JP2004273664A - Standard sample for calibration - Google Patents

Standard sample for calibration Download PDF

Info

Publication number
JP2004273664A
JP2004273664A JP2003061061A JP2003061061A JP2004273664A JP 2004273664 A JP2004273664 A JP 2004273664A JP 2003061061 A JP2003061061 A JP 2003061061A JP 2003061061 A JP2003061061 A JP 2003061061A JP 2004273664 A JP2004273664 A JP 2004273664A
Authority
JP
Japan
Prior art keywords
calibration
wafer
standard sample
quadrangular pyramid
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061061A
Other languages
Japanese (ja)
Other versions
JP3925436B2 (en
Inventor
Naohiro Takahashi
直弘 高橋
Kiyoshi Irino
清 入野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003061061A priority Critical patent/JP3925436B2/en
Publication of JP2004273664A publication Critical patent/JP2004273664A/en
Application granted granted Critical
Publication of JP3925436B2 publication Critical patent/JP3925436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize the calibration of an inspecting device in a high accuracy by realizing standard samples for the calibration, in which recesses extremely similar to crystal defects are arranged, when the crystal defects are inspected. <P>SOLUTION: Quadrangular pyramidal-shape recesses 2 being similar to the crystal defect and having a different size, are arranged and formed by anisotropically etching on an Si wafer 1 having Miller indices (110). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウェーハに存在する凹凸、特に結晶欠陥に起因する凹所を検査する場合に用いる検査装置を較正するのに好適な較正用標準試料に関する。
【0002】
【従来の技術】
一般に、半導体ウェーハには様々な凹凸が存在し、例えば結晶欠陥に起因する凹所、半導体装置の製造工程で適用したCMP(chemical mechanical polishing)法に依って発生したスクラッチ、クラック、付着した不純物粒子などが原因となっている。
【0003】
現在、半導体装置の高集積化及び微細化が進展しつつあり、前記したような半導体ウェーハに於ける凹凸は、半導体装置の製造プロセスにダメージを与えることから、そのような凹凸について定量的な検査を行い、半導体装置の製造プロセスへフィードバックして製品の製造歩留りを向上させることが必要となってきている。
【0004】
従来、半導体ウェーハ表面に於ける凹凸は、Arレーザ・ビーム照射器、光電子増倍管(photomultiplier tube)を含む受光器などを主体とする検査装置を用いて検査することが行われている。
【0005】
即ち、半導体ウェーハ表面にArレーザ・ビームを照射し、凹凸の存在で発生する散乱光を受光し、その受光された散乱光強度(パルス信号強度)に依って凹凸の有無を検査する。
【0006】
図6は半導体ウェーハ及び該半導体ウェーハに於ける凹凸を検査して得られた散乱光強度を表す説明図であり、(A)は線図、(B)は線図(A)を得た半導体ウェーハをそれぞれ示している。
【0007】
図に於いて、11は検査対象であるシリコン・ウェーハ、12A及び12Bは異物(凸欠陥)、13AはCMP法を実施して発生した凹欠陥(スクラッチ)、13Bは結晶内欠陥に起因する凹欠陥をそれぞれ示し、そして、線図(A)に於いては、縦軸には散乱光(パルス信号)強度、横軸には位置をそれぞれ採ってあり、また、横軸は接地(GND)レベルになっていて、閾値は凸欠陥であるか凹欠陥であるかの境界を示している。
【0008】
図から看取できるように、異物12A及び12Bからのパルス信号は閾値を越えて充分なレベルとなって検出されるが、凹欠陥13A及び13Bからのパルス信号は閾値以下になっている。
【0009】
散乱光強度、即ち、パルス信号は、前記したように、シリコン・ウェーハ1の表面に在る異物12A或いは12Bで散乱されたものか、凹欠陥13A或いは13Bで散乱されたものかに依ってレベルが相違することが明らかであるが、レーザ・ビームをシリコン・ウェーハ11に低入射、即ち、シリコン・ウェーハ11の表面に対して小さい(浅い)角度、例えば20°程度の角度で入射させるか、或いは、高入射、即ち、シリコン・ウェーハ11の表面に対して大きい(深い)角度、例えば45°程度の角度で入射させるかに依ってもレベルが相違する。
【0010】
図7はレーザ・ビームを低入射させた場合と高入射させた場合とに於けるパルス信号の高さを比較して表した線図であり、図に於いて、低入射、即ち、20°程度の場合をS−lowで、また、高入射、即ち、45°程度の場合をS−highで表してある。
【0011】
図から明らかなように、散乱光強度、即ち、パルス信号の高さは、低入射の場合と高入射の場合とを比較すると、高入射の場合の方が高くなる。
【0012】
検査対象が異物(particle)の場合には、得られるパルス信号はS−low≒S−highであって、低入射でも高入射でも良いが、検査対象が結晶内欠陥(crystal originated particle:COP)の場合には、得られるパルス信号はS−low<S−highであって、高入射であることが必要である。
【0013】
表面異物検査装置には、2軸光学系のArイオン・レーザを用い、波長λは低入射の場合は488〔nm〕、高入射の場合は514〔nm〕であり、結晶内欠陥の分離は、低入射ビームに依る散乱光検出信号及び高入射ビームに依る散乱光検出信号の二つの信号を比較することで行い、分離アルゴリズムでは、散乱光検出信号(パルス信号)の波高値で比較を行う。
【0014】前記したところから明らかであるが、半導体ウェーハの凹凸を検査する場合、検査対象である凹凸の種類の如何に依って検査装置の設定を変える必要があり、従って、その較正をしなければならない。
【0015】
従来、CMP法を実施して半導体ウェーハを研磨した場合に発生するスクラッチの深さや幅を定量的に検査し、半導体デバイス製造プロセスへフィードバックすることで製品の製造歩留りを向上しようとする発明が知られている(例えば、特許文献1参照。)。
【0016】
その場合、前記説明した検査装置と同様な検査装置を使用するのであるが、その検査装置に於いても較正することが必要であり、その較正にはFIB(focused ion beam)に依って作製した疑似加工痕をもつ検査用標準試料(例えば、特許文献1参照。)が用いられている。
【0017】
然しながら、前記公知の検査用標準試料を用いる検査装置を較正では、結晶欠陥を検査する場合の較正に対処することはできない。
【0018】
【特許文献1】
特開2000−58606号公報
【0019】
【発明が解決しようとする課題】
本発明では、結晶欠陥に極めて近似した凹所が配列された較正用標準試料を実現させ、結晶欠陥を検査する際の検査装置の較正を高い精度で実施できるようにする。
【0020】
【課題を解決するための手段】
本発明に依る較正用標準試料に於いては、面指数が(110)であるSiウェーハに結晶欠陥に近似し大きさを異にした四角錐形凹所が異方性エッチングで配列形成されてなることを基本としている。
【0021】
前記手段を採ることに依り、レーザを用いて半導体ウェーハの凹凸を検査する検査装置で結晶欠陥を検査する際の較正を高い精度で実施することができ、従来は行われていなかった結晶欠陥の検査を容易に実施することが可能となり、半導体装置の製造歩留り向上に寄与することができる。
【0022】
【発明の実施の形態】
実施の形態1
図1は本発明に於ける実施の形態1である較正用標準試料を表す要部平面図であり、図に於いて、1は面指数が(110)であるSiからなるウェーハ、2は結晶欠陥に近似した四角錐形凹所、3は実存の結晶欠陥に最も近似したツイン四角錐形凹所、4はCMPに起因するスクラッチに近似する溝状凹所をそれぞれ示している。
【0023】
図2は図1について説明した各凹所を詳細に説明する為の要部説明図であり、(A)は要部平面、(B)は要部切断側面をそれぞれ示している。尚、図1に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。
【0024】
図に於いて、2A〜2Eは結晶欠陥に近似した四角錐形凹所、3A〜3Eは実存の結晶欠陥に最も近似したツイン四角錐形凹所、4A〜4DはCMPに起因するスクラッチに近似する溝状凹所、Dは四角錐形凹所に於ける深さをそれぞれ示している。
【0025】
四角錐形凹所2A〜2Eに於ける底面に相当する正方形の1辺の寸法を例示すると、2A=0.10〔μm〕、2B=0.20〔μm〕、2C=0.30〔μm〕、2D=0.40〔μm〕、2E=0.50〔μm〕であって、深さも0.10〔μm〕〜0.50〔μm〕である。
【0026】
ツイン四角錐形凹所3A〜3Eに於ける一対のうちの1つの四角錐形凹所は四角錐形凹所2A〜2Eと同じ寸法になっている。尚、このように、四角錐形凹所をツインにして形成してある理由は、実際に生成される結晶欠陥がツインの状態で存在していることに在り、これが本発明の較正用標準試料に於ける大きな特徴である。
【0027】
溝状凹所4A〜4Dに於ける寸法を例示すると、全ての幅は0.10〔μm〕で同じであるが、長さは4A=0.20〔μm〕、4B=0.30〔μm〕、4C=0.40〔μm〕、4D=0.50〔μm〕になっている。
【0028】
図1及び図2について説明した較正用標準試料を作製するプロセスの1例を挙げると以下の通りである。
(1)
面指数が(110)であって、厚さが725〔μm〕のSiウェーハを用意する。
(2)
熱酸化法を適用することに依り、Siウェーハ上に厚さが例えば10〔nm〕のSiO膜を形成する。
(3)
リソグラフィ技術に於けるレジスト・プロセス、及び、エッチング・ガスをCHF+O或いはCF+Hなどとするドライ・エッチング法を適用することに依り、レジスト膜をマスクとしてSiO膜に於ける四角錐形凹所形成予定部分のエッチングを行って所要寸法の開口を形成する。
(4)
レジスト膜を剥離してから、エッチャントを例えばKOHとするウエット・エッチング法を適用することに依り、SiO膜をマスクとしてSiウェーハの異方性エッチングを行って四角錐形凹所を形成する。
(5)
エッチング・マスクとして用いたSiO膜を除去し、四角錐形凹所をもつ較正用標準試料を実現する。
【0029】
このようにして作製した較正用標準試料にスクラッチに近似する溝状凹所を付加形成するには、FIB(focused ion beam)を用いる公知の手段でSiウェーハの掘削を行うことで実現できる。
【0030】
本発明の較正用標準試料に於いては、結晶欠陥に近似した四角錐形凹所、或いは、ツイン四角錐形凹所をもつことが必須であるが、これに加えて、前記スクラッチに近似する溝状凹所4A〜4Dを付加したり、或いは、次に説明する実施の形態2に見られるように異物に相当する標準粒子を付加しておけば、1枚の較正用標準試料で多くの検査を行うことができる。
【0031】
実施の形態2
図3は本発明に於ける実施の形態2である較正用標準試料を表す要部平面図であり、図1及び図2に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。
【0032】
実施の形態2の較正用標準試料が実施の形態1の較正用標準試料と相違するところは、結晶欠陥に近似した四角錐形凹所2、実存の結晶欠陥に最も近似したツイン四角錐形凹所3、スクラッチに近似する溝状凹所4の他に異物に相当する標準粒子領域5A〜5Eが設けられている点にある。
【0033】
標準粒子はポリスチレン・ラテックス(polystyrene latex:PSL)であって、
標準粒子領域5A:0.100〔μm〕φ以下の標準粒子を5000個スポット塗布。
標準粒子領域5B:0.100〜0.200〔μm〕φの間の標準粒子を5000個スポット塗布。
標準粒子領域5C:0.200〜0.300〔μm〕φの間の標準粒子を5000個スポット塗布。
標準粒子領域5D:0.300〜0.500〔μm〕φの間の標準粒子を5000個スポット塗布。
標準粒子領域5E:0.500〜2.000〔μm〕φの間の標準粒子を5000個スポット塗布。
として形成してある。
【0034】
図4は標準粒子領域の形成について説明する為の吹き付け装置などを表す要部説明図であり、図3に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。
【0035】
図に於いて、6は容器、7はNを容器に送入するタンク、8はノズル、9はヒータ、10はPSLを分散した液をそれぞれ示していて、タンク7内はポンプで加圧され、PSLを時間制御で吹き付けるようになっている。
【0036】
図5は標準粒子領域のレーザ光散乱強度を表す線図であり、この場合の標準粒子領域は直径が0.050〔μm〕のPSLを5000個スポット塗布して形成したものである。
【0037】
【発明の効果】
本発明に依る較正用標準試料に於いては、面指数が(110)であるSiウェーハに結晶欠陥に近似し大きさを異にした四角錐形凹所が異方性エッチングで配列形成されてなることを基本としている。
【0038】
前記構成を採ることに依り、レーザを用いて半導体ウェーハの凹凸を検査する検査装置で結晶欠陥を検査する際の較正を高い精度で実施することができ、従来は行われていなかった結晶欠陥の検査を容易に実施することが可能となり、半導体装置の製造歩留り向上に寄与することができる。
【図面の簡単な説明】
【図1】本発明に於ける実施の形態1である較正用標準試料を表す要部平面図である。
【図2】図1について説明した各凹所を詳細に説明する為の要部説明図である。
【図3】本発明に於ける実施の形態2である較正用標準試料を表す要部平面図である。
【図4】標準粒子領域の形成について説明する為の吹き付け装置などを表す要部説明図である。
【図5】標準粒子領域のレーザ光散乱強度を表す線図である。
【図6】半導体ウェーハ及び該半導体ウェーハに於ける凹凸を検査して得られた散乱光強度を表す説明図である。
【図7】レーザ・ビームを低入射させた場合と高入射させた場合とに於けるパルス信号の高さを比較して表した線図である。
【符号の説明】
1 面指数が(110)であるSiからなるウェーハ
2 結晶欠陥に近似した四角錐形凹所
3 実存の結晶欠陥に最も近似したツイン四角錐形凹所
4 CMPに起因するスクラッチに近似する溝状凹所
2A〜2E 結晶欠陥に近似した四角錐形凹所
3A〜3E 実存の結晶欠陥に最も近似したツイン四角錐形凹所
4A〜4D CMPに起因するスクラッチに近似する溝状凹所
D 四角錐形凹所に於ける深さ
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a calibration standard sample suitable for calibrating an inspection device used for inspecting an unevenness existing on a semiconductor wafer, particularly a concave portion caused by a crystal defect.
[0002]
[Prior art]
In general, various irregularities are present on a semiconductor wafer, for example, a concave portion caused by a crystal defect, a scratch, a crack, and an attached impurity particle generated by a CMP (chemical mechanical polishing) method applied in a semiconductor device manufacturing process. And so on.
[0003]
At present, high integration and miniaturization of semiconductor devices are progressing, and the unevenness in the semiconductor wafer as described above damages the semiconductor device manufacturing process. It is necessary to improve the production yield of products by feeding back to the semiconductor device manufacturing process.
[0004]
2. Description of the Related Art Conventionally, irregularities on the surface of a semiconductor wafer are inspected using an inspection apparatus mainly including an Ar laser beam irradiator, a photodetector including a photomultiplier tube, and the like.
[0005]
That is, the surface of the semiconductor wafer is irradiated with an Ar laser beam, scattered light generated due to the presence of unevenness is received, and the presence or absence of unevenness is inspected based on the received scattered light intensity (pulse signal intensity).
[0006]
6A and 6B are explanatory diagrams showing a semiconductor wafer and scattered light intensities obtained by examining irregularities on the semiconductor wafer. FIG. 6A is a diagram, and FIG. Each wafer is shown.
[0007]
In the figure, 11 is a silicon wafer to be inspected, 12A and 12B are foreign matters (convex defects), 13A is a concave defect (scratch) generated by performing the CMP method, and 13B is a concave caused by an intracrystalline defect. Defects are shown, and in the diagram (A), the vertical axis shows the intensity of scattered light (pulse signal), the horizontal axis shows the position, and the horizontal axis shows the ground (GND) level. , And the threshold value indicates a boundary between a convex defect and a concave defect.
[0008]
As can be seen from the figure, the pulse signals from the foreign substances 12A and 12B exceed the threshold and are detected at a sufficient level, but the pulse signals from the concave defects 13A and 13B are below the threshold.
[0009]
The scattered light intensity, that is, the pulse signal, depends on whether it is scattered by the foreign matter 12A or 12B on the surface of the silicon wafer 1 or scattered by the concave defect 13A or 13B as described above. It is apparent that the laser beam is incident on the silicon wafer 11 at a low angle, that is, at a small (shallow) angle with respect to the surface of the silicon wafer 11, for example, about 20 °. Alternatively, the level differs depending on whether the light is incident at a high incidence, that is, at a large (deep) angle with respect to the surface of the silicon wafer 11, for example, at an angle of about 45 °.
[0010]
FIG. 7 is a diagram showing a comparison between the pulse signal heights when the laser beam is incident at a low incident angle and when the laser beam is incident at a high incident angle. The case of degree is represented by S-low, and the case of high incidence, that is, about 45 °, is represented by S-high.
[0011]
As is clear from the figure, the scattered light intensity, that is, the height of the pulse signal, is higher in the case of high incidence than in the case of low incidence and the case of high incidence.
[0012]
When the object to be inspected is a foreign substance (particle), the obtained pulse signal is S-low 、 S-high, and may be at a low incidence or at a high incidence. However, the inspection object is a crystal originated particle (COP). In the case of (1), the obtained pulse signal satisfies S-low <S-high and needs to have high incidence.
[0013]
The surface foreign matter inspection apparatus uses an Ar ion laser of a biaxial optical system, and the wavelength λ is 488 [nm] at low incidence and 514 [nm] at high incidence. The comparison is performed by comparing two signals, a scattered light detection signal due to a low incident beam and a scattered light detection signal due to a high incident beam, and in the separation algorithm, the comparison is performed using the peak value of the scattered light detection signal (pulse signal). .
As is apparent from the above description, when inspecting the unevenness of the semiconductor wafer, it is necessary to change the setting of the inspection apparatus depending on the type of the unevenness to be inspected, and therefore the calibration must be performed. Must.
[0015]
Conventionally, there is an invention that quantitatively inspects the depth and width of a scratch generated when a semiconductor wafer is polished by a CMP method and feeds it back to a semiconductor device manufacturing process to improve the product manufacturing yield. (For example, see Patent Document 1).
[0016]
In this case, an inspection device similar to the above-described inspection device is used. However, it is necessary to calibrate the inspection device, and the calibration is performed by using a focused ion beam (FIB). An inspection standard sample having a pseudo-processing mark (for example, see Patent Document 1) is used.
[0017]
However, calibrating an inspection apparatus using the above-mentioned known inspection standard sample cannot cope with calibration for inspecting a crystal defect.
[0018]
[Patent Document 1]
JP 2000-58606 A
[Problems to be solved by the invention]
According to the present invention, a calibration standard sample in which recesses very similar to crystal defects are arranged is realized, and the calibration of an inspection apparatus for inspecting crystal defects can be performed with high accuracy.
[0020]
[Means for Solving the Problems]
In the calibration standard sample according to the present invention, quadrangular pyramid-shaped recesses having a size different from that of a crystal defect are arranged and formed by anisotropic etching on a Si wafer having a plane index of (110). It is based on becoming.
[0021]
By adopting the above-described means, it is possible to carry out calibration with high accuracy when inspecting crystal defects with an inspection device for inspecting unevenness of a semiconductor wafer using a laser, and to perform crystal defect inspection which has not been conventionally performed. The inspection can be easily performed, which can contribute to improvement in the manufacturing yield of the semiconductor device.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
FIG. 1 is a plan view of a principal part showing a calibration standard sample according to a first embodiment of the present invention. In the drawing, 1 is a wafer made of Si whose plane index is (110), and 2 is a crystal. A quadrangular pyramid-shaped recess approximating a defect, a twin quadrangular pyramid-shaped recess closest to an existing crystal defect, and a groove-shaped recess approximating a scratch caused by CMP are shown.
[0023]
FIGS. 2A and 2B are main part explanatory views for explaining in detail each of the recesses described with reference to FIG. 1, wherein FIG. 2A shows a main part plane and FIG. Note that the same symbols as those used in FIG. 1 represent the same parts or have the same meanings.
[0024]
In the figure, 2A to 2E are quadrangular pyramidal depressions approximated to crystal defects, 3A to 3E are twin quadrangular pyramid depressions most similar to existing crystal defects, and 4A to 4D are approximate to scratches caused by CMP. The groove-shaped recess D indicates the depth in the quadrangular pyramid-shaped recess, respectively.
[0025]
The dimensions of one side of a square corresponding to the bottom surface in the quadrangular pyramid-shaped recesses 2A to 2E are exemplified as 2A = 0.10 [μm], 2B = 0.20 [μm], 2C = 0.30 [μm] 2D = 0.40 [μm], 2E = 0.50 [μm], and the depth is 0.10 [μm] to 0.50 [μm].
[0026]
One of the twin pyramidal recesses 3A to 3E in the twin quadrangular pyramidal recesses 3A to 3E has the same dimensions as the quadrangular pyramidal recesses 2A to 2E. The reason why the quadrangular pyramid-shaped recess is formed as a twin is that the crystal defects actually generated exist in a twin state, which is the calibration standard sample of the present invention. This is a great feature of
[0027]
To illustrate the dimensions of the groove-shaped recesses 4A to 4D, all widths are the same at 0.10 [μm], but lengths are 4A = 0.20 [μm] and 4B = 0.30 [μm]. 4C = 0.40 [μm], 4D = 0.50 [μm].
[0028]
One example of a process for producing the calibration standard sample described with reference to FIGS. 1 and 2 is as follows.
(1)
A Si wafer having a plane index of (110) and a thickness of 725 [μm] is prepared.
(2)
By applying the thermal oxidation method, an SiO 2 film having a thickness of, for example, 10 [nm] is formed on the Si wafer.
(3)
By applying a resist process in lithography technology and a dry etching method using CHF 3 + O 2 or CF 4 + H 2 as an etching gas, the resist film is used as a mask to form a SiO 2 film. An opening having a required dimension is formed by etching a portion where the pyramidal recess is to be formed.
(4)
After stripping the resist film, anisotropic etching of the Si wafer is performed using the SiO 2 film as a mask to form a quadrangular pyramid-shaped recess by applying a wet etching method using an etchant of, for example, KOH.
(5)
The SiO 2 film used as an etching mask is removed to realize a calibration standard sample having a pyramid-shaped recess.
[0029]
The addition of a groove-like recess approximating a scratch to the calibration standard sample thus prepared can be realized by excavating a Si wafer by a known means using an FIB (focused ion beam).
[0030]
In the calibration standard sample of the present invention, it is indispensable to have a quadrangular pyramid-shaped recess approximating a crystal defect or a twin quadrangular pyramid-shaped recess. If the groove-shaped recesses 4A to 4D are added, or if standard particles corresponding to foreign matter are added as in Embodiment 2 described below, a large number of calibration standard samples can be used. Inspection can be performed.
[0031]
Embodiment 2
FIG. 3 is a plan view of a main part showing a calibration standard sample according to a second embodiment of the present invention. The same symbols as those used in FIGS. 1 and 2 represent the same parts or have the same meanings. Shall have.
[0032]
The calibration standard sample according to the second embodiment is different from the calibration standard sample according to the first embodiment in that a quadrangular pyramid concave portion 2 similar to a crystal defect and a twin quadrangular pyramid concave portion most similar to an existing crystal defect are provided. The point 3 is that standard particle regions 5A to 5E corresponding to foreign matter are provided in addition to the groove-like concave portions 4 similar to scratches.
[0033]
The standard particles are polystyrene latex (PSL),
Standard particle area 5A: 5,000 standard particles having a diameter of 0.100 [μm] or less are spot-coated.
Standard particle area 5B: 5000 standard particles having a diameter of 0.100 to 0.200 [μm] φ are applied.
Standard particle area 5C: Spot application of 5000 standard particles of 0.200 to 0.300 [μm] φ.
Standard particle area 5D: 5000 standard particles having a diameter of 0.300 to 0.500 [μm] φ are applied.
Standard particle area 5E: 5000 standard particles having a size of 0.500 to 2.000 [μm] φ are applied by spotting.
It is formed as
[0034]
FIG. 4 is an explanatory view of a main part showing a spraying device or the like for explaining the formation of a standard particle region. The same symbols as those used in FIG. 3 represent the same portions or have the same meanings. .
[0035]
In the figure, the container 6, tank fed the N 2 to the container 7, the nozzle 8, 9 heater, 10 have respectively a liquid obtained by dispersing the PSL, the tank 7 the pressure in the pump The PSL is sprayed by time control.
[0036]
FIG. 5 is a diagram showing the laser light scattering intensity of the standard particle region. In this case, the standard particle region is formed by applying 5000 spots of PSL having a diameter of 0.050 [μm].
[0037]
【The invention's effect】
In the calibration standard sample according to the present invention, quadrangular pyramid-shaped recesses having a size different from that of a crystal defect are arranged and formed by anisotropic etching on a Si wafer having a plane index of (110). It is based on becoming.
[0038]
By adopting the above configuration, it is possible to carry out calibration with high accuracy when inspecting a crystal defect with an inspection device that inspects the unevenness of a semiconductor wafer using a laser, and a crystal defect that has not been conventionally performed. The inspection can be easily performed, which can contribute to improvement in the manufacturing yield of the semiconductor device.
[Brief description of the drawings]
FIG. 1 is a main part plan view showing a calibration standard sample according to a first embodiment of the present invention.
FIG. 2 is a main part explanatory view for explaining in detail each recess described with reference to FIG. 1;
FIG. 3 is a plan view showing a main part of a calibration standard sample according to a second embodiment of the present invention.
FIG. 4 is an essential part explanatory view showing a spraying device and the like for explaining formation of a standard particle region.
FIG. 5 is a diagram showing laser light scattering intensity in a standard particle region.
FIG. 6 is an explanatory diagram showing a semiconductor wafer and scattered light intensities obtained by inspecting irregularities on the semiconductor wafer.
FIG. 7 is a diagram showing a comparison between pulse signal heights when a laser beam is incident at a low incident angle and when a laser beam is incident at a high incident angle.
[Explanation of symbols]
1 A wafer made of Si having a plane index of (110) 2 A quadrangular pyramid concave approximating a crystal defect 3 A twin quadrangular pyramid concave closest to an existing crystal defect 4 A groove similar to a scratch caused by CMP Recesses 2A to 2E Square pyramidal recesses 3A to 3E approximate to crystal defects Twin square pyramid recesses 4A to 4D most similar to existing crystal defects Groove-like recesses D approximate to scratches caused by CMP Square pyramid Depth in shape recess

Claims (3)

面指数が(110)であるSiウェーハに結晶欠陥に近似し大きさを異にした四角錐形凹所が異方性エッチングで配列形成されてなること
を特徴とする較正用標準試料。
A calibration standard sample comprising a Si wafer having a plane index of (110) and quadrangular pyramid-shaped recesses having sizes different from each other which are similar to crystal defects and arranged by anisotropic etching.
面指数が(110)であるSiウェーハに結晶欠陥に近似し大きさを異にした四角錐形凹所が異方性エッチングで配列形成され、
同じSiウェーハに結晶欠陥に近似し略同じ大きさの四角錐形凹所の二つが表面の正四角形に於ける一つの角を共有すると共に雁行状に位置してツイン四角錐形凹所を成すと共に該ツイン四角錐形凹所の大きさを異にするものが異方性エッチングで配列形成されてなること
を特徴とする較正用標準試料。
A quadrangular pyramid-shaped recess having a plane index of (110) and having a size different from that of a crystal defect is formed by anisotropic etching on a Si wafer,
Two quadrangular pyramid recesses of approximately the same size, which are similar to crystal defects on the same Si wafer, share one corner of a regular square on the surface and are located in an echelon shape to form a twin quadrangular pyramidal recess And a standard sample for calibration characterized in that the twin quadrangular pyramid-shaped recesses having different sizes are arranged and formed by anisotropic etching.
同じSiウェーハの任意箇所に異物に相当する標準粒子領域が吹き付け形成されてなること
を特徴とする請求項1或いは請求項2記載の較正用標準試料。
3. The standard sample for calibration according to claim 1, wherein a standard particle region corresponding to a foreign substance is sprayed and formed on an arbitrary portion of the same Si wafer.
JP2003061061A 2003-03-07 2003-03-07 Calibration standard Expired - Fee Related JP3925436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061061A JP3925436B2 (en) 2003-03-07 2003-03-07 Calibration standard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061061A JP3925436B2 (en) 2003-03-07 2003-03-07 Calibration standard

Publications (2)

Publication Number Publication Date
JP2004273664A true JP2004273664A (en) 2004-09-30
JP3925436B2 JP3925436B2 (en) 2007-06-06

Family

ID=33123376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061061A Expired - Fee Related JP3925436B2 (en) 2003-03-07 2003-03-07 Calibration standard

Country Status (1)

Country Link
JP (1) JP3925436B2 (en)

Also Published As

Publication number Publication date
JP3925436B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP6135965B2 (en) Method for measuring gas introduction hole provided in electrode for plasma etching apparatus, electrode, method for regenerating electrode, plasma etching apparatus, method for displaying state distribution diagram of gas introduction hole
WO2001084119A1 (en) System and methods for classifying anomalies of sample surfaces
US20130155400A1 (en) Method and device for inspecting for defects
US20130206165A1 (en) Damage Free Cleaning Using Narrow Band Megasonic Cleaning
JP3925436B2 (en) Calibration standard
JP5996674B2 (en) Apparatus for spot size measurement at the wafer level using a knife edge and method for manufacturing such an apparatus
JP7232901B2 (en) Method for fabricating semiconductor wafer features
JP5051527B2 (en) Optical measurement method
WO2010079771A1 (en) Method for manufacturing glass substrate for mask blank, method for manufacturing mask blank and method for manufacturing photomask for exposure
JP4908885B2 (en) Semiconductor device characteristic prediction method and characteristic prediction apparatus
US6333785B1 (en) Standard for calibrating and checking a surface inspection device and method for the production thereof
JP5090379B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, and manufacturing method of photomask for exposure
Malachowski et al. Wafer scale processing of plasmonic nanoslit arrays in 200mm CMOS fab environment
JP3003642B2 (en) Standard sample for calibration of foreign object detection sensitivity and method for producing the same
JP3927780B2 (en) Circuit board manufacturing method
WO2022158394A1 (en) Method for evaluating work-modified layer, and method of manufacturing semiconductor single crystal substrate
JP2000208448A (en) Method and apparatus for manufacturing circuit board
JP4211643B2 (en) Evaluation method of crystal defects
US7817289B2 (en) Methods and apparatus for measuring thickness of etching residues on a substrate
JPH05190628A (en) Manufacture of semiconductor wafer
JP2007165633A (en) Semiconductor device, and method and apparatus for visual inspection
CN108109934A (en) The method for detecting the particle of layer on surface of metal
Hattori Challenges of Smaller Particle Detection on Both Bulk‐Silicon and SOI Wafers
KR20070016210A (en) Method of measuring a surface of a wafer
JPH06334017A (en) Method for inspecting semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Ref document number: 3925436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees