JP2004273318A - Fuel cell warming-up system - Google Patents

Fuel cell warming-up system Download PDF

Info

Publication number
JP2004273318A
JP2004273318A JP2003063817A JP2003063817A JP2004273318A JP 2004273318 A JP2004273318 A JP 2004273318A JP 2003063817 A JP2003063817 A JP 2003063817A JP 2003063817 A JP2003063817 A JP 2003063817A JP 2004273318 A JP2004273318 A JP 2004273318A
Authority
JP
Japan
Prior art keywords
fuel cell
air
hydrogen
fuel
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063817A
Other languages
Japanese (ja)
Inventor
Shinji Ogawa
紳二 小川
Yukihiko Takeda
幸彦 武田
Akira Yamanaka
章 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003063817A priority Critical patent/JP2004273318A/en
Publication of JP2004273318A publication Critical patent/JP2004273318A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell warming-up system capable of warming up the fuel cell within a short time without waiting for increase of temperature of cooling water. <P>SOLUTION: The warming-up system is constructed in a manner that hydrogen can be supplied from a hydrogen supplying system 2 supplying hydrogen H to a fuel passage of the fuel cell 1 to an air supplying system 3 on an upper stream of a catalyst honeycomb 7 by arranging the catalyst honeycomb 7 on the air supplying system 3 supplying air A to an air passage of the fuel cell 1. The fuel cell is warmed up within a short time by introducing a mixed gas of hydrogen and air into the catalyst honeycomb, and making them catalytically combust when starting. It is also possible to arrange the catalyst to the hydrogen supplying system 2 and supply the air from the air supply system 3 to the hydrogen supplying system. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムに関し、特に燃料電池停止時に、運転時よりも燃料電池自体の温度が低下する場合に適用される燃料電池の暖機システムに関する。
【0002】
【従来の技術】
近年、環境問題、特に大気汚染に対する配慮から電気自動車が注目されており、電源として蓄電池を搭載した電気自動車にあっては、既に実用化の段階に入っている。しかしながら、蓄電池式電気自動車は、電池の蓄電能力との関係で走行距離が比較的短く、また充電時間が長い等の問題を有しているため、これを解消し得る電気自動車として、蓄電池に代えて、水素等の燃料と酸素等の酸化性ガスとの電気化学的酸化還元反応により発電する燃料電池を搭載した燃料電池式自動車の実用化が待たれている。
【0003】
燃料電池は、温度が低いと電気化学的酸化還元反応が効率よく行われず十分に発電されず、また、エネルギ変換効率即ち発電効率が高いことから、発電ロスによる発熱が少ないために自己で暖機する能力が小さいという特性を有する。かかる特性のため、燃料電池の起動時、特に冷機状態においては、燃料電池の温度が低いために燃料(水素)と酸素の反応が活発に行われず、未燃の水素が排出されてしまったり、始動直後に十分な車両の動力を得るのが困難であるという問題があった。
【0004】
そのため、従来においては、燃料電池の冷却系の冷却水が貯められる貯水タンク、又は貯水タンクから燃料電池に向けて冷却水を供給する経路に加熱手段を設け、この加熱手段によって始動冷機時に積極的に冷却水を加熱して燃料電池の暖機を促進し、これにより始動冷機時の発電効率を向上するようにした燃料電池の暖機システムが知られている(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平7−94202号公報(第3,4頁、第1,3,7,9,11図)
【0006】
しかしながら、上記従来の燃料電池の暖機システムでは、熱を輸送する作動流体として冷却水を用いるため、停止時に燃料電池本体が冷え切った後の再起動時には、通常運転温度まで加熱するために、膨大なエネルギが必要となる。即ち、冷却系を循環する冷却水は、必要な冷却能力を確保するには大きな熱容量が必要であり、また、この貯水タンクには多量の冷却水が貯められる。このため膨大なヒータ電力を消費することになる上、ヒータ能力の大きなものを用いないと、暖機に時間がかかったり、外気温が低いときに十分に暖機できない。このように従来の暖機システムでは、短時間で起動することが困難であり、再起動時の効率も悪化するという問題がある。
【0007】
【発明が解決しようとする課題】
本発明は、上記問題に鑑みてなされたもので、その目的は、冷却水温度の上昇を待つことなく、直接に燃料電池を暖機することができ、短時間で充分な熱を供給し、燃料電池を短時間で起動することができる燃料電池の暖機システムを提供することである。
【0008】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、特許請求の範囲の各請求項に記載の燃料電池の暖機システムを提供することである。
請求項1に記載の燃料電池の暖機システムは、燃料電池の空気通路に空気を供給する空気供給系に触媒を配置し、燃料電池の燃料通路に水素を供給する水素供給系から、この触媒の上流の空気供給系に水素を供給できるようにしたものである。これにより、再起動時に水素と空気の混合気を触媒に入れて燃焼させ、加熱したガスを燃料電池に供給することで、短時間で燃料電池を暖機して起動させることができる。
【0009】
請求項2に記載の燃料電池の暖機システムは、燃料電池の燃料通路に水素を供給する水素供給系に触媒を配置し、この触媒の上流の水素供給系に空気を供給できるようにしたものであり、請求項1の触媒を空気供給系に配置する代りに、水素供給系に配置したものである。この場合においても、請求項1と同様の作用効果を奏する。
請求項3の該暖機システムは、燃料電池の空気供給系から、触媒の上流の水素供給系に空気が供給できるようにしたものである。
【0010】
請求項4の該暖機システムは、水素供給系にエゼクタを配置すると共に水素ボンベに接続し、この水素ボンベからエゼクタを通過する水素の供給エネルギを利用して空気を吸い込むようにしたものであり、この場合は、空気ポンプを運転して空気を送り込むのに比べ、高圧ボンベのエネルギを利用できるので効率が良い。
【0011】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態の燃料電池の暖機システムについて説明する。図1は、本発明の第1実施形態の燃料電池の暖機システムの全体構成を示す概念図である。燃料電池1は、公知のものであり、その細部については図中に示されていないが、そのセルは、電解質板の一方の面に燃料極を、他方の面に空気極を密着せしめてなり、これらをカーボン等を板状に成形したセパレータが挟持することで構成されている。セパレータの燃焼極又は空気極側の面に形成した凹部により、燃料極側のセパレータと燃料極とを通路壁面として燃料通路が形成され、空気極側のセパレータと空気極を通路壁面として空気通路が形成されている。
【0012】
燃料通路は、燃料電池1の一端側から燃料としての水素等Hがその内部に導入され、余剰水素が他端側から燃料電池1外に排出される水素供給系2の一部をなしている。同様に空気通路は、燃料電池1の一端側から酸化剤としての空気又は酸素等Aがその内部に導入され、反応水を含む余剰空気が他端側から燃料電池1外に排出される空気供給系3の一部をなしている。これら水素供給系2及び空気供給系3については、後に詳述する。
【0013】
燃料電池1には、図では省略されているが更に燃料電池冷却系及び電気系が設けられている。この燃料電池冷却系は、燃料電池1を規定の温度状態に保つために設けられるものであり、冷却水が燃料電池1内の冷却水通路を通って流れる閉回路を形成している。燃料電池冷却系は、ポンプ及びラジエータを備えており、ポンプから排出された冷却水がラジエータによって冷却(燃料電池の熱を外部に放熱)され、冷却水通路を通ることによって燃料電池1を冷却し、その後、ポンプに戻る循環系が形成される。
【0014】
燃料電池1の電気系は、燃料極及び空気極のそれぞれにおける水素及び空気中の酸素との電気化学的酸化還元反応により、両極間に発生した電圧により、モータ、2次電池、インバータ等の電力供給先に給電するように構成されている。
【0015】
次に本発明の特徴である水素供給系2及び空気供給系3について説明する。水素供給系2は、水素Hの供給源である高圧の水素ボンベ4及び絞り5を有しており、水素ボンベ4から送り出される高圧の水素Hが、絞り5によって減圧されて燃料電池1の燃料通路内に供給されるようになっている。一方、空気供給系3は、空気供給用のコンプレッサ6及び触媒ハニカム7を有しており、コンプレッサ6から送り出される空気Aが触媒ハニカム7を通って燃料電池1の空気通路内に供給されるようになっている。
【0016】
更に水素供給系2の絞り5と燃料電池1間には、三方弁8が設けられ、触媒ハニカム7の上流の空気供給系3に接続するバイパス路14が設けられている。これにより、水素供給系2から三方弁8を介して、バイパス路14を通って触媒ハニカム7の手前に水素Hを供給することが可能となる。
また、空気供給系3の燃料電池1の入口及び出口には、それぞれ温度センサ10,11が設けられていて、燃料電池1の入口での空気温度及び出口での空気温度を検出して、電子制御装置(ECU)9に入力する。ECU9は、これらの検出温度に基づいて、三方弁8を制御し、空気供給系3への水素Hの供給量をコントロールする。
【0017】
上記のように構成された第1実施形態の燃料電池の暖機システムの作動について説明する。
燃料電池起動時に、空気用のコンプレッサ6から空気供給系3で空気Aを供給すると同時に、ECU9により三方弁8を切り替えて水素供給系2から水素Hをバイパス路14を通って空気供給系3に混入する。水素Hと空気Aの混合気は、触媒ハニカム7に入り空気Aの一部と水素Hが燃焼する。このとき、水素Hの供給量を、温度センサ10での燃料電池1の空気側の入口温度が燃料電池1の耐熱温度の上限程度になるようにECU9により三方弁8でコントロールする。
その後、温度センサ11での燃料電池1の空気側の出口温度が、燃料電池1を運転できる温度に達したところで、三方弁8を元に戻してバイパス路14を閉じ、通常の発電運転に入る。燃料電池1の冷却水は十分に燃料電池1の温度が上昇してから流し始める。
【0018】
このように、本実施形態では、触媒ハニカム7で触媒燃焼した加熱ガスを直接燃料電池1に導入して燃料電池1を温めているので、従来の冷却水を介して燃料電池を温める方法と違い、冷却水の熱容量分を加熱しなくて済むと共に、電気ヒータ等と違い十分な熱量を燃料電池1に送ることができ、短時間で燃料電池1を起動することができる。
【0019】
図2は、本発明の第2実施形態の燃料電池の暖機システムの全体構成の概念図を示している。図2においても、図1と同様に燃料電池1の細部については図示されておらず、また燃料電池冷却系及び電気系も図示されていないが、第1実施形態と同様の構成をしているものである。
第2実施形態においては、第1実施形態で空気供給系3に設けられていた触媒ハニカム7が水素供給系2に設けられている。即ち、水素供給系2は、水素Hの供給源である高圧の水素ボンベ4、絞り5及び触媒ハニカム7を備えており、水素Hが絞り5、触媒ハニカム7を通って燃料電池1の燃料通路に供給される。一方、空気供給系3は、空気供給用のコンプレッサ6と三方弁8を備えていて、空気Aが三方弁8を通って燃料電池1の空気通路に供給される。また、この三方弁8からはバイパス通路14が分岐して設けられており、このバイパス通路14は絞り5と触媒ハニカム7間の水素供給系2に接続している。従って、三方弁8の切り替えにより、空気Aがバイパス通路14を通って、水素供給系2に供給できるようになっている。更に、水素供給系3の燃料電池1の入口及び出口には、それぞれ温度センサ10,11が設けられていて、燃料電池1の入口での水素温度及び出口での水素温度を検出して、ECU9に入力する。ECU9は、これらの検出温度に基づいて三方弁8を制御し、水素供給系2への空気Aの供給量をコントロールする。
【0020】
図2の第2実施形態の燃料電池の暖機システムの作動は、空気側で触媒燃焼していたものを水素側での触媒燃焼に変えたもので、基本的に第1実施形態の作動と同様である。即ち、燃料電池起動時に、水素ボンベ4から水素Hを供給すると同時に、三方弁8を切り替えて、空気用のコンプレッサ6からバイパス通路14を通って水素供給系2に空気Aを供給する。水素Hと空気Aの混合気は触媒ハニカム7に入り、空気の一部と水素が燃焼する。空気Aの供給量は、燃料電池1の水素側での入口温度が燃料電池1の耐熱温度の上限程度になるようにコントロールする。
その後、温度センサ11で燃料電池1の水素側の出口温度が、燃料電池1を運転できる温度に達したところで、三方弁8を元に戻してバイパス路14を閉じ、通常の発電運転に入る。燃料電池1の冷却水は十分に燃料電池1の温度が上昇してから流し始める。
【0021】
このように、第2実施形態においては、起動時に空気Aを水素供給系2に送り、触媒燃焼させて、この発熱ガスを直接燃料電池1に導入して燃料電池1を暖機している。
【0022】
図3は、本発明の第3実施形態の燃料電池の暖機システムの全体構成の概念図を示している。この第3実施形態では、図2の第2実施形態のシステムで空気供給系3から空気Aを取り入れる代りに、水素供給系2の触媒ハニカム7の手前にエゼクタ12を設置し、高圧水素ボンベ4のエネルギを利用し、エゼクタ12を介して外部から空気Aを水素供給系2内に吸い込むようにしたものである。即ち、第2実施形態の三方弁8及びバイパス通路14が取り除かれ、水素供給系2の絞り5と触媒ハニカム7との間にエゼクタ12が設置される。エゼクタ12には、外部から空気を吸い込む系路15が設けられ、この系路15にECU9からの信号によって制御されるバルブ13が配設されている。他の構成は、第2実施形態と同様である。
【0023】
第3実施形態のシステムの作動は、第2実施形態の三方弁8の作動の代りにバルブ13を作動する点が異なるのみである。即ち、燃料電池起動時にバルブ13を開いて、エゼクタ12を利用して外部から空気を水素供給系2内に吸い込む。水素Hと空気Aの混合気は触媒ハニカム7で触媒燃焼し、その加熱ガスが燃料電池1に導入されて燃料電池1を短時間で暖機する。
この第3実施形態では、第1、第2実施形態の空気供給用のコンプレッサ4を運転するのに比べ、高圧水素ベンベ4のエネルギを利用できるので、エネルギ効率がよい。
【0024】
以上説明したように、本発明では、燃料電池に供給するガスの一部を触媒燃焼し、加熱したガスを直接燃料電池に供給することによって、冷却水温度が上昇しなくても直接燃料電池を暖機することができる。また、熱源が触媒燃焼であることから、短時間に充分な熱を供給でき、燃料電池を短時間で起動させることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の燃料電池の暖機システムの全体構成を示す概念図である。
【図2】本発明の第2実施形態の燃料電池の暖機システムの全体構成を示す概念図である。
【図3】本発明の第3実施形態の燃料電池の暖機システムの全体構成を示す概念図である。
【符号の説明】
1…燃料電池
2…水素供給系
3…空気供給系
4…水素ボンベ
5…絞り
6…空気供給用コンプレッサ
7…触媒ハニカム
8…三方弁
9…電子制御装置(ECU)
10,11…温度センサ
12…エゼクタ
13…バルブ
14…バイパス通路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell system, and more particularly to a fuel cell warm-up system applied when the temperature of the fuel cell itself is lower than during operation when the fuel cell is stopped.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electric vehicles have attracted attention due to consideration of environmental problems, particularly air pollution, and electric vehicles equipped with a storage battery as a power supply have already entered the stage of practical use. However, the storage battery type electric vehicle has problems such as a relatively short traveling distance and a long charging time in relation to the storage capacity of the battery. Therefore, the practical use of a fuel cell vehicle equipped with a fuel cell that generates power by an electrochemical redox reaction between a fuel such as hydrogen and an oxidizing gas such as oxygen is expected.
[0003]
When the temperature is low, the electrochemical oxidation-reduction reaction is not performed efficiently at a low temperature, and power is not sufficiently generated. In addition, since the energy conversion efficiency, that is, the power generation efficiency is high, the heat generated by the power generation loss is small, and the fuel cell is warmed up by itself. It has the characteristic that the ability to perform is small. Due to such characteristics, when the fuel cell is started, particularly in a cold state, the reaction between fuel (hydrogen) and oxygen is not actively performed due to the low temperature of the fuel cell, and unburned hydrogen is discharged. There is a problem that it is difficult to obtain sufficient vehicle power immediately after starting.
[0004]
Therefore, conventionally, a heating means is provided in a water storage tank in which cooling water of a cooling system of a fuel cell is stored, or in a path for supplying cooling water from the water storage tank to the fuel cell, and the heating means actively uses the heating means during start-up cooling. There is known a fuel cell warm-up system in which cooling water is heated to promote warm-up of the fuel cell, thereby improving power generation efficiency at the time of start-up cooling (for example, see Patent Document 1). .
[0005]
[Patent Document 1]
JP-A-7-94202 (pages 3, 4 and 1, 3, 7, 9, 11)
[0006]
However, in the above-described conventional fuel cell warm-up system, since cooling water is used as a working fluid for transporting heat, when restarting after the fuel cell body has completely cooled down at the time of stop, in order to heat up to the normal operating temperature, A huge amount of energy is required. That is, the cooling water circulating in the cooling system needs a large heat capacity to secure a required cooling capacity, and a large amount of cooling water is stored in this water storage tank. For this reason, enormous amount of heater power is consumed, and unless a heater having a large heater capacity is used, it takes a long time to warm up or cannot sufficiently warm up when the outside air temperature is low. As described above, the conventional warm-up system has a problem that it is difficult to start up in a short time, and the efficiency at the time of restarting is also deteriorated.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and its object is to directly warm up a fuel cell without waiting for a rise in cooling water temperature, to supply sufficient heat in a short time, An object of the present invention is to provide a fuel cell warm-up system that can start a fuel cell in a short time.
[0008]
[Means for Solving the Problems]
An object of the present invention is to provide a fuel cell warm-up system described in each claim as means for solving the above-mentioned problem.
The warm-up system for a fuel cell according to claim 1, wherein a catalyst is disposed in an air supply system that supplies air to an air passage of the fuel cell, and the catalyst is supplied from a hydrogen supply system that supplies hydrogen to a fuel passage of the fuel cell. Hydrogen can be supplied to the air supply system upstream of. Thus, at the time of restart, the mixture of hydrogen and air is put into the catalyst and burned, and the heated gas is supplied to the fuel cell, so that the fuel cell can be warmed up and started in a short time.
[0009]
A fuel cell warm-up system according to claim 2, wherein a catalyst is disposed in a hydrogen supply system that supplies hydrogen to a fuel passage of the fuel cell, and air can be supplied to a hydrogen supply system upstream of the catalyst. Wherein the catalyst of claim 1 is arranged in a hydrogen supply system instead of being arranged in an air supply system. In this case, the same operation and effect as those of the first aspect can be obtained.
According to a third aspect of the present invention, air can be supplied from an air supply system of the fuel cell to a hydrogen supply system upstream of the catalyst.
[0010]
In the warming-up system according to a fourth aspect of the present invention, an ejector is arranged in the hydrogen supply system and connected to a hydrogen cylinder, and air is sucked from the hydrogen cylinder by using supply energy of hydrogen passing through the ejector. In this case, the energy of the high-pressure cylinder can be used more efficiently than when the air pump is operated to feed air.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a fuel cell warm-up system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing an overall configuration of a fuel cell warm-up system according to a first embodiment of the present invention. The fuel cell 1 is a known type, and details thereof are not shown in the drawing. However, the fuel cell 1 has a fuel electrode adhered to one surface of an electrolyte plate and an air electrode adhered to the other surface. These are sandwiched by a separator formed by molding carbon or the like into a plate shape. A fuel passage is formed by using a separator formed on the fuel electrode side and the fuel electrode as a passage wall surface, and a fuel passage is formed using the separator on the air electrode side and the air electrode as a passage wall surface. Is formed.
[0012]
The fuel passage forms a part of a hydrogen supply system 2 into which hydrogen or the like H as fuel is introduced from one end of the fuel cell 1 and excess hydrogen is discharged from the other end to the outside of the fuel cell 1. . Similarly, in the air passage, air or oxygen such as oxygen or oxidant A is introduced into the inside of the fuel cell 1 from one end side, and excess air including reaction water is discharged from the other end side to the outside of the fuel cell 1. Part of system 3. The hydrogen supply system 2 and the air supply system 3 will be described later in detail.
[0013]
Although not shown in the figure, the fuel cell 1 is further provided with a fuel cell cooling system and an electric system. This fuel cell cooling system is provided to keep the fuel cell 1 at a specified temperature state, and forms a closed circuit in which cooling water flows through a cooling water passage in the fuel cell 1. The fuel cell cooling system includes a pump and a radiator. Cooling water discharged from the pump is cooled by the radiator (heat of the fuel cell is radiated to the outside), and the fuel cell 1 is cooled by passing through a cooling water passage. A circulation system is then formed which returns to the pump.
[0014]
The electric system of the fuel cell 1 uses the voltage generated between the two electrodes by the electrochemical oxidation-reduction reaction with hydrogen in the fuel electrode and the oxygen in the air with the oxygen in the air, and the electric power of the motor, the secondary battery, the inverter, etc. It is configured to supply power to the supply destination.
[0015]
Next, the hydrogen supply system 2 and the air supply system 3 which are features of the present invention will be described. The hydrogen supply system 2 has a high-pressure hydrogen cylinder 4 as a supply source of hydrogen H and a throttle 5, and the high-pressure hydrogen H sent from the hydrogen cylinder 4 is depressurized by the throttle 5 and the fuel of the fuel cell 1 is reduced. It is supplied in the passage. On the other hand, the air supply system 3 has a compressor 6 for supplying air and a catalyst honeycomb 7 so that air A sent from the compressor 6 is supplied to the air passage of the fuel cell 1 through the catalyst honeycomb 7. It has become.
[0016]
Further, a three-way valve 8 is provided between the throttle 5 of the hydrogen supply system 2 and the fuel cell 1, and a bypass 14 connected to the air supply system 3 upstream of the catalyst honeycomb 7 is provided. This makes it possible to supply hydrogen H from the hydrogen supply system 2 to the catalyst honeycomb 7 via the bypass passage 14 via the three-way valve 8.
Further, temperature sensors 10 and 11 are provided at the inlet and the outlet of the fuel cell 1 of the air supply system 3, respectively, and detect the air temperature at the inlet and the air temperature at the outlet of the fuel cell 1 to detect the temperature. Input to the control device (ECU) 9. The ECU 9 controls the three-way valve 8 based on these detected temperatures, and controls the amount of hydrogen H supplied to the air supply system 3.
[0017]
The operation of the fuel cell warm-up system according to the first embodiment configured as described above will be described.
When the fuel cell is started, the air A is supplied from the air compressor 6 to the air supply system 3 by the air supply system 3, and the ECU 9 switches the three-way valve 8 to transfer hydrogen H from the hydrogen supply system 2 to the air supply system 3 through the bypass 14. Mixed. A mixture of hydrogen H and air A enters the catalyst honeycomb 7 and a part of the air A and hydrogen H are burned. At this time, the supply amount of the hydrogen H is controlled by the three-way valve 8 by the ECU 9 so that the inlet temperature of the air side of the fuel cell 1 at the temperature sensor 10 becomes about the upper limit of the heat-resistant temperature of the fuel cell 1.
Thereafter, when the outlet temperature of the fuel cell 1 on the air side at the temperature sensor 11 reaches a temperature at which the fuel cell 1 can be operated, the three-way valve 8 is returned to the original position, the bypass 14 is closed, and the normal power generation operation is started. . The cooling water of the fuel cell 1 starts flowing after the temperature of the fuel cell 1 is sufficiently increased.
[0018]
As described above, in the present embodiment, the heating gas catalytically combusted by the catalyst honeycomb 7 is directly introduced into the fuel cell 1 to heat the fuel cell 1, and thus differs from the conventional method of heating the fuel cell via cooling water. In addition, it is not necessary to heat the heat capacity of the cooling water, and a sufficient amount of heat can be sent to the fuel cell 1 unlike an electric heater or the like, so that the fuel cell 1 can be started in a short time.
[0019]
FIG. 2 is a conceptual diagram of the overall configuration of a fuel cell warm-up system according to a second embodiment of the present invention. 2, the details of the fuel cell 1 are not shown similarly to FIG. 1, and the fuel cell cooling system and the electric system are not shown, but have the same configuration as that of the first embodiment. Things.
In the second embodiment, the catalyst honeycomb 7 provided in the air supply system 3 in the first embodiment is provided in the hydrogen supply system 2. That is, the hydrogen supply system 2 includes a high-pressure hydrogen cylinder 4, which is a supply source of hydrogen H, a throttle 5, and a catalyst honeycomb 7. The hydrogen H passes through the throttle 5, the catalyst honeycomb 7, and the fuel passage of the fuel cell 1. Supplied to On the other hand, the air supply system 3 includes a compressor 6 for supplying air and a three-way valve 8, and air A is supplied to the air passage of the fuel cell 1 through the three-way valve 8. A bypass passage 14 branches off from the three-way valve 8, and the bypass passage 14 is connected to the hydrogen supply system 2 between the throttle 5 and the catalyst honeycomb 7. Therefore, by switching the three-way valve 8, the air A can be supplied to the hydrogen supply system 2 through the bypass passage 14. Further, temperature sensors 10 and 11 are provided at the inlet and the outlet of the fuel cell 1 of the hydrogen supply system 3, respectively, to detect the hydrogen temperature at the inlet and the hydrogen temperature at the outlet of the fuel cell 1, and the ECU 9 To enter. The ECU 9 controls the three-way valve 8 based on these detected temperatures, and controls the supply amount of the air A to the hydrogen supply system 2.
[0020]
The operation of the fuel cell warm-up system according to the second embodiment shown in FIG. 2 is the same as that of the first embodiment except that catalytic combustion on the air side is changed to catalytic combustion on the air side. The same is true. That is, when the fuel cell is started, the hydrogen H is supplied from the hydrogen cylinder 4, and at the same time, the three-way valve 8 is switched to supply the air A from the air compressor 6 to the hydrogen supply system 2 through the bypass passage 14. A mixture of hydrogen H and air A enters the catalyst honeycomb 7, and a part of the air and hydrogen are burned. The supply amount of the air A is controlled so that the inlet temperature on the hydrogen side of the fuel cell 1 is about the upper limit of the heat-resistant temperature of the fuel cell 1.
Thereafter, when the temperature of the fuel cell 1 on the hydrogen side reaches a temperature at which the fuel cell 1 can be operated by the temperature sensor 11, the three-way valve 8 is returned to the original position, the bypass 14 is closed, and the normal power generation operation is started. The cooling water of the fuel cell 1 starts flowing after the temperature of the fuel cell 1 is sufficiently increased.
[0021]
As described above, in the second embodiment, the air A is sent to the hydrogen supply system 2 at the time of start-up, catalytically combusted, and the exothermic gas is directly introduced into the fuel cell 1 to warm up the fuel cell 1.
[0022]
FIG. 3 is a conceptual diagram of the overall configuration of a fuel cell warm-up system according to a third embodiment of the present invention. In the third embodiment, instead of taking in the air A from the air supply system 3 in the system of the second embodiment in FIG. 2, an ejector 12 is installed in front of the catalyst honeycomb 7 of the hydrogen supply system 2, and the high-pressure hydrogen cylinder 4 The air A is sucked into the hydrogen supply system 2 from the outside through the ejector 12 using the energy of the air. That is, the three-way valve 8 and the bypass passage 14 of the second embodiment are removed, and the ejector 12 is installed between the throttle 5 of the hydrogen supply system 2 and the catalyst honeycomb 7. The ejector 12 is provided with a system path 15 for sucking air from outside, and a valve 13 controlled by a signal from the ECU 9 is provided in the system path 15. Other configurations are the same as in the second embodiment.
[0023]
The operation of the system of the third embodiment is different from the operation of the three-way valve 8 of the second embodiment only in that the valve 13 is operated instead of the operation of the three-way valve 8. That is, when the fuel cell is started, the valve 13 is opened, and air is sucked into the hydrogen supply system 2 from outside using the ejector 12. The mixture of hydrogen H and air A is catalytically combusted by the catalyst honeycomb 7, and the heated gas is introduced into the fuel cell 1 to warm up the fuel cell 1 in a short time.
In the third embodiment, the energy of the high-pressure hydrogen reactor 4 can be used, so that the energy efficiency is higher than when the air supply compressor 4 of the first and second embodiments is operated.
[0024]
As described above, in the present invention, a part of the gas supplied to the fuel cell is catalytically combusted, and the heated gas is directly supplied to the fuel cell. Can be warmed up. Further, since the heat source is catalytic combustion, sufficient heat can be supplied in a short time, and the fuel cell can be started in a short time.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an overall configuration of a fuel cell warm-up system according to a first embodiment of the present invention.
FIG. 2 is a conceptual diagram showing an overall configuration of a fuel cell warm-up system according to a second embodiment of the present invention.
FIG. 3 is a conceptual diagram showing an overall configuration of a fuel cell warm-up system according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Hydrogen supply system 3 ... Air supply system 4 ... Hydrogen cylinder 5 ... Restrictor 6 ... Air supply compressor 7 ... Catalyst honeycomb 8 ... Three-way valve 9 ... Electronic control unit (ECU)
10, 11 temperature sensor 12 ejector 13 valve 14 bypass passage

Claims (4)

電解質板の一方の面に燃料極を他方の面に空気極を有するセルをセパレータによって両側から挟み込み、燃料極側に燃料通路が、空気極側に空気通路が形成されている燃料電池が、その内部にさらに冷却水通路を有していて、冷却水が該冷却水通路を通って循環し、燃料電池を加温或いは冷却する燃料電池冷却系とを備えている燃料電池の暖機システムにおいて、
前記燃料電池の前記空気通路に空気を供給する空気供給系に触媒を配置し、前記燃料電池の前記燃料通路に水素を供給する水素供給系から、前記触媒の上流の前記空気供給系に水素を供給できるようにすることを特徴とする燃料電池の暖機システム。
A fuel cell in which a cell having a fuel electrode on one side of the electrolyte plate and an air electrode on the other side is sandwiched between separators from both sides, and a fuel passage having a fuel passage on the fuel electrode side and an air passage on the air electrode side. A fuel cell warm-up system further comprising a cooling water passage therein, wherein the cooling water circulates through the cooling water passage, and includes a fuel cell cooling system for heating or cooling the fuel cell.
A catalyst is disposed in an air supply system that supplies air to the air passage of the fuel cell, and hydrogen is supplied from the hydrogen supply system that supplies hydrogen to the fuel passage of the fuel cell to the air supply system upstream of the catalyst. A warm-up system for a fuel cell, characterized in that it can be supplied.
電解質板の一方の面に燃料極を他方の面に空気極を有するセルをセパレータによって両側から挟み込み、燃料極側に燃料通路が、空気極側に空気通路が形成されている燃料電池が、その内部にさらに冷却水通路を有していて、冷却水が該冷却水通路を通って循環し、燃料電池を加温或いは冷却する燃料電池冷却系とを備えている燃料電池の暖機システムにおいて、
前記燃料電池の前記燃料通路に水素を供給する水素供給系に触媒を配置し、前記触媒の上流の前記水素供給系に空気を供給できるようにすることを特徴とする燃料電池の暖機システム。
A fuel cell in which a cell having a fuel electrode on one side of the electrolyte plate and an air electrode on the other side is sandwiched between separators from both sides, and a fuel passage having a fuel passage on the fuel electrode side and an air passage on the air electrode side. A fuel cell warm-up system further comprising a cooling water passage therein, wherein the cooling water circulates through the cooling water passage, and includes a fuel cell cooling system for heating or cooling the fuel cell.
A warm-up system for a fuel cell, wherein a catalyst is disposed in a hydrogen supply system that supplies hydrogen to the fuel passage of the fuel cell, and air can be supplied to the hydrogen supply system upstream of the catalyst.
前記燃料電池の前記空気通路に空気を供給する空気供給系から、前記触媒の上流の前記水素供給系に空気を供給できるようにすることを特徴とする請求項2に記載の燃料電池の暖機システム。The warm-up of a fuel cell according to claim 2, wherein air can be supplied to the hydrogen supply system upstream of the catalyst from an air supply system that supplies air to the air passage of the fuel cell. system. 前記水素供給系にエゼクタを配置すると共に水素ボンベに接続し、前記水素ボンベから前記エゼクタを通過する水素の供給エネルギを用いて空気を吸い込むことを特徴とする請求項2に記載の燃料電池の暖機システム。3. The fuel cell according to claim 2, wherein an ejector is arranged in the hydrogen supply system and connected to a hydrogen cylinder, and air is sucked from the hydrogen cylinder using supply energy of hydrogen passing through the ejector. Machine system.
JP2003063817A 2003-03-10 2003-03-10 Fuel cell warming-up system Pending JP2004273318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063817A JP2004273318A (en) 2003-03-10 2003-03-10 Fuel cell warming-up system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063817A JP2004273318A (en) 2003-03-10 2003-03-10 Fuel cell warming-up system

Publications (1)

Publication Number Publication Date
JP2004273318A true JP2004273318A (en) 2004-09-30

Family

ID=33125306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063817A Pending JP2004273318A (en) 2003-03-10 2003-03-10 Fuel cell warming-up system

Country Status (1)

Country Link
JP (1) JP2004273318A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038738A (en) * 2004-11-09 2012-02-23 Dainippon Printing Co Ltd Cogeneration system using fuel cell
JP2012227065A (en) * 2011-04-21 2012-11-15 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2013093236A (en) * 2011-10-26 2013-05-16 Dainippon Printing Co Ltd Power generator
CN111474971A (en) * 2020-04-28 2020-07-31 宁波奥克斯电气股份有限公司 Control method for preventing excessive low water flow and water supply machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038738A (en) * 2004-11-09 2012-02-23 Dainippon Printing Co Ltd Cogeneration system using fuel cell
JP2012227065A (en) * 2011-04-21 2012-11-15 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2013093236A (en) * 2011-10-26 2013-05-16 Dainippon Printing Co Ltd Power generator
CN111474971A (en) * 2020-04-28 2020-07-31 宁波奥克斯电气股份有限公司 Control method for preventing excessive low water flow and water supply machine
CN111474971B (en) * 2020-04-28 2021-08-24 宁波奥克斯电气股份有限公司 Control method for preventing excessive low water flow and water supply machine

Similar Documents

Publication Publication Date Title
CN110957503B (en) Air heating reflux system for low-temperature starting of fuel cell and control method
CN111785992B (en) Mixed low-temperature cold start control method for fuel cell vehicle
US7901823B2 (en) Fuel cell employing cooling liquid passages for starting at low temperature
CN111403772B (en) Cold starting device of fuel cell and control method thereof
US7179556B2 (en) Fuel cell system
JP3975052B2 (en) Start-up control device for fuel cell for electric vehicle
WO2013139104A1 (en) Thermal management system for fuel cell, and fuel cell system and vehicle having same
JP4987194B2 (en) Fuel cell
JP2004332596A (en) Thermoelectric generating set
CN113964340A (en) System and method for low-temperature quick cold start of fuel cell and vehicle
JP4178849B2 (en) Fuel cell system
JP2004296351A (en) Fuel cell system
JP2006051852A (en) Heating system for hybrid vehicle
JP2004273318A (en) Fuel cell warming-up system
JP3951813B2 (en) Fuel cell warm-up system
JP2004171881A (en) Fuel cell system
JP2004319363A (en) Fuel cell system and its operation method
JP4534281B2 (en) Fuel cell system
WO2008044481A1 (en) Fuel cell system
JP4864225B2 (en) Fuel cell
JP4123990B2 (en) Fuel cell warm-up system
JP4670316B2 (en) Fuel cell system
JP2008293756A (en) Fuel cell system and its operation method
JP5268371B2 (en) Fuel cell vehicle
JP2008293755A (en) Fuel cell system and its operation method