口されて真上への送風となる。各中間開き状態では風向設定蓋65の開き角度に沿った方向への送風となる。さらに、図1に示すように除湿ファン3の本体12における偏った送風口3bおよび排気口23の近傍にできるデッドスペースを利用して、操作面28に設ける操作回路基板311と電源回路基板312とを、上下に、あるいは横に並べて設けてある。
【0050】
本体12には、さらに、図2に示すように、本体12の側方から見て貯水タンク9と対角線上の位置となるコーナ部の左右両側にキャスタ33を設けてある。これにより、本体12を左右一対のキャスタ33にて接地して引き回すのに、前記対角線が鉛直となる側に本体12を後ろ側に倒すと、本体12の貯水タンク9を含む重心をキャスタ33上に位置させられるし、貯水タンク9での貯水量の違いでその時々で前記重心の位置が異なっても、本体12の後ろ側への倒し角度を調節することによって重量を前後にバランスさせて難なく移動させられ、同一の居室内は勿論、居室間、居室と風呂場など場所を移して使用するような場合に便利である。風呂場ではそれ自体の除湿、乾燥はもとより、洗濯物の乾燥にも供することができる。
【0051】
なお、本体12の底部には使用状態に接地する座部の1つの例として座脚35を設けてあり、図2に示すようにキャスタ33を設置面36から少し浮かせて本体12を設置するようにしてある。これにより、本体12を使用状態に設置している状態ではキャスタ33は接地せず本体12の設置状態を不安定にするようなことはない。
【0052】
前記キャスタ33を設けるのに併せ、本体12の背面には図1、図2に示すように、上下方向に出し入れできる引き手37を設けてある。図示する例の引き手37は本体12における背部の左右方向の中央部に縦向きに設けた鞘部39に出し入れできるように保持された左右一対の引き棒37aと、これら引き棒37aの上端に取り付けられたグリップ部37bとで構成している。このような引き手37は本体12を前記のように後ろ側に倒して引き回すときの、本体12の支え、角度調節、引き回しのそれぞれに共用して、容易かつ自在に移動できる。なお、貯水タンク9の上部には図示しない起伏できるように枢支した手提げハンドルを設けるのが好適である。ここで、ベルマウスであるカバー壁3cは本体12内の
電装部と引き手37を設ける部分とを絶縁性を有して区画する絶縁区画壁を共用しており、引き手37のグリップ部37b、引き棒37aが金属製であっても使用の安全が図れる。仕切り板75に対しカバー壁3cは羽根車3dのまわりを軸方向片側から覆うカップ形状をなした本体から送風路が送風口3bに向かって延びる立体形状を有し、これの側には補強などを目的としてリブを設けず、滑らかな表面形状のものとする。これにより、成形が容易になる。また、本体12の後壁における鞘部39の間は内側に凹陥させたコード収納部313として図示しない電源コードを収納するスペースとすることができる。また、本体12の壁に図1に示すようなボス315を設けてカバー壁3cをねじ止めなどすれば、本体12の壁とカバー壁3cとによって引き手37の格納部を形成し、前部の電装側と隔離することができる。
【0053】
以上から、本体12の上部において、貯水タンク9と、排気口23および操作、電源基板311、312と、引き手7との3つが前後に並ぶことになる。
【0054】
熱交換器7は各熱交換エレメント107、207、307のそれぞれを、図4に示すように互いの対向面の一方または双方に設けたスペーサ凸部401によって適当な室内空気2の熱交換通路402を残して前記の接続を行い、最前段の熱交換エレメント107の上部左右2箇所と、最後段の熱交換エレメント307の下部左右2箇所とを、前記仕切り壁77に一体成形して設けた図5に示すような取り付け脚403を利用してねじ405にて着脱できるように取り付けてある。
【0055】
また、各熱交換エレメント107、207、307は、それぞれの下部の左右両側から中央に向かって低くなった部分に、それらの熱交換域107cと107dごと、熱交換域207d、207eごと、熱交換域307d、307eごとに設けた、結露水を水受け8に流し込むドレンパイプ406を有し、内部での結露水の全てが集まるようになっている。しかも、熱交換エレメント107では2つの空気導入接続部107a、107aは上部と、下部側方にあって、2つの空気排出接続部107b、107bは上部と下部側方にあって、いずれもドレンパイプ406から離れているので、そこを通る空気の流れによって結露水がドレンパイプ406に集まり、流れ落ちるのを邪魔するようなことがない。また、熱交換エレメント207では、2つの空気導入接続部207a、207aおよび2つの空気排出接続部207b、207bはそれぞれ側方にあり、連絡路207cが上部にあって、いずれもドレンパイプ406から離れているので、そこを通る空気の流れによって結露水がドレンパイプ406に集まり、流れ落ちるのを防止することができる。また、熱交換エレメント307では、1つの空気導入接続部307aおよび1つの空気排出接続部307bはそれぞれ側方にあり、連絡路307cが上部にあって、いずれもドレンパイプ406から離れているので、そこを通る空気の流れによって結露水がドレンパイプ406に集まり、流れ落ちるのを防止することができる。
【0056】
さらに、熱交換器7での室内空気2との熱交換によって除湿水を分離された再生空気4が熱交換エレメント107の空気排出接続部107bから再生側、図示する例では再生ファン6の側に至るダクト103の途中で結露が生じ、それによる結露水が再生側に吸引され、悪影響することが考えられる。そこで、ダクト103の一部、好適には再生ファン6との接続部近傍の下部に図1に示すような凹部102またはおよび結露水たまり部を設けるとともに、前記、再生カバー74の下部に傾斜部74bを形成して万一にも侵入した結露水をその低位部74cに溜めて他へ及ばないようにしている。また、凹部102や再生カバー74の低位部に溜まる結露水を図2、図3に示す戻し路111、112によって水受け8に戻せるようにしている。なお、他の部分においても同様な結露水の戻しを図ることができる。
【0057】
なお、吸湿空気4aを並列に通す複数熱交換エレメントによる作用、効果は、それの数が多いほど高まり、また、前段に他の熱交換エレメントがなくても発揮し得る。
【0058】
図9〜図13に示す例の除湿機は、熱交換器7を構成する熱交換エレメント107、207、307において、空気導入接続部107a、207a、307aおよび空気排出接続部107b、207b、307bを設けた位置が図1〜図8に示す除湿機と異なっているだけで、他の構成は特に変わるところはなく、共通する部材には同一に符号を付し、重複する図示および説明は省略する。空気の通過順序は図10〜図13に矢印で示した通りである。
【0059】
図14に示す例の除湿機について詳述する。熱交換器7は、受け入れた吸湿空気4aを細いまたはおよび狭い熱交換路7aに導き室内空気2と熱交換させる3枚以上の熱交換エレメント107、207、307・・を図1〜図8の例、図9の例と同じように多重に配している。しかし、本例では、これら熱交換エレメント107、207、307・・に前記吸湿空気4aを順次に通して戻すように空気導入接続部107a、207a、307aにて互いの対向面間を接続し、各熱交換エレメント107、207、307・・における空気導入接続部107a、207a、307a・・の通路断面積、および最後段熱交換エレメント307の空気排出接続部307bの通路断面積をそれぞれほぼ同等としている。
【0060】
これにより、図1〜図8の例、図9〜図13の例の場合と同様に、3つ以上の熱交換エレメント107、207、307・・に前記吸湿空気4aを順次に通して戻すように空気導入接続部107a、207a、307a・・にて互いの対向面間を接続した、接続構造が熱交換器7の外まわりにはみ出ないコンパクトな構成になる。本例では、特に、各熱交換エレメント107、207、307・・における空気導入接続部107a、207a、307a・・の通路断面積、および最後段熱交換エレメント307の空気排出接続部307bの通路断面積がそれぞれほぼ同等であることにより、3つ以上の熱交換エレメント107、207、307・・による長い熱交換路7a全域にてスムーズな空気の流れを得て室内空気2との熱交換が図れるので、熱交換効率、除湿効率が高まり除湿機能がより向上する。しかも、各熱交換エレメント107、207、307・・における熱交換路7aの通路断面積もほぼ同一にして空気の流れのさらなる安定を図って熱交換効率を高め安定させられる。これによっても、除湿能力が高まる。空気導入接続部107aから出る除湿水分離後の再生空気4は図示しないが、そのまま再生側に戻せばよい。これによって、熱交換器7における吸湿空気4aの流れは、熱交換エレメント107、207、307を経て本体12の後側から前部に向かうのに対し、室内空気2は本体12の前部から後方に向かうので、互いの流れはカウンター方向になって熱交換しあう。
【0061】
この場合も、図1〜図8の例、図9〜図13の例と同じように、熱交換域が連絡路で繋がって複数に分かれたものを用いてもよい。また、分かれた熱交換域が連絡路で一部繋がっていないものを用いて、前後に並ぶ熱交換域どうしで、最前段の熱交換エレメント107側から最後段の熱交換エレメント307に吸湿空気4aを順次に通した後、連絡路を通じて最後段の熱交換エレメント307の隣の熱交換域に移って、これと前後に並ぶ最前段の熱交換エレメント107の熱交換域まで順次に通すといったように、各熱交換エレメント107、207、307・・の複数分割された熱交換域をジグザグに順次に通しながら、全ての熱交換域に通してから戻すようにもできる。これにより、各熱交換エレメント107、207、307・・の前後配置による室内空気2との熱交換度合に差ができるのを緩和することができる。
【0062】
さらに、面積の大きな最前段の熱交換エレメント107はアルミニウムなどの金属製として、室内空気2との熱交換性をさらに高めた上に、ペルチェ素子またはこれを組み合わせたペルチェモジュール411の吸熱面を熱結合させてある。これにより、ペルチェモジュール411の吸熱面による冷却効果が熱交換エレメント107に及び、ここでの吸湿空気4aの凝縮度を勢い高められ、除湿機能が格段に向上する。ペルチェモジュール411の発熱面は本体12の外部に露出させるなどして冷却できるようにする。これにより、ペルチェモジュール411の冷却効果が高まるし、発熱が本体12内で他に悪影響を及ぼすのを防止することができる。しかし、熱交換エレメント207、307もアルミニウムなどの金属製としてペルチェモジュール411からの冷却が及びやすくしてもよい。
【0063】
なお、本例での貯水タンク9はその上部に受水皿412とハンドル410とが設けられ、受水皿412は送水路26からの送水を受け、受水した除湿水を、流出口413を通じて貯水タンク9内に流し込めるようにしている。受水皿412には着脱できる蓋414を設けてある。
【0064】
【発明の効果】
本発明に係る除湿機の1つの特徴によれば、吸湿材、除湿ファン、再生ヒータ、再生ファン、熱交換器の組み合わせにより、室内空気を吸湿材にて除湿することを循環系にて繰り返して、室内空気から吸湿して除湿を繰り返す吸湿材につき加熱した空気を通すことによって除湿水を奪い再生を図って前記室内空気に対する吸湿機能を保証しつつ、吸湿材から除湿水を奪った吸湿空気から熱交換器での室内空気との熱交換によって除湿水を分離し水受けに受けることを継続して、圧縮機を用いるタイプのものよりも小型かつ軽量なものにて除湿機能を満足することができる。
【0065】
特に、前記熱交換器は3枚以上の熱交換エレメントを多重に配して用いるので、面積の小さなものの組み合わせにて室内空気との十分な熱交換が図れる長さの熱交換路が容易に得られるし、熱交換路が細いまたはおよび狭いものであるため従来の2枚の場合に対する全体の増厚度合は、面積の縮小度合に比べて小さく全体に小型化する。従って、熱交換エレメントの面積に対応して必要な室内空気の吸引域の広がりも小さくできることと相まって、高い除湿機能を確保して本体が小さくなる。しかも、他の本体内機器との配置の自由度が高くなるので、他の本体内機器との上下配置も容易で本体の奥行き寸法を抑えて平面スペースを余りとらないようにでき、狭い場所や部屋でも邪魔にならず使用しやすい。
【0066】
しかも、熱交換器は、前記吸湿空気を後段側の複数の熱交換エレメントに対し並列に通して戻すように空気導入接続部および空気排出接続部にて互いの対向面間を接続した、接続構造が熱交換器の外まわりにはみ出ないコンパクトな構成にしながら、前記並列に通す複数の熱交換エレメントにおける前段側熱交換エレメントに空気導入接続部を通じて導入された共通の吸湿空気が前後の複数の熱交換エレメントに分岐して並列に通される際に、後段側熱交換エレメントの空気導入接続部の通路断面積が、前段側熱交換エレメントの空気導入接続部の通路断面積よりも小さい分だけ、前段側熱交換エレメントの空気導入接続部を通じて導入された吸湿空気を絞って導入し、共通の吸湿空気を前後段の複数の熱交換エレメントのそれぞれに流速をほとんど変えずに通して、循環系全体の空気の流れを乱すようなことなく室内空気との熱交換が一挙に図れるので、熱交換効率、除湿効率が高まり除湿機能がより向上する。また、並列に通す複数の熱交換エレメントの熱交換路は、前段の熱交換エレメントの熱交換路よりも通路断面積の小さなものとしてよいので、室内空気との熱交換効率が高まって除湿機能をさらに向上させられる上、よりかさ低いものとなり熱交換器の増厚をさらに小さくすることができる。
【0067】
前記並列に通す複数の熱交換エレメントにおける空気排出接続部の通路断面積は、その空気排出接続部を有している熱交換エレメントの空気導入接続部の通路断面積とほぼ同等にした、さらなる構成では、
吸湿空気を複数の熱交換エレメントに並列に通して室内空気と熱交換させた後に合流させてそれらの前段側に戻すのに、その合流が行われる前段側熱交換エレメントの空気排出接続部の通路断面積が、後段側熱交換エレメントの空気排出接続部の通路断面積よりも大きくなる関係により、前記合流を流速に変化なくスムーズに達成して循環系全体の空気の流れを乱さないので、合流による熱交換効率、除湿効率の低下を防止することができる。
【0068】
本発明の除湿機の別の特徴によれば、吸湿材、除湿ファン、再生ヒータ、再生ファン、熱交換器の組み合わせにより、室内空気を吸湿材にて除湿することを循環系にて繰り返して、室内空気から吸湿して除湿を繰り返す吸湿材につき加熱した空気を通すことによって除湿水を奪い再生を図って前記室内空気に対する吸湿機能を保証しつつ、吸湿材から除湿水を奪った吸湿空気から熱交換器での室内空気との熱交換によって除湿水を分離し水受けに受けることを継続して、圧縮機を用いるタイプのものよりも小型かつ軽量なものにて除湿機能を満足することができる。
【0069】
特に、前記熱交換器は3枚以上の熱交換エレメントを多重に配して用いるので、面積の小さなものの組み合わせにて室内空気との十分な熱交換が図れる長さの熱交換路が容易に得られるし、熱交換路が細いまたはおよび狭いものであるため従来の2枚の場合に対する全体の増厚度合は、面積の縮小度合に比べて小さく全体に小型化する。従って、熱交換エレメントの面積に対応して必要な室内空気の吸引域の広がりも小さくできることと相まって、高い除湿機能を確保して本体が小さくなる。しかも、他の本体内機器との配置の自由度が高くなるので、他の本体内機器との上下配置も容易で本体の奥行き寸法を抑えて平面スペースを余りとらないようにでき、狭い場所や部屋でも邪魔にならず使用しやすい。
【0070】
しかも、3つ以上の熱交換エレメントに前記吸湿空気を順次に通して戻すように空気導入接続部にて互いの対向面間を接続した、接続構造が熱交換器の外まわりにはみ出ないコンパクトな構成にしながら、各熱交換エレメントにおける空気導入接続部の通路断面積、および最後段熱交換エレメントの空気排出接続部の通路断面積がそれぞれほぼ同等であることにより、3つ以上の熱交換エレメントによる長い熱交換路全域にてスムーズな空気の流れを得て室内空気との熱交換が図れるので、熱交換効率、除湿効率が高まり除湿機能がより向上する。
【0071】
熱交換エレメントが、個別の空気導入接続部および空気排出接続部を持った複数の熱交換域に別れている、さらなる構成では、
熱交換エレメントが複数の熱交換域に分かれていて、個別の空気導入接続部および空気排出接続部によって吸湿空気を通すことにより、1つの空気導入接続部から導入した吸湿空気を熱交換エレメントの全域に通して後1つの空気排出接続部から排出させる場合のように空気が行き届きにくい部分、空気の流れが低下ないしは淀む部分が生じにくくなるので、熱交換エレメントの全域を有効に利用できて熱交換効率が高まり除湿機能が向上する。
【0072】
熱交換エレメントが、途中に連絡路を有して複数の熱交換域に別れており、連絡路の通路断面積は、その連絡路を有している熱交換エレメントにおける前記空気導入接続部の通路断面積とほぼ同等以上とした、さらなる構成では、
熱交換エレメントが途中に連絡路を有して複数の熱交換域に分かれていることにより、1つの空気導入接続部から導入した空気でも、連絡路を通じ複数に分かれた熱交換域に順次に通されて、熱交換エレメントの全域に一挙に通される場合のように空気が行き届きにくい部分、空気の流れが低下ないしは淀む部分が生じにくくなるので、熱交換エレメントの全域を有効に利用できて熱交換効率が高まり除湿機能が向上する。特に、連絡路の通路断面積がこの連絡路を有している熱交換エレメントにおける前記空気導入接続部の通路断面積とほぼ同等以上であることによって、前段の熱交換域から後段の熱交換域に移る空気を絞ったりしないので、熱交換エレメントの全熱交換域での熱交換効率が高まり除湿機能が向上する。
【0073】
前記熱交換エレメントを、室内空気の吸引方向に多重となるように縦置きし、最後段の熱交換エレメントを室内空気の上流側に向けた、さらなる構成では、
熱交換エレメントを室内空気の吸引方向に多重となるように縦置きしたので、従来に比して面積の小さな熱交換エレメントに対応する本体の吸気口の内側に位置して吸引される室内空気との十分な熱交換を図りながら、本体の上下方向および前後方向に余裕を与えて、他の本体内機器を設置することができるので、本体の全体の大きさおよび前後方向寸法を小さくすることができ、狭い場所や部屋での使用に便利なものとなる。
【0074】
最前段の熱交換エレメントが、それより後段側の熱交換エレメントよりも面積が大きい、さらなる構成では、
最前段の熱交換エレメントは吸湿材を再生させたままの高湿度な吸湿空気を導入されるが、後段側の熱交換エレメントよりも面積が大きいことによって室内空気との熱交換度を高めて除湿水の分離効率を上げられるので、除湿機能が高まる。また、最前段の熱交換エレメントでの熱交換を経た除湿空気を再生ヒータ側に戻す構成の場合には、広い面積を持った最前段の熱交換エレメントでの高い熱交換による最終的な除湿水の分離を図って戻すので、熱交換器から再生ヒータ側に戻る過程で結露が生じ結露水が再生側に侵入するのを防止しやすい。
【0075】
本体の上部前側に着脱できるように設けられた貯水タンクと、前記水受けの水を貯水タンクに送り込む貯水ポンプとを備え、前記熱交換器は本体の貯水タンク装着部の下で、本体の室内空気を吸引する吸気口の内側に位置している、さらなる構成では、
熱交換器の形態に伴い本体が小型化する特徴を損なわずに、貯水タンクを本体の上部に設けて、水受けに集められる除湿水を給水ポンプにより送り込んで貯水することができ、この貯水状態が外観されるようにするので、ユーザーによって除湿が実感され、評価されやすくする。同時に、貯水タンクに関し排水したり、洗浄などの手入れをしたりするのに、本体外のしかもユーザーの最も近くで、かつ着脱しやすい側に貯水タンクが位置しているので、貯水タンクを単独に容易に取り扱って対応することができる。
【図面の簡単な説明】
【図1】本発明に係る除湿機の実施例における1つの例を示す横断面図である。
【図2】図1の除湿機の縦断面図である。
【図3】図1、図2の除湿機の吸湿材を持った仕切り壁の背面図である。
【図4】図1の除湿機における熱交換器の横断斜視図である。
【図5】図1除湿機の熱交換器および吸湿材再生ファンとの関係を示す斜視図である。
【図6】図4、図5に示す熱交換器の最前段の熱交換エレメントを示す斜視図である。
【図7】図4、図5に示す熱交換器の中段の熱交換エレメントを示す斜視図である。
【図8】図4、図5に示す熱交換器の最後段の熱交換エレメントの斜視図である。
【図9】本発明に係る除湿機の実施例における他の例を示す熱交換器の横断面図である。
【図10】図9の除湿機の熱交換器および吸湿材再生ファンとの関係を示す斜視図である。
【図11】図9、図10に示す熱交換器の最前段の熱交換エレメントを示す斜視図である。
【図12】図9、図10に示す熱交換器の中段の熱交換エレメントを示す斜視図である。
【図13】図9、図10に示す熱交換器の最後段の熱交換エレメントの斜視図である。
【図14】本発明に係る除湿機の実施例における今1つの例を示す縦断面図である。
【符号の説明】
A 循環系
1 吸湿材
2 室内空気
3 除湿ファン
4 再生用空気
5 再生ヒータ
6 再生ファン
7 熱交換器
7a 熱交換路
8 水受け
9 貯水タンク
12 本体
15 段部
16 本体内機器
22 吸気口
107、207、307 熱交換エレメント
107a、207a、307a 空気導入接続部
107b、207b、307b 空気排出接続部
207c、307c 連絡路
107c、107d、207d、307d、207e、307e 熱交換域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lightweight and compact dehumidifier provided with a moisture absorbing material that moves repeatedly, and more particularly to a method in which heated air is passed through a moisture absorbing portion while returning indoor air to a room by a fan and returning the indoor air to the room. The present invention relates to a dehumidifier in which water is separated from a hygroscopic air from which moisture has been deprived from a hygroscopic material by a heat exchanger to collect and store the water while depriving the moisture of the hygroscopic material for regeneration.
[0002]
[Prior art]
This type of dehumidifier includes a moisture absorber that moves repeatedly, a dehumidification fan that passes indoor air through the moisture absorber and then returns to the room to dehumidify the room, and heats air to pass moisture through the moisture absorber. A regeneration heater and a regeneration fan that repeat deprivation and regeneration in a circulation system, and a heat exchanger that separates moisture by exchanging heat with moisture-absorbing air in the middle of being passed through the moisture absorbent and returning to the regeneration heater side, 2. Description of the Related Art There is known a device provided with a water receiver that receives water separated by a heat exchanger, and a water storage pump that sends water to a removable water storage tank to store water therein (for example, Patent Documents 1 and 2). reference.).
[0003]
It is also known to use, as the heat exchanger, a flat heat exchange element that guides dehumidified air to various heat exchange paths and exchanges heat with room air sucked by the dehumidification fan (for example, Patent Document 1). 2, 3). The heat exchange element is made of synthetic resin such as polypropylene by placing two heat exchange elements one on top of the other in the intake passage and exchanging heat between the moisture-absorbing air passing inside and the indoor air sucked into the body. Even if the product is made, it absorbs moisture efficiently and condenses moisture so that it can be separated.
[0004]
[Patent Document 1]
JP-A-11-300145
[0005]
[Patent Document 2]
JP-A-11-304398
[0006]
[Patent Document 3]
JP-A-11-333239
[0007]
[Problems to be solved by the invention]
However, by combining only two heat exchange elements as in the above-described conventional one, one heat exchange element has a large area in order to secure a heat exchange path long enough to exchange heat. This, together with the necessity of providing an indoor air suction area with a width corresponding to the size of the heat exchange element, and disposing the heat exchanger using almost the entire height of the main body as described in Patent Document 2. Then, a configuration in which all the devices in the main body are arranged in front and behind is inevitable. In such a configuration, the dehumidifier is large in front and back, and takes up a large space. Therefore, it is inconvenient to use in a small room or place.
[0008]
An object of the present invention is to provide a high-performance dehumidifier that secures a long heat exchange path while keeping it small.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the dehumidifier of the present invention is a dehumidifier that repeatedly moves, a dehumidifying fan that returns indoors after passing indoor air through the desiccant, and dehumidifies the interior of the room. A regenerative heater and a regenerative fan that repeats heating and passing through the hygroscopic material to deprive and regenerate dehumidifying water in a circulating system, and a hygroscopic air that is passed through the hygroscopic material to deprive dehumidifying water and return to the regeneration heater side. A heat exchanger that separates dehumidified water by heat exchange and a water receiver that receives dehumidified water separated by the heat exchanger are provided in the main body, and the heat exchanger narrows or narrowly exchanges the moisture-absorbed air with the heat-exchanged air. Three or more heat exchange elements that guide the heat exchange with the indoor air are arranged in a multiplex manner, and the moisture-absorbing air is passed in parallel to a plurality of heat exchange elements on the rear side to return to the heat exchange elements on the front side. like, An air introduction connection portion and an air discharge connection portion connect the opposing surfaces to each other, and the rear heat side of the plurality of heat exchange elements passing in parallel with respect to the passage cross-sectional area of the air introduction connection portion of the front heat exchange element. One feature is that the cross-sectional area of the passage of the air introduction connection of the replacement element is reduced.
[0010]
In such a configuration, the combination of a moisture absorbing material, a dehumidifying fan, a regeneration heater, a regeneration fan, and a heat exchanger repeatedly dehumidifies the indoor air with the moisture absorbing material in the circulation system, thereby absorbing moisture from the indoor air and dehumidifying. The dehumidifying water is removed from the moisture absorbing air by removing the dehumidifying water from the moisture absorbing material while ensuring the moisture absorbing function with respect to the indoor air by reclaiming the dehumidifying water by passing the heated air through the heated moisture absorbing material. The dehumidification function can be satisfied with a smaller and lighter type than the type using a compressor by continuously separating the dehumidified water and receiving the dehumidified water by the heat exchange.
[0011]
In particular, since the heat exchanger uses three or more heat exchange elements in a multiplexed manner, a heat exchange path having a length sufficient for sufficient heat exchange with indoor air can be easily obtained by a combination of small heat exchangers. In addition, since the heat exchange path is narrow or narrow, the overall thickness of the two conventional heat exchangers is smaller than that of the conventional case, and the overall size is smaller. Therefore, in combination with the fact that the required area for sucking indoor air can be made smaller in accordance with the area of the heat exchange element, the main body can be made smaller by securing a high dehumidifying function. In addition, since the degree of freedom of arrangement with other internal devices is increased, it is easy to vertically arrange with other internal devices and the depth of the main unit can be reduced, so that it does not take up too much plane space. It is easy to use without getting in the way in the room.
[0012]
Moreover, the heat exchanger has a connection structure in which the opposing surfaces are connected to each other at an air introduction connection portion and an air discharge connection portion so as to pass the moisture-absorbed air in parallel to a plurality of heat exchange elements on the subsequent stage and return. While the heat exchanger does not protrude outside the heat exchanger, the common moisture-absorbing air introduced through the air introduction connection to the upstream heat exchange element of the plurality of heat exchange elements passing in parallel is connected to the front and rear heat exchange elements. When branching into the element and passing through in parallel, the passage cross-sectional area of the air inlet connection of the rear heat exchange element is smaller than the passage cross-sectional area of the air inlet connection of the front heat exchange element, The humid air introduced through the air inlet connection of the side heat exchange element is squeezed and introduced, and the common humid air is flown to each of the front and rear heat exchange elements. Through without changing Tondo, since attained a heat exchange once the room air without such disturbing an air stream of the entire circulatory system, the heat exchange efficiency, dehumidification efficiency is increased dehumidification capability is further improved. In addition, since the heat exchange paths of the plurality of heat exchange elements passing in parallel may have a smaller passage cross-sectional area than the heat exchange paths of the preceding heat exchange elements, the efficiency of heat exchange with indoor air is increased and the dehumidification function is improved. In addition to being further improved, the heat exchanger becomes smaller and the thickness of the heat exchanger can be further reduced.
[0013]
The passage cross-sectional area of the air discharge connection portion of the plurality of heat exchange elements passing in parallel is substantially equal to the passage cross-sectional area of the air introduction connection portion of the heat exchange element having the air discharge connection portion. Then
Passage of the air discharge connection of the front-side heat exchange element where the merging is performed so that the moisture-absorbed air passes through the plurality of heat exchange elements in parallel and exchanges heat with the indoor air and then merges and returns to the front side thereof. Since the cross-sectional area is larger than the cross-sectional area of the passage of the air discharge connection portion of the subsequent heat exchange element, the merging is smoothly achieved without a change in the flow velocity and the flow of air in the entire circulating system is not disturbed. This can prevent the heat exchange efficiency and the dehumidification efficiency from decreasing.
[0014]
The dehumidifier of the present invention also has a dehumidifier that moves repeatedly, a dehumidifying fan that passes indoor air through the desiccant and then returns to the room to dehumidify the room, and heats air to pass through the desiccant. A regeneration heater and a regeneration fan that repeat in the circulation system to deprive and regenerate the dehumidifying water, and heat-exchange the dehumidified air passing through the desiccant to deprive the dehumidifying water and return to the regeneration heater side to separate dehumidified water. A heat exchanger for returning dehumidified air and a water receiver for receiving dehumidified water separated by the heat exchanger are provided on the main body, and the heat exchanger guides the received moisture-absorbed air to a narrow or narrow heat exchange path, and supplies the room with the heat. Three or more heat exchange elements for exchanging heat with air are arranged in a multiplex manner, and the surfaces facing each other are connected to each other at an air introduction connection portion so that the moisture-absorbing air is sequentially passed through these heat exchange elements and returned. Heat exchange element It has another, characterized in that the passage cross-sectional area of the air introduction connecting portion, and the final stage heat exchange element the cross-sectional area of the air discharge connecting portion is respectively substantially equal in preparative.
[0015]
In such a configuration, the combination of a moisture absorbing material, a dehumidifying fan, a regeneration heater, a regeneration fan, and a heat exchanger repeatedly dehumidifies the indoor air with the moisture absorbing material in the circulation system, thereby absorbing moisture from the indoor air and dehumidifying. The dehumidifying water is removed from the moisture absorbing air by removing the dehumidifying water from the moisture absorbing material while ensuring the moisture absorbing function with respect to the indoor air by reclaiming the dehumidifying water by passing the heated air through the heated moisture absorbing material. The dehumidification function can be satisfied with a smaller and lighter type than the type using a compressor by continuously separating the dehumidified water and receiving the dehumidified water by the heat exchange.
[0016]
In particular, since the heat exchanger uses three or more heat exchange elements in a multiplexed manner, a heat exchange path having a length sufficient for sufficient heat exchange with indoor air can be easily obtained by a combination of small heat exchangers. In addition, since the heat exchange path is narrow or narrow, the overall thickness of the two conventional heat exchangers is smaller than that of the conventional case, and the overall size is smaller. Therefore, in combination with the fact that the required area for sucking indoor air can be made smaller in accordance with the area of the heat exchange element, the main body can be made smaller by securing a high dehumidifying function. In addition, since the degree of freedom of arrangement with other internal devices is increased, it is easy to vertically arrange with other internal devices and the depth of the main unit can be reduced, so that it does not take up too much plane space. It is easy to use without getting in the way in the room.
[0017]
In addition, a compact configuration in which the connection structures are connected to each other at the air introduction connection portion so that the moisture-absorbing air is sequentially passed through three or more heat exchange elements and returned, so that the connection structure does not protrude outside the heat exchanger. However, since the cross-sectional area of the passage of the air inlet connection in each heat exchange element and the cross-sectional area of the passage of the air discharge connection of the last stage heat exchange element are substantially equal to each other, the length of the three or more heat exchange elements is longer. Since a smooth air flow can be obtained throughout the heat exchange path to exchange heat with the indoor air, the heat exchange efficiency and the dehumidification efficiency are increased, and the dehumidification function is further improved.
[0018]
In a further configuration, the heat exchange element is divided into a plurality of heat exchange zones with individual air inlet and air outlet connections.
The heat exchange element is divided into a plurality of heat exchange zones, and the moisture-absorbed air introduced from one air inlet connection is passed through the entire heat exchange element by passing the moisture-absorbed air through separate air inlet and air outlet connections. Through which the air is difficult to reach and the flow of air is less likely to be reduced or stagnant as in the case where the air is discharged from one air discharge connection, so that the entire area of the heat exchange element can be effectively used and heat exchange can be performed. The efficiency is improved and the dehumidification function is improved.
[0019]
The heat exchange element is divided into a plurality of heat exchange areas with a communication path on the way, and the passage cross-sectional area of the communication path is equal to the passage of the air introduction connection in the heat exchange element having the communication path. In a further configuration that is approximately equal to or greater than the cross-sectional area,
Since the heat exchange element is divided into a plurality of heat exchange areas with a communication path in the middle, even air introduced from one air introduction connection portion is sequentially passed through the communication path to the plurality of heat exchange areas. As a result, unlike the case where the heat is passed through the entire area of the heat exchange element at once, it is difficult to form a portion where the air is difficult to reach and a part where the air flow is reduced or stagnated. The exchange efficiency increases, and the dehumidification function improves. In particular, when the passage cross-sectional area of the communication passage is substantially equal to or greater than the passage cross-sectional area of the air introduction connection portion in the heat exchange element having the communication passage, the heat exchange region of the preceding stage to the heat exchange region of the subsequent stage are changed. Since the air flowing to the heat exchange element is not throttled, the heat exchange efficiency of the heat exchange element in the entire heat exchange area is increased, and the dehumidification function is improved.
[0020]
In a further configuration, the heat exchange elements are vertically arranged so as to be multiplexed in the suction direction of room air, and the last heat exchange element is directed upstream of the room air.
Since the heat exchange elements are arranged vertically so as to be multiplexed in the suction direction of the indoor air, the indoor air that is located inside the air inlet of the main body corresponding to the heat exchange element with a smaller area than the conventional one is While providing sufficient heat exchange, it is possible to install additional equipment inside the main unit by giving room in the vertical direction and the front and rear direction of the main unit, so that the overall size and the front and rear dimensions of the main unit can be reduced. It can be used in small places and rooms.
[0021]
In a further configuration in which the foremost heat exchange element has a larger area than the heat exchange element on the subsequent stage,
The first-stage heat exchange element is introduced with high-humidity air with regenerated moisture absorbent, but it has a larger area than the second-stage heat exchange element to increase the degree of heat exchange with indoor air and dehumidify. Since the water separation efficiency can be increased, the dehumidifying function is enhanced. In the case of a configuration in which the dehumidified air that has undergone heat exchange in the first-stage heat exchange element is returned to the regenerative heater, the final dehumidified water due to high heat exchange in the first-stage heat exchange element having a large area is used. Is separated and returned, so that it is easy to prevent dew condensation from occurring in the process of returning from the heat exchanger to the regeneration heater side and condensed water to enter the regeneration side.
[0022]
A water storage tank provided detachably on the upper front side of the main body, and a water storage pump for sending water from the water receiver to the water storage tank, wherein the heat exchanger is provided under the water storage tank mounting portion of the main body, In a further configuration, located inside the air intake that sucks air,
A water storage tank can be provided at the upper part of the main body, and the dehumidified water collected in the water receiver can be sent by the water supply pump and stored without impairing the feature that the main body is downsized due to the form of the heat exchanger. Is made to appear, so that the user can feel the dehumidification and make it easier to evaluate. At the same time, the drainage tank is located outside the main unit, closest to the user, and on the side that is easy to attach and detach, so that the drainage tank can be drained and cleaned. It can be handled and handled easily.
[0023]
Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be employed alone or in combination as variously as possible.
[0024]
【Example】
Hereinafter, the dehumidifier of the embodiment according to the present invention will be described in detail with reference to FIGS. 1 to 14 together with some examples to provide an understanding of the present invention. The following description shows specific examples of the present invention, and does not limit the content of the claims.
[0025]
The dehumidifier of the present embodiment is repeated as shown in FIGS. 1 and 2 in the embodiment of FIGS. 1 to 8 showing the entire configuration in FIG. 1 and FIG. 14 and in the example shown in FIG. A dehumidifying material 1 that moves, a dehumidifying fan 3 that passes indoor air 2 through the hygroscopic material 1 and then returns to the room to dehumidify the room, and heats regeneration air 4 for regeneration through the hygroscopic material 1 for dehumidification. A regenerating heater 5 and a regenerating fan 6 which repeat the deprivation and regenerating in the circulation system A indicated by arrows 4 and 4a in FIG. The main body 12 includes a heat exchanger 7 that exchanges heat with the moisture-absorbed air 4a that is being returned to separate dehumidified water, and a water receiver 8 that receives the dehumidified water separated by the heat exchanger 7.
[0026]
In such a dehumidifier, the circulation system A repeats dehumidification of the room air 2 with the moisture absorbent 1 by a combination of the moisture absorbent 1, the dehumidifying fan 3, the regeneration heater 5, the regeneration fan 6, and the heat exchanger 7. . At this time, the dehumidifying water is deprived by passing the heated regenerated air 4 through the hygroscopic material 1 which repeats the dehumidification by absorbing moisture from the indoor air 2 to regenerate the dehumidified water, thereby guaranteeing the hygroscopic function for the indoor air 2. The dehumidified water 4a from which the dehumidified water has been taken away is separated by heat exchange in the heat exchanger 7 and returned to the regenerated air 4, and the separated water continues to be received in the water receiver 8. This makes it possible to satisfy the dehumidifying function with a smaller and lighter than the type using a compressor.
[0027]
In the present embodiment, in particular, as in the examples shown in FIGS. 1 to 8, the examples shown in FIGS. 9 to 13, and the example shown in FIG. 14, the heat exchanger 7 converts the moisture-absorbing air 4 a into the example shown in FIG. As shown in the example of FIG. 9, three or more heat exchange elements 107, 207, 307,... Which are guided to the thin or narrow heat exchange path 7a and exchange heat with the indoor air 2 are arranged in a multiplex manner.
[0028]
As described above, the heat exchanger 7 uses three or more heat exchange elements 107, 207, 307,... In a multiplexed manner, so that a sufficient heat exchange with the indoor air 2 can be achieved by a combination of small heat exchangers. A heat exchange path 7a having a length that can be achieved is easily obtained. At the same time, since the heat exchange path 7a is narrow or narrow, the overall thickness of the heat exchange path 7a is smaller than that of the conventional two sheets, and is smaller than the area. Therefore, the expansion of the required suction area of the indoor air 2 can be reduced in accordance with the area of the heat exchange elements 107, 207, and 307, and the main body 12 is reduced while securing a high dehumidifying function. Therefore, the heat exchange elements 107, 207, and 307 can obtain a sufficient dehumidifying effect as a blow molded product of polypropylene or the like. In addition, since the degree of freedom of arrangement of the internal device 16 with other components is increased, the vertical arrangement of the internal device 16 with other components is easy, the depth dimension of the main unit 12 is suppressed, and a flat space is not excessively saved. It is easy to use without getting in the way even in a small place or room. If the heat exchange elements 107, 207, and 307 are transparent or translucent, internal dirt and the like can be seen through, and it is easy to determine the time of internal cleaning and the time of replacement. In addition, the addition of an antibacterial agent is preferable for hygiene.
[0029]
The heat exchanger 7 of the examples of FIGS. 1 to 8 and the examples of FIGS. 9 to 13 particularly returns the moisture-absorbing air 4a in parallel to the plurality of heat exchange elements 207, 307,. As described above, the air introduction connection portions 107a, 207a, and 307a and the air discharge connection portions 107b, 207b, and 307b connect the mutually facing surfaces as shown in FIGS. The passage cross-sectional area of the air introduction connection portion 307a of the rear heat exchange element 307 is larger than the passage cross-sectional area of the air introduction connection portion 207a of the front heat exchange element 207 in the plurality of heat exchange elements 207 and 307 passing in parallel. Is smaller.
[0030]
Thus, in the heat exchanger 7, the heat exchange elements 107, 207, and 307 are connected between opposing surfaces at the air introduction connection portions 107a, 207a, 307a and the air discharge connection portions 107b, 207b, 307b. The connection structure has a compact structure that does not protrude outside the heat exchanger 7. The moisture-absorbing air 4a that has passed through the heat-exchange element 107 in the preceding stage is supplied to the heat-exchange elements 207, 307,. The air 4a can be passed back in parallel and returned to the reproducing side. Here, the common moisture-absorbing air 4a introduced into the heat exchange elements 207 and 307 at the subsequent stage through the air introduction connection portion 207a to the heat exchange element 207 at the preceding stage is connected to the front heat exchange element 207 as shown by an arrow in FIG. The heat exchange element 207 is branched as it is, and the downstream heat exchange element 307 is branched through the air introduction connection portion 307a, and passes in parallel to each other. At this time, the passage cross-sectional area of the air introduction connection portion 307a of the rear heat exchange element 307 is smaller than the passage cross-sectional area of the air introduction connection portion 207a of the front heat exchange element 207, specifically, 1 /. The moisture-absorbing air 4a introduced through the air introduction connection portion 207a of the front-stage heat exchange element 207 is squeezed by the air introduction connection portion 307a and branched into the rear-stage heat exchange element 307. Thereby, the common moisture-absorbing air 4a from the heat exchange element 107 is passed through each of the plurality of heat exchange elements 207, 307,. Since heat exchange with the indoor air 2 can be achieved at once without disturbing the flow, the heat exchange efficiency and the dehumidification efficiency are increased, and the dehumidification function is further improved.
[0031]
Further, the heat exchange paths 7a of the plurality of heat exchange elements 207, 307,... Passing in parallel are shown in FIGS. As shown in the figure, the passage cross-sectional area may be small, and more specifically, it is 、, and the heat exchange efficiency with the indoor air 2 is increased to further improve the dehumidifying function, and the heat exchanger becomes less bulky. 7 can be further reduced in thickness.
[0032]
As shown by the arrow in FIG. 1, the moisture-absorbed air 4 a after the heat exchange that has flowed out from the air discharge connection portion 307 b of the rear heat exchange element 307 flows out of the front heat exchange element 207 to the air discharge connection portion 207 b. The air 4a merges with the air 4a at the air discharge connection portion 207b, and is returned to the heat exchange element 107 in the preceding stage for these. In this embodiment, the passage cross-sectional area of the air discharge connection portions 207b and 307b in the plurality of heat exchange elements 207 and 307 passing in parallel with each other is such that the heat exchange elements 207 and The passage cross-sectional area of the air introduction connection portions 207a and 307a of the 307 is substantially equal to that of the passage 307a.
[0033]
As a result, after passing the moisture-absorbed air 4a through the plurality of heat exchange elements 207 and 307 in parallel to exchange heat with the indoor air 2, the air is discharged from the front heat exchange element 207 to return to the heat exchange element 107 at the preceding stage. The relationship that the cross-sectional area of the passage of the connection portion 207b is larger than the cross-sectional area of the passage of the air discharge connection portion 307b of the downstream heat exchange element 307, specifically, approximately double, is obtained. Since the merging of the moisture-absorbing air 4a at 207b is smoothly achieved without any change in the flow velocity and the air flow in the entire circulating system A is not disturbed, it is possible to prevent the heat exchange efficiency and the dehumidifying efficiency from being lowered due to the merging.
[0034]
Further, as shown in the examples of FIGS. 4 and 6 and the examples of FIGS. 9 and 11, the heat exchange element 107 has a plurality of heat-exchange connections 107a, 107a and air discharge connections 107b, 107b. It is divided into exchange areas 107c and 107d. As described above, the heat exchange element 107 is divided into a plurality of heat exchange areas 107c and 107d, and the moisture-absorbing air 4a is passed through the individual air introduction connection parts 107a and 107a and the air discharge connection parts 107b and 107b to form one heat exchange element. As in the case where the dehumidified air introduced from the air introduction connection is passed through the entire area of the heat exchange element and then discharged from one air discharge connection, a portion where air is difficult to access and a portion where the air flow is reduced or stagnated are less likely to occur. . As a result, the entire area of the heat exchange element 107 can be effectively used, the heat exchange efficiency increases, and the dehumidification function improves. Therefore, the effect of dividing the heat exchange area is higher as the heat exchange element has a larger area. It is preferable to change the number of divisions according to the area of the heat exchange element.
[0035]
As shown in FIGS. 7 and 8, the heat exchange elements 207 and 307 have communication paths 207c and 307c in the middle so as to be divided into a plurality of heat exchange areas 207d and 307d and 207e and 207e. At the same time, the cross-sectional area of the passages of the communication paths 207c and 307c is substantially equal to or larger than the cross-sectional area of the air introduction connection portions 207a and 307a of the heat exchange elements 207 and 307 having the communication paths 207c and 307c. As described above, when the heat exchange elements 207 and 307 have communication paths 207c and 307c in the middle and are divided into a plurality of heat exchange areas 207d and 307d and 207e and 207e, one air introduction connection part 207a and 307a is provided. Even the air introduced into the heat exchange elements 207 and 307 is sequentially passed through the communication paths 207c and 307c from the heat exchange areas 207d and 307d to the heat exchange elements 207e and 207e, and all at once. In such a case, it is difficult to form a portion where air is difficult to reach and a portion where air flow is reduced or stagnant. Therefore, the entire area of the heat exchange elements 207 and 307 can be effectively used, the heat exchange efficiency increases, and the dehumidification function improves. In particular, the passage cross-sectional area of the communication passages 207c and 307c is substantially equal to or larger than the passage cross-sectional area of the air introduction connection portions 207a and 307a in the heat exchange elements 207 and 307 having the communication passages. Since the air that moves from the heat exchange zones 207d and 307d to the heat exchange zones 207e and 307e at the subsequent stage is not throttled, the heat exchange efficiency of the heat exchange elements 207 and 307 in the entire heat exchange zone is increased, and the dehumidifying function is improved.
[0036]
The plurality of heat exchange elements 107, 207, and 307 may employ any of the above-described two types of heat exchange area division methods, or may adopt another division method. In addition, any combination of various division states may be adopted.
[0037]
Further, as shown in the examples of FIGS. 1, 2, 4, 5 and 9 and 10, the heat exchange elements 107, 207, 307 are multiplexed in the suction direction of the indoor air 2. And the last-stage heat exchange element 307 faces the upstream side of the room air 2. Since the heat exchange elements 107, 207, and 307 are vertically arranged so as to be multiplexed in the suction direction of the indoor air 2 as described above, the air inlet 22 of the main body 12 corresponding to the heat exchange element having a smaller area as compared with the related art. Since sufficient heat can be exchanged with the room air 2 sucked and located inside, a room is provided in the up-down direction and the front-back direction of the main body 12, so that other devices in the main body 16 can be installed. , The overall size of the main body 12 and the size in the front-rear direction can be reduced, which is convenient for use in a narrow place or a room.
[0038]
Here, as shown in FIG. 1 and FIG. 2, the heat exchange element 107 at the forefront stage is introduced with high-humidity air 4a with the hygroscopic material 1 being regenerated. However, in response to this, the front-stage heat exchange element 107 has a larger area than the rear-stage heat exchange elements 207 and 307. As described above, since the front-stage heat exchange element 107 has a larger area than the rear-stage heat exchange elements 207 and 307, the degree of heat exchange with the indoor air 2 can be increased and the efficiency of separating dehumidified water can be increased. Increase. Also, as shown in FIGS. 6 and 11, the regenerated air separated from the dehumidified water that has undergone heat exchange in the heat exchange element 107 by utilizing one divided heat exchange area 107d in the heat exchange element 107 at the forefront stage. In the case of the configuration in which the dehumidified water 4 is returned to the regeneration heater 5 side, the dehumidified water is finally separated and returned by high heat exchange in the front-stage heat exchange element 107 having a large area. As a result, dew condensation occurs in the process of returning from the heat exchanger 7 to the regeneration heater 5 side, and it is easy to prevent dew condensation water from entering the regeneration side. Further, the outer dimensions of the largest heat exchange element 107 are larger than the outer dimensions of the moisture absorbent 1, and the smaller heat exchange elements 207, 307, etc. are smaller than the outer dimensions of the moisture absorbent 1. Accordingly, the heat absorbing elements 107, 207, 307, etc. are provided in the main body 12 with a size different from that of the heat absorbing elements 107, 207, 307, etc., without increasing the outer dimensions of the indispensable moisture absorbent 1.
[0039]
Further, a water storage tank 9 provided detachably on the upper front side of the main body 12 as shown in FIG. 2 and a water storage pump 11 as shown in FIG. 3 for feeding water from the water receiver 8 into the water storage tank 9 are further provided. The heat exchanger 7 is provided below the stepped portion 15 of the main body 12 serving as the water storage tank mounting portion, inside the intake port 22 for sucking the room air 2 of the main body 12. Accordingly, the water storage tank 9 is provided on the upper part of the main body 12 to store the dehumidified water collected in the water receiver 8 without impairing the feature that the main body 12 is downsized due to the above-described multiplex configuration of the heat exchanger 7. The water can be pumped and stored by the pump 11, and the water storage tank 9 can be made transparent or translucent or provided with such a viewing window so that the water storage state can be displayed. Make it easier to feel and be evaluated. At the same time, the water storage tank 9 is located outside the main body 12 and closest to the user and on the side where the water storage tank 9 can be easily attached and detached in order to drain and clean the water storage tank 9. 9 can be easily handled independently.
[0040]
The dehumidifier of the example shown in FIGS. 1 to 8 will be described in more detail. A circulating system A composed of a combination of a hygroscopic material 1, a dehumidifying fan 3, a regeneration heater 5, a regeneration fan 6, a heat exchanger 7, a water receiver 8, and The water storage pump 11 is an internal device 16 shown in FIGS. 1 and 2, for example, in the main body 12 of the dehumidifier, and the removable water storage tank 9 is an external device.
[0041]
As a result, while exhibiting a dehumidifying function in the circulation system A provided on the main body 12 side, dehumidified water separated from the regenerated air 4 that has absorbed moisture after regenerating the absorbent material 1 and dew condensation water in the communication path 101 are: Similarly, by receiving the water with the water receiver 8 provided on the main body 12 side, the water is supplied to the water storage tank 9 and stored by the water storage pump 11 without being spread over a wide area, thereby minimizing the required space of the main body 12 and avoiding the fullness. Thus, it is possible to prevent the inconvenience that the separated dehumidified water evaporates and escapes and humidifies the room instead of allowing the dehumidified water to separate for a long time. The water supply channel 26 as shown in FIGS. 2 and 3 from the water storage pump 11 to the water storage tank 9 may be configured in any way and connected in any way. However, when flowing from the upper part of the water storage tank 9, no backflow occurs. This is preferred. However, if a check valve is provided in the middle of the water supply passage 26 or at a portion where the water supply passage 26 of the water storage tank 9 is detachably connected, the problem due to the backflow can be solved.
[0042]
As shown in FIG. 2, below the water storage tank 9 of the main body 12, that is, under the installation part where the water storage tank 9 is provided, in the illustrated example, under the step 15 shown in FIG. In addition to the heat exchanger 7, the rotating hygroscopic material 1 is located. A regeneration heater 5 and a regeneration fan 6 are positioned above and below the moisture absorbent 1, and the regeneration air 4 flows from the regeneration fan 6 to the regeneration heater 5, the moisture absorbent 1, and the heat exchanger 7. The circulation system A returns to the fan 6. Behind the regeneration heater 5 and the regeneration fan 6, the dehumidifying fan 3 opens its intake port 3a toward the intake port 22 on the front surface of the main body 12 through the hygroscopic material 1, and connects the blow port 3b to the exhaust port 23 on the upper part of the main body 12. It is located so as to be connected to.
[0043]
The water receiver 8 has a lid 8a as shown in FIG. 2, and the dehumidified water or dew condensation water separated from the hygroscopic air 4a in the heat exchanger 7 is received through a water passage 8b of the lid 8a. As shown in FIG. 3, the water storage pump 11 is provided in the middle of the base side of the water supply passage 26 extending from the bottom of the water receiver 8 to the water storage tank 9. Further, in the illustrated example, a filter 93 as shown in FIGS. 1 and 2 is provided inside the intake port 22. As shown in FIGS. 1 and 2, the hygroscopic material 1 is provided with a gear 1c in a case 1b containing and holding a hygroscopic agent 1a such as zeolite, and the gear 1c is directly connected to a geared motor 71 as shown in FIG. The gears 72 are driven to rotate at a predetermined speed by meshing with each other.
[0044]
With the arrangement of the in-body devices 16 as described above, the absorbent material 1 rotates to repeatedly dehumidify and regenerate the indoor air 2, so that the passage direction of the indoor air 2 for dehumidification and regeneration shown in FIG. The heat exchanger 7 is located at the front of the main body 12 and is located on the lower side using the flat space of the water storage tank 9 provided at the front side of the main body 12. Can be installed in the direction without wasted space. The upper water storage tank 9, the lower heat exchanger 7 and the moisture absorbent 1, and the regenerative heater 5 and regenerative fan 6 located behind the recirculation tank 9 without wasteful dispersion. While the system A is compactly configured as shown in FIGS. 1 and 2 together with the main body 12 for accommodating the system A, as shown in FIG. The dehumidifying fan 3 having a sufficient size is provided without particularly increasing the size of the main body 12 to secure a sufficient air volume, a low-speed intake and a low-speed air blow that are quiet and do not allow a human to feel the wind, and are high. It can exhibit a dehumidifying function. However, for wide-area dehumidification, it is necessary that at least one of the intake air and the air blow satisfies a condition that extends to a required range of dehumidification.
[0045]
As shown in FIGS. 1 and 2, the inside of the main body 12 is partitioned by a partition wall 75 made of a synthetic resin into a rear portion containing the dehumidifying fan 3 and a front portion containing the circulation system A. The partition wall 75 has a dehumidifying motor 3e attached to the rear side of the main body, and forms an air inlet 3a therearound. The dehumidifying impeller 3d directly connected to the dehumidifying motor 3e is located at the rear side, and is covered with a synthetic resin cover wall 3c attached to the partition wall 75, and constitutes the dehumidifying fan 3 as a bell mouth for a casing. . Further, on the front side of the main body 12, a partition wall 77 made of a synthetic resin as shown in FIGS. 1, 2 and 3 for separating the moisture absorbent 1 side and the heat exchanger 7 side is provided. The partition wall 77 supports the hygroscopic material 1 at the center thereof so as to be rotatable by a shaft portion 77a shown in FIGS. 1 and 2, and the geared motor 71 is attached so that the hygroscopic material 1 is driven to rotate on the partition wall 77. ing.
[0046]
In addition to the dehumidifying motor 3e, the regeneration heater 5 and the regeneration fan 6 are located between the partition walls 75 and 77. The regenerating heater 5 is held in an inflow port 73a at the rear of the heating unit cover 73 attached to the partition wall 77 as shown in FIG. 2, and the heating unit cover 73 spreads in a trumpet shape up, down, left and right toward the front side. The outlet 73b formed in this manner is opposed to a range in which the hygroscopic material 1 is to be regenerated with an appropriate gap. The above-mentioned wrapper shape of the heating unit cover 73 is such that after achieving efficient contact between the regeneration heater 5 and the regeneration air 4 and heating by the small inlet port 73a, the regeneration air 4 which has been sufficiently heated is heated. Air is ventilated to a wider area as much as possible, so that efficient regeneration can be achieved. At the rear of the heating unit cover 73, a regeneration cover 74 as shown in FIGS. 1, 2, and 3 is provided to pass the moisture absorbent 1 after being guided to the regeneration heater 5, and is partitioned with the heating unit cover 73. Mounted on wall 77. As shown in FIG. 2, the regenerating cover 74 blows the regenerating air 4 to the regenerating heater 5 in a state in which the regenerating air 4 covers the entire heating unit cover 73. It is also a heat cover.
[0047]
As shown in FIG. 2, the regenerative fan 6 fits the suction port 6c of the casing 6b accommodating the impeller 6a to the rear end of the duct 103 of the communication path 101 integrally formed with the partition wall 77 as shown in FIG. The outlet 6d of the casing 6b is connected to the air guide port 74a of the regeneration cover 74 as shown in FIGS.
[0048]
As shown in FIGS. 1 and 2, the partition wall 77 further opens a portion corresponding to the moisture absorbent 1 to the front side to allow the room air 2 sucked by the regeneration fan 6 to flow through the moisture absorbent 1. A ventilation chamber 78 and a receiving chamber 79 as shown in FIG. 2 for receiving the moisture-absorbed air 4a after passing through the regeneration heater 5 and the moisture absorbent 1 at the front side of the moisture absorbent 1 and regenerating the moisture absorbent 1 are formed. ing. The receiving chamber 79 has a rear end facing the hygroscopic material 1 with a suitable gap to receive the hygroscopic air 4a, and a front opening provided with a connection port 80 for connection with the air introducing connection 107a of the heat exchanger 7. The absorbed moisture 4a is sent to the heat exchanger 7.
[0049]
On the rear upper surface of the main body 12, an operation surface 28 shown in FIG. 2 and an exhaust port 23 shown in FIG. 2 passing through an air inlet 3b from the dehumidifying fan 3 shown in FIGS. 1 and 2 are arranged side by side. . The air outlet 23 has a rectangular opening 23a formed on the upper surface of the main body 12 and an opening 23b formed on the rear surface of the main body 12 in a continuous state. A cover 65 is provided, and is driven by an actuator such as a motor (not shown) so that the wind direction set on the operation surface 28 is obtained. The wind direction setting includes, for example, a substantially vertical fully open state, each intermediate open state between the horizontal fully closed state shown in FIG. 2, and a continuously changing wind direction that continuously reciprocates between the fully closed state and the fully open state. There is. In the fully closed state, only the opening 23b is opened rearward, and the air is blown backward. In the fully opened state, the entire area of the opening 23a is opened, and the air is blown right above. In each intermediate opening state, the air is blown in a direction along the opening angle of the wind direction setting lid 65. Furthermore, as shown in FIG. 1, the operation circuit board 311 provided on the operation surface 28 and the power supply circuit board 312 are provided on the operation surface 28 by utilizing the dead space formed in the main body 12 of the dehumidifying fan 3 near the blown air outlet 3b and the exhaust outlet 23. Are provided vertically or horizontally.
[0050]
As shown in FIG. 2, the main body 12 is further provided with casters 33 on both left and right sides of a corner that is diagonally located with respect to the water storage tank 9 when viewed from the side of the main body 12. Accordingly, when the main body 12 is grounded by the pair of left and right casters 33 and pulled around, when the main body 12 is tilted backward to the side where the diagonal line is vertical, the center of gravity of the main body 12 including the water storage tank 9 is placed on the casters 33. Even if the position of the center of gravity is different at different times due to the difference in the amount of water stored in the water storage tank 9, the weight can be balanced back and forth by adjusting the tilting angle of the body 12 to the rear side without difficulty. It can be moved and is convenient when it is used in a different room, such as the same room, between rooms, or between a room and a bathroom. In the bathroom, it can be used not only for dehumidification and drying itself, but also for drying laundry.
[0051]
In addition, a seat leg 35 is provided at the bottom of the main body 12 as an example of a seat portion to be grounded in a use state. As shown in FIG. 2, the caster 33 is slightly lifted from an installation surface 36 so that the main body 12 is installed. It is. Accordingly, when the main body 12 is installed in the use state, the casters 33 are not grounded, and the installation state of the main body 12 is not made unstable.
[0052]
Along with the provision of the casters 33, a pull 37 is provided on the back of the main body 12, as shown in FIGS. The puller 37 in the illustrated example has a pair of left and right pull rods 37a held so as to be able to be taken in and out of a sheath 39 provided vertically in the center of the back of the main body 12 in the left and right direction. It is composed of the attached grip portion 37b. Such a pull 37 can be easily and freely moved by sharing the support of the main body 12, the angle adjustment, and the wiring when the main body 12 is tilted rearward as described above and turned around. In addition, it is preferable to provide a hand-held handle pivotally supported so that it can be raised and lowered (not shown) at the upper part of the water storage tank 9. Here, the cover wall 3c, which is a bell mouth, is
The electrical partition and the part where the pull 37 is provided share an insulating partition wall that partitions the part with insulation, so that even if the grip 37b and the pull rod 37a of the pull 37 are made of metal, the safety of use is secured. I can do it. With respect to the partition plate 75, the cover wall 3c has a three-dimensional shape in which an air passage extends from the cup-shaped main body that covers the periphery of the impeller 3d from one side in the axial direction toward the air outlet 3b. No ribs are provided for the purpose, and a smooth surface shape is used. This facilitates molding. The space between the sheaths 39 on the rear wall of the main body 12 can be a space for accommodating a power cord (not shown) as a cord housing 313 recessed inward. Also, if a cover boss 315 as shown in FIG. 1 is provided on the wall of the main body 12 and the cover wall 3c is screwed or the like, the storage portion of the puller 37 is formed by the wall of the main body 12 and the cover wall 3c. It can be isolated from the electrical equipment side.
[0053]
As described above, in the upper part of the main body 12, the water storage tank 9, the exhaust port 23, the operation, the power supply boards 311, 312, and the pull handle 7 are arranged in front and rear.
[0054]
In the heat exchanger 7, each of the heat exchange elements 107, 207, and 307 is formed by a spacer projection 401 provided on one or both of the opposing surfaces as shown in FIG. The figure shows that the above connection is made while leaving the above, and the upper left and right two places of the foremost stage heat exchange element 107 and the lower right and left two places of the last stage heat exchange element 307 are integrally formed on the partition wall 77. 5 so that it can be attached and detached with screws 405 using attachment legs 403 as shown in FIG.
[0055]
Further, each of the heat exchange elements 107, 207, and 307 includes a heat exchange area 107c and 107d, a heat exchange area 207d and 207e, There is a drain pipe 406 provided for each of the areas 307d and 307e for flowing the dew condensation water into the water receiver 8, so that all the dew condensation water inside collects. Moreover, in the heat exchange element 107, the two air introduction connections 107a, 107a are on the upper and lower sides, and the two air discharge connections 107b, 107b are on the upper and lower sides, and both are drain pipes. Because it is away from 406, the flow of air therethrough does not cause condensation to collect on the drain pipe 406 and prevent it from flowing down. Further, in the heat exchange element 207, the two air introduction connection parts 207a, 207a and the two air discharge connection parts 207b, 207b are respectively located on the sides, and the communication path 207c is on the upper part, and both are separated from the drain pipe 406. As a result, it is possible to prevent the dew water from collecting on the drain pipe 406 and flowing down due to the flow of air passing therethrough. Further, in the heat exchange element 307, one air introduction connection part 307a and one air discharge connection part 307b are respectively located on the sides, and the communication path 307c is located at the upper part, and both are separated from the drain pipe 406. Condensed water can be prevented from collecting on the drain pipe 406 and flowing down due to the flow of air passing therethrough.
[0056]
Further, the regeneration air 4 from which the dehumidification water has been separated by the heat exchange with the indoor air 2 in the heat exchanger 7 is directed from the air discharge connection portion 107b of the heat exchange element 107 to the regeneration side, in the illustrated example, to the regeneration fan 6 side. It is conceivable that dew condensation occurs in the middle of the duct 103 leading to the condensed water, which is sucked to the regeneration side and adversely affects the dew condensation. Therefore, a recess 102 or a dew pool as shown in FIG. 1 is provided in a portion of the duct 103, preferably in the vicinity of the connection with the regeneration fan 6, and an inclined portion 74b is formed in the lower portion of the regeneration cover 74. The condensed water that has invaded in the meantime is stored in the lower portion 74c so as not to reach the other portions. Further, the dew condensation water accumulated in the concave portion 102 and the lower portion of the regeneration cover 74 can be returned to the water receiver 8 by the return paths 111 and 112 shown in FIGS. Note that the same dew condensation water can be returned to other portions.
[0057]
The action and effect of the plurality of heat exchange elements that pass the moisture-absorbing air 4a in parallel are increased as the number of the heat exchange elements increases, and can be exerted even without another heat exchange element in the preceding stage.
[0058]
In the dehumidifier of the example shown in FIGS. 9 to 13, in the heat exchange elements 107, 207, and 307 constituting the heat exchanger 7, the air introduction connection portions 107 a, 207 a, and 307 a and the air discharge connection portions 107 b, 207 b, and 307 b are provided. Only the location provided is different from that of the dehumidifier shown in FIGS. 1 to 8, and there is no particular change in the other configuration. The common members are denoted by the same reference numerals, and overlapping illustration and description are omitted. . The passage order of the air is as shown by the arrows in FIGS.
[0059]
The dehumidifier of the example shown in FIG. 14 will be described in detail. The heat exchanger 7 includes three or more heat exchange elements 107, 207, 307,... Which guide the received moisture-absorbed air 4a to the narrow or narrow heat exchange path 7a and exchange heat with the indoor air 2 in FIG. For example, as in the example of FIG. However, in the present example, the air-introducing connection portions 107a, 207a, 307a connect between the opposing surfaces so that the moisture-absorbing air 4a is sequentially passed through these heat exchange elements 107, 207, 307,. In each of the heat exchange elements 107, 207, 307,..., The passage cross-sectional areas of the air introduction connection portions 107a, 207a, 307a,. I have.
[0060]
As a result, as in the examples of FIGS. 1 to 8 and the examples of FIGS. 9 to 13, the moisture-absorbing air 4a is sequentially passed through three or more heat exchange elements 107, 207, 307,. Are connected to each other at the air introduction connection portions 107a, 207a, 307a,..., So that the connection structure has a compact configuration that does not protrude outside the heat exchanger 7. In this example, in particular, the passage cross-sectional areas of the air introduction connection portions 107a, 207a, 307a,... In each of the heat exchange elements 107, 207, 307,. Since the areas are substantially equal to each other, a smooth air flow can be obtained in the entire long heat exchange path 7a by three or more heat exchange elements 107, 207, 307,. Therefore, the heat exchange efficiency and the dehumidification efficiency are increased, and the dehumidification function is further improved. Moreover, the passage cross-sectional area of the heat exchange path 7a in each of the heat exchange elements 107, 207, 307,... Is substantially the same, so that the air flow is further stabilized and the heat exchange efficiency is enhanced and stabilized. This also increases the dehumidifying capacity. Although not shown, the regeneration air 4 from the air introduction connection portion 107a after the separation of the dehumidified water may be returned to the regeneration side as it is. Thereby, the flow of the moisture-absorbing air 4a in the heat exchanger 7 goes from the rear side of the main body 12 to the front part through the heat exchange elements 107, 207, and 307, while the indoor air 2 flows from the front part of the main body 12 to the rear part. Flow toward each other, and the flows flow counter to each other and exchange heat.
[0061]
In this case, as in the examples of FIGS. 1 to 8 and the examples of FIGS. 9 to 13, a plurality of heat exchange regions connected by a communication path may be used. Further, by using the heat exchange areas that are not connected partially by the communication path, the heat exchange areas arranged in front and rear are used to transfer the moisture-absorbing air 4a from the heat exchange element 107 at the foremost stage to the heat exchange element 307 at the last stage. , And then to the heat exchange area next to the last heat exchange element 307 through the communication path, and sequentially to the heat exchange area of the foremost heat exchange element 107 in front of and behind this. The heat exchange elements 107, 207, 307,... May be passed through all the heat exchange areas while sequentially passing the heat exchange areas in a zigzag manner. Thereby, it is possible to alleviate the difference in the degree of heat exchange with the indoor air 2 due to the arrangement of the heat exchange elements 107, 207, 307,.
[0062]
Further, the first-stage heat exchange element 107 having a large area is made of a metal such as aluminum to further enhance the heat exchange property with the room air 2 and heat the heat absorbing surface of the Peltier element or the Peltier module 411 combined with the Peltier element. It has been combined. Thereby, the cooling effect by the heat absorbing surface of the Peltier module 411 is exerted on the heat exchange element 107, the degree of condensation of the moisture-absorbing air 4a is increased, and the dehumidifying function is remarkably improved. The heat generation surface of the Peltier module 411 is exposed to the outside of the main body 12 so as to be cooled. As a result, the cooling effect of the Peltier module 411 is enhanced, and the heat generation can be prevented from adversely affecting the inside of the main body 12. However, the heat exchange elements 207 and 307 may also be made of metal such as aluminum to facilitate cooling from the Peltier module 411.
[0063]
In addition, the water storage tank 9 in this example is provided with a water receiving tray 412 and a handle 410 at an upper part thereof, and the water receiving tray 412 receives the water supplied from the water supply channel 26, and receives the received dehumidified water through the outlet 413. It can be poured into the water storage tank 9. The water receiving tray 412 is provided with a removable lid 414.
[0064]
【The invention's effect】
According to one feature of the dehumidifier according to the present invention, a combination of a moisture absorbent, a dehumidifying fan, a regeneration heater, a regeneration fan, and a heat exchanger is used to repeatedly dehumidify room air with a moisture absorbent in a circulation system. The moisture absorbent absorbs dehumidifying water from the moisture absorbing material while ensuring the moisture absorbing function for the indoor air by passing the heated air through the heated absorbent through the moisture absorbing material that repeats the dehumidification by absorbing moisture from the indoor air. By continuing to separate dehumidified water by heat exchange with indoor air in the heat exchanger and receive it in the water receiver, it is possible to satisfy the dehumidifying function with a smaller and lighter type than the type using a compressor. it can.
[0065]
In particular, since the heat exchanger uses three or more heat exchange elements in a multiplexed manner, a heat exchange path having a length sufficient for sufficient heat exchange with indoor air can be easily obtained by a combination of small heat exchangers. In addition, since the heat exchange path is narrow or narrow, the overall thickness of the two conventional heat exchangers is smaller than that of the conventional case, and the overall size is smaller. Therefore, in combination with the fact that the required area for sucking indoor air can be made smaller in accordance with the area of the heat exchange element, the main body can be made smaller by securing a high dehumidifying function. In addition, since the degree of freedom of arrangement with other internal devices is increased, it is easy to vertically arrange with other internal devices and the depth of the main unit can be reduced, so that it does not take up too much plane space. It is easy to use without getting in the way in the room.
[0066]
Moreover, the heat exchanger has a connection structure in which the opposing surfaces are connected to each other at an air introduction connection portion and an air discharge connection portion so as to pass the moisture-absorbed air in parallel to a plurality of heat exchange elements on the subsequent stage and return. While the heat exchanger does not protrude outside the heat exchanger, the common moisture-absorbing air introduced through the air introduction connection to the upstream heat exchange element of the plurality of heat exchange elements passing in parallel is connected to the front and rear heat exchange elements. When branching into the element and passing through in parallel, the passage cross-sectional area of the air inlet connection of the rear heat exchange element is smaller than the passage cross-sectional area of the air inlet connection of the front heat exchange element, The humid air introduced through the air inlet connection of the side heat exchange element is squeezed and introduced, and the common humid air is flown to each of the front and rear heat exchange elements. Through without changing Tondo, since attained a heat exchange once the room air without such disturbing an air stream of the entire circulatory system, the heat exchange efficiency, dehumidification efficiency is increased dehumidification capability is further improved. In addition, since the heat exchange paths of the plurality of heat exchange elements passing in parallel may have a smaller passage cross-sectional area than the heat exchange paths of the preceding heat exchange elements, the efficiency of heat exchange with indoor air is increased and the dehumidification function is improved. In addition to being further improved, the heat exchanger becomes smaller and the thickness of the heat exchanger can be further reduced.
[0067]
The passage cross-sectional area of the air discharge connection portion of the plurality of heat exchange elements passing in parallel is substantially equal to the passage cross-sectional area of the air introduction connection portion of the heat exchange element having the air discharge connection portion. Then
Passage of the air discharge connection of the front-side heat exchange element where the merging is performed so that the moisture-absorbed air passes through the plurality of heat exchange elements in parallel and exchanges heat with the indoor air and then merges and returns to the front side thereof. Since the cross-sectional area is larger than the cross-sectional area of the passage of the air discharge connection portion of the subsequent heat exchange element, the merging is smoothly achieved without a change in the flow velocity and the flow of air in the entire circulating system is not disturbed. This can prevent the heat exchange efficiency and the dehumidification efficiency from decreasing.
[0068]
According to another feature of the dehumidifier of the present invention, a combination of a moisture absorbing material, a dehumidifying fan, a regeneration heater, a regeneration fan, and a heat exchanger, repeatedly dehumidifying indoor air with a moisture absorbing material in a circulation system, Dehumidifying water is repeatedly absorbed by absorbing moisture from the indoor air and passing through the heated air to remove the dehumidifying water to regenerate the indoor air while ensuring the moisture absorbing function for the indoor air. The dehumidification function can be satisfied with a smaller and lighter type than the type using a compressor by continuing to separate the dehumidification water by the heat exchange with the indoor air in the exchanger and receive it in the water receiver. .
[0069]
In particular, since the heat exchanger uses three or more heat exchange elements in a multiplexed manner, a heat exchange path having a length sufficient for sufficient heat exchange with indoor air can be easily obtained by a combination of small heat exchangers. In addition, since the heat exchange path is narrow or narrow, the overall thickness of the two conventional heat exchangers is smaller than that of the conventional case, and the overall size is smaller. Therefore, in combination with the fact that the required area for sucking indoor air can be made smaller in accordance with the area of the heat exchange element, the main body can be made smaller by securing a high dehumidifying function. In addition, since the degree of freedom of arrangement with other internal devices is increased, it is easy to vertically arrange with other internal devices and the depth of the main unit can be reduced, so that it does not take up too much plane space. It is easy to use without getting in the way in the room.
[0070]
In addition, a compact configuration in which the connection structures are connected to each other at the air introduction connection portion so that the moisture-absorbing air is sequentially passed through three or more heat exchange elements and returned, so that the connection structure does not protrude outside the heat exchanger. However, since the cross-sectional area of the passage of the air inlet connection in each heat exchange element and the cross-sectional area of the passage of the air discharge connection of the last stage heat exchange element are substantially equal to each other, the length of the three or more heat exchange elements is longer. Since a smooth air flow can be obtained throughout the heat exchange path to exchange heat with the indoor air, the heat exchange efficiency and the dehumidification efficiency are increased, and the dehumidification function is further improved.
[0071]
In a further configuration, the heat exchange element is divided into a plurality of heat exchange zones with individual air inlet and air outlet connections.
The heat exchange element is divided into a plurality of heat exchange zones, and the moisture-absorbed air introduced from one air inlet connection is passed through the entire heat exchange element by passing the moisture-absorbed air through separate air inlet and air outlet connections. Through which the air is difficult to reach and the flow of air is less likely to be reduced or stagnant as in the case where the air is discharged from one air discharge connection, so that the entire area of the heat exchange element can be effectively used and heat exchange can be performed. The efficiency is improved and the dehumidification function is improved.
[0072]
The heat exchange element is divided into a plurality of heat exchange areas with a communication path on the way, and the passage cross-sectional area of the communication path is equal to the passage of the air introduction connection in the heat exchange element having the communication path. In a further configuration that is approximately equal to or greater than the cross-sectional area,
Since the heat exchange element is divided into a plurality of heat exchange areas with a communication path in the middle, even air introduced from one air introduction connection portion is sequentially passed through the communication path to the plurality of heat exchange areas. As a result, unlike the case where the heat is passed through the entire area of the heat exchange element at once, it is difficult to form a portion where the air is difficult to reach and a part where the air flow is reduced or stagnated. The exchange efficiency increases, and the dehumidification function improves. In particular, when the passage cross-sectional area of the communication passage is substantially equal to or greater than the passage cross-sectional area of the air introduction connection portion in the heat exchange element having the communication passage, the heat exchange region of the preceding stage to the heat exchange region of the subsequent stage are changed. Since the air flowing to the heat exchange element is not throttled, the heat exchange efficiency of the heat exchange element in the entire heat exchange area is increased, and the dehumidification function is improved.
[0073]
In a further configuration, the heat exchange elements are vertically arranged so as to be multiplexed in the suction direction of room air, and the last heat exchange element is directed upstream of the room air.
Since the heat exchange elements are arranged vertically so as to be multiplexed in the suction direction of the indoor air, the indoor air that is located inside the air inlet of the main body corresponding to the heat exchange element with a smaller area than the conventional one is While providing sufficient heat exchange, it is possible to install additional equipment inside the main unit by giving room in the vertical direction and the front and rear direction of the main unit, so that the overall size and the front and rear dimensions of the main unit can be reduced. It can be used in small places and rooms.
[0074]
In a further configuration in which the foremost heat exchange element has a larger area than the heat exchange element on the subsequent stage,
The first-stage heat exchange element is introduced with high-humidity air with regenerated moisture absorbent, but it has a larger area than the second-stage heat exchange element to increase the degree of heat exchange with indoor air and dehumidify. Since the water separation efficiency can be increased, the dehumidifying function is enhanced. In the case of a configuration in which the dehumidified air that has undergone heat exchange in the first-stage heat exchange element is returned to the regenerative heater, the final dehumidified water due to high heat exchange in the first-stage heat exchange element having a large area is used. Is separated and returned, so that it is easy to prevent dew condensation from occurring in the process of returning from the heat exchanger to the regeneration heater side and condensed water to enter the regeneration side.
[0075]
A water storage tank provided detachably on the upper front side of the main body, and a water storage pump for sending water from the water receiver to the water storage tank, wherein the heat exchanger is provided under the water storage tank mounting portion of the main body, In a further configuration, located inside the air intake that sucks air,
A water storage tank can be provided at the upper part of the main body, and the dehumidified water collected in the water receiver can be sent by the water supply pump and stored without impairing the feature that the main body is downsized due to the form of the heat exchanger. Is made to appear, so that the user can feel the dehumidification and make it easier to evaluate. At the same time, the drainage tank is located outside the main unit, closest to the user, and on the side that is easy to attach and detach, so that the drainage tank can be drained and cleaned. It can be handled and handled easily.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one example of an embodiment of a dehumidifier according to the present invention.
FIG. 2 is a longitudinal sectional view of the dehumidifier of FIG.
FIG. 3 is a rear view of a partition wall having a moisture absorbent of the dehumidifier of FIGS. 1 and 2;
FIG. 4 is a cross-sectional perspective view of a heat exchanger in the dehumidifier of FIG.
FIG. 5 is a perspective view showing a relationship between a heat exchanger of the dehumidifier and a hygroscopic material regeneration fan.
FIG. 6 is a perspective view showing a foremost heat exchange element of the heat exchanger shown in FIGS. 4 and 5;
FIG. 7 is a perspective view showing a middle-stage heat exchange element of the heat exchanger shown in FIGS. 4 and 5;
8 is a perspective view of the last stage heat exchange element of the heat exchanger shown in FIGS. 4 and 5. FIG.
FIG. 9 is a cross-sectional view of a heat exchanger showing another example of the embodiment of the dehumidifier according to the present invention.
FIG. 10 is a perspective view showing a relationship between a heat exchanger of the dehumidifier of FIG. 9 and a hygroscopic material regeneration fan.
FIG. 11 is a perspective view showing a forefront heat exchange element of the heat exchanger shown in FIGS. 9 and 10;
FIG. 12 is a perspective view showing a middle-stage heat exchange element of the heat exchanger shown in FIGS. 9 and 10;
FIG. 13 is a perspective view of the last heat exchange element of the heat exchanger shown in FIGS. 9 and 10;
FIG. 14 is a longitudinal sectional view showing another example of the embodiment of the dehumidifier according to the present invention.
[Explanation of symbols]
A circulatory system
1 hygroscopic material
2 indoor air
3 Dehumidification fan
4 Air for regeneration
5 Regeneration heater
6 Reproduction fans
7 heat exchanger
7a Heat exchange path
8 Water tray
9 water storage tank
12 body
15 steps
16 Internal device
22 Inlet
107, 207, 307 Heat exchange element
107a, 207a, 307a Air inlet connection
107b, 207b, 307b Air outlet connection
207c, 307c connection way
107c, 107d, 207d, 307d, 207e, 307e Heat exchange area

Claims (8)

繰り返し移動する吸湿材と、室内空気を前記吸湿材に通した後に室内に戻して室内の除湿を行なう除湿ファンと、空気を加熱して前記吸湿材に通して除湿水を奪い再生させることを循環系にて繰り返す再生ヒータおよび再生ファンと、前記吸湿材に通され除湿水を奪い再生ヒータ側に戻される途中の吸湿空気を熱交換して除湿水を分離し戻す熱交換器と、熱交換器によって分離した除湿水を受ける水受けとを、本体に備え、前記熱交換器は、前記吸湿空気を細いまたはおよび狭い熱交換路に導き前記室内空気と熱交換させる熱交換エレメントを3枚以上多重に配して、後段側の複数の熱交換エレメントには前記吸湿空気を並列に通してそれらの前段の熱交換エレメントに戻すように、空気導入接続部および空気排出接続部にて互いの対向面間を接続し、前記並列に通す複数の熱交換エレメントにおける前段側熱交換エレメントの空気導入接続部の通路断面積に対し、後段側熱交換エレメントの空気導入接続部の通路断面積を小さくしたことを特徴とする除湿機。A humidifying material that moves repeatedly, a dehumidifying fan that passes indoor air through the humectant and then returns to the room to dehumidify the room, and a circuit that heats air and passes through the humidifying material to remove and regenerate dehumidifying water. A regenerative heater and a regenerating fan, a heat exchanger passing through the hygroscopic material, depriving the dehumidifying water of heat, and exchanging heat with the hygroscopic air being returned to the regenerating heater side to separate the dehumidifying water; and a heat exchanger. A water receiver for receiving the dehumidified water separated by the heat exchanger, wherein the heat exchanger multiplexes three or more heat exchange elements for guiding the moisture-absorbed air to a narrow or narrow heat exchange path and exchanging heat with the room air. The air introduction connection portion and the air discharge connection portion face each other at the air introduction connection portion so that the moisture-absorbing air is passed in parallel to the plurality of heat exchange elements on the rear stage side and returned to the heat exchange elements at the preceding stage. while The passage cross-sectional area of the air introduction connection portion of the rear heat exchange element is smaller than the passage cross-sectional area of the air introduction connection portion of the front heat exchange element in the plurality of heat exchange elements connected and passed in parallel. And dehumidifier. 前記並列に通す複数の熱交換エレメントにおける空気排出接続部の通路断面積は、その空気排出接続部を有している熱交換エレメントの空気導入接続部の通路断面積とほぼ同等にした請求項1に記載の除湿機。2. A cross-sectional area of a passage of an air discharge connection part of the plurality of heat exchange elements passing in parallel is substantially equal to a cross-sectional area of a passage of an air introduction connection part of the heat exchange element having the air discharge connection part. A dehumidifier according to claim 1. 繰り返し移動する吸湿材と、室内空気を前記吸湿材に通した後に室内に戻して室内の除湿を行なう除湿ファンと、空気を加熱して前記吸湿材に通して除湿水を奪い再生させることを循環系にて繰り返す再生ヒータおよび再生ファンと、前記吸湿材に通され除湿水を奪い再生ヒータ側に戻される途中の吸湿空気を熱交換して除湿水を分離し除湿空気に戻す熱交換器と、熱交換器によって分離した除湿水を受ける水受けとを、本体に備え、前記熱交換器は、受け入れた吸湿空気を細いまたはおよび狭い熱交換路に導き前記室内空気と熱交換させる熱交換エレメントを3枚以上多重に配して、これら熱交換エレメントに前記吸湿空気を順次に通して戻すように、空気導入接続部にて互いの対向面間を接続し、各熱交換エレメントにおける空気導入接続部の通路断面積、および最後段熱交換エレメントの空気排出接続部の通路断面積をそれぞれほぼ同等としたことを特徴とする除湿機。A humidifying material that moves repeatedly, a dehumidifying fan that passes indoor air through the humectant and then returns to the room to dehumidify the room, and a circuit that heats air and passes through the humidifying material to remove and regenerate dehumidifying water. A regenerative heater and a regenerating fan that repeat in the system, a heat exchanger that passes through the hygroscopic material, deprives the dehumidified water, and exchanges heat with the hygroscopic air on the way back to the regenerative heater side to separate the dehumidified water and return to the dehumidified air, A water receiver for receiving dehumidified water separated by a heat exchanger, wherein the heat exchanger includes a heat exchange element that guides the received moisture-absorbed air to a narrow or narrow heat exchange path and exchanges heat with the room air. Three or more sheets are arranged in a multiplexed manner, and the surfaces facing each other are connected to each other at an air introduction connection portion so that the moisture-absorbing air is sequentially passed through these heat exchange elements and returned. Dehumidifier, characterized in that the passage cross-sectional area of the parts, and the final stage heat exchange element the cross-sectional area of the air discharge connecting portion is respectively substantially equal. 熱交換エレメントは、個別の空気導入接続部および空気排出接続部を持った複数の熱交換域に別れている請求項1〜3のいずれか1項に記載の除湿機。The dehumidifier according to any one of claims 1 to 3, wherein the heat exchange element is divided into a plurality of heat exchange zones having individual air inlet and air outlet connections. 熱交換エレメントは、途中に連絡路を有して複数の熱交換域に別れており、連絡路の通路断面積は、その連絡路を有している熱交換エレメントにおける前記空気導入接続部の通路断面積とほぼ同等以上とした請求項1〜3のいずれか1項に記載の除湿機。The heat exchange element is divided into a plurality of heat exchange areas with a communication path on the way, and a passage cross-sectional area of the communication path is equal to a passage of the air introduction connection portion in the heat exchange element having the communication path. The dehumidifier according to any one of claims 1 to 3, wherein the dehumidifier has a sectional area substantially equal to or greater than the sectional area. 前記熱交換エレメントは、室内空気の吸引方向に多重となるように縦置きし、最後段の熱交換エレメントを室内空気の上流側に向けた請求項1〜5のいずれか1項に記載の除湿機。The dehumidifying device according to any one of claims 1 to 5, wherein the heat exchange elements are vertically arranged so as to be multiplexed in a suction direction of room air, and a last heat exchange element is directed to an upstream side of room air. Machine. 最前段の熱交換エレメントは、それより後段側の熱交換エレメントよりも面積が大きい請求項6に記載の除湿機。The dehumidifier according to claim 6, wherein the first heat exchange element has a larger area than the second heat exchange element. 本体の上部前側に着脱できるように設けられた貯水タンクと、前記水受けの水を貯水タンクに送り込む貯水ポンプとを備え、前記熱交換器は本体の貯水タンク装着部の下で、本体の室内空気を吸引する吸気口の内側に位置している請求項6、7のいずれか1項に記載の除湿機。A water storage tank provided detachably on the upper front side of the main body, and a water storage pump for sending water from the water receiver to the water storage tank, wherein the heat exchanger is provided under the water storage tank mounting portion of the main body, The dehumidifier according to any one of claims 6 and 7, wherein the dehumidifier is located inside an air inlet for sucking air.
JP2003068405A 2003-03-13 2003-03-13 Dehumidifier Pending JP2004275835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068405A JP2004275835A (en) 2003-03-13 2003-03-13 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068405A JP2004275835A (en) 2003-03-13 2003-03-13 Dehumidifier

Publications (1)

Publication Number Publication Date
JP2004275835A true JP2004275835A (en) 2004-10-07

Family

ID=33285750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068405A Pending JP2004275835A (en) 2003-03-13 2003-03-13 Dehumidifier

Country Status (1)

Country Link
JP (1) JP2004275835A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054700A (en) * 2005-08-23 2007-03-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007101172A (en) * 2005-10-05 2007-04-19 Lg Electronics Inc Heat exchanger unit and air conditioner having the same
EP2010827A2 (en) * 2006-04-27 2009-01-07 LG Electronics, Inc. Dehumidifier
EP2013544A2 (en) * 2006-05-02 2009-01-14 LG Electronics, Inc. Dehumidifier
EP2016341A2 (en) * 2006-05-02 2009-01-21 LG Electronics, Inc. Dehumidifier
JP2011025191A (en) * 2009-07-28 2011-02-10 Zojirushi Corp Dehumidifier
JP2011036768A (en) * 2009-08-07 2011-02-24 Mitsubishi Electric Corp Dehumidifier

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054700A (en) * 2005-08-23 2007-03-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007101172A (en) * 2005-10-05 2007-04-19 Lg Electronics Inc Heat exchanger unit and air conditioner having the same
EP2010827A2 (en) * 2006-04-27 2009-01-07 LG Electronics, Inc. Dehumidifier
EP2010827A4 (en) * 2006-04-27 2012-03-21 Lg Electronics Inc Dehumidifier
EP2013544A2 (en) * 2006-05-02 2009-01-14 LG Electronics, Inc. Dehumidifier
EP2016341A2 (en) * 2006-05-02 2009-01-21 LG Electronics, Inc. Dehumidifier
EP2013544A4 (en) * 2006-05-02 2012-03-21 Lg Electronics Inc Dehumidifier
EP2016341A4 (en) * 2006-05-02 2012-03-21 Lg Electronics Inc Dehumidifier
JP2011025191A (en) * 2009-07-28 2011-02-10 Zojirushi Corp Dehumidifier
JP2011036768A (en) * 2009-08-07 2011-02-24 Mitsubishi Electric Corp Dehumidifier

Similar Documents

Publication Publication Date Title
CN107504605B (en) Air treatment device and vertical air conditioner with same
US7856840B2 (en) Dehumidifier
JP3445790B1 (en) Dehumidifier
CN1880859B (en) Dehumidifier
KR101174529B1 (en) A dehumidifier
US20070062370A1 (en) Dehumidifier
KR20060131112A (en) A dehumidifier
CN108105881B (en) Cabinet-type air conditioner
WO2021047455A1 (en) Diversion structure of mite removing instrument and mite removing instrument
CN108266800B (en) Cabinet air conditioner and air conditioner with same
JP2004275835A (en) Dehumidifier
US20050011171A1 (en) Air cleaner
CN108087985B (en) Cabinet air conditioner and air conditioner with same
JP2004181279A (en) Dehumidifier
KR101231278B1 (en) A dehumidifier
JP3857809B2 (en) Dehumidifier
CN108006837B (en) Cabinet air conditioner and air conditioner with same
KR101259800B1 (en) Indoor unit of air conditioner
JP2004316932A (en) Dehumidifier
JP3258971B2 (en) Dehumidifier
JP2001259352A (en) Dehumidifier
JP2004275924A (en) Dehumidifier
JP2004278952A (en) Dehumidifier
JP3623909B2 (en) Dehumidifier
KR20100025347A (en) Dehumidifier