JP2004273259A - Epoxy insulator manufacturing device for high voltage equipment and epoxy insulator for high voltage equipment - Google Patents

Epoxy insulator manufacturing device for high voltage equipment and epoxy insulator for high voltage equipment Download PDF

Info

Publication number
JP2004273259A
JP2004273259A JP2003061975A JP2003061975A JP2004273259A JP 2004273259 A JP2004273259 A JP 2004273259A JP 2003061975 A JP2003061975 A JP 2003061975A JP 2003061975 A JP2003061975 A JP 2003061975A JP 2004273259 A JP2004273259 A JP 2004273259A
Authority
JP
Japan
Prior art keywords
epoxy
filler
casting mold
epoxy insulator
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003061975A
Other languages
Japanese (ja)
Inventor
Kenichi Nojima
健一 野嶋
Nobumitsu Kobayashi
伸光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMT & D KK
Original Assignee
TMT & D KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TMT & D KK filed Critical TMT & D KK
Priority to JP2003061975A priority Critical patent/JP2004273259A/en
Publication of JP2004273259A publication Critical patent/JP2004273259A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent uneven distribution of a filler due to its sedimentation, and improve a superior DC voltage-proof performance. <P>SOLUTION: A filler-blended epoxy resin in which epoxy resin and the filler are stirred and mixed is injected from an injection port 2 into a casting mold 1. Then, by rotating the casting mold 1 with a right shaft 4a and a left shaft 4b as the center, that is, by rotating it 180° so that the side at which the injection port 2 of the casting mold 1 may be turned in a direction of a placement table 6, the filler in a casting room 9 is made to move in an inversed direction to that before inversion, and the filler is made to be returned in a homogeneous state before its sedimentation, and the epoxy resin is made to be cured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧が印加される導体を支持する高電圧機器用エポキシ絶縁物を製造する高電圧機器用エポキシ絶縁物製造装置に関する。
【0002】
【従来の技術】
図8は、高電圧機器用エポキシ絶縁物21の実装例および内部の直流電位分布を示す説明図である。
一般に、高電圧機器においては、高電圧が印加される金属の高電圧導体22は高電圧機器用エポキシ絶縁物(以下、エポキシ絶縁物)21によって支持されて接地面と絶縁されている。そして、ガス絶縁高電圧機器は、絶縁性ガス23を充填した密閉容器24内に、高電圧導体22をエポキシ絶縁物21の支持部材25により支持し配置した構造(図8参照)となっている。エポキシ絶縁物21には、高電圧導体22を介して印加される電圧とエポキシ絶縁物21の形状,材質およびエポキシ絶縁物21の周辺の電極配置とから決まる電界が印加されるので、高電圧機器の絶縁信頼性を確保するためにはエポキシ絶縁物21への印加電界を、エポキシ絶縁物21が絶縁破壊を生じる電界以下に抑えることが必要である。
【0003】
図9は、直流電圧送電系統の回路における開放遮断器26および開放操作断路器27が設けられた部分を示す説明図である。
この図9に示す開放遮断器26は高電圧導体22の一端に接続され、開放操作断路器27は高電圧導体22の他端に接続される。
【0004】
図10は、開放操作断路器27の開放時における残留直流電圧を示す説明図である。
図8に示すガス絶縁高電圧機器は、交流電圧送電系統だけでなく直流電圧送電系統にも適用されている。直流電圧送電系統に用いられる高電圧機器はもちろん、交流電圧送電系統に用いられる高電圧機器においても、送電系統の回路における開放遮断器26を開放操作した後に発生する残留直流電圧(図10参照)のように直流電圧が印加される場合がある。
【0005】
直流電圧送電系統の回路において、開放状態の開放遮断器26に隣接する開放操作断路器27を開放する場合(図9参照)、図10に示すように、電源電圧に対して、開放操作断路器27と開放遮断器26との間の回路28の電圧である回路電圧29が発生する。この回路電圧29は、開放操作断路器27の開放途中の状態における電圧を示しており、開放操作断路器27が完全に開き終わると、この開き終わった時点での回路電圧29が残留直流電圧として、該開放操作断路器27と開放遮断器26に接続される高電圧導体22に残留する。特にガス絶縁高電圧機器においては、絶縁性ガス23の優秀な絶縁性能に起因して残留直流電圧の減衰が小さく、交流電圧機器においても直流耐電圧特性が重要になってくる。
【0006】
絶縁物に直流電圧が印加されると、絶縁物に沿った電位分布は、絶縁物の抵抗分布によって決まる電位分布となる。図8に示すように、ガス絶縁高電圧機器に使用されるエポキシ絶縁物21においても、抵抗分布によって決まる電位分布となり、これに対応した電界が印加される。
【0007】
図11は、従来の高電圧機器用エポキシ絶縁物製造装置の注形型30内部における充填剤31の動きを示す説明図である。
一方、エポキシ絶縁物21を製造する際には、耐分解ガス性の向上等の目的で、アルミナ等の充填剤(添加剤)31をエポキシ樹脂32に混合させる場合が多い。充填剤31とエポキシ樹脂32とは、あらかじめ十分に攪拌混合されて、注形のための注形型30内に流し込まれる。エポキシ絶縁物21の形状は、自らを密閉容器24内に支持し易くすることを目的として一般に凹凸を持った複雑な形状であるため、図11に示すように、注形型30もこれに応じた凹凸を有している。このような注形型30に、エポキシ樹脂32と充填剤31とを注入口33から注形室34内に注入して、適切な温度や時間等の条件を制御して硬化させ、所要の形状のエポキシ絶縁物21を製造する(例えば、特許文献1参照。)。
【0008】
【特許文献1】
特開昭54−40857号公報(第1−3頁、第1図)
【0009】
【発明が解決しようとする課題】
このように、エポキシ樹脂32と充填剤31とを混合し硬化させて製造したエポキシ絶縁物21においては、次のような問題がある。
一般にアルミナ等の充填剤31はエポキシ樹脂32よりも比重が大きい。このため、充填剤31はエポキシ樹脂32が硬化するまので間に、重力によって下方に沈降する傾向をもつ。注形型30に図11に示すような凹凸が存在すると、充填剤31は、図11中のA部およびB部に沈降・堆積しやすく、この部分ではエポキシ絶縁物21に対する充填剤31の含有比率が大きくなりやすい。
【0010】
一方、充填剤31を混合させたエポキシ樹脂32においては、エポキシ樹脂32と充填剤31との界面の物性が注形品の電気的・機械的な特性に大きな影響を与えることが知られている。界面の抵抗値はエポキシ樹脂32内部や充填剤31内部のそれと比較して相対的に小さくなりやすく、充填剤31の密度の高い部分の導電率や誘電率は、充填剤31の密度の低い部分の導電率や誘電率に比べて相対的に小さくなる傾向にある。この結果、エポキシ樹脂32に対する充填剤31の含有比率に偏りができると、エポキシ樹脂32が硬化したエポキシ絶縁物21の抵抗率や誘電率の分布にも偏りが生じることになる。このように抵抗率や誘電率の分布に偏りが存在するエポキシ絶縁物21に直流電圧が印加されると、内部の電位分布が変歪して、部分的な電界集中を生じる可能性がある。
【0011】
現在、ガス絶縁高電圧機器の地下変電所等への適用の広まりに伴ってそのコンパクト化の要請はますます高まっており、寸法が小さくて耐電圧性能のすぐれたエポキシ絶縁物21の必要性が増している。充填剤31の含有率に大きな偏りが存在すると、直流電圧印加時の電界集中を考慮した絶縁設計を行う必要があり、耐直流電圧性能の優れたコンパクトなエポキシ絶縁物21を提供する上での課題となっていた。
【0012】
本発明は、充填剤を混合したエポキシ樹脂を注形してなるエポキシ絶縁物において、耐直流電圧性能の優れた高電圧機器用エポキシ絶縁物を製造する高電圧機器用エポキシ絶縁物製造装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
充填剤を混合したエポキシ絶縁物の直流耐電圧性能を向上するためには、充填剤を均等に分布させて注形後のエポキシ絶縁物内の抵抗率や誘電率の分布を均質にする必要がある。
【0014】
すなわち、本発明の請求項1に係わる高電圧機器用エポキシ絶縁物製造装置は、内部にエポキシ樹脂およびこのエポキシ樹脂より比重の重い添加剤を注入するための注入用空洞を設け、上端部に前記注入用空洞に係る注入口を設けた構造である注形型に、前記添加剤を混合させたエポキシ樹脂を前記注入口から注入し、前記注入用空洞で前記エポキシ樹脂を硬化させてエポキシ絶縁物を製造する高電圧機器用エポキシ絶縁物製造装置において、前記注形型は、自らを回転可能な回転軸をその長軸方向とほぼ直交する方向取り付けた構造であることを特徴とする。
【0015】
つまり、本発明の請求項1に係わる高電圧機器用エポキシ絶縁物製造装置では、回転軸を設けて、定期的に注形型を回転して反転させるので、製造されたエポキシ絶縁物における充填剤の沈降による密度の偏りを減少することができる。
【0016】
また、本発明の請求項2に係わる高電圧機器用エポキシ絶縁物製造装置は、請求項1に記載の高電圧機器用エポキシ絶縁物製造装置であって、前記注形型の回転軸を、前記エポキシ樹脂に混合される充填剤の該注形型内における沈降速度よりも速い速度で連続的に回転させる駆動装置を備えたことを特徴とする。
【0017】
つまり、本発明の請求項2に係わる高電圧機器用エポキシ絶縁物製造装置では、回転軸をほぼ水平として、駆動装置により注形型を充填剤の沈降時間よりも速く連続的に回転させるので、硬化時の充填剤の沈降をほぼ完全に防止して注形型への注入前のよく混合された状態を保つことができ、この結果、エポキシ樹脂内部の充填剤密度の偏りをほぼ完全に無くすことができる。
【0018】
また、本発明の請求項3に係わる高電圧機器用エポキシ絶縁物製造装置は、請求項1または請求項2に記載の高電圧機器用エポキシ絶縁物製造装置であって、さらに、発熱装置を備え、この発熱装置により、前記注形型の内部に注入される前記充填剤が混合されたエポキシ樹脂を熱しながら、該エポキシ樹脂を硬化させてエポキシ絶縁物を製造することを特徴とする。
【0019】
つまり、本発明の請求項3に係わる高電圧機器用エポキシ絶縁物製造装置では、発熱装置により、注形型内部における充填剤が沈降しやすい部分を早く硬化させるため、この部分での充填剤密度の集中が生じにくい。この結果、エポキシ樹脂内部の充填剤密度の偏りを減少させることができる。
【0020】
【発明の実施の形態】
以下図面により本発明の実施形態について説明する。
(第1実施形態)
まず、本発明の第1実施形態について説明する。
図1は、本発明の第1実施形態に係わる高電圧機器用エポキシ絶縁物製造装置の構成を示す断面図である。
図2は、前記第1実施形態に係わる高電圧機器用エポキシ絶縁物製造装置にエポキシ樹脂7および充填剤8を注入した状態を示す図である。
この高電圧機器用エポキシ絶縁物製造装置(以下、エポキシ絶縁物製造装置)は、高電圧が印加される高電圧導体を支持する高電圧機器用エポキシ絶縁物(以下エポキシ絶縁物)を製造する装置である。図1に示すように、このエポキシ絶縁物製造装置には、エポキシ絶縁物の注形のための注形型1が設けられる。この注形型1の上部には、エポキシ絶縁物の原料となるエポキシ樹脂7および充填剤(例えばアルミナ)8(図2参照)を注入するための注入口2が設けられる。また、注入型1を支持するために、右軸受け3a、左軸受け3b、右軸4a、左軸4b、右軸支え5a、左軸支え5bおよび設置台6が設けられる。このエポキシ絶縁物製造装置は、支持された注形型1を上下方向に回転させることができる構造となっている。なお、注形型1の回転方向については、特に限定されるものではない。
【0021】
つまり、注形型1の上下方向における中央部の左側面および右側面に、注形型1を上下方向に回転させるための右軸受け3aおよび左軸受け3bがそれぞれ固着される。これらの右軸受け3aおよび左軸受け3bには、右軸4aおよび左軸4bを設置面と平行にして固定するための孔が設けられ、この孔に尚外右軸4aおよび左軸4bがそれぞれ挿入される。
【0022】
右軸4aの、右軸受け3aの孔に挿入されない側の軸端部および左軸4bの、左軸受け3bの孔に挿入されない側の軸端部は、右軸4aおよび左軸4bが回転可能なように円柱状に加工される。これらの水平方向に配置した右軸4aおよび左軸4bは、右軸支え5aおよび左軸支え5bによってそれぞれ支持される。これらの右軸支え5aおよび左軸支え5bは、設置台6に対して垂直に設置され、該右軸支え5aおよび左軸支え5bの上部には、右軸受け3aおよび左軸受け3bに挿入された右軸4aおよび左軸4bを軸支するための通し穴が設けられ、右軸4aおよび左軸4bは、この右軸支え5aおよび左軸支え5bの通し穴に挿入されて回転可能に支持される。
【0023】
注入口2は、注形室9(注入用空洞、図2参照)にエポキシ絶縁物の原料となるエポキシ樹脂7および充填剤8を注入した後に閉鎖される。注形室9である注入用空洞は、左右に折曲した部分(A部,B部)を有している。この注入口2の閉鎖後に右軸4aおよび左軸4bを中心にして、注形型1をエポキシ樹脂7が硬化するまで上下方向に回転させる。
【0024】
次に、前記構成による第1実施形態のエポキシ絶縁物製造装置によるエポキシ絶縁物の製造手順を説明する。
まず、エポキシ樹脂7と充填剤8とを攪拌混合させて、これらエポキシ樹脂7と充填剤8との混合物(以下、充填剤混合エポキシ樹脂と呼ぶ)10を、図2に示すように、注形型1の注入口2を介して注形室9内に注入する。ここで、注入された充填剤混合エポキシ樹脂10に含まれる充填剤8はエポキシ樹脂7に対して比重が高いため、エポキシ樹脂7の硬化までの時間とともに、重力によって注形室9内のA部およびB部へ向かって沈降する。そして、右軸4aおよび左軸4bを中心に注形型1を回転させる。つまり充填剤8が注形室9内のA部およびB部に全て沈降した状態で該注形型1の上下方向を反転させる。すなわち注形型1の注入口2が設けられる側を設置台6の方向に向けるように180度回転させると、注形室9内の充填剤8は、反転前までとは逆の方向へ移動するので、充填剤8がA部およびB部に沈降する前の均等な状態に戻るようになる。この反転状態のまま固定しておくと、反対に充填剤8が注形室9内のA部に対向する部分およびB部に対向する部分に向かって沈降することになるので、注形室9内の充填剤8の沈降速度を予め把握している場合には、この沈降速度を考慮しながら右軸4aおよび左軸4bを中心にして注形型1の上下方向を再び反転させる(反転方向は問わない)ことで、均等な状態を保つことができる。つまり、充填剤8の沈降速度を考慮しつつ、注形型1の上下方向の反転操作をエポキシ樹脂7の硬化までの間に定期的に複数回繰り返すことにより、充填剤混合エポキシ樹脂10が硬化してエポキシ絶縁物が製造されたときの、該エポキシ絶縁物に含まれる充填剤8の密度の偏りを減少させることができる。この製造されたエポキシ絶縁物は、絶縁性ガスを充填させた密閉容器に固着され、この固着されたエポキシ絶縁物は、密閉容器内を通る高電圧導体を支持する。
【0025】
したがって、前記構成の第1実施形態のエポキシ絶縁物製造装置によれば、注形型1の上下方向を反転させることによって、エポキシ樹脂7に混合された充填剤8の密度の偏りを減少させることができ、その結果、エポキシ絶縁物の抵抗率や誘電率の分布を均等化させることができるので、電界集中の生じにくいエポキシ絶縁物を製造することが可能となり、該エポキシ絶縁物の耐直流電圧性能を向上させることができる。
【0026】
なお、ここでは、注形型1に対して、右軸4aおよび左軸4bを右軸受け3aおよび左軸受け3bにより取り付ける構造としたが、右軸4aおよび左軸4bを一本の軸として、注形型1内の注形室9と交差しないように、注形型1を水平方向に貫通させる構造としてもよい。
【0027】
(第2実施形態)
次に、本発明の第2実施形態について説明する。
図3は本発明の第2実施形態に係わる高電圧機器用エポキシ絶縁物製造装置の構成を示す断面図である。
図4は、前記第2実施形態に係わるエポキシ絶縁物製造装置にエポキシ樹脂7および充填剤8を注入した状態を示す図である。
図3に示すように、本実施形態におけるエポキシ絶縁物製造装置は、第1実施形態におけるエポキシ絶縁物製造装置(図1参照)に対して、右軸4aまたは左軸4b(この場合左軸4b)に、該左軸4bを回転させるための駆動装置11を取り付けて構成する。
【0028】
この駆動装置11は、左軸4bに加える駆動力によって、右軸4aおよび左軸4bを中心にして注形型1を回転させるためのもので、回転速度を自由に設定することができ、これにより安定した速度で、かつ継続的に注形型1を回転させることができる。
【0029】
その後、エポキシ樹脂7の硬化までの間に左軸4bを駆動装置11により駆動することで、注形型1を連続的に上下方向へ反転させる。この際、反転の速度は、充填剤8が沈降する速度よりも速くなるように設定される。
【0030】
次に、前記構成による第2実施形態のエポキシ絶縁物製造装置によるエポキシ絶縁物の製造手順を説明する。
まず、充填剤混合エポキシ樹脂10を注形型1の注形口2から注形室9内に注入する。そして、充填剤8の沈降速度よりも速い速度で注形型1を回転させて連続的に該注形型1の上下方向を反転させると、図4に示すように、充填剤8は殆ど上下に移動することがない。
これにより、充填剤8の沈降をほぼ完全に防止することができ、充填剤8の密度の偏りを防止することができる。
【0031】
したがって、前記構成の第2実施形態のエポキシ絶縁物製造装置によれば、注形型1の上下方向を連続的に充填剤8の沈降速度よりも早く反転させることによって、充填剤8の沈降による密度の偏りを防止することができ、その結果、エポキシ絶縁物の抵抗率や誘電率の分布が均等化され、電界集中の生じにくいエポキシ絶縁物とすることが可能となる。よって、エポキシ絶縁物の耐直流電圧性能を向上することができる。
【0032】
(第3実施形態)
次に、本発明の第3実施形態について説明する。
図5は本発明の第3実施形態に係る高電圧機器用エポキシ絶縁物製造装置の構成を示す断面図である。
図5に示すように、本実施形態におけるエポキシ絶縁物製造装置は、第1実施形態におけるエポキシ絶縁物製造装置(図1参照)と比較して、注形型1の上端部(注入口2が設けられる側)12の両側面に右軸受け3aおよび左軸受け3bが設けられ、これらの右軸受け3aおよび左軸受け3bに右軸4aおよび左軸4bならびに右軸支え5aおよび左軸支え5bが第1実施形態と同様に設置される。これに伴い、右軸支え5aおよび左軸支え5bは第1実施形態で用いられたそれらと比較して長いものが用いられる。
【0033】
注形型上端部12に取り付けられている右軸受け3aおよび左軸受け3bは、水平方向に配置した右軸4aおよび左軸4bを介して右軸支え5aおよび左軸支え5bによって支えられる。充填剤8を混合したエポキシ樹脂7は、注入口2を通して、注形型1の注形室9に注入される。注入後、注入口2は閉鎖される。その後、エポキシ樹脂7の硬化までの間に注形型1は右軸4aおよび左軸4bを中心に回転され、適宜注形型1全体の上下方向を反転させる。
【0034】
この第3実施形態のエポキシ絶縁物製造装置によるエポキシ絶縁物の製造手順は第1実施形態におけるそれと同じであり、注形型1を、右軸4aおよび左軸4bを中心に回転させることで、均等な状態を保つことができ、エポキシ絶縁物が製造されたときの、該エポキシ絶縁物に含まれる充填剤8の密度の偏りを減少させることができる。
【0035】
したがって、前記構成の第3実施形態のエポキシ絶縁物製造装置によれば、電界集中の生じにくいエポキシ絶縁物を製造することが可能となり、該エポキシ絶縁物の耐直流電圧性能を向上させることができる。
【0036】
(第4実施形態)
次に、本発明の第4実施形態について説明する。
図6は本発明の第4実施形態に係わる高電圧機器用エポキシ絶縁物製造装置の構成を示す断面図である。
図6に示すように、本実施形態におけるエポキシ絶縁物製造装置は、第3実施形態におけるエポキシ絶縁物製造装置(図5参照)に対して、左軸4bの先端部に、該左軸4bを回転させるための駆動装置11を取り付けて構成する。
【0037】
この駆動装置11は、第2実施形態と同様に右軸4aおよび左軸4bを中心にして注形型1を回転させるためのもので、その回転速度を自由に設定することができる。これにより注形型1を安定した速度で、かつ継続的に回転させることができる。
【0038】
この第4実施形態のエポキシ絶縁物製造装置によるエポキシ絶縁物の製造手順は第2実施形態におけるそれと同じであり、駆動装置11を用いて、注形型1の反転速度を充填剤8の沈降速度よりも速くして該注形型1を回転させることにより、図4で示したように、充填剤8の沈降をほぼ完全に防止することができ、充填剤8の密度の偏りを防止することができる。
【0039】
したがって、前記構成の第4実施形態のエポキシ絶縁物製造装置によれば、注形型1を上下方向に連続的に充填剤8の沈降速度よりも早く反転させることによって、充填剤8の沈降による密度の偏りを防止することができ、その結果、エポキシ絶縁物の抵抗率や誘電率の分布を均等化して、電界集中の生じにくいエポキシ絶縁物とすることが可能となり、該エポキシ絶縁物の耐直流電圧性能を向上することができる。
【0040】
(第5実施形態)
次に、本発明の第5実施形態について説明する。
エポキシ樹脂7は、周囲の温度が高くなると、その硬化するまでの時間が短くなる性質がある。この性質を利用して、充填剤混合エポキシ樹脂10を局所的に熱して硬化時間を変化させるのが本実施形態の趣旨である。
【0041】
図7は、本発明の第5実施形態に係わるエポキシ絶縁物製造装置にエポキシ樹脂7および充填剤8を注入した状態を示す図である。
本実施形態におけるエポキシ絶縁物製造装置では、図7に示すように、注形型1にヒータ13が設けられる。つまり第1〜第4実施形態で示したエポキシ絶縁物製造装置のように、注形型1を回転させる機構を有した構造ではなく、代わりに注形型1内にヒータ13を内蔵させた構造である。このヒータ13は注形室9における充填剤8が沈降し易いA部およびB部にそれぞれ近接されて配置され、A部およびB部を所定の温度により熱することができる。
【0042】
次に、前記構成による第5実施形態のエポキシ絶縁物製造装置によるエポキシ絶縁物の製造手順を説明する。
充填剤混合エポキシ樹脂10を注形型1の注入口2から注形室9内に注入すると、混合した充填剤8は、重力によって下方へ沈降しようとするが、該充填剤8が沈降して堆積しやすいA部およびB部の温度は、ヒータ13により他の部分よりも高温とするように制御されているため、他の部分よりも早く硬化する。この結果、A部およびB部への充填剤8の沈降による集積を軽減することができる。
【0043】
したがって、前記構成の第5実施形態のエポキシ絶縁物製造装置によれば、ヒータ13により充填剤8が沈降堆積しやすい場所を熱して、この部分のエポキシ樹脂7の硬化を促進させることによって、広い設置面積を必要とする回転機構を設けることなく充填剤8の密度の局所的な増加を防止することができる。よって、電界集中の生じにくいエポキシ絶縁物を製造することが可能となり、該エポキシ絶縁物の耐直流電圧性能を向上することができる。
【0044】
本発明は前記各実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。更に、前記各実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宣な組み合わせにより種々の発明が抽出され得る。例えば、各実施形態で示される構成要件から幾つかの構成要件が削除されても、また、組み合わされても、「発明が解決しようとする課題」で述べた課題が解決でき、「発明の効果」の欄で述べられている効果が得られる場合には、この構成要件が削除されまたは組み合わされた構成が発明として抽出され得る。
【0045】
【発明の効果】
以上のように、本発明の請求項1に係わる高電圧機器用エポキシ絶縁物製造装置によれば、回転軸を設けて、定期的に注形型を回転して反転させるので、製造されたエポキシ絶縁物における充填剤の沈降による密度の偏りを減少することができる。
【0046】
また、本発明の請求項2に係わる高電圧機器用エポキシ絶縁物製造装置によれば、回転軸をほぼ水平として、駆動装置により注形型を充填剤の沈降時間よりも速く連続的に回転させるので、硬化時の充填剤の沈降をほぼ完全に防止して注形型への注入前のよく混合された状態を保つことができ、この結果、エポキシ樹脂内部の充填剤密度の偏りをほぼ完全に無くすことができる。
【0047】
また、本発明の請求項3に係わる高電圧機器用エポキシ絶縁物製造装置によれば、発熱装置により、注形型内部における充填剤が沈降しやすい場所を早く硬化させるため、この部分での充填剤密度の集中が生じにくい。この結果、エポキシ樹脂内部の充填剤密度の偏りを減少させることができる。
【0048】
したがって、本発明によれば、充填剤の沈降による偏在を防止することができるため、エポキシ絶縁物の抵抗率および誘電率を均質化することが可能となり、電界変歪を少なく、コンパクトで、耐直流電圧性能の優れた高電圧機器用エポキシ絶縁物を製造する高電圧機器用エポキシ絶縁物製造装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係わるエポキシ絶縁物製造装置の構成を示す断面図。
【図2】前記第1実施形態に係わるエポキシ絶縁物製造装置にエポキシ樹脂および充填剤を注入した状態を示す図。
【図3】本発明の第2実施形態に係わるエポキシ絶縁物製造装置の構成を示す断面図。
【図4】前記第2実施形態に係わるエポキシ絶縁物製造装置にエポキシ樹脂および充填剤を注入した状態を示す図。
【図5】本発明の第3実施形態に係わるエポキシ絶縁物製造装置の構成を示す断面図。
【図6】本発明の第4実施形態に係わるエポキシ絶縁物製造装置の構成を示す断面図。
【図7】本発明の第5実施形態に係わるエポキシ絶縁物製造装置にエポキシ樹脂および充填剤を注入した状態を示す図。
【図8】高電圧機器用エポキシ絶縁物の実装例および内部の直流電位分布を示す説明図。
【図9】直流電圧送電系統の回路における開放遮断器および開放操作断路器が設けられた部分を示す説明図。
【図10】開放操作断路器開放時における残留直流電圧を示す説明図。
【図11】従来の高電圧機器用エポキシ絶縁物製造装置の注形型内部における充填剤の動きを示す説明図。
【符号の説明】
1・・・注形型
2・・・注入口
3a・・・右軸受け
3b・・・左軸受け
4a・・・右軸
4b・・・左軸
5a・・・右軸支え
5b・・・左軸支え
6・・・設置台
7・・・エポキシ樹脂
8・・・充填剤
9・・・注形室
10・・・充填剤混合エポキシ樹脂
11・・・駆動装置
12・・・注形型上端部
13・・・ヒータ
21・・・エポキシ絶縁物
22・・・高電圧導体
23・・・絶縁性ガス
24・・・密閉容器
25・・・支持部材
26・・・開放遮断器
27・・・開放操作断路器
28・・・開放操作断路器と開放遮断器との間の回路
29・・・回路電圧
30・・・注形型
31・・・充填剤
32・・・エポキシ樹脂
33・・・注入口
34・・・注形室
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-voltage equipment epoxy insulator manufacturing apparatus for manufacturing a high-voltage equipment epoxy insulator that supports a conductor to which a high voltage is applied.
[0002]
[Prior art]
FIG. 8 is an explanatory diagram showing a mounting example of the epoxy insulator 21 for a high-voltage device and a DC potential distribution inside.
In general, in a high-voltage device, a metal high-voltage conductor 22 to which a high voltage is applied is supported by a high-voltage device epoxy insulator (hereinafter, epoxy insulator) 21 and is insulated from a ground plane. The gas-insulated high-voltage device has a structure in which a high-voltage conductor 22 is supported and arranged by a support member 25 of an epoxy insulator 21 in a sealed container 24 filled with an insulating gas 23 (see FIG. 8). . Since an electric field determined by the voltage applied through the high-voltage conductor 22 and the shape and material of the epoxy insulator 21 and the electrode arrangement around the epoxy insulator 21 is applied to the epoxy insulator 21, In order to ensure the insulation reliability of the above, it is necessary to suppress the electric field applied to the epoxy insulator 21 to an electric field at which the epoxy insulator 21 causes dielectric breakdown.
[0003]
FIG. 9 is an explanatory diagram showing a portion of the circuit of the DC voltage transmission system where the open circuit breaker 26 and the open operation disconnecting switch 27 are provided.
The open circuit breaker 26 shown in FIG. 9 is connected to one end of the high voltage conductor 22, and the open operation disconnector 27 is connected to the other end of the high voltage conductor 22.
[0004]
FIG. 10 is an explanatory diagram illustrating the residual DC voltage when the opening operation disconnector 27 is opened.
The gas-insulated high-voltage device shown in FIG. 8 is applied to not only an AC voltage transmission system but also a DC voltage transmission system. Residual DC voltage generated after opening operation of the open circuit breaker 26 in the circuit of the power transmission system, not only in the high voltage equipment used in the DC voltage transmission system but also in the high voltage equipment used in the AC voltage transmission system (see FIG. 10). In some cases, a DC voltage is applied.
[0005]
In the circuit of the DC voltage transmission system, when the open operation disconnector 27 adjacent to the open open circuit breaker 26 is opened (see FIG. 9), as shown in FIG. A circuit voltage 29 is generated which is the voltage of the circuit 28 between 27 and the open circuit breaker 26. The circuit voltage 29 indicates a voltage in the state where the opening operation disconnector 27 is in the process of being opened. When the opening operation disconnector 27 is completely opened, the circuit voltage 29 at the time when the opening is completed is regarded as a residual DC voltage. , Remains on the high-voltage conductor 22 connected to the open-circuit disconnector 27 and the open circuit breaker 26. In particular, in gas-insulated high-voltage equipment, the attenuation of the residual DC voltage is small due to the excellent insulation performance of the insulating gas 23, and DC withstand voltage characteristics also become important in AC voltage equipment.
[0006]
When a DC voltage is applied to the insulator, the potential distribution along the insulator becomes a potential distribution determined by the resistance distribution of the insulator. As shown in FIG. 8, even in the epoxy insulator 21 used for the gas-insulated high-voltage equipment, the potential distribution is determined by the resistance distribution, and an electric field corresponding to this is applied.
[0007]
FIG. 11 is an explanatory view showing the movement of the filler 31 inside the casting mold 30 of the conventional epoxy insulator manufacturing apparatus for high-voltage equipment.
On the other hand, when the epoxy insulator 21 is manufactured, a filler (additive) 31 such as alumina is often mixed with the epoxy resin 32 for the purpose of improving decomposition gas resistance and the like. The filler 31 and the epoxy resin 32 are sufficiently stirred and mixed in advance, and are poured into a casting mold 30 for casting. Since the shape of the epoxy insulator 21 is generally a complicated shape having irregularities for the purpose of making it easier to support itself in the closed container 24, as shown in FIG. It has irregularities. Into such a casting mold 30, an epoxy resin 32 and a filler 31 are injected into an injection chamber 34 from an injection port 33, and are cured by controlling conditions such as appropriate temperature and time to obtain a required shape. Is manufactured (for example, see Patent Document 1).
[0008]
[Patent Document 1]
JP-A-54-40857 (pages 1-3, FIG. 1)
[0009]
[Problems to be solved by the invention]
As described above, the epoxy insulator 21 manufactured by mixing and curing the epoxy resin 32 and the filler 31 has the following problems.
Generally, the specific gravity of the filler 31 such as alumina is larger than that of the epoxy resin 32. For this reason, the filler 31 tends to settle down by gravity before the epoxy resin 32 is cured. If the casting mold 30 has irregularities as shown in FIG. 11, the filler 31 is likely to settle and deposit on the portions A and B in FIG. The ratio tends to increase.
[0010]
On the other hand, in the epoxy resin 32 mixed with the filler 31, it is known that the physical properties of the interface between the epoxy resin 32 and the filler 31 greatly affect the electrical and mechanical properties of the cast product. . The resistance value of the interface tends to be relatively smaller than that of the inside of the epoxy resin 32 or the inside of the filler 31, and the conductivity and dielectric constant of the high density portion of the filler 31 are lower than those of the low density portion of the filler 31. Tend to be relatively small as compared with the electric conductivity and the dielectric constant of the liquid crystal. As a result, if the content ratio of the filler 31 with respect to the epoxy resin 32 is deviated, the distribution of the resistivity and the dielectric constant of the epoxy insulator 21 in which the epoxy resin 32 is cured also deviates. When a DC voltage is applied to the epoxy insulator 21 in which the distributions of the resistivity and the dielectric constant are biased, the internal potential distribution may be distorted and a partial electric field concentration may occur.
[0011]
At present, with the spread of application of gas-insulated high-voltage equipment to underground substations and the like, there is an increasing demand for compactness, and there is a need for epoxy insulators 21 having small dimensions and excellent withstand voltage performance. Is increasing. If there is a large bias in the content of the filler 31, it is necessary to perform an insulation design in consideration of electric field concentration when a DC voltage is applied, which is a problem in providing a compact epoxy insulator 21 having excellent DC voltage resistance. Had been an issue.
[0012]
The present invention provides an epoxy insulator manufacturing apparatus for high-voltage equipment for manufacturing an epoxy insulator for high-voltage equipment having excellent DC withstand voltage performance in an epoxy insulator formed by casting an epoxy resin mixed with a filler. The purpose is to do.
[0013]
[Means for Solving the Problems]
In order to improve the DC withstand voltage performance of the epoxy insulator mixed with filler, it is necessary to distribute the filler evenly and make the distribution of resistivity and dielectric constant in the epoxy insulator after casting uniform. is there.
[0014]
That is, the apparatus for manufacturing an epoxy insulator for high-voltage equipment according to claim 1 of the present invention is provided with an injection cavity for injecting an epoxy resin and an additive having a higher specific gravity than the epoxy resin, and the upper end thereof has the injection cavity. An epoxy resin mixed with the additive is injected from the injection port into a casting mold having a structure having an injection port related to an injection cavity, and the epoxy resin is cured in the injection cavity to form an epoxy insulator. In the apparatus for manufacturing epoxy insulator for high-voltage equipment, the casting mold has a structure in which a rotating shaft capable of rotating itself is mounted in a direction substantially orthogonal to the major axis direction.
[0015]
That is, in the apparatus for manufacturing an epoxy insulator for a high-voltage device according to the first aspect of the present invention, a rotating shaft is provided, and the casting mold is periodically rotated and inverted. Density unevenness due to sedimentation of the water can be reduced.
[0016]
Further, an epoxy insulator manufacturing apparatus for high voltage equipment according to claim 2 of the present invention is the epoxy insulator manufacturing apparatus for high voltage equipment according to claim 1, wherein the casting mold has a rotating shaft, A drive device for continuously rotating the filler mixed with the epoxy resin at a speed higher than the sedimentation speed in the casting mold is provided.
[0017]
In other words, in the high-voltage equipment epoxy insulator manufacturing apparatus according to claim 2 of the present invention, the casting axis is continuously rotated faster than the settling time of the filler by the driving device while the rotation axis is substantially horizontal. It is possible to almost completely prevent the settling of the filler at the time of curing and to maintain a well-mixed state before injection into the casting mold, thereby almost completely eliminating the unevenness of the density of the filler inside the epoxy resin. be able to.
[0018]
According to a third aspect of the present invention, there is provided an epoxy insulator manufacturing apparatus for a high-voltage device according to the first or second aspect, further comprising a heating device. The heating device heats the epoxy resin mixed with the filler injected into the casting mold and cures the epoxy resin to produce an epoxy insulator.
[0019]
In other words, in the apparatus for manufacturing an epoxy insulator for high-voltage equipment according to claim 3 of the present invention, the heating device quickly cures a portion where the filler is likely to settle in the casting mold. Concentration is unlikely to occur. As a result, it is possible to reduce the unevenness in the density of the filler inside the epoxy resin.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1st Embodiment)
First, a first embodiment of the present invention will be described.
FIG. 1 is a sectional view showing a configuration of an apparatus for manufacturing an epoxy insulator for high-voltage equipment according to a first embodiment of the present invention.
FIG. 2 is a view showing a state in which an epoxy resin 7 and a filler 8 are injected into the epoxy insulator manufacturing apparatus for high-voltage equipment according to the first embodiment.
This high-voltage equipment epoxy insulator manufacturing apparatus (hereinafter, epoxy insulator manufacturing apparatus) is an apparatus for manufacturing high-voltage equipment epoxy insulator (hereinafter, epoxy insulator) supporting a high-voltage conductor to which a high voltage is applied. It is. As shown in FIG. 1, this epoxy insulator manufacturing apparatus is provided with a casting mold 1 for casting an epoxy insulator. An injection port 2 for injecting an epoxy resin 7 serving as a raw material of an epoxy insulator and a filler (for example, alumina) 8 (see FIG. 2) is provided at an upper portion of the casting mold 1. In addition, in order to support the injection mold 1, a right bearing 3a, a left bearing 3b, a right shaft 4a, a left shaft 4b, a right shaft support 5a, a left shaft support 5b, and a mounting table 6 are provided. This epoxy insulator manufacturing apparatus has a structure in which the supported casting mold 1 can be rotated vertically. The direction of rotation of the casting mold 1 is not particularly limited.
[0021]
That is, the right bearing 3a and the left bearing 3b for rotating the casting mold 1 in the vertical direction are fixed to the left and right sides of the central part of the casting mold 1 in the vertical direction, respectively. The right bearing 3a and the left bearing 3b are provided with holes for fixing the right shaft 4a and the left shaft 4b in parallel with the installation surface, and the outer right shaft 4a and the left shaft 4b are respectively inserted into the holes. Is done.
[0022]
The shaft end of the right shaft 4a that is not inserted into the hole of the right bearing 3a and the shaft end of the left shaft 4b that is not inserted into the hole of the left bearing 3b can rotate the right shaft 4a and the left shaft 4b. It is processed into a columnar shape. The right shaft 4a and the left shaft 4b arranged in the horizontal direction are supported by the right shaft support 5a and the left shaft support 5b, respectively. The right bearing 5a and the left bearing 5b are installed vertically to the mounting table 6, and are inserted into the right bearing 3a and the left bearing 3b above the right bearing 5a and the left bearing 5b. A through hole is provided for supporting the right shaft 4a and the left shaft 4b. The right shaft 4a and the left shaft 4b are inserted into the through holes of the right shaft support 5a and the left shaft support 5b and rotatably supported. You.
[0023]
The pouring port 2 is closed after pouring the epoxy resin 7 and the filler 8 which are the raw materials of the epoxy insulator into the casting chamber 9 (injection cavity, see FIG. 2). The injection cavity, which is the casting chamber 9, has portions (A and B) bent right and left. After closing the injection port 2, the casting mold 1 is rotated about the right axis 4a and the left axis 4b in the vertical direction until the epoxy resin 7 is cured.
[0024]
Next, a procedure for manufacturing an epoxy insulator using the epoxy insulator manufacturing apparatus according to the first embodiment having the above configuration will be described.
First, the epoxy resin 7 and the filler 8 are stirred and mixed, and a mixture (hereinafter, referred to as a filler-mixed epoxy resin) 10 of the epoxy resin 7 and the filler 8 is cast as shown in FIG. It is injected into the casting chamber 9 via the injection port 2 of the mold 1. Here, since the filler 8 contained in the injected filler-mixed epoxy resin 10 has a higher specific gravity than the epoxy resin 7, the time required for the epoxy resin 7 to harden and the portion A in the casting chamber 9 due to gravity. And settle toward part B. Then, the casting mold 1 is rotated about the right axis 4a and the left axis 4b. That is, the vertical direction of the casting mold 1 is reversed in a state in which the filler 8 has completely settled in the portions A and B in the casting chamber 9. That is, when the casting mold 1 is rotated by 180 degrees so that the side on which the injection port 2 is provided faces the installation table 6, the filler 8 in the casting chamber 9 moves in a direction opposite to that before the inversion. Therefore, the filler 8 returns to an even state before settling in the A portion and the B portion. If the filler 8 is fixed in this inverted state, the filler 8 will settle toward the portion facing the portion A and the portion facing the portion B in the casting chamber 9. When the sedimentation speed of the filler 8 in the inside is grasped in advance, the vertical direction of the casting mold 1 is reversed again around the right axis 4a and the left axis 4b while considering the sedimentation velocity (inversion direction). Does not matter), an even state can be maintained. In other words, the filler-mixed epoxy resin 10 is cured by periodically repeating the reversing operation of the casting mold 1 in the vertical direction a plurality of times until the epoxy resin 7 is cured while considering the settling speed of the filler 8. Thus, when the epoxy insulator is manufactured, the unevenness in the density of the filler 8 contained in the epoxy insulator can be reduced. The manufactured epoxy insulator is fixed to a sealed container filled with an insulating gas, and the fixed epoxy insulator supports a high-voltage conductor passing through the sealed container.
[0025]
Therefore, according to the epoxy insulator manufacturing apparatus of the first embodiment having the above configuration, the unevenness of the density of the filler 8 mixed in the epoxy resin 7 is reduced by reversing the vertical direction of the casting mold 1. As a result, the distribution of the resistivity and the permittivity of the epoxy insulator can be equalized, so that it is possible to manufacture an epoxy insulator in which electric field concentration is unlikely to occur, and the DC withstand voltage of the epoxy insulator can be reduced. Performance can be improved.
[0026]
Although the right and left shafts 4a and 4b are attached to the casting mold 1 by the right and left bearings 3a and 3b, the right and left shafts 4a and 4b are used as one shaft. The casting mold 1 may be configured to penetrate in the horizontal direction so as not to intersect with the casting chamber 9 in the casting mold 1.
[0027]
(2nd Embodiment)
Next, a second embodiment of the present invention will be described.
FIG. 3 is a sectional view showing a configuration of an apparatus for manufacturing an epoxy insulator for high-voltage equipment according to a second embodiment of the present invention.
FIG. 4 is a diagram showing a state in which an epoxy resin 7 and a filler 8 have been injected into the epoxy insulator manufacturing apparatus according to the second embodiment.
As shown in FIG. 3, the epoxy insulator manufacturing apparatus according to the present embodiment is different from the epoxy insulator manufacturing apparatus according to the first embodiment (see FIG. 1) in that a right axis 4a or a left axis 4b (in this case, a left axis 4b). ), A driving device 11 for rotating the left shaft 4b is attached.
[0028]
The driving device 11 is for rotating the casting mold 1 around the right shaft 4a and the left shaft 4b by a driving force applied to the left shaft 4b, and can freely set the rotation speed. The casting mold 1 can be rotated at a more stable speed and continuously.
[0029]
Thereafter, by driving the left shaft 4b by the driving device 11 until the epoxy resin 7 is cured, the casting mold 1 is continuously inverted in the vertical direction. At this time, the reversing speed is set to be faster than the speed at which the filler 8 sinks.
[0030]
Next, a procedure for manufacturing an epoxy insulator using the epoxy insulator manufacturing apparatus according to the second embodiment having the above configuration will be described.
First, a filler-mixed epoxy resin 10 is injected into the casting chamber 9 from the casting port 2 of the casting mold 1. When the casting mold 1 is rotated at a speed higher than the sedimentation speed of the filler 8 to continuously reverse the vertical direction of the casting mold 1, as shown in FIG. Never move to.
Thereby, the sedimentation of the filler 8 can be almost completely prevented, and the unevenness of the density of the filler 8 can be prevented.
[0031]
Therefore, according to the epoxy insulator manufacturing apparatus of the second embodiment having the above-described configuration, by vertically reversing the vertical direction of the casting mold 1 faster than the sedimentation speed of the filler 8, the sedimentation of the filler 8 Density deviation can be prevented, and as a result, the distribution of the resistivity and the dielectric constant of the epoxy insulator is equalized, and an epoxy insulator in which electric field concentration hardly occurs can be obtained. Therefore, the DC voltage resistance of the epoxy insulator can be improved.
[0032]
(Third embodiment)
Next, a third embodiment of the present invention will be described.
FIG. 5 is a sectional view showing a configuration of an apparatus for manufacturing an epoxy insulator for high-voltage equipment according to a third embodiment of the present invention.
As shown in FIG. 5, the epoxy insulator manufacturing apparatus according to the present embodiment is different from the epoxy insulator manufacturing apparatus according to the first embodiment (see FIG. 1) in that the upper end portion of the casting mold 1 (injection port 2 is not provided). A right bearing 3a and a left bearing 3b are provided on both side surfaces of the mounting side 12; a right shaft 4a, a left shaft 4b, a right bearing 5a, and a left bearing 5b are provided on the right bearing 3a and the left bearing 3b, respectively. It is installed similarly to the embodiment. Along with this, the right shaft support 5a and the left shaft support 5b are longer than those used in the first embodiment.
[0033]
The right bearing 3a and the left bearing 3b attached to the casting mold upper end 12 are supported by the right bearing 5a and the left bearing 5b via the right shaft 4a and the left shaft 4b arranged in the horizontal direction. The epoxy resin 7 mixed with the filler 8 is injected into the casting chamber 9 of the casting mold 1 through the injection port 2. After the injection, the injection port 2 is closed. Thereafter, the casting mold 1 is rotated about the right axis 4a and the left axis 4b until the epoxy resin 7 is cured, and the entire casting mold 1 is vertically inverted as appropriate.
[0034]
The procedure for manufacturing the epoxy insulator by the epoxy insulator manufacturing apparatus of the third embodiment is the same as that of the first embodiment, and by rotating the casting mold 1 around the right axis 4a and the left axis 4b, The uniform state can be maintained, and the unevenness in the density of the filler 8 contained in the epoxy insulator when the epoxy insulator is manufactured can be reduced.
[0035]
Therefore, according to the epoxy insulator manufacturing apparatus of the third embodiment having the above-described configuration, it is possible to manufacture an epoxy insulator in which electric field concentration hardly occurs, and it is possible to improve the DC voltage resistance of the epoxy insulator. .
[0036]
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described.
FIG. 6 is a sectional view showing a configuration of an apparatus for manufacturing an epoxy insulator for high-voltage equipment according to a fourth embodiment of the present invention.
As shown in FIG. 6, the epoxy insulator manufacturing apparatus according to the present embodiment differs from the epoxy insulator manufacturing apparatus according to the third embodiment (see FIG. 5) in that the left shaft 4b is attached to the tip of the left shaft 4b. A driving device 11 for rotation is attached.
[0037]
This drive device 11 is for rotating the casting mold 1 about the right axis 4a and the left axis 4b as in the second embodiment, and the rotation speed thereof can be set freely. Thereby, the casting mold 1 can be rotated at a stable speed and continuously.
[0038]
The procedure for manufacturing the epoxy insulator by the epoxy insulator manufacturing apparatus according to the fourth embodiment is the same as that in the second embodiment, and the inversion speed of the casting mold 1 is reduced by using the driving device 11 to settle the filler 8. By rotating the casting mold 1 at a higher speed, as shown in FIG. 4, the settling of the filler 8 can be almost completely prevented, and the unevenness of the density of the filler 8 can be prevented. Can be.
[0039]
Therefore, according to the epoxy insulator manufacturing apparatus of the fourth embodiment having the above-described configuration, the casting mold 1 is vertically inverted continuously faster than the sedimentation speed of the filler 8, thereby causing the filler 8 to settle. Density deviation can be prevented, and as a result, the distribution of the resistivity and the dielectric constant of the epoxy insulator can be equalized, so that an epoxy insulator that does not easily cause electric field concentration can be obtained. DC voltage performance can be improved.
[0040]
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described.
The epoxy resin 7 has such a property that as the ambient temperature increases, the time required for curing the epoxy resin 7 decreases. The purpose of this embodiment is to use this property to locally heat the filler-mixed epoxy resin 10 to change the curing time.
[0041]
FIG. 7 is a view showing a state where an epoxy resin 7 and a filler 8 are injected into an epoxy insulator manufacturing apparatus according to the fifth embodiment of the present invention.
In the epoxy insulator manufacturing apparatus according to the present embodiment, a heater 13 is provided in the casting mold 1 as shown in FIG. That is, it is not a structure having a mechanism for rotating the casting mold 1 as in the epoxy insulator manufacturing apparatus shown in the first to fourth embodiments, but a structure in which the heater 13 is built in the casting mold 1 instead. It is. The heater 13 is arranged close to each of the portions A and B where the filler 8 in the casting chamber 9 is likely to settle, and can heat the portions A and B at a predetermined temperature.
[0042]
Next, a procedure for manufacturing an epoxy insulator by the epoxy insulator manufacturing apparatus of the fifth embodiment having the above-described configuration will be described.
When the filler-mixed epoxy resin 10 is injected into the casting chamber 9 from the injection port 2 of the casting mold 1, the mixed filler 8 tends to settle down due to gravity. Since the temperature of the portion A and the portion B where the deposition is easy is controlled by the heater 13 so as to be higher than that of the other portion, the portion hardens faster than the other portion. As a result, it is possible to reduce accumulation due to the settling of the filler 8 in the part A and the part B.
[0043]
Therefore, according to the epoxy insulator manufacturing apparatus of the fifth embodiment having the above-described configuration, the heater 13 heats a place where the filler 8 is likely to settle and accumulates, and the curing of the epoxy resin 7 in this part is promoted, so that a wide area is obtained. A local increase in the density of the filler 8 can be prevented without providing a rotating mechanism that requires an installation area. Therefore, it is possible to manufacture an epoxy insulator that does not easily cause electric field concentration, and it is possible to improve the DC voltage resistance of the epoxy insulator.
[0044]
The present invention is not limited to the above embodiments, and can be variously modified at the stage of implementation without departing from the gist thereof. Further, the embodiments include inventions at various stages, and various inventions can be extracted by appropriate combinations of a plurality of disclosed constituent features. For example, even if some constituent elements are deleted from the constituent elements described in each embodiment or are combined, the problem described in “Problems to be Solved by the Invention” can be solved and “Effects of the Invention” In the case where the effect described in the section "is obtained, a configuration in which this component is deleted or combined can be extracted as an invention.
[0045]
【The invention's effect】
As described above, according to the epoxy insulator manufacturing apparatus for a high-voltage device according to the first aspect of the present invention, a rotating shaft is provided, and the casting mold is periodically rotated and inverted, so that the manufactured epoxy is manufactured. Density bias due to sedimentation of the filler in the insulator can be reduced.
[0046]
Further, according to the apparatus for manufacturing an epoxy insulator for high voltage equipment according to the second aspect of the present invention, the casting mold is continuously rotated faster than the settling time of the filler by the drive device with the rotation axis being substantially horizontal. Therefore, sedimentation of the filler at the time of curing can be almost completely prevented, and a well-mixed state before injection into the casting mold can be maintained. As a result, the unevenness of the filler density inside the epoxy resin can be almost completely eliminated. Can be eliminated.
[0047]
According to the apparatus for manufacturing an epoxy insulator for high-voltage equipment according to the third aspect of the present invention, the heat generating device quickly cures the place where the filler is likely to settle in the casting mold. Concentration of agent density is unlikely to occur. As a result, it is possible to reduce the unevenness in the density of the filler inside the epoxy resin.
[0048]
Therefore, according to the present invention, since uneven distribution due to sedimentation of the filler can be prevented, it is possible to homogenize the resistivity and the dielectric constant of the epoxy insulator, to reduce electric field distortion, to be compact, and to be resistant. It is possible to provide an epoxy insulator manufacturing apparatus for high voltage equipment that manufactures an epoxy insulator for high voltage equipment having excellent DC voltage performance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of an epoxy insulator manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a state where an epoxy resin and a filler are injected into the epoxy insulator manufacturing apparatus according to the first embodiment.
FIG. 3 is a sectional view showing a configuration of an epoxy insulator manufacturing apparatus according to a second embodiment of the present invention.
FIG. 4 is a view showing a state in which an epoxy resin and a filler are injected into the epoxy insulator manufacturing apparatus according to the second embodiment.
FIG. 5 is a cross-sectional view illustrating a configuration of an epoxy insulator manufacturing apparatus according to a third embodiment of the present invention.
FIG. 6 is a cross-sectional view illustrating a configuration of an epoxy insulator manufacturing apparatus according to a fourth embodiment of the present invention.
FIG. 7 is a diagram showing a state where an epoxy resin and a filler are injected into an epoxy insulator manufacturing apparatus according to a fifth embodiment of the present invention.
FIG. 8 is an explanatory diagram showing a mounting example of an epoxy insulator for a high-voltage device and an internal DC potential distribution.
FIG. 9 is an explanatory diagram showing a portion of the circuit of the DC voltage transmission system where an open circuit breaker and an open operation disconnector are provided.
FIG. 10 is an explanatory diagram illustrating a residual DC voltage when the disconnecting switch is opened.
FIG. 11 is an explanatory view showing movement of a filler inside a casting mold of a conventional epoxy insulating material manufacturing apparatus for high-voltage equipment.
[Explanation of symbols]
1 ... cast mold
2 ... Injection port
3a ... right bearing
3b: Left bearing
4a ... right axis
4b: Left axis
5a: Right shaft support
5b: Left shaft support
6 ... Installation stand
7 ... Epoxy resin
8 ... Filler
9 ・ ・ ・ Casting room
10 Filler mixed epoxy resin
11 ... Driving device
12 ・ ・ ・ Top of casting mold
13 ... heater
21 ・ ・ ・ Epoxy insulator
22 High-voltage conductor
23 ... insulating gas
24 ... closed container
25 Supporting member
26 Open circuit breaker
27 ... Opening operation disconnector
28 Circuit between open-circuit disconnector and open-circuit breaker
29 ・ ・ ・ Circuit voltage
30 ・ ・ ・ Cast type
31 ... filler
32 ・ ・ ・ Epoxy resin
33 ・ ・ ・ Injection port
34 ・ ・ ・ Casting room

Claims (8)

内部にエポキシ樹脂およびこのエポキシ樹脂より比重の重い添加剤を注入するための注入用空洞を設け、上端部に前記注入用空洞に係る注入口を設けた構造である注形型に、前記添加剤を混合させたエポキシ樹脂を前記注入口から注入し、前記注入用空洞で前記エポキシ樹脂を硬化させてエポキシ絶縁物を製造する高電圧機器用エポキシ絶縁物製造装置において、
前記注形型は、自らを回転可能な回転軸をその軸方向とほぼ直交する方向に取り付けた構造であることを特徴とする高電圧機器用エポキシ絶縁物製造装置。
An injection cavity for injecting an epoxy resin and an additive having a specific gravity heavier than the epoxy resin is provided therein, and a casting mold having a structure in which an injection port related to the injection cavity is provided at an upper end portion is provided with the additive. Injecting the epoxy resin mixed with from the injection port, curing the epoxy resin in the injection cavity to produce an epoxy insulator, a high-voltage equipment epoxy insulator manufacturing apparatus,
An epoxy insulator manufacturing apparatus for high-voltage equipment, characterized in that the casting mold has a structure in which a rotating shaft capable of rotating itself is mounted in a direction substantially orthogonal to the axial direction.
前記注形型の回転軸を、前記エポキシ樹脂に混合される充填剤の該注形型内における沈降速度よりも速い速度で連続的に回転させる駆動装置を備えたことを特徴とする請求項1に記載の高電圧機器用エポキシ絶縁物製造装置。2. A drive device for continuously rotating a rotating shaft of the casting mold at a speed higher than a sedimentation speed of the filler mixed with the epoxy resin in the casting mold. The epoxy insulator manufacturing apparatus for a high-voltage device according to claim 1. さらに、発熱装置を備え、この発熱装置により、前記注形型の内部に注入される前記充填剤が混合されたエポキシ樹脂を熱しながら、該エポキシ樹脂を硬化させてエポキシ絶縁物を製造することを特徴とする請求項1または請求項2に記載の高電圧機器用エポキシ絶縁物製造装置。Furthermore, a heating device is provided, and the heating device heats the epoxy resin mixed with the filler injected into the casting mold, and cures the epoxy resin to produce an epoxy insulator. The apparatus for producing an epoxy insulator for a high-voltage device according to claim 1 or 2, wherein: 前記回転軸を、前記注形型の中央部の側面に取り付けた構造であることを特徴とする請求項1乃至請求項3の何れか1項に記載の高電圧機器用エポキシ絶縁物製造装置。The apparatus according to any one of claims 1 to 3, wherein the rotary shaft is attached to a side surface of a central portion of the casting mold. 前記回転軸を、前記注形型の一端に取り付けた構造であることを特徴とする請求項1乃至請求項3の何れか1項に記載の高電圧機器用エポキシ絶縁物製造装置。4. The apparatus according to claim 1, wherein the rotating shaft is attached to one end of the casting mold. 5. 前記注形型の注入用空洞は、左右に折曲した構造部分を有することを特徴とする請求項1乃至請求項5の何れか1項に記載の高電圧機器用エポキシ絶縁物製造装置。The apparatus according to any one of claims 1 to 5, wherein the casting cavity has a structure part bent right and left. 前記請求項1乃至請求項6の何れか1項に記載の高電圧機器用エポキシ絶縁物製造装置を用いて製造したことを特徴とする高電圧機器用エポキシ絶縁物。An epoxy insulator for a high-voltage device, manufactured using the apparatus for manufacturing an epoxy insulator for a high-voltage device according to any one of claims 1 to 6. さらに、絶縁性のガスを充填させた密閉容器内に固着され、かつ高電圧が印加される導体を支持することを特徴とする請求項7に記載の高電圧機器用エポキシ絶縁物。The epoxy insulator for high-voltage equipment according to claim 7, further comprising a conductor fixed to a closed container filled with an insulating gas and to which a high voltage is applied.
JP2003061975A 2003-03-07 2003-03-07 Epoxy insulator manufacturing device for high voltage equipment and epoxy insulator for high voltage equipment Pending JP2004273259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061975A JP2004273259A (en) 2003-03-07 2003-03-07 Epoxy insulator manufacturing device for high voltage equipment and epoxy insulator for high voltage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061975A JP2004273259A (en) 2003-03-07 2003-03-07 Epoxy insulator manufacturing device for high voltage equipment and epoxy insulator for high voltage equipment

Publications (1)

Publication Number Publication Date
JP2004273259A true JP2004273259A (en) 2004-09-30

Family

ID=33124037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061975A Pending JP2004273259A (en) 2003-03-07 2003-03-07 Epoxy insulator manufacturing device for high voltage equipment and epoxy insulator for high voltage equipment

Country Status (1)

Country Link
JP (1) JP2004273259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022081A (en) * 2008-07-08 2010-01-28 Toshiba Corp Gas-insulated equipment
JP2020138487A (en) * 2019-02-28 2020-09-03 富士電機株式会社 Method for manufacturing insulating spacer
CN114770833A (en) * 2022-04-02 2022-07-22 广东电网有限责任公司 Anti-settling device and method for epoxy resin and micron aluminum oxide composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022081A (en) * 2008-07-08 2010-01-28 Toshiba Corp Gas-insulated equipment
JP2020138487A (en) * 2019-02-28 2020-09-03 富士電機株式会社 Method for manufacturing insulating spacer
JP7162841B2 (en) 2019-02-28 2022-10-31 富士電機株式会社 Insulating spacer manufacturing method
CN114770833A (en) * 2022-04-02 2022-07-22 广东电网有限责任公司 Anti-settling device and method for epoxy resin and micron aluminum oxide composite material

Similar Documents

Publication Publication Date Title
Dang et al. Study on dielectric behavior of a three-phase CF/(PVDF+ BaTiO3) composite
Zha et al. Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films
CN110265176B (en) Dielectric gradient material and application thereof
Xue et al. A novel sight for understanding surface charging phenomena on downsized HVDC GIL spacers with non-uniform conductivity
Liu et al. Microwave dielectric properties with optimized Mn-doped Ba0. 6Sr0. 4TiO3 highly epitaxial thin films
US10053544B2 (en) Carbon nanotube/polyetherimide/thermosetting resin dielectric composite and preparation method therefor
Macutkevic et al. Electrical transport in carbon black-epoxy resin composites at different temperatures
Wang et al. Enhanced thermal conductivity of epoxy composites by constructing thermal conduction networks via adding hybrid alumina filler
Vaisakh et al. Effect of nano/micro‐mixed ceramic fillers on the dielectric and thermal properties of epoxy polymer composites
Akram et al. Multilayer polyimide nanocomposite films synthesis process optimization impact on nanoparticles dispersion and their dielectric performance
JP2006252893A (en) Manufacturing method of gradient dielectric constant electric insulation mold and electric insulation mold
JP2004273259A (en) Epoxy insulator manufacturing device for high voltage equipment and epoxy insulator for high voltage equipment
Feng et al. Achieving high insulating strength and energy storage properties of all-organic dielectric composites by surface morphology modification
Zahhaf et al. Dielectrophoretic alignment of Al2O3/PDMS composites: Enhancement of thermal and dielectric properties through structural sedimentation analysis
Cai et al. Design and preparation of ternary polymer nanocomposites for high energy density film capacitors
Gu et al. Preparation of high k expanded graphite/CaCuTi4O12/cyanate ester composites with low dielectric loss through controlling the interfacial action between conductors and ceramics
Panda Tuned dielectric and percolation behavior of cold-pressed polyvinyledene fluoride nanocomposites caused by Ni and BaTiO 3 fillers
JP5414290B2 (en) Casting device, casting method and insulating spacer
Tian et al. Enhanced thermal conductivity and rheological performance of epoxy and liquid crystal epoxy composites with filled Al2O3 compound
Long et al. Effect of branched alumina on thermal conductivity of epoxy resin
KR20100111454A (en) Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby
Gao et al. Enhanced electrical properties by tuning the phase morphology of multiwalled carbon nanotube‐filled poly (ether ether ketone)/polyimide composites
Yang et al. Surface treated ZnO whisker optimizing the comprehensive performance of the self-adaptive dielectrics
Ren et al. Improvement of high‐temperature energy storage properties of polyimide‐based nanocomposites with sandwich structure
JP3108544B2 (en) Resin mold equipment and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050729