JP2004272958A - Perpendicular magnetic recording medium and its manufacturing method - Google Patents

Perpendicular magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2004272958A
JP2004272958A JP2003059103A JP2003059103A JP2004272958A JP 2004272958 A JP2004272958 A JP 2004272958A JP 2003059103 A JP2003059103 A JP 2003059103A JP 2003059103 A JP2003059103 A JP 2003059103A JP 2004272958 A JP2004272958 A JP 2004272958A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
gas
perpendicular magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059103A
Other languages
Japanese (ja)
Other versions
JP4211436B2 (en
Inventor
Sadayuki Watanabe
貞幸 渡辺
Yasushi Sakai
泰志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003059103A priority Critical patent/JP4211436B2/en
Publication of JP2004272958A publication Critical patent/JP2004272958A/en
Application granted granted Critical
Publication of JP4211436B2 publication Critical patent/JP4211436B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium of low noise and high recording density, and also its manufacturing method. <P>SOLUTION: A granular magnetic recording layer 13 consisting of ferromagnetic grains composed of CoPt alloy or FePt alloy or those alloys with at least one kind of element among Cr, Ni, Nb, Ta, B, and nonmagnetic grain boundary composed of at least one kind of oxide or nitride among Cr, Co, Si, Al, Ti, Ta, Hf, Zr, Y, Ce, is deposited in a mixed gas atmosphere of noble gas and oxygen gas. In this stage, when a surface of a substrate layer 12 is preliminarily subjected to "gas exposure" prior to the deposition of the granular magnetic recording layer 13, a partial pressure ratio of oxygen äO<SB>2</SB>/(noble gas + O<SB>2</SB>)} of the mixed gas is 0.05 to 2.00 volume %, and when not subjected to "gas exposure", the partial pressure ratio of oxygen äO<SB>2</SB>/(noble gas + O<SB>2</SB>)} is 0.25 to 4.00 volume %. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は垂直磁気記録媒体およびその製造方法に関し、より詳細には、低ノイズ・高記録密度の垂直磁気記録媒体およびその製造方法に関する。
【0002】
【従来の技術】
磁気記録の高密度化を実現するための技術として、従来の長手磁気記録方式に代えて、記録磁化が媒体面内方向に垂直な垂直磁気記録方式が注目されている。
垂直磁気記録媒体は、主として、硬質磁性材料の磁気記録層と、磁気記録層を構成する結晶粒の結晶軸を目的の方向に配向させるための下地層と、磁気記録層の表面を保護するための保護膜と、磁気へッドから発生する磁束を集中させた状態で磁気記録層への書込みを行わせるための軟磁性材料の裏打ち層とで構成される。なお、軟磁性裏打ち層を設けることで媒体性能は高まるが、この層は磁気記録に必須の層ではないため、軟磁性裏打ち層を設けずに垂直磁気記録媒体を構成することも可能である。軟磁性裏打ち層を設けない構成としたものは「単層垂直磁気記録媒体」と呼ばれ、軟磁性裏打ち層を設けた構成の「二層垂直磁気記録媒体」とは区別されている。
【0003】
垂直磁気記録媒体においても、長手磁気記録媒体と同様に、高記録密度化のためには高い熱安定性と低ノイズ化の両立を図ることが必要である。長手磁気記録媒体の磁気記録層の材料として実用化されているものはCoCrからなる合金(以下「CoCr」と略す)であり、このCoCr磁気記録層を成膜するに際しては、基板温度を300℃程度として成膜することで磁気記録層内での結晶粒界に非磁性のCrを偏析させて孤立化した磁性粒子を得ている。この他の長手磁気記録層材料として、粒界相に酸化物や窒化物などの非磁性非金属の物質を用いた「グラニュラー磁気記録層」と呼ばれる材料も提案されている(例えば、特許文献1参照)。一方、垂直磁気記録媒体の磁気記録層としては、CoCrPtB−O(特許文献2)やCoPt−CoX:X=O,N,C(特許文献3)等が提案されている。
【0004】
【特許文献1】
米国特許第5,679,473号明細書
【0005】
【特許文献2】
特開平3−058316号公報
【0006】
【特許文献3】
特開平7−235034号公報
【0007】
【発明が解決しようとする課題】
しかしながら、CoCrPtB−Oを用いて垂直磁気記録媒体の磁気記録層を構成した場合には、B添加により垂直磁気異方性が低下するため熱安定性が不安定となるという問題があり、CoPt−CoXを用いた磁気記録層では、良好な磁気特性を得るために数時間の熱処理が必要とされて生産性が低下するという問題がある。
【0008】
また、本発明者らの技術的検討によれば、垂直磁気記録媒体にグラニュラー磁気記録層を採用し、かつ、その磁気記録層の結晶配向を制御するための「配向制御層」の構成を工夫したり磁気記録層の成膜前にガス暴露を行うなどの手法により、従来のCoCr磁気記録層に比較して偏析構造に優れ低ノイズでかつ垂直磁気異方性が大きな垂直磁気記録媒体が得られること、および、この垂直磁気記録媒体は長時間の熱処理が不要で生産性にも優れていることが確認されている。
【0009】
しかしながら、上述のようなグラニュラー磁気記録層を単純に成膜しただけでは、本来は磁気記録層の粒界に偏析して非磁性非金属(酸化物あるいは窒化物)の粒界相となるべき金属元素が単体の状態で結晶粒内に留まり易いという問題がある。すなわち、5nm程度以下の下地層との界面付近(初期層領域)では、ガス暴露により非磁性非金属が形成され易い状態にすることは可能であるものの、それ以上の層厚となると、金属元素が単体の状態で結晶粒内に留まり易くなり偏析構造が形成されにくくなる。偏析構造の形成が不十分となると、磁気特性の劣化を招くことは勿論、結晶粒間での磁気的相互作用が増加するために低ノイズ化が妨げられて高記録密度化の障害となる。
【0010】
本発明はこのような問題に鑑みてなされたもので、その目的とするところは、低ノイズかつ高記録密度の垂直磁気記録媒体およびその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明はこのような目的を達成するために、請求項1に記載の発明は、垂直磁気記録媒体の製造方法であって、下地層成膜後の当該下地層の表面上に、希ガスに酸素ガスを添加した混合ガス雰囲気中で磁気記録層を成膜するステップを備え、前記混合ガスの酸素分圧比O/(希ガス+O)が0.25〜4.00体積%であることを特徴とする。
【0012】
請求項2に記載の発明は、垂直磁気記録媒体の製造方法であって、下地層成膜後に当該下地層の表面を少なくとも酸素ガス若しくは窒素ガスにガス暴露するステップと、前記ガス暴露された下地層表面上に、希ガスに酸素ガスを添加した混合ガス雰囲気中で磁気記録層を成膜するステップとを備え、前記混合ガスの酸素分圧比O/(希ガス+O)が0.05〜2.00体積%であることを特徴とする。
【0013】
請求項3に記載の発明は、請求項1または2に記載の方法によって製造された垂直磁気記録媒体であって、前記磁気記録層が、CoPt合金またはFePt合金もしくはCr、Ni、Nb、Ta、Bのうちの少なくとも1種の元素を添加したCoPt合金またはFePt合金からなる強磁性結晶粒と、Cr、Co、Si、Al、Ti、Ta、Hf、Zr、Y、Ceのうちの少なくとも1種の酸化物もしくは窒化物からなる非磁性粒界とからなるグラニュラー磁気記録層であることを特徴とする。
【0014】
請求項4に記載の発明は、請求項3に記載の垂直磁気記録媒体において、前記下地層が、六方最密充填構造をとる金属あるいはその合金材料、若しくは、面心立方格子構造をとる金属あるいはその合金材料で構成されていることを特徴とする。
【0015】
請求項5に記載の発明は、請求項4に記載の垂直磁気記録媒体において、前記六方最密充填構造をとる金属は、Ti、Zr、Ru、Zn、Tc、Reのうちの何れかの金属であり、前記面心立方格子構造をとる金属は、Cu、Rh、Pd、Ag、Ir、Pt、Au、Ni、Coのうちの何れかの金属であることを特徴とする。
【0016】
請求項6に記載の発明は、請求項5に記載の垂直磁気記録媒体において、前記Ru金属の合金は、RuW、RuCu、RuC、RuB、RuCoCrの何れかの合金であることを特徴とする。
【0017】
請求項7に記載の発明は、請求項3乃至6の何れかに記載の垂直磁気記録媒体において、前記下地層の直下に、NiFe、NiFeNb、NiFeB、NiFeCr、NiFeSi、NiFeAlのうちの何れかのNi基合金からなるシード層を備えていることを特徴とする。
【0018】
請求項8に記載の発明は、請求項3乃至7の何れかに記載の垂直磁気記録媒体において、前記シード層と非磁性基体との間に軟磁性裏打ち層を備え、当該軟磁性裏打ち層は、結晶のNiFe合金またはセンダスト(FeSiAl)合金、微結晶のFeTaCまたはCoTaZr、非晶質のCoZrNb、のうちの何れかの材料で構成されていることを特徴とする。
【0019】
【発明の実施の形態】
以下に図面を参照して、本発明の実施の形態について説明する。
【0020】
図1は、本発明の垂直磁気記録媒体の構成例を説明するための断面図で、この垂直磁気記録媒体は、非磁性基体11上に、少なくとも、下地層12と、磁気記録層13と、保護膜14とが順次積層されており、保護層14の上には、液体潤滑剤層15が設けられている。なお、下地層12の結晶配向性を向上させる目的で下地層12の直下にシード層16を設けたり、二層垂直磁気記録媒体とする場合には、非磁性基体11の上方に軟磁性裏打ち層17を設けるようにしてもよい。
【0021】
非磁性基体11としては、通常の磁気記録媒体用基板として用いられる、NiPメッキを施したAl合金や強化ガラスあるいは結晶化ガラス等の基板を用いることができる。また、基板の加熱温度が100℃程度である場合には、ポリカーボネイトやポリオレフィン等の樹脂からなるプラスチック基板を用いることも可能である。
【0022】
下地層12としては、例えば、六方最密充填構造をとる金属あるいはその合金材料か、若しくは、面心立方格子構造をとる金属あるいはその合金材料が好ましく用いられる。上述の六方最密充填構造をとる金属としては、例えばTi、Zr、Ru、Zn、Tc、Reなどがあり、面心立方格子構造をとる金属としては、Cu、Rh、Pd、Ag、Ir、Pt、Au、Ni、Co等がある。これらの金属のうち、RuまたはRuを含む合金(例えば、RuW、RuCu、RuC、RuB、RuCoCr)は、後述する暴露ガスである酸素ガスあるいは窒素ガスとの反応性が小さいため、特性向上のために好ましい効果が得られる。下地層12の膜厚は薄い方が好ましいが、十分な結晶成長が得られる膜厚である3nm以上とすることが好ましい。
【0023】
磁気記録層13には、強磁性を示す結晶粒とその結晶粒を取り巻く非磁性の粒界をもつ構造を有し、その非磁性粒界が非磁性非金属で構成されているグラニュラー磁気記録層を用いる。強磁性を示す結晶としては、例えば、CoPtやFePt合金、及びそれらにCr、Ni、Nb、Ta、B等の元素を添加した合金が好ましく用いられる。また、非磁性粒界の非磁性非金属としては、酸化物若しくは窒化物が好ましく用いられ、具体的には、Cr、Co、Si、Al、Ti、Ta、Hf、Zr、Y、Ceの酸化物若しくは窒化物が好ましく用いられる。なお、垂直磁気記録媒体の磁気記録層であるから、強磁性の結晶粒は膜面に対して垂直異方性をもつように成膜される。
【0024】
本発明においては、この磁気記録層13の形成に先立って、予め、下地層12の表面を、OあるいはN雰囲気、若しくは、希ガスにOあるいはNを添加した混合ガス雰囲気に暴露する。この「ガス暴露」により、OあるいはNを非磁性非金属形成のための核として付帯させることができる。そして、この核付帯後に磁気記録層13を形成することにより、下地層との界面から強磁性の結晶粒と非磁性非金属の粒界とが形成されるようになり、良好な偏析構造をもつ磁気記録層13を得ることができるようになる。
【0025】
また、本発明の垂直磁気記録媒体が備えるグラニュラーの磁気記録層13は、希ガスと酸素ガスの混合ガス雰囲気中で形成される。希ガスに酸素ガスを添加することにより、添加された酸素ガスが、酸化物(あるいは窒化物)とならずに結晶粒内に存在していた金属元素と反応し、酸化物となって粒界に偏析することとなる。これにより、偏析構造の形成が促進され、その結果、磁気特性が向上するとともに低ノイズ化を図ることが可能となる。
【0026】
ここで、混合ガス中の酸素ガスの濃度が高すぎる場合には、粒内の強磁性材料までが酸化されて磁気特性が劣化することが生じ得る。好ましい酸素ガスの濃度範囲は磁気記録層形成前のガス暴露の有無により異なり、ガス暴露を行わない場合の分圧比(O/(希ガス+O))は0.25〜4.00体積%、ガス暴露を行う場合の分圧比(O/(希ガス+O))は0.05〜2.00体積%である。
【0027】
保護膜14には、例えばカーボンを主体とする薄膜が用いられ、液体潤滑剤層15には、例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。
【0028】
シード層16は、下地層12の結晶配向性を向上させるために設けられる層で、非磁性であってもよいが、二層垂直磁気記録媒体とする場合は、軟磁性裏打ち層17の一部としての働きをも担い得るように、軟磁気特性を示す材料を用いることが好ましい。このような軟磁気特性を示すシード層16の例としては、NiFe、NiFeNb、NiFeB、NiFeCr、NiFeSi、NiFeAlなどのNi基合金がある。
【0029】
軟磁性裏打ち層17は、二層垂直磁気記録媒体とする場合に設けられる層で、磁気へッドが発生する磁束を集中させる役割を担う層である。このような軟磁性裏打ち層17としては、例えば、結晶のNiFe合金やセンダスト(FeSiAl)合金など、微結晶のFeTaCやCoTaZr、非晶質のCo合金であるCoZrNbなどがある。また、軟磁性裏打ち層17の最適な膜厚は記録に使用する磁気へッドの構造や特性に依存するが、生産性との兼合いからは、概ね10nm〜500nm程度とすることが好ましい。
【0030】
【実施例】
以下に実施例により、本発明をより具体的に説明する。
(実施例1)
非磁性基体として表面が平滑な化学強化ガラス基板を用い、これを洗浄後スパッタ装置内に導入し、Co5Zr9Nbターゲットを用いてArガス圧5mTorr下でCoZrNbの軟磁性裏打ち層を200nm形成した後、軟磁性のNi基合金であるNi12Fe7Nbターゲットを用い、Arガス圧20mTorr下でNiFeNbのシード層を15nm成膜した。さらに、Ruターゲットを用い、Arガス圧30mTorr下でRuの下地層を15nm成膜した。
【0031】
磁気記録層には、92(Co11Cr17Pt)−8SiOターゲットを用いてCoCrPt−SiO層をガス圧30mTorrで12nm成膜した。この時、ArガスにOを添加した混合ガスを用い、添加するO濃度を0.05〜10%まで変化させた。また、比較のため、O添加を行わず、純Arガス雰囲気中で磁気記録層を成膜した媒体も作製した。
【0032】
最後に、カーボンターゲットを用いてカーボンからなる保護膜を7nm成膜後、真空装置から取り出し、パーフルオロポリエーテルからなる液体潤滑剤層2nmをディップ法により形成して、二層垂直磁気記録媒体とした。
【0033】
なお、磁気記録層の成膜はRFマグネトロンスパッタリング法で実行し、それ以外の各層は全てDCマグネトロンスパッタリング法で成膜した。
【0034】
(実施例2)
Ruの下地層を形成した後、磁気記録層の形成前に、Arガスに2%のOガスを添加した混合ガス雰囲気中(圧力5mTorr、流量60sccm)で10秒間暴露(ガス暴露)した後にCoCrPt−SiOの磁気記録層を成膜したこと以外は全て実施例1と同様の条件で二層垂直磁気記録媒体を作製した。また、比較のため、O添加を行わず、純Arガスを用いて磁気記録層を成膜した媒体も作製した。
【0035】
図2は実施例1および実施例2の二層垂直磁気記録媒体の保磁力Hcの添加酸素濃度依存性を説明するための図であり、図3は実施例1および実施例2の二層垂直磁気記録媒体の角型比Sの添加酸素濃度依存性を説明するための図である。なお、これらのHcおよびSは、Kerr効果測定のヒステリシスループを基に求めている。
【0036】
Hcについては、実施例1及び実施例2の二層垂直磁気記録媒体とも同様の傾向が認められ、添加酸素濃度の増加に伴い大きくなり、実施例1では2.5%付近、実施例2では0.5%付近でピークをとり、その後減少していく。また、Sについても、実施例1及び実施例2の二層垂直磁気記録媒体とも同様の傾向が認められ、Hcがピークをとる酸素濃度まではS=1を保つものの、それ以降は小さくなっていく。Hcが増加傾向にあり、1に近いSを維持している酸素濃度範囲では、酸素は粒界相となるSiと優先的に反応し偏析が促進されているものと考えられる。
【0037】
この酸素濃度の適正範囲は、磁気記録層成膜前のガス暴露の有無(すなわち、実施例1と実施例2)により異なり、ガス暴露を行わない場合(実施例1)は0.25〜4.00%、行った場合(実施例2)は0.05〜2.00%と結論される。添加酸素濃度がこの範囲を超えて大きくなると、HcとSが共に小さくなるのは、酸素が供給過剰となり、粒内のCoとも反応して垂直異方性が小さくなってしまうためと考えられる。
【0038】
実施例1と実施例2とを比較すると、Hcのピーク値はガス暴露を行った実施例2の方が大きい。従って、単に酸素添加成膜を行っただけの実施例1では、磁気記録層において、特に下地層との界面付近での偏析が十分とはいえず、実施例2のように磁気記録層成膜前のガス暴露を併用することにより、膜厚方向全域に渡り良好な偏析構造が形成されるものと考えられる。
【0039】
(実施例3)
実施例1のうち、Hcの最も大きな二層垂直磁気記録媒体、すなわち、混合ガス中の酸素添加濃度2.5%の場合の媒体を、改めて実施例3とする。
【0040】
(実施例4)
実施例2のうち、Hcの最も大きな二層垂直磁気記録媒体、すなわち、混合ガス中の酸素添加濃度0.5%の場合の媒体を、改めて実施例4とする。
【0041】
(比較例1)
本発明の比較例として、実施例1の二層垂直磁気記録媒体のうちの、酸素添加を行わずに磁気記録層を成膜した媒体を、改めて比較例1とする。
【0042】
(比較例2)
本発明の比較例として、実施例2の二層垂直磁気記録媒体のうちの、酸素添加を行わずに磁気記録層を成膜した媒体を、改めて比較例2とする。
【0043】
表1は、各媒体の磁気記録層について、TEM(透過型電子顕微鏡:スポット径φ1.0nm)に付属するEDX(エネルギー分散型X線分析)による結晶粒内及び粒界の組成分析を実行した結果を纏めたものである。
【0044】
【表1】

Figure 2004272958
【0045】
この測定は点分析であり、各測定点毎に5回の測定を行い、これを4ヶ所(計20回の測定)実行してそれらの平均を求めた。
【0046】
ここで示した実施例3の媒体と比較例1の媒体とを比較すると、いずれの媒体においても結晶粒内よりも粒界の方にSiが多く検出されているが、実施例3の方が、結晶粒内では少なく粒界では多くSiが検出される傾向が顕著である。これは、酸素添加成膜によりSiOの粒界偏析が促進されるためである。同様に、実施例4と比較例2とを比較した場合にも、酸素添加成膜を行った場合の方が、粒内のSi濃度が減少し粒界のSi濃度が増えている。
【0047】
なお、これらの各試料についてTEMによる磁気記録層の平面観察を行った結果、各試料とも、平均結晶粒界幅1.9nm、粒界を除いた平均結晶粒径6.5nmで、ほとんど等しい平均結晶粒界幅と平均結晶粒径となっていることが確認された。
【0048】
表2は、実施例3と実施例4および比較例1と比較例2の、Hcおよび規格化ノイズならびにSNR(信号対雑音比)について纏めたものである。
【0049】
【表2】
Figure 2004272958
【0050】
ここで、電磁変換特性は、GMRへッドを用いてスピンスタンドテスターで測定している。なお、規格化ノイズ及びSNRは、線記録密度400kFCIでの値である。また、Hcは上述したKerr測定結果の値であり、表2には特に記載していないがSは全て1である。
【0051】
酸素添加成膜を行っていない比較例1に比較して、酸素添加成膜を行った実施例3では、Hcが増加すると共にノイズが低下しSNRが向上している。この結果は、上述のTEM/EDXの分析結果を支持するものであり、酸素添加成膜の効果で偏析が促進され、粒間相互作用が低減したことがわかる。
【0052】
一方、実施例3を、ガス暴露(酸素暴露)を行い酸素添加成膜を行わなかった比較例2と比較すると、若干ノイズが大きく、SNRにおいて劣っている。このことは、酸素暴露の方が酸素添加成膜より下地層との界面付近での偏析構造形成に寄与する程度が大きいことを示している。
【0053】
最後に、酸素暴露と酸素添加成膜とを併用した実施例4を比較例2とを比較すると、実施例4の方がHcは大きく、かつ、ノイズが低下しSNRも大きい。このことは、酸素添加により、下地層との界面付近のみならず上層部領域においても偏析構造が促進されていることを示している。
【0054】
このように、膜厚方向全域に渡って偏析が促進されている実施例4が、最も高Hcで低ノイズかつ高SNRとなっている。
【0055】
なお、これまで説明してきた例では、CoCrPt−SiOの磁性層成膜時に希ガスと酸素ガスとの混合ガスを用いているが、グラニュラー磁性層を構成する強磁性を有する結晶が、例えばCoPtやFePt合金、及びそれらにCr、Ni、Nb、Ta、B等の元素を添加した合金である場合や、非磁性粒界の非磁性非金属が例えばCr、Co、Si、Al、Ti、Ta、Hf、Zr、Y、Ceの酸化物若しくは窒化物である場合も、同様な効果を得ることが可能である。
【0056】
【発明の効果】
以上説明したように、本発明によれば、グラニュラー磁気記録層の形成に先立って、予め下地層の表面を「ガス暴露」して非磁性非金属形成のための核付帯を行い、かつ、磁気記録層を、希ガスと酸素ガスの混合ガス雰囲気中で形成することとしたので、添加された酸素ガスが、酸化物あるいは窒化物とならずに結晶粒内に存在していた金属元素と反応し、酸化物となって粒界に偏析することとなり、低ノイズかつ高記録密度の垂直磁気記録媒体およびその製造方法を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の垂直磁気記録媒体の構成例を説明するための断面図である。
【図2】実施例1および実施例2の二層垂直磁気記録媒体の保磁力Hcの添加酸素濃度依存性を説明するための図である。
【図3】実施例1および実施例2の二層垂直磁気記録媒体の角型比Sの添加酸素濃度依存性を説明するための図である。
【符号の説明】
11 非磁性基体
12 下地層
13 磁気記録層
14 保護膜
15 液体潤滑剤層
16 シード層
17 軟磁性裏打ち層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a perpendicular magnetic recording medium and a method for manufacturing the same, and more particularly to a low magnetic noise high recording density perpendicular magnetic recording medium and a method for manufacturing the same.
[0002]
[Prior art]
As a technique for realizing high-density magnetic recording, attention is focused on a perpendicular magnetic recording method in which the recording magnetization is perpendicular to the in-plane direction of the medium, instead of the conventional longitudinal magnetic recording method.
Perpendicular magnetic recording media mainly protect a magnetic recording layer of a hard magnetic material, an underlayer for orienting crystal axes of crystal grains constituting the magnetic recording layer, and a surface of the magnetic recording layer. And a backing layer of a soft magnetic material for writing to the magnetic recording layer in a state where the magnetic flux generated from the magnetic head is concentrated. Although the medium performance is improved by providing the soft magnetic backing layer, since this layer is not an essential layer for magnetic recording, it is possible to constitute a perpendicular magnetic recording medium without providing the soft magnetic backing layer. A structure without a soft magnetic backing layer is called a “single-layer perpendicular magnetic recording medium” and is distinguished from a “double-layer perpendicular magnetic recording medium” with a structure having a soft magnetic backing layer.
[0003]
In the perpendicular magnetic recording medium, as in the case of the longitudinal magnetic recording medium, it is necessary to achieve both high thermal stability and low noise in order to increase the recording density. What is put into practical use as a material of the magnetic recording layer of the longitudinal magnetic recording medium is an alloy made of CoCr (hereinafter abbreviated as “CoCr”). When forming the CoCr magnetic recording layer, the substrate temperature is set to 300 ° C. By forming the film to a certain extent, non-magnetic Cr is segregated at the grain boundaries in the magnetic recording layer to obtain isolated magnetic particles. As another longitudinal magnetic recording layer material, a material called “granular magnetic recording layer” using a non-magnetic non-metallic substance such as oxide or nitride for the grain boundary phase has been proposed (for example, Patent Document 1). reference). On the other hand, CoCrPtB-O (Patent Document 2), CoPt-CoX: X = O, N, C (Patent Document 3) and the like have been proposed as the magnetic recording layer of the perpendicular magnetic recording medium.
[0004]
[Patent Document 1]
US Pat. No. 5,679,473
[Patent Document 2]
Japanese Patent Laid-Open No. 3-058316 [0006]
[Patent Document 3]
Japanese Patent Laid-Open No. 7-235034
[Problems to be solved by the invention]
However, when the magnetic recording layer of the perpendicular magnetic recording medium is formed using CoCrPtB-O, there is a problem that the thermal stability becomes unstable because the perpendicular magnetic anisotropy is reduced by addition of B, and CoPt- In the magnetic recording layer using CoX, there is a problem that a heat treatment for several hours is required to obtain good magnetic properties and productivity is lowered.
[0008]
According to the inventors' technical examination, a granular magnetic recording layer is adopted for the perpendicular magnetic recording medium, and the configuration of the “orientation control layer” for controlling the crystal orientation of the magnetic recording layer is devised. Or by exposing to gas before forming the magnetic recording layer, a perpendicular magnetic recording medium with superior segregation structure and lower noise and greater perpendicular magnetic anisotropy than conventional CoCr magnetic recording layers can be obtained. It has been confirmed that this perpendicular magnetic recording medium does not require heat treatment for a long time and is excellent in productivity.
[0009]
However, simply forming the granular magnetic recording layer as described above originally segregates at the grain boundary of the magnetic recording layer to form a nonmagnetic nonmetal (oxide or nitride) grain boundary phase. There exists a problem that an element tends to stay in a crystal grain in the state of a simple substance. That is, in the vicinity of the interface with the underlayer of about 5 nm or less (initial layer region), it is possible to easily form a nonmagnetic nonmetal by gas exposure, but when the layer thickness exceeds that, the metal element Tends to stay in the crystal grains in a single state, and segregation structure is hardly formed. If the segregation structure is not sufficiently formed, the magnetic characteristics are deteriorated, and the magnetic interaction between crystal grains is increased, so that the reduction in noise is hindered and the recording density is hindered.
[0010]
The present invention has been made in view of such problems, and an object thereof is to provide a perpendicular magnetic recording medium with low noise and high recording density and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for manufacturing a perpendicular magnetic recording medium, wherein a rare gas is formed on the surface of the underlayer after the underlayer is formed. A step of forming a magnetic recording layer in a mixed gas atmosphere to which oxygen gas is added, wherein the mixed gas has an oxygen partial pressure ratio O 2 / (rare gas + O 2 ) of 0.25 to 4.00 vol%. It is characterized by.
[0012]
The invention according to claim 2 is a method of manufacturing a perpendicular magnetic recording medium, wherein after the base layer is formed, the surface of the base layer is exposed to at least oxygen gas or nitrogen gas, and under the gas exposure Forming a magnetic recording layer on a surface of the formation layer in a mixed gas atmosphere in which oxygen gas is added to a rare gas, and an oxygen partial pressure ratio O 2 / (rare gas + O 2 ) of the mixed gas is 0.05. It is -2.00 volume%, It is characterized by the above-mentioned.
[0013]
The invention according to claim 3 is the perpendicular magnetic recording medium manufactured by the method according to claim 1 or 2, wherein the magnetic recording layer is a CoPt alloy, an FePt alloy, Cr, Ni, Nb, Ta, A ferromagnetic crystal grain made of a CoPt alloy or FePt alloy to which at least one element of B is added, and at least one of Cr, Co, Si, Al, Ti, Ta, Hf, Zr, Y, and Ce; A granular magnetic recording layer comprising a nonmagnetic grain boundary made of an oxide or a nitride of the above.
[0014]
The invention according to claim 4 is the perpendicular magnetic recording medium according to claim 3, wherein the underlayer is a metal having a hexagonal close-packed structure or an alloy material thereof, a metal having a face-centered cubic lattice structure, or It is characterized by comprising the alloy material.
[0015]
The invention according to claim 5 is the perpendicular magnetic recording medium according to claim 4, wherein the metal having the hexagonal close-packed structure is any one of Ti, Zr, Ru, Zn, Tc, and Re. The metal having the face-centered cubic lattice structure is any one of Cu, Rh, Pd, Ag, Ir, Pt, Au, Ni, and Co.
[0016]
The invention according to claim 6 is the perpendicular magnetic recording medium according to claim 5, wherein the alloy of the Ru metal is any one of RuW, RuCu, RuC, RuB, and RuCoCr.
[0017]
A seventh aspect of the present invention is the perpendicular magnetic recording medium according to any one of the third to sixth aspects, wherein any one of NiFe, NiFeNb, NiFeB, NiFeCr, NiFeSi, and NiFeAl is provided immediately below the underlayer. A seed layer made of a Ni-based alloy is provided.
[0018]
The invention according to claim 8 is the perpendicular magnetic recording medium according to any one of claims 3 to 7, further comprising a soft magnetic backing layer between the seed layer and the nonmagnetic substrate, wherein the soft magnetic backing layer comprises: It is characterized by being composed of any one material of crystalline NiFe alloy or Sendust (FeSiAl) alloy, microcrystalline FeTaC or CoTaZr, and amorphous CoZrNb.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
FIG. 1 is a cross-sectional view for explaining a configuration example of a perpendicular magnetic recording medium according to the present invention. This perpendicular magnetic recording medium has at least an underlayer 12, a magnetic recording layer 13, and a nonmagnetic substrate 11. A protective film 14 is sequentially laminated, and a liquid lubricant layer 15 is provided on the protective layer 14. When the seed layer 16 is provided immediately below the underlayer 12 for the purpose of improving the crystal orientation of the underlayer 12 or when a double-layer perpendicular magnetic recording medium is used, the soft magnetic underlayer is provided above the nonmagnetic substrate 11. 17 may be provided.
[0021]
As the nonmagnetic substrate 11, a substrate such as an Al alloy plated with NiP, tempered glass, or crystallized glass, which is used as a normal magnetic recording medium substrate, can be used. Further, when the heating temperature of the substrate is about 100 ° C., it is possible to use a plastic substrate made of a resin such as polycarbonate or polyolefin.
[0022]
As the underlayer 12, for example, a metal having a hexagonal close-packed structure or an alloy material thereof, or a metal having a face-centered cubic lattice structure or an alloy material thereof is preferably used. Examples of the metal having the above hexagonal close-packed structure include Ti, Zr, Ru, Zn, Tc, and Re, and examples of the metal having a face-centered cubic lattice structure include Cu, Rh, Pd, Ag, Ir, Pt, Au, Ni, Co, etc. Among these metals, Ru or Ru-containing alloys (for example, RuW, RuCu, RuC, RuB, RuCoCr) have low reactivity with oxygen gas or nitrogen gas, which will be described later, and thus improve characteristics. A favorable effect is obtained. The film thickness of the underlayer 12 is preferably thin, but is preferably 3 nm or more, which is a film thickness that provides sufficient crystal growth.
[0023]
The magnetic recording layer 13 has a structure having crystal grains exhibiting ferromagnetism and a nonmagnetic grain boundary surrounding the crystal grains, and the nonmagnetic grain boundary is composed of a nonmagnetic nonmetal. Is used. As the crystals exhibiting ferromagnetism, for example, CoPt and FePt alloys and alloys obtained by adding elements such as Cr, Ni, Nb, Ta, and B to them are preferably used. In addition, as the nonmagnetic nonmetal of the nonmagnetic grain boundary, oxide or nitride is preferably used. Specifically, oxidation of Cr, Co, Si, Al, Ti, Ta, Hf, Zr, Y, and Ce is performed. An oxide or nitride is preferably used. Since it is a magnetic recording layer of a perpendicular magnetic recording medium, ferromagnetic crystal grains are formed so as to have perpendicular anisotropy with respect to the film surface.
[0024]
In the present invention, prior to the formation of the magnetic recording layer 13, the surface of the underlayer 12 is previously exposed to an O 2 or N 2 atmosphere or a mixed gas atmosphere in which O 2 or N 2 is added to a rare gas. To do. By this “gas exposure”, O 2 or N 2 can be attached as a nucleus for forming a non-magnetic non-metal. Then, by forming the magnetic recording layer 13 after the nucleation, ferromagnetic crystal grains and nonmagnetic nonmetallic grain boundaries are formed from the interface with the underlayer, and a good segregation structure is obtained. The magnetic recording layer 13 can be obtained.
[0025]
The granular magnetic recording layer 13 included in the perpendicular magnetic recording medium of the present invention is formed in a mixed gas atmosphere of a rare gas and an oxygen gas. By adding an oxygen gas to the rare gas, the added oxygen gas does not become an oxide (or nitride) but reacts with a metal element present in the crystal grains to become an oxide and become a grain boundary. Will segregate. As a result, the formation of the segregation structure is promoted, and as a result, the magnetic characteristics are improved and the noise can be reduced.
[0026]
Here, when the concentration of the oxygen gas in the mixed gas is too high, even the ferromagnetic material in the grains may be oxidized to deteriorate the magnetic characteristics. The preferred oxygen gas concentration range varies depending on the presence or absence of gas exposure before the magnetic recording layer is formed, and the partial pressure ratio (O 2 / (rare gas + O 2 )) without gas exposure is 0.25 to 4.00 vol%. When the gas exposure is performed, the partial pressure ratio (O 2 / (rare gas + O 2 )) is 0.05 to 2.00% by volume.
[0027]
For example, a thin film mainly composed of carbon is used for the protective film 14, and a perfluoropolyether lubricant can be used for the liquid lubricant layer 15, for example.
[0028]
The seed layer 16 is a layer provided to improve the crystal orientation of the underlayer 12 and may be non-magnetic. However, in the case of a two-layer perpendicular magnetic recording medium, a part of the soft magnetic backing layer 17 is used. It is preferable to use a material exhibiting soft magnetic properties so that it can also serve as the above. Examples of the seed layer 16 exhibiting such soft magnetic characteristics include Ni-based alloys such as NiFe, NiFeNb, NiFeB, NiFeCr, NiFeSi, and NiFeAl.
[0029]
The soft magnetic backing layer 17 is a layer provided when a two-layer perpendicular magnetic recording medium is used, and is a layer that plays a role of concentrating a magnetic flux generated by a magnetic head. Examples of such a soft magnetic underlayer 17 include microcrystalline FeTaC and CoTaZr such as crystalline NiFe alloy and Sendust (FeSiAl) alloy, and CoZrNb that is an amorphous Co alloy. The optimum film thickness of the soft magnetic backing layer 17 depends on the structure and characteristics of the magnetic head used for recording, but is preferably about 10 nm to 500 nm from the viewpoint of productivity.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
A chemically tempered glass substrate having a smooth surface is used as a non-magnetic substrate, which is washed and introduced into a sputtering apparatus. A CoZrNb soft magnetic backing layer is formed to 200 nm under an Ar gas pressure of 5 mTorr using a Co5Zr9Nb target. Using a Ni12Fe7Nb target, which is a magnetic Ni-based alloy, a NiFeNb seed layer having a thickness of 15 nm was formed under an Ar gas pressure of 20 mTorr. Further, a Ru underlayer was formed to a thickness of 15 nm under an Ar gas pressure of 30 mTorr using a Ru target.
[0031]
As the magnetic recording layer, a CoCrPt—SiO 2 layer was formed to a thickness of 12 nm at a gas pressure of 30 mTorr using a 92 (Co11Cr17Pt) -8SiO 2 target. At this time, a mixed gas in which O 2 was added to Ar gas was used, and the O 2 concentration to be added was changed from 0.05 to 10%. For comparison, a medium in which a magnetic recording layer was formed in a pure Ar gas atmosphere without adding O 2 was also produced.
[0032]
Finally, after forming a protective film made of carbon using a carbon target to a thickness of 7 nm, the film is taken out from the vacuum device, and a liquid lubricant layer 2 nm made of perfluoropolyether is formed by a dip method. did.
[0033]
The magnetic recording layer was formed by the RF magnetron sputtering method, and all other layers were formed by the DC magnetron sputtering method.
[0034]
(Example 2)
After forming the Ru underlayer and before forming the magnetic recording layer, after exposure (gas exposure) for 10 seconds in a mixed gas atmosphere (pressure 5 mTorr, flow rate 60 sccm) in which 2% O 2 gas is added to Ar gas. A two-layer perpendicular magnetic recording medium was manufactured under the same conditions as in Example 1 except that a CoCrPt—SiO 2 magnetic recording layer was formed. For comparison, a medium in which a magnetic recording layer was formed using pure Ar gas without adding O 2 was also produced.
[0035]
FIG. 2 is a diagram for explaining the dependency of the coercive force Hc on the added oxygen concentration of the double-layered perpendicular magnetic recording media of Example 1 and Example 2, and FIG. It is a figure for demonstrating the addition oxygen concentration dependence of the squareness ratio S of a magnetic recording medium. These Hc and S are obtained based on the hysteresis loop of the Kerr effect measurement.
[0036]
As for Hc, the same tendency was observed in the double-layered perpendicular magnetic recording media of Example 1 and Example 2, and increased as the added oxygen concentration increased. In Example 1, it was around 2.5%, and in Example 2, It peaks at around 0.5% and then decreases. The same tendency was observed for S in the double-layered perpendicular magnetic recording media of Examples 1 and 2 as well, and S = 1 was maintained until the oxygen concentration at which Hc reached a peak, but thereafter it became smaller. Go. In the oxygen concentration range in which Hc tends to increase and S close to 1 is maintained, it is considered that oxygen preferentially reacts with Si serving as the grain boundary phase and segregation is promoted.
[0037]
The appropriate range of the oxygen concentration differs depending on the presence or absence of gas exposure before film formation of the magnetic recording layer (ie, Example 1 and Example 2), and 0.25 to 4 when no gas exposure is performed (Example 1). It is concluded that 0.05% to 2.00% when done (Example 2). When the added oxygen concentration exceeds this range, Hc and S both decrease because oxygen is excessively supplied and reacts with Co in the grains to reduce the vertical anisotropy.
[0038]
When Example 1 and Example 2 are compared, the peak value of Hc is larger in Example 2 where gas exposure was performed. Therefore, in Example 1 in which only oxygen-added film formation was performed, segregation in the magnetic recording layer, particularly in the vicinity of the interface with the underlayer, was not sufficient, and the magnetic recording layer film formation was performed as in Example 2. By using the previous gas exposure together, it is considered that a good segregation structure is formed throughout the film thickness direction.
[0039]
(Example 3)
Of Example 1, a double-layered perpendicular magnetic recording medium having the largest Hc, that is, a medium having an oxygen addition concentration of 2.5% in the mixed gas is referred to as Example 3 again.
[0040]
Example 4
Of Example 2, the double-layered perpendicular magnetic recording medium having the largest Hc, that is, the medium having an oxygen addition concentration of 0.5% in the mixed gas is referred to as Example 4 again.
[0041]
(Comparative Example 1)
As a comparative example of the present invention, a medium in which a magnetic recording layer is formed without adding oxygen among the two-layer perpendicular magnetic recording medium of Example 1 is referred to as Comparative Example 1 again.
[0042]
(Comparative Example 2)
As a comparative example of the present invention, a medium in which a magnetic recording layer is formed without adding oxygen among the double-layered perpendicular magnetic recording medium of Example 2 is referred to as Comparative Example 2 again.
[0043]
Table 1 shows the composition analysis of the inside of the crystal grain and the grain boundary by EDX (energy dispersive X-ray analysis) attached to TEM (transmission electron microscope: spot diameter φ1.0 nm) for the magnetic recording layer of each medium. The results are summarized.
[0044]
[Table 1]
Figure 2004272958
[0045]
This measurement was a point analysis, and five measurements were performed at each measurement point, and this was performed at four places (20 measurements in total) to obtain an average of them.
[0046]
When the medium of Example 3 shown here and the medium of Comparative Example 1 are compared, more Si is detected in the grain boundary than in the crystal grains in any medium. In addition, the tendency for Si to be detected is small in the crystal grain and much in the grain boundary. This is because the grain boundary segregation of SiO 2 is promoted by the oxygen-added film formation. Similarly, when Example 4 and Comparative Example 2 are compared, the Si concentration in the grains decreases and the Si concentration at the grain boundaries increases in the case where the oxygen-added film is formed.
[0047]
In addition, as a result of performing planar observation of the magnetic recording layer by TEM for each of these samples, each sample had an average grain boundary width of 1.9 nm, an average crystal grain size of 6.5 nm excluding the grain boundaries, and an almost equal average. It was confirmed that the grain boundary width and the average grain size were obtained.
[0048]
Table 2 summarizes Hc, normalized noise, and SNR (signal-to-noise ratio) of Example 3, Example 4, Comparative Example 1, and Comparative Example 2.
[0049]
[Table 2]
Figure 2004272958
[0050]
Here, the electromagnetic conversion characteristics are measured by a spin stand tester using a GMR head. The normalized noise and SNR are values at a linear recording density of 400 kFCI. Hc is the value of the Kerr measurement result described above, and S is 1 although not particularly described in Table 2.
[0051]
Compared to Comparative Example 1 in which no oxygen-added film is formed, in Example 3 in which an oxygen-added film is formed, Hc increases, noise decreases, and SNR improves. This result supports the above-mentioned TEM / EDX analysis result, and it can be seen that the segregation is promoted by the effect of the oxygen-added film formation and the intergranular interaction is reduced.
[0052]
On the other hand, when Example 3 was compared with Comparative Example 2 in which gas exposure (oxygen exposure) was performed and no oxygen-added film was formed, the noise was slightly larger and the SNR was inferior. This indicates that oxygen exposure contributes more to the formation of a segregation structure near the interface with the base layer than to oxygen-added film formation.
[0053]
Finally, when Example 4 combined with oxygen exposure and oxygen-added film formation is compared with Comparative Example 2, Example 4 has higher Hc, lower noise, and higher SNR. This indicates that the addition of oxygen promotes the segregation structure not only in the vicinity of the interface with the underlayer but also in the upper layer region.
[0054]
Thus, Example 4 in which segregation is promoted over the entire film thickness direction has the highest Hc, low noise, and high SNR.
[0055]
In the example described so far, a mixed gas of a rare gas and an oxygen gas is used when forming the CoCrPt—SiO 2 magnetic layer, but the ferromagnetic crystal constituting the granular magnetic layer is, for example, CoPt. And FePt alloys, and alloys obtained by adding elements such as Cr, Ni, Nb, Ta, and B, or nonmagnetic nonmetals at nonmagnetic grain boundaries are, for example, Cr, Co, Si, Al, Ti, Ta The same effect can be obtained when the oxide or nitride of Hf, Zr, Y, or Ce is used.
[0056]
【The invention's effect】
As described above, according to the present invention, prior to the formation of the granular magnetic recording layer, the surface of the underlayer is “gas-exposed” in advance to perform nucleus attachment for forming a non-magnetic non-metal, and magnetically Since the recording layer is formed in a mixed gas atmosphere of rare gas and oxygen gas, the added oxygen gas reacts with the metal elements present in the crystal grains without becoming oxides or nitrides. Then, it becomes an oxide and segregates at the grain boundary, and it is possible to provide a perpendicular magnetic recording medium with low noise and high recording density and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a configuration example of a perpendicular magnetic recording medium of the present invention.
FIG. 2 is a graph for explaining the dependency of coercive force Hc on the added oxygen concentration of the double-layered perpendicular magnetic recording media of Example 1 and Example 2;
FIG. 3 is a graph for explaining the dependency of the squareness ratio S on the added oxygen concentration of the double-layered perpendicular magnetic recording media of Example 1 and Example 2;
[Explanation of symbols]
Reference Signs List 11 Nonmagnetic substrate 12 Underlayer 13 Magnetic recording layer 14 Protective film 15 Liquid lubricant layer 16 Seed layer 17 Soft magnetic backing layer

Claims (8)

下地層成膜後の当該下地層の表面上に、希ガスに酸素ガスを添加した混合ガス雰囲気中で磁気記録層を成膜するステップを備え、
前記混合ガスの酸素分圧比O/(希ガス+O)が0.25〜4.00体積%であることを特徴とする垂直磁気記録媒体の製造方法。
A step of forming a magnetic recording layer on the surface of the underlayer after forming the underlayer in a mixed gas atmosphere in which oxygen gas is added to a rare gas;
A method of manufacturing a perpendicular magnetic recording medium, wherein an oxygen partial pressure ratio O 2 / (rare gas + O 2 ) of the mixed gas is 0.25 to 4.00 volume%.
下地層成膜後に当該下地層の表面を少なくとも酸素ガス若しくは窒素ガスにガス暴露するステップと、
前記ガス暴露された下地層表面上に、希ガスに酸素ガスを添加した混合ガス雰囲気中で磁気記録層を成膜するステップとを備え、
前記混合ガスの酸素分圧比O/(希ガス+O)が0.05〜2.00体積%であることを特徴とする垂直磁気記録媒体の製造方法。
Exposing the surface of the underlayer to at least oxygen gas or nitrogen gas after the underlayer is formed;
Forming a magnetic recording layer on the surface of the underlayer exposed to the gas in a mixed gas atmosphere in which an oxygen gas is added to a rare gas;
The method of manufacturing a perpendicular magnetic recording medium, wherein the mixed gas has an oxygen partial pressure ratio O 2 / (rare gas + O 2 ) of 0.05 to 2.00% by volume.
請求項1または2に記載の方法によって製造された垂直磁気記録媒体であって、
前記磁気記録層が、CoPt合金またはFePt合金もしくはCr、Ni、Nb、Ta、Bのうちの少なくとも1種の元素を添加したCoPt合金またはFePt合金からなる強磁性結晶粒と、Cr、Co、Si、Al、Ti、Ta、Hf、Zr、Y、Ceのうちの少なくとも1種の酸化物もしくは窒化物からなる非磁性粒界とからなるグラニュラー磁気記録層であることを特徴とする垂直磁気記録媒体。
A perpendicular magnetic recording medium manufactured by the method according to claim 1 or 2,
The magnetic recording layer includes a CoPt alloy, a FePt alloy, a ferromagnetic crystal grain made of CoPt alloy or FePt alloy to which at least one element of Cr, Ni, Nb, Ta, and B is added, and Cr, Co, Si A perpendicular magnetic recording medium comprising a granular magnetic recording layer comprising a nonmagnetic grain boundary made of at least one oxide or nitride of Al, Ti, Ta, Hf, Zr, Y, and Ce .
前記下地層が、六方最密充填構造をとる金属あるいはその合金材料、若しくは、面心立方格子構造をとる金属あるいはその合金材料で構成されていることを特徴とする請求項3に記載の垂直磁気記録媒体。4. The perpendicular magnetic according to claim 3, wherein the underlayer is made of a metal having a hexagonal close-packed structure or an alloy material thereof, or a metal having a face-centered cubic lattice structure or an alloy material thereof. recoding media. 前記六方最密充填構造をとる金属は、Ti、Zr、Ru、Zn、Tc、Reのうちの何れかの金属であり、前記面心立方格子構造をとる金属は、Cu、Rh、Pd、Ag、Ir、Pt、Au、Ni、Coのうちの何れかの金属であることを特徴とする請求項4に記載の垂直磁気記録媒体。The metal having the hexagonal close-packed structure is any one of Ti, Zr, Ru, Zn, Tc, and Re, and the metal having the face-centered cubic lattice structure is Cu, Rh, Pd, Ag. The perpendicular magnetic recording medium according to claim 4, wherein the perpendicular magnetic recording medium is made of any one metal selected from the group consisting of Ir, Pt, Au, Ni, and Co. 前記Ru金属の合金は、RuW、RuCu、RuC、RuB、RuCoCrの何れかの合金であることを特徴とする請求項5に記載の垂直磁気記録媒体。6. The perpendicular magnetic recording medium according to claim 5, wherein the Ru metal alloy is an alloy of RuW, RuCu, RuC, RuB, or RuCoCr. 前記下地層の直下に、NiFe、NiFeNb、NiFeB、NiFeCr、NiFeSi、NiFeAlのうちの何れかのNi基合金からなるシード層を備えていることを特徴とする請求項3乃至6の何れかに記載の垂直磁気記録媒体。7. A seed layer made of any Ni-based alloy of NiFe, NiFeNb, NiFeB, NiFeCr, NiFeSi, and NiFeAl is provided immediately below the underlayer. Perpendicular magnetic recording media. 前記シード層と非磁性基体との間に軟磁性裏打ち層を備え、当該軟磁性裏打ち層は、結晶のNiFe合金またはセンダスト(FeSiAl)合金、微結晶のFeTaCまたはCoTaZr、非晶質のCoZrNb、のうちの何れかの材料で構成されていることを特徴とする請求項3乃至7の何れかに記載の垂直磁気記録媒体。A soft magnetic backing layer is provided between the seed layer and the nonmagnetic substrate, and the soft magnetic backing layer is made of crystalline NiFe alloy or Sendust (FeSiAl) alloy, microcrystalline FeTaC or CoTaZr, amorphous CoZrNb, 8. The perpendicular magnetic recording medium according to claim 3, wherein the perpendicular magnetic recording medium is made of any one of the above materials.
JP2003059103A 2003-03-05 2003-03-05 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Lifetime JP4211436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059103A JP4211436B2 (en) 2003-03-05 2003-03-05 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059103A JP4211436B2 (en) 2003-03-05 2003-03-05 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004272958A true JP2004272958A (en) 2004-09-30
JP4211436B2 JP4211436B2 (en) 2009-01-21

Family

ID=33122035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059103A Expired - Lifetime JP4211436B2 (en) 2003-03-05 2003-03-05 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4211436B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276364A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing device using the same
JP2005276366A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device using the same
JP2007052852A (en) * 2005-08-17 2007-03-01 Toshiba Corp Perpendicular magnetic recording medium, and magnetic recording and reproducing device
KR100723407B1 (en) 2005-07-12 2007-05-30 삼성전자주식회사 Perpendicular magnetic recording media with property controlled recording layer and manufacturing method for the same
US7429427B2 (en) * 2004-12-06 2008-09-30 Seagate Technology Llc Granular magnetic recording media with improved grain segregation and corrosion resistance
CN100465308C (en) * 2006-09-20 2009-03-04 中国科学院半导体研究所 Method for preparing hexangular ordered FePt nano particle array
JP2009134804A (en) * 2007-11-29 2009-06-18 Fujitsu Ltd Magnetic recording medium and method for manufacturing the same
JP2010153030A (en) * 2010-03-02 2010-07-08 Toshiba Corp Magnetic recording medium and method of manufacturing the same, and magnetic recording and playback device
JP2010157307A (en) * 2008-12-05 2010-07-15 Hoya Corp Magnetic disk and method of manufacturing the same
US7879470B2 (en) 2007-11-15 2011-02-01 Hitachi Global Storage Technologies Netherlands B.V. Apparatus, system, and method for the selection of perpendicular media segregant materials
JP2011146113A (en) * 2010-01-18 2011-07-28 Fuji Electric Device Technology Co Ltd Method for manufacturing perpendicular magnetic recording medium
JP2015525941A (en) * 2012-06-29 2015-09-07 ウエスタンデジタル テクノロジーズ インク Conductive underlayer for growing (001) oriented FePt granular media on a glass substrate
US9911448B2 (en) 2012-01-16 2018-03-06 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276366A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device using the same
JP2005276364A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing device using the same
US7622204B2 (en) 2004-03-25 2009-11-24 Kabushiki Kaisha Toshiba Magnetic recording medium and magnetic recording apparatus
JP4585214B2 (en) * 2004-03-25 2010-11-24 株式会社東芝 Magnetic recording medium and magnetic recording / reproducing apparatus using the same
US7429427B2 (en) * 2004-12-06 2008-09-30 Seagate Technology Llc Granular magnetic recording media with improved grain segregation and corrosion resistance
KR100723407B1 (en) 2005-07-12 2007-05-30 삼성전자주식회사 Perpendicular magnetic recording media with property controlled recording layer and manufacturing method for the same
JP4557838B2 (en) * 2005-08-17 2010-10-06 株式会社東芝 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2007052852A (en) * 2005-08-17 2007-03-01 Toshiba Corp Perpendicular magnetic recording medium, and magnetic recording and reproducing device
CN100465308C (en) * 2006-09-20 2009-03-04 中国科学院半导体研究所 Method for preparing hexangular ordered FePt nano particle array
US7879470B2 (en) 2007-11-15 2011-02-01 Hitachi Global Storage Technologies Netherlands B.V. Apparatus, system, and method for the selection of perpendicular media segregant materials
JP2009134804A (en) * 2007-11-29 2009-06-18 Fujitsu Ltd Magnetic recording medium and method for manufacturing the same
JP2010157307A (en) * 2008-12-05 2010-07-15 Hoya Corp Magnetic disk and method of manufacturing the same
JP2011146113A (en) * 2010-01-18 2011-07-28 Fuji Electric Device Technology Co Ltd Method for manufacturing perpendicular magnetic recording medium
JP2010153030A (en) * 2010-03-02 2010-07-08 Toshiba Corp Magnetic recording medium and method of manufacturing the same, and magnetic recording and playback device
US9911448B2 (en) 2012-01-16 2018-03-06 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus
JP2015525941A (en) * 2012-06-29 2015-09-07 ウエスタンデジタル テクノロジーズ インク Conductive underlayer for growing (001) oriented FePt granular media on a glass substrate

Also Published As

Publication number Publication date
JP4211436B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4812254B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4224804B2 (en) Method for manufacturing perpendicular magnetic recording medium
US8771849B2 (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
JP4379817B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JP2005190517A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3755449B2 (en) Perpendicular magnetic recording medium
WO2002039433A1 (en) Magnetic recording medium and magnetic recording apparatus
JP2005044464A (en) Perpendicular magnetic recording medium
JP2007179598A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2006313584A (en) Manufacturing method of magnetic recording medium
JP4211436B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4247575B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2006185489A (en) Magnetic recording medium and magnetic storage device
JP2006260633A (en) Magnetic recording medium and magnetic storage device
JP4214472B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4624838B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP4123008B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2000268340A (en) Magnetic recording medium and its manufacture
JP4487272B2 (en) Perpendicular magnetic recording medium
JP4697337B2 (en) Perpendicular magnetic recording medium
JP4348673B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5426409B2 (en) Method for manufacturing perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4211436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term