JP2004271583A - Method for manufacturing optical element, optical element manufactured by same manufacturing method, and optical system equipped with same optical element - Google Patents

Method for manufacturing optical element, optical element manufactured by same manufacturing method, and optical system equipped with same optical element Download PDF

Info

Publication number
JP2004271583A
JP2004271583A JP2003058303A JP2003058303A JP2004271583A JP 2004271583 A JP2004271583 A JP 2004271583A JP 2003058303 A JP2003058303 A JP 2003058303A JP 2003058303 A JP2003058303 A JP 2003058303A JP 2004271583 A JP2004271583 A JP 2004271583A
Authority
JP
Japan
Prior art keywords
pattern
optical element
preform
base material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003058303A
Other languages
Japanese (ja)
Other versions
JP4320708B2 (en
Inventor
Toru Nakamura
徹 中村
Hirotsugu Takase
裕嗣 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003058303A priority Critical patent/JP4320708B2/en
Publication of JP2004271583A publication Critical patent/JP2004271583A/en
Application granted granted Critical
Publication of JP4320708B2 publication Critical patent/JP4320708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical element whose phase inconsistent part has small area and which has high diffraction efficiency, the optical element manufactured by the manufacturing method, and an optical system equipped with the optical element. <P>SOLUTION: The method for manufacturing the optical element having a desired uneven pattern on its surface includes a first stage of forming a preform pattern 1c having recesses 1a and protrusions 1b shifting by a specified quantity from recesses and protrusions of the desired diffraction grating patterns on a surface of a base material and a second stage of forming a desired diffraction grating pattern 3c on the surface of the base material by positioning and pressing a molding pattern 2 having a pattern surface 2c in the inverted shape of the desired uneven pattern against the surface (of a deformed preform 1) of the base material where the preform pattern 1c is formed so that the desired diffraction grating pattern is formed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、表面に所望の凹凸パターン、特に先端が鋭い刃先状の回折格子パターンを有する光学素子の製造方法、この製造方法により製造された光学素子及びこの光学素子を備えた光学系に関する。
【0002】
【従来の技術】
回折光学素子は光の集光、光の合分波、光強度分布変換など様々な機能を有する光学素子であり、光通信用デバイスの光学素子として、通常の屈折光学素子の採用が難しい超短波長域用の光学素子として、あるいはカメラなどの撮影光学系の色収差補正用等として幅広く用いられている。
【0003】
このような回折光学素子の製造技術は、基本的には、母材の表面に凹部及び凸部の先端が鋭い刃先状の凹凸パターンである回折格子を形成する技術であるといえる。従来、回折格子を形成するために、母材の特性に合った方法が採用されてきた。例えば、母材が熱可塑性樹脂である場合には、射出成形法が用いられている。また、母材がガラスである場合には、研削や研磨による成形方法の他に、高温に加熱して軟化させて成形型に押し付けて成形型の反転形状を母材に形成するいわゆるガラスモールド法が用いられている。このうち、射出成形法やガラスモールド法は、研削や研磨による成形方法に比べ生産性が高いため、広く用いられている。(射出成形については、例えば特許文献1を参照。ガラスモールド法については、例えば特許文献2を参照。)
【0004】
【特許文献1】
特開平10−208279号公報
【特許文献2】
特開2002−255574号公報
【0005】
【発明が解決しようとする課題】
ところで、上記のガラスモールド法のように、成形型を用いて母材に回折格子を形成する場合、成形型の型表面の形状が母材に正確に転写される度合い、すなわち転写性が非常に重要である。転写性が低いと、成形型の型表面の形状が母材に正確に転写されず、所望の光の位相が得られない位相不整合部を有する回折格子が形成されてしまうからである。位相不整合部では、通過する光が意図しない方向に進んでフレアとなるため、回折効率が低下する。
【0006】
ガラスモールド法による従来の回折格子の成形方法は、図12に示すように、軟化点が比較的低い低融点ガラス30製の母材を、約300℃から約650℃の温度に加熱して軟化させ、成形型31に押し付け、表面に成形型31の型表面を転写する成形方法である。しかし、このガラスは加熱して軟化した状態であっても、通常の液体のようには流動性は高くなく、依然として比較的高い粘性を有している。このため、成形型31の凹部32にガラスを完全に充填させることは難しい。仮に、図示しているように、成形型31の凹部32が鋭角の刃先状を有していても、回折光学素子33に形成される回折格子の凸部34は、一般に丸みを帯びたものとなる。すなわち、ガラスモールド法で成形した回折格子の凸部34における転写性が低いため、この凸部34の近傍が位相不整合部となり、回折効率を低下させる原因となる。
【0007】
本発明はこのような問題に鑑みてなされたものであり、位相不整合部の面積が小さく、高い回折効率を有する光学素子の製造方法、この製造方法により製造された光学素子及びこの光学素子を備えた光学系を提供することを目的としている。
【0008】
【課題を解決するための手段】
このような目的を達成するため、本発明の光学素子を製造する方法は、表面に所望の凹凸パターンを有する光学素子を製造する方法であって、母材の表面に所望の凹凸パターンの凹部と凸部に対して所定量ずれた位置に凹部と凸部を有したプリフォームパターンを形成する第1の段階と、母材におけるプリフォームパターンが形成された表面に、所望の凹凸パターンの反転形状の型表面を有する成形型を、所望の凹凸パターンを形成するように位置決めして押し付けて、母材の表面に所望の凹凸パターンを形成する第2の段階とを備えることを特徴とする。
【0009】
また、本発明の光学素子を製造する方法においては、所定量は、プリフォームパターンが形成された母材に成形型を押し付け、母材に形成されたプリフォームパターンの凸部の丸み帯びた部分を削り落とし、母材におけるプリフォームパターンが形成された表面に、所望の凹凸パターンを形成できる量であることが好ましい。
【0010】
また、本発明の光学素子を製造する方法においては、所望の凹凸パターンはその凹部と凸部が平行な直線形状である一次元タイプの回折格子パターンであり、第1の段階において、母材の表面に、所望の凹凸パターンの反転形状を有する成形型を所定量ずらした位置に押し付けて、プリフォームパターンを形成することが好ましい。
【0011】
また、本発明の光学素子を製造する方法においては、所望の凹凸パターンはその凹部と凸部が同心円形状である二次元タイプの回折格子パターンであり、第1の段階において、母材の表面に、プリフォームパターンの反転形状を有するプリフォーム用成形型を押し付けて、プリフォームパターンを形成することが好ましい。
【0012】
また、本発明の光学素子を製造する方法においては、回折格子パターンは、鋸歯状の断面形状であるブレーズ格子パターンであることが好ましい。
【0013】
また、本発明の光学素子を製造する方法においては、第1の段階で母材におけるプリフォームパターンが形成された表面の凹部と凸部との段差は、型表面の凹部と凸部との段差より、同じもしくは高いことが好ましい。
【0014】
また、本発明の光学素子を製造する方法においては、母材の材料は、ガラスであることが好ましい。
【0015】
また、本発明の光学素子を製造する方法においては、第2の段階において、プリフォームパターンが形成された母材を所定温度まで加熱し、この加熱により軟化した母材に成形型を押し付けることが好ましい。
【0016】
本発明の光学素子は、前記光学素子の製造方法により製造されることを特徴とする。
【0017】
本発明の光学系は、前記光学素子を備えることを特徴とする。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態について説明する。なお、以下の説明において、所望の凹凸パターンは回折格子パターンであり、光学素子はこの回折格子パターンを有する回折光学素子である。また、請求項1の第1の段階で表面にプリフォームパターンが形成された母材を変形プリフォームと称する。
【0019】
図1を用いて、本発明の光学素子の製造方法を説明する。まず、図1(1)に示すように、(詳細は後述するが)研削などの機械加工やガラスモールド法等を用いて、母材の表面に所望の回折格子パターンの凹部と凸部に対して所定量(図中のΔPに相当)ずれた位置に凹部1aと凸部1bを有したプリフォームパターン1cを形成して、変形プリフォーム1を作製する。
【0020】
次に、図1(2)に示すように、変形プリフォーム1におけるプリフォームパターン1cが形成された表面に、所望の回折格子パターンの反転形状(すなわち変形プリフォーム1の表面に形成された凹部1aと凸部1bに対して所定量ずれた位置に凹部2aと凸部2bを有した)の型表面2cを有する成形型2を、所望の回折格子パターンを形成するように位置決めして押し付けて、変形プリフォーム1の表面に所望の回折格子パターン3cを形成する。このとき、変形プリフォーム1に成形型2が完全に押し込まれた状態であり、変形プリフォーム1と成形型2との間には隙間は発生せず、高い転写性を実現している。
【0021】
そして、図1(3)に示すように、変形プリフォーム1から成形型2を離型して、表面に回折格子の凸部3b先端が鋭角に尖っている、所望の回折格子パターン3cを有する回折光学素子3が得られる。
【0022】
上記方法によると、成形型2の凸部2bが変形プリフォーム1の凸部1b付近に最初に接触する。このとき、互いの接触面積は極めて小さいため、変形に充分な量の応力が局所的に発生し、成形型2の凸部2bが削り取るように成形が進む。よって、回折光学素子3の表面に形成される回折格子の凸部3b先端を鋭角に尖らせることができる。
【0023】
なお、図1(1)中のΔPは、変形プリフォーム1の表面に形成されたプリフォームパターン1cの凹部1a及び凸部1bと、成形型2における所望の回折格子パターンの反転形状を有する型表面2cの凹部2a及び凸部2bとのズレ量を表している。ここで、全ての格子においてズレ量ΔPを同一にする必要はない。しかし、本発明の光学素子を構成する全ての格子の先端を鋭角に尖らせるためには、少なくとも全ての格子において、変形プリフォーム1の表面に形成された凸部1bの丸みを帯びた部分が、ズレ量ΔPで示された範囲内に収まっていることが望ましい。
【0024】
また、変形プリフォーム1のプリフォームパターン1cが形成された表面の凹部1aと凸部1bとの段差は、成形型2の型表面の凹部2aと凸部2bとの段差より同じもしくは若干高いと、回折光学素子3の成形面全域にわたって良好な転写性を得ることができる。
【0025】
なお、本発明の光学素子の製造方法は、上記例に限定されるものではない。例えば、図11に示すように、まず、母材50の表面の適当な位置にプリフォームパターン51pを形成し(図中では実線で示す)、変形プリフォーム51を作製する。次に、変形プリフォーム51の表面に形成されたプリフォームパターン51pの凹部又は凸部に対して所定量(図中ではΔPで示す)ずれた位置に凹部又は凸部が形成されるように(図中では点線で示す)、変形プリフォーム51の表面に成形型を位置決めして押し付け、所望の回折格子パターンを成形する。そして、このように成形品の表面に形成された所望の回折格子パターンが光学素子の外縁に対して所定の位置にくるように、成形品の外縁を修正加工して、所望の格子パターンを有する光学素子を製造してもよい。
【0026】
以下、本発明の構成要素について詳しく説明する。
【凹凸パターン】
本発明の光学素子が有する凹凸パターンの形状には特別な制限はないが、特に有効であるのは、凸部の先端が尖った形状のもの、最も有効であるのは凸部の先端が鋭角状に尖った形状のものである。後者の例としては、凸部の先端が鋭角に尖った格子形状のものがあり、これの代表には所謂フレーズ型回折格子のパターンがある。ブレーズ型回折格子は、図2に示すように、格子面の断面形状が鋸歯状をしており、格子の高さLを次式(1)を満たすような所望の高さに加工することにより、所望の次数の回折光のみに光を集中させることができる。なお、次式(1)において、λは使用波長、Lはブレーズ型回折格子の格子面の格子高、n1は回折格子の基板の屈折率、n2は格子面に隣接する媒質の屈折率、mは回折次数を表す整数である。
【0027】
【数1】
L×(n1−n2)=m×λ (1)
【0028】
【変形プリフォームの作製方法】
本発明の光学素子の製造方法における、第1の段階で作製される変形プリフォーム1の製造方法としては、平面又は連続な曲面のような連続形状に加工された母材の被加工面を、切刃が細い切削バイトを用いて切削加工(連続転写)したり、総型砥石を用いて研削加工(形状転写)したり、フォトエッチングする方法がある。また、これらの方法の他に、平面又は連続な曲面のような連続形状に加工された母材の被加工面に、所望の凹凸パターンよりも大きい段差の型表面を持つ成形型を押し付け、変形プリフォームを製造する方法などがある。
【0029】
ここで、一例として、上記のように加工された母材の被加工面に、所望の凹凸パターンよりも大きい段差の型表面を持つ成形型を押し付け、変形プリフォームを製造する方法について、図3(1)、(2)、(3)を参照して以下に説明する。
【0030】
まず、図3(1)に示すように、変形プリフォーム用の低融点ガラス等のガラス製又は熱可塑性樹脂製の母材10と、変形プリフォーム用の凹凸パターンを型表面に有する変形プリフォーム用成形型11とを準備する。次に、母材10と変形プリフォーム用成形型11とを適当な雰囲気ガス(例えば、窒素、アルゴン、真空等)中で加熱し、母材10を軟化させ、この母材10に変形プリフォーム用成形型11を近付ける。続いて、図3(2)に示すように、母材10に変形プリフォーム用成形型11を押し付け、変形プリフォーム用成形型11の型表面の凹凸パターンを母材10の表面に転写する。そして、図3(3)に示すように、変形プリフォーム用成形型11を母材10から離型すると、凹凸パターン(プリフォームパターン)を表面に有する変形プリフォーム1が得られる。このとき、変形プリフォーム1の表面に形成された凹凸パターンの凹部と凸部は、少なくとも一方が丸みを帯びていた。
【0031】
なお、変形プリフォームの作製方法は、上記の方法に限定されるものではない。
【0032】
いずれの方法で変形プリフォームを作製するにせよ、変形プリフォームの凹凸パターンの凹部と凸部との段差(図3(3)の場合、14)は、回折光学素子として所望の凹凸パターンの凹部と凸部との段差と、同じもしくは若干高くすることが好ましい。このようにすることで、(回折光学素子を成形するときに)変形プリフォームにおいてプリフォームパターンを有する表面に成形型の型表面を押し付けたとき、変形プリフォームに成形型が沈み込んで、変形プリフォームと成形型の間に隙間が発生し難く、形成される回折格子の全面にわたって高い転写性を得ることができる。
【0033】
【母材】
本発明の光学素子に用いる母材としてはガラスが好ましく、特に低融点ガラスであることが好ましい。このように母材がガラスである場合、工程が安定したガラスモールド法により母材の表面に凹凸パターンを形成できる、すなわち変形プリフォームを作製することができるので、安価に量産することが可能である。また、本発明の光学素子に用いる母材としては、熱可塑性樹脂も使用可能である。このように母材が熱可塑性樹脂である場合、製造コストが低い射出成形法により変形プリフォームを作製することができるため、光学素子自体の製造コストも抑えることが可能である。しかしながら、ガラスの方が熱可塑性樹脂よりも温度依存性が低い。すなわちガラス製の光学素子は熱可塑性樹脂製の光学素子よりも、光学特性の温度依存性が小さく、安定した性能を発揮できる。また、精密な性能を有する光学素子の要求にも応じることができる。
【0034】
【光学素子の成形方法】
本発明の光学素子の凹凸パターンを転写するための成形方法としては、ガラスモールド法が特に有効である。ガラスモールド法で光学素子の凹凸パターンを転写するときは、真空中又は窒素やアルゴンなどの不活性ガス雰囲気中で、ガラス製の変形プリフォーム(母材)と金属製の成形型を加熱する。そして、軟化したガラス製の変形プリフォームの表面に、金属製の成形型をガラス製のプリフォームに押し付け、成形型の型表面の反転形状を転写する。なお、加熱温度は、変形プリフォーム(母材)に用いられているガラスの種類によって異なるが、約300℃〜約650℃の範囲である。
【0035】
本発明の光学素子の製造方法に用いるガラスモールド用の成形型は、金属製であり、表面にNi−P系無電解メッキ層を形成し、この無電解メッキ層に所望の格子形状を切削加工することにより作製される。特に、光学素子の変形プリフォーム(母材)の軟化温度が高く、高温且つ高圧力で成形する必要がある場合は、ガラスモールド用の成形型の耐熱性と高度を増すために、W(タングステン)をNi−P系無電解メッキ層に含有させるとよい。また、ガラスモールド用の成形型を高温で使用する場合にも、クラックが入りにくく、安定した成形を行うことができるように、Ni−P系無電解メッキ層と金属製母材との熱膨張係数の差を小さくしておくことが好ましい。このとき、成形型の母材として、Ni−P系無電解メッキ層との熱膨張係数の差が小さい炭素鋼を用いることが好ましい。
【0036】
【位置決め方法】
本発明の光学素子の製造方法は、変形プリフォームにおいてプリフォームパターンが形成された表面の凸部と凹部は、成形型の型表面の凹部と凸部(すなわち所望の凹凸パターンの反転形状の凹部と凸部)に対して、所定量ずれた位置にあることが特徴である。よって、成形型の凹部と凸部とプリフォームパターンの凹部と凸部との相対的な位置を正確に決めるために、両者の位置決め方法を工夫する必要がある。本発明で用いる位置決め方法として、1.成形型と変形プリフォームとを共通の筒(スリーブ)に入れて配置する方法、2.成形型と変形プリフォームとを成形機の位置決めピンに押し当てる方法、3.変形プリフォームの凹凸パターンに光を投射することにより得られる回折光を光学位置決めセンサで位置検出する方法等が使用できる。なお、本発明において用いる位置決め方法は、上記の位置決め方法に限定されるものではない。
【0037】
【変形プリフォームの凹凸と成形型の凹凸とのズレ量】
変形プリフォームにおいてプリフォームパターンが形成された表面の凸部と凹部と、成形型の型表面の凹部と凸部(すなわち所望の凹凸パターンの反転形状の凹部と凸部)とのズレ量は、変形プリフォームの凸部の先端形状や格子のピッチを考慮して決定するのがよい。目安としては、ズレ量は変形プリフォームの凸部の丸まった部分を完全に含み、且つ、格子ピッチの5分の1以下に設定するのが望ましい。
【0038】
すなわち、図1に示すように、ズレ量ΔPの範囲内に変形プリフォーム1の凸部1bの丸まった部分(図1(1)の太線部B)が含まれるようにするのが望ましい。反対に、図4に示すように、ズレ量ΔPの外側に変形プリフォーム1の凸部の丸まった部分(図4(1)の太線部B´)が存在すると、変形プリフォーム1の凹部と成形型2の凸部との間に隙間Sが発生して、回折光学素子3の表面上に形成された凸部3bの先端に丸みが残ってしまい、望ましくない。
【0039】
【プリフォームパターン用の成形型】
所望の凹凸パターンがその凹部と凸部が平行な直線形状である一次元タイプの回折格子パターンである場合には、変形プリフォームの表面に形成されるプリフォームパターン及び回折光学素子の表面に形成される所望の凹凸パターンを形成するための成形型を共有化することが可能である。まず、母材の表面に、所望の凹凸パターンの反転形状を有する成形型2を押し付けてプリフォームパターンを形成し、変形プリフォーム1を作製する。このとき、プリフォームパターンの凸部先端は丸み帯びている。続いて、前述した成形型2を、図1に示すように、変形プリフォーム1の表面に形成されたプリフォームパターン1cに、成形型2の格子のピッチと変形プリフォームに形成された格子のピッチとを(上記した)ズレ量ΔPだけずらして配置し押し付けて、所望の回折格子パターン3cを回折光学素子3の表面に形成することができる。このように、回折光学素子の作製時に用いる型を一つにすることができ、製造コスト抑制に役立つ。
【0040】
また、所望の凹凸パターンがその凹部と凸部が同心円形状である二次元タイプの回折格子パターンである場合には、図6に示すように、母材10の表面に、プリフォームパターンの反転形状、すなわち、図6の鎖線で示す、所望の凹凸パターンの各輪帯半径とがΔPだけずれた形状を有するプリフォーム用成形型11を押し付けてプリフォームパターン2cを形成し、変形プリフォーム2を作製するとよい。
【0041】
以上のように説明した本発明の製造方法により、光学素子の表面に形成される凸部が鋭角な刃先状に成形できる理由を、発明者は以下のように推定している。すなわち、本発明においては、成形型の型表面の凸部の先端が、変形プリフォームにおいてプリフォームパターンが形成された表面の凸部(以下、変形プリフォームの凸部)に最初に接触するように、成形型と変形プリフォームが配置される。ここで、成形型の型表面の凸部は鋭角に尖っているため、変形プリフォームの凸部を削り取りながら成形が進む。すなわち、光学素子に成形される格子の先端形状は、成形型の型表面の凹部の転写ではなく、あたかも成形型の型表面の凸部を、刃物に見たてた切削加工のような加工法により形成される。なお、削り取られた変形プリフォームの凸部の先端は、成形が進んで変形プリフォームに成形型が完全に押し込まれた状態になると、隣接する格子の凹部に充填される。したがって、基本的には、成形型の形状転写でありながら、通常では最も転写性が低下する格子の凸部付近のみ、切削加工に類似した方法で削り取ることで、鋭角な先端形状を有する光学素子の加工が可能になったのである。
【0042】
なお、本発明の光学素子は、図5に示すように、密着複層型回折光学素子とすることもできる。密着複層型回折光学素子とは、光学恒数が所望の組み合わせとなるように選ばれた互いに異なる光学材料である第1の部材15と第2の部材16とを、格子面17を挟んで密着させたものである。ここで、本発明の密着複層型回折光学素子は、第1の部材15をガラスモールドで成形した回折格子を備えるガラス製の基板(ガラスモールド法で作製された単層回折光学素子に相当する)とし、その上に未硬化の紫外線硬化樹脂又は熱硬化型樹脂を充填して所定厚みに調整した後に紫外線を照射するか又は加熱して硬化させることにより形成した樹脂層を第2の部材16とすることにより作製することができる。このような密着複層型回折光学素子は、カメラの撮影光学系等の広い波長域で高い回折効率が要求される光学系に使用されることが多い。このため、密着複層型回折光学素子における格子形状を所望の回折格子パターン通りに形成することができる本発明の光学素子の製造方法は有効である。
【0043】
なお、上記の密着複層型回折光学素子の第2の部材16の材料としては、紫外線照射や加熱により硬化させることができる、ウレタンアクリレートやエポキシアクリレート等が用いられる。
【0044】
以上のように、本発明の光学素子の製造方法によると、表面に形成される凹凸パターンの凸部先端が鋭角に尖った(回折)光学素子を、ガラスモールド法で製造することができる。
【0045】
ところで、上述のように、従来では通常の母材から回折格子パターンを形成すると、そのパターンの凸部の先端が丸まってしまい、その部分は位相不整合部となって、回折効率が低下してしまった。特に、回折効率が重要となるのは、回折格子の断面形状が鋸歯状のブレーズ型回折格子の場合である。ブレーズ型回折格子は、入射した光を設計次数の回折光のみに集中させることができるため、高性能が要求される撮影光学系にも使用される。なお、回折効率とは入射光に対する設計次数の回折光の強度比であり、ブレーズ型回折格子では特定の波長については理論上100%となるように、設計することが可能である。
【0046】
しかしながら、回折格子の凸部先端に丸まった部分すなわち位相不整合部がある場合は、この部分に入射した光が位相不整合となり、フレアを発生させる。ここで、位相不整合部以外の他の部分が所望パターン通りの形状に作製されている回折格子の場合、入射光のうちフレアになるのは、Δrを位相不整合部の幅、Pを格子間距離(ピッチ)とすると、概ねΔr/Pの割合である。したがって、回折効率は概ね((1−Δr/P)×100)%程度になると考えられる。例えば、撮影光学系に回折光学素子を用いる場合、良好な画像を得るために、回折効率は、少なくとも95%以上、望ましくは97%以上であることが求められる。これは、上記のΔr/Pが、概ね0.03以下となる格子が要求されていることを意味する。このように、高い形状精度が要求される回折光学素子において、本発明の光学素子の製造方法を用いて作製されることは非常に有効である。
【0047】
以下、本発明の各実施例を添付図面に基づいて説明する。
【0048】
(第1実施例)
以下、本発明の第1実施例について図6、図7を用いて説明する。ここでは、本発明の光学素子の製造方法について説明する。本実施例において作製対象の光学素子は、単層回折光学素子であり、母材は低融点ガラス製(住田P−SK60:φ50mm)である。また、所望の凹凸パターンは、図6に模式的に示しているように、格子高さが16μm、格子のピッチが中心部から外側向かうに従い小さくなり、中心部で2mm、最外周で160μmである、同心円形状のブレーズ型回折格子パターン(輪帯数は50本)である。
【0049】
まず、図6(1)に示すように、変形プリフォームを作製する。このため、(変形プリフォーム用の)母材10及びプリフォーム用成形型11を準備した。母材10は、低融点ガラス(住田P−SK60)製のφ50mm、厚さ10mmの平板である。変形プリフォーム用成形型11は、炭素鋼製であり、表面にNi−P−Wの組成からなる無電解メッキ層を設け、このメッキ層の表面を先端径2μmのダイヤモンドバイトによる切削加工にて(変形プリフォームの表面に形成される)プリフォームパターンの反転形状を形成した。なお、プリフォームパターンは、格子高さが18μm、格子のピッチが所望のブレーズ型回折格子の各ピッチに対して(ズレ量ΔP=)10μmずつ中心部側にずらした位置にあるパターンであり、このパターンの反転形状が変形プリフォーム用成形型11の型表面に形成されている。
【0050】
上記の母材10及び変形プリフォーム用成形型11を、窒素ガス雰囲気中で410℃に加熱しながら、図6(2)に示すように、母材10に、変形プリフォーム用成形型11を押し付けて、型表面11cの反転形状を転写した後、離型した。このようにして表面にプリフォームパターン2cが形成された変形プリフォーム2において、格子の凸部2b先端には、図6(3)に示すように、約8μmの幅で丸み帯びた部分が発生していた。
【0051】
続いて、図7に示すように、変形プリフォーム1から所望のブレーズ型回折格子パターン3cを有した回折光学素子3を作製する。このため、成形型2を準備した。成形型2は、炭素鋼製であり、型表面2cにNi−P−Wの組成からなる無電解メッキ層を設け、このメッキ層の表面を先端径2μmのダイヤモンドバイトにより所望のブレーズ型回折格子パターンの反転形状を切削加工した。
【0052】
上記の変形プリフォーム1及び成形型2を、窒素ガス雰囲気中で410℃に加熱しながら、図7(1)に示すように、成形型2の格子のピッチが変形プリフォーム1に形成されたプリフォームパターンの格子のピッチに対して10μm(図7中のΔPに相当)ずれた位置になるように位置決めして、正対させた。このとき、変形プリフォーム1の格子の凸部1b先端に発生した、約8μmの幅の丸み帯びた部分は、全て上記ズレ量ΔP(=10μm)の範囲に含まれている。
【0053】
変形プリフォーム1のプリフォームパターン1cが形成された表面に、図7(2)に示すように、成形型2の型表面2cを押し付けて、所望のブレーズ回折格子パターンを形成した。そして、図7(3)に示すように、変形プリフォーム1から成形型2を離型して、所望の回折格子パターン3cを有する回折光学素子3を作製した。
【0054】
上記のように、本実施例の光学素子の製造方法では、変形プリフォーム1の格子の凸部1b先端に発生した丸みを帯びた部分が、成形型2の型表面の鋭角な凸部2b先端により削り取るように加工され、全ての凸部3bの先端が鋭角な刃先形状である回折光学素子3が得られた。
【0055】
(第2実施例)
以下、本発明の第2実施例について図5、図8、図9を用いて説明する。第2実施例では、第1実施例で作製した単層の回折光学素子3を用いて密着複層型回折光学素子20を作製した。密着複層型回折光学素子20は、図5及び図8に示すように、格子面17を挟んで密着させた互いに異なる光学材料である第1の部材15と第2の部材16とから構成されたものであり、本実施例では第1の部材15を低融点ガラス(住田P−SK60)、第2の部材16をウレタンアクリレートとしている。
【0056】
第1実施例で作製された単層回折光学素子3は、上述したように、屈折率n1が1.5909である低融点ガラス製(住田P−SK60:φ50mm)であり、表面には、格子高さLは16μm、格子のピッチが中心部から外側向かうに従い小さくなり、中心部で2mm、最外周で160μmである同心円形状のブレーズ型回折格子パターン(輪帯数は50本)が形成されている。また、ブレーズ波長λは587nm、回折次数を表す整数mは1である。
【0057】
ここで、上記の第1実施例で作製した単層回折光学素子3に関する値を条件式(1)に代入して、第2の部材の屈折率n2について算出すると1.5542が得られた。したがって、本実施例では、密着複層型回折光学素子20を構成する第2の部材16として、屈折率1.5542である紫外線硬化樹脂のウレタンアクリレートを選択した。
【0058】
また、回折効率の波長依存性を低減して幅広い波長域において高い回折効率を得るために、密着複層型回折格子20を構成する第1の部材15と第2の部材16との分散差を大きくすることが有効である。本実施例では、第1の部材15として用いている住田P−SK60のアッベ数は62.3、第2の部材16として用いているウレタンアクリレートのアッベ数は37.0であり、高い回折効率を確保するために必要な分散差を満足している。
【0059】
以下に、図9を用いて、本発明に係る密着複層型回折光学素子20の製造方法を説明する。このため、まず樹脂層を形成するための樹脂層用の成形型18を準備した。この樹脂層用の成形型18は、ステンレス製のφ50mm、厚さ30mmの平板である。
【0060】
次に、図9(1)に示すように、第1実施例で作製した単層回折光学素子3の格子面17上に、液状のウレタンアクリレート16を適量滴下した。続いて、図9(2)に示すように、滴下したウレタンアクリレート16に、樹脂層の厚みが200μmになるように、樹脂層用の成形型18を押し付けた。そして、この状態のまま、単層回折光学素子3側より高圧水銀灯の紫外線を照射して、格子面17上に滴下したウレタンアクリレート16を硬化させた。このときの紫外線の積算照射量は2000mJ/cmだった。光硬化後、図9(3)に示すように、樹脂層用の成形型18をウレタンアクリレート16から離型することにより、所望の密着複層型回折光学素子20を得ることができた。
【0061】
ここで、上記の製造方法により得た密着複層型回折光学素子20の回折効率を測定した。その測定方法とは、密着複層型回折光学素子20の格子にレーザ光を照射し、1次回折光強度を測定し、回折効率として入射光強度に対する1次回折光強度の比率を求めるものである。その結果、本発明に係る密着複層型回折光学素子20は、照射するレーザ光の波長が458nmのときには回折効率は98%、照射するレーザ光の波長が543nmのときには回折効率は99%、照射するレーザ光の波長が633nmのときには回折効率は98%であり、可視光域の広い範囲にわたって高い回折効率を有していることが確認できた。したがって、この密着複層型回折光学素子は、カメラの撮像光学系など、広い波長域において高い回折効率を要求される光学系に特に有効である。
【0062】
(第3実施例)
以下、本発明の第3実施例について図10を用いて説明する。本発明に係る撮影カメラ用光学系25は、図10に示すように、第2実施例で作製した密着複層型回折格子20を備えて構成されている。
【0063】
本発明の密着複層型回折格子20は、上述したように、広い波長域において回折効率が高く、フレアが少なく、製造コストが低い。このため、本発明の撮影カメラ用光学系25において、透過率を高く、フレアを少なく、製造コストを抑えて構成することができる。また、本発明の撮影カメラ用光学系25は、小型な回折光学素子の特性を有効に生かして、コンパクトに構成することができる。
【0064】
なお、第3実施例の撮影カメラ用光学系25には密着複層型回折光学素子20が1個配設されているが、本発明に配設される光学素子の数は本実施例に限定されるものではない。例えば、本発明に係る光学系に2個以上の回折光学素子が配設されてもよい。
【0065】
【発明の効果】
以上説明したように、本発明の光学素子の製造方法は、位相不整合部の面積が小さく、高い回折効率を有する光学素子を作製することができる。また、この製造方法により作製された本発明に係る光学素子は、位相不整合部の面積が小さく、高い回折効率を得ることができる。また、この光学素子を用いた本発明に係る光学系は、透過率が高く、フレアを抑えることができる。
【図面の簡単な説明】
【図1】本発明の光学素子の製造方法を説明する図である。
【図2】ブレーズ型回折光学素子の格子面の形状を示す図である。
【図3】本発明の回折光学素子の製造方法に用いる変形プリフォームの製造方法を説明する図である。
【図4】従来における、成形型の型表面の凹凸と、変形プリフォーム表面の凹凸との関係を示す図である。
【図5】本発明の密着複層型回折光学素子を示す図である。
【図6】第1実施例における光学素子の製造方法の手順を説明した図である。
【図7】第1実施例における光学素子の製造方法の手順を説明した図である。
【図8】本発明の密着複層型回折光学素子を説明する図である。
【図9】本発明の密着複層型回折光学素子の製造方法を説明する図である。
【図10】本発明の撮影用カメラ光学系を示す図である。
【図11】本発明の光学素子の他の製造方法を説明する図である。
【図12】従来の光学素子の製造方法を説明する図である。
【符号の説明】
1 変形プリフォーム
1a 変形プリフォームの凹部
1b 変形プリフォームの凸部
1c プリフォームパターン
2 成形型
2a 成形型の凹部
2b 成形型の凸部
2c 成形型の型表面 (所望の凹凸パターンの反転形状)
3 回折光学素子 (光学素子)
3b 回折光学素子の凸部
3c 回折格子パターン(所望の凹凸パターン)
10 母材
11 変形プリフォーム用成形型(プリフォーム用成形型)
15 第1の部材
16 第2の部材
17 格子面
18 樹脂層用の成形型
20 密着複層型回折光学素子 (光学素子)
25 撮影カメラ用光学系 (光学系)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical element having a desired concavo-convex pattern on its surface, particularly a diffraction grating pattern having a sharp edge and a cutting edge, an optical element manufactured by the manufacturing method, and an optical system including the optical element.
[0002]
[Prior art]
Diffractive optical elements are optical elements that have various functions, such as light collection, light multiplexing / demultiplexing, and light intensity distribution conversion.Ultra short wavelengths, which are difficult to employ ordinary refractive optical elements, as optical elements for optical communication devices It is widely used as an optical element for a region, or for correcting chromatic aberration of a photographing optical system such as a camera.
[0003]
Basically, the manufacturing technique of such a diffractive optical element can be said to be a technique of forming a diffraction grating having a concave-convex pattern with a sharp edge on the surface of a base material. Conventionally, in order to form a diffraction grating, a method suitable for the characteristics of a base material has been adopted. For example, when the base material is a thermoplastic resin, an injection molding method is used. When the base material is glass, in addition to a forming method by grinding or polishing, a so-called glass molding method in which the base material is heated to a high temperature to be softened and pressed against the forming die to form an inverted shape of the forming die in the base material. Is used. Among them, the injection molding method and the glass molding method are widely used because their productivity is higher than the molding method by grinding and polishing. (For example, refer to Patent Document 1 for injection molding. For example, refer to Patent Document 2 for glass molding method.)
[0004]
[Patent Document 1]
JP-A-10-208279
[Patent Document 2]
JP-A-2002-255574
[0005]
[Problems to be solved by the invention]
By the way, when a diffraction grating is formed on a base material using a molding die as in the glass molding method described above, the degree to which the shape of the mold surface of the molding die is accurately transferred to the base material, that is, the transferability is extremely high. is important. If the transferability is low, the shape of the mold surface of the mold is not accurately transferred to the base material, and a diffraction grating having a phase mismatch portion where a desired light phase cannot be obtained is formed. In the phase mismatch portion, the passing light travels in an unintended direction and becomes a flare, so that the diffraction efficiency is reduced.
[0006]
In the conventional method of forming a diffraction grating by a glass mold method, as shown in FIG. 12, a base material made of a low-melting glass 30 having a relatively low softening point is softened by heating it to a temperature of about 300 ° C. to about 650 ° C. This is a molding method in which the mold is pressed against the mold 31 and the surface of the mold 31 is transferred to the surface. However, even when the glass is softened by heating, it does not have high fluidity like a normal liquid and still has a relatively high viscosity. For this reason, it is difficult to completely fill the recess 32 of the mold 31 with glass. As shown in the drawing, even if the concave portion 32 of the mold 31 has an acute-edge shape, the convex portion 34 of the diffraction grating formed on the diffractive optical element 33 generally has a round shape. Become. That is, since the transferability of the convex portion 34 of the diffraction grating formed by the glass mold method is low, the vicinity of the convex portion 34 becomes a phase mismatch portion, which causes a reduction in diffraction efficiency.
[0007]
The present invention has been made in view of such a problem, a method for manufacturing an optical element having a small area of a phase mismatch portion and having high diffraction efficiency, an optical element manufactured by this manufacturing method, and an optical element It is an object of the present invention to provide an optical system provided with such a system.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, a method for manufacturing an optical element of the present invention is a method for manufacturing an optical element having a desired concavo-convex pattern on a surface, and a concave portion of a desired concavo-convex pattern on a surface of a base material. A first step of forming a preform pattern having a concave portion and a convex portion at a position shifted by a predetermined amount with respect to the convex portion, and a reverse shape of a desired concave and convex pattern on a surface of the base material on which the preform pattern is formed; A second step of positioning and pressing a mold having the above-mentioned mold surface to form a desired uneven pattern, thereby forming a desired uneven pattern on the surface of the base material.
[0009]
In the method of manufacturing an optical element according to the present invention, the predetermined amount is such that a molding die is pressed against a base material on which a preform pattern is formed, and a convex portion of the preform pattern formed on the base material has a rounded portion. It is preferable that the amount is such that a desired concavo-convex pattern can be formed on the surface of the base material on which the preform pattern is formed.
[0010]
In the method for manufacturing an optical element according to the present invention, the desired concavo-convex pattern is a one-dimensional type diffraction grating pattern in which concave portions and convex portions have a linear shape parallel to each other. It is preferable to form a preform pattern by pressing a mold having an inverted shape of a desired concavo-convex pattern on the surface to a position shifted by a predetermined amount.
[0011]
In the method for manufacturing an optical element according to the present invention, the desired concavo-convex pattern is a two-dimensional type diffraction grating pattern in which the concavities and convexities are concentric. It is preferable to form a preform pattern by pressing a preform mold having an inverted shape of the preform pattern.
[0012]
In the method for manufacturing an optical element according to the present invention, it is preferable that the diffraction grating pattern is a blazed grating pattern having a sawtooth cross section.
[0013]
In the method for manufacturing an optical element according to the present invention, the step between the concave portion and the convex portion on the surface of the base material on which the preform pattern is formed in the first step is the step between the concave portion and the convex portion on the mold surface. More preferably, they are the same or higher.
[0014]
In the method of manufacturing an optical element according to the present invention, the material of the base material is preferably glass.
[0015]
In the method for manufacturing an optical element of the present invention, in the second stage, the preform pattern-formed base material is heated to a predetermined temperature, and a molding die is pressed against the base material softened by the heating. preferable.
[0016]
The optical element of the present invention is manufactured by the method for manufacturing an optical element.
[0017]
An optical system according to the invention includes the optical element.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the desired concavo-convex pattern is a diffraction grating pattern, and the optical element is a diffractive optical element having this diffraction grating pattern. Further, the base material having the preform pattern formed on the surface in the first stage of claim 1 is referred to as a deformed preform.
[0019]
The manufacturing method of the optical element of the present invention will be described with reference to FIG. First, as shown in FIG. 1 (1), a concave portion and a convex portion of a desired diffraction grating pattern are formed on the surface of the base material by using a machining process such as grinding (which will be described in detail later) or a glass molding method. Thus, a preform pattern 1c having a concave portion 1a and a convex portion 1b at a position shifted by a predetermined amount (corresponding to ΔP in the figure) is formed, and a deformed preform 1 is manufactured.
[0020]
Next, as shown in FIG. 1 (2), the surface of the deformed preform 1 on which the preform pattern 1c is formed is provided with an inverted shape of the desired diffraction grating pattern (that is, the concave portion formed on the surface of the deformed preform 1). The mold 2 having the mold surface 2c (having the concave portion 2a and the convex portion 2b at a position shifted by a predetermined amount with respect to the convex portion 1a and the convex portion 1b) is positioned and pressed so as to form a desired diffraction grating pattern. Then, a desired diffraction grating pattern 3c is formed on the surface of the deformed preform 1. At this time, the molding die 2 is completely pressed into the deformed preform 1, and no gap is generated between the deformed preform 1 and the molding die 2, realizing high transferability.
[0021]
Then, as shown in FIG. 1 (3), the mold 2 is released from the deformed preform 1 and the surface thereof has a desired diffraction grating pattern 3c in which the tip of the projection 3b of the diffraction grating is sharp at an acute angle. The diffractive optical element 3 is obtained.
[0022]
According to the above method, the convex portion 2b of the molding die 2 comes into contact with the vicinity of the convex portion 1b of the deformed preform 1 first. At this time, since the mutual contact area is extremely small, a sufficient amount of stress for deformation is locally generated, and the forming proceeds so that the convex portion 2b of the forming die 2 is cut off. Therefore, the tip of the projection 3b of the diffraction grating formed on the surface of the diffractive optical element 3 can be sharpened at an acute angle.
[0023]
Note that ΔP in FIG. 1A is a mold having a concave shape 1a and a convex shape 1b of a preform pattern 1c formed on the surface of the deformed preform 1 and a mold having an inverted shape of a desired diffraction grating pattern in the molding mold 2. It shows the amount of deviation between the concave portion 2a and the convex portion 2b of the surface 2c. Here, it is not necessary to make the displacement amount ΔP the same in all the gratings. However, in order to sharpen the tips of all the gratings constituting the optical element of the present invention at an acute angle, at least in all the gratings, the rounded portion of the convex portion 1b formed on the surface of the deformed preform 1 is required. , The deviation amount ΔP is desirably within the range indicated by the deviation amount ΔP.
[0024]
Also, the step between the concave portion 1a and the convex portion 1b on the surface of the deformed preform 1 where the preform pattern 1c is formed is equal to or slightly higher than the step between the concave portion 2a and the convex portion 2b on the mold surface of the molding die 2. Good transferability can be obtained over the entire molding surface of the diffractive optical element 3.
[0025]
The method for manufacturing an optical element of the present invention is not limited to the above example. For example, as shown in FIG. 11, first, a preform pattern 51p is formed at an appropriate position on the surface of the base material 50 (indicated by a solid line in the figure), and a deformed preform 51 is manufactured. Next, a concave portion or a convex portion is formed at a position shifted by a predetermined amount (indicated by ΔP in the drawing) with respect to the concave portion or the convex portion of the preform pattern 51p formed on the surface of the deformed preform 51 ( The mold is positioned and pressed against the surface of the deformed preform 51 to form a desired diffraction grating pattern. Then, the outer edge of the molded product is modified to have a desired grating pattern so that the desired diffraction grating pattern formed on the surface of the molded product is located at a predetermined position with respect to the outer edge of the optical element. An optical element may be manufactured.
[0026]
Hereinafter, the components of the present invention will be described in detail.
[Uneven pattern]
There is no particular limitation on the shape of the concavo-convex pattern of the optical element of the present invention, but it is particularly effective that the tip of the projection is sharp, and most effective is that the tip of the projection has an acute angle. It has a pointed shape. As an example of the latter, there is a lattice shape in which the tip of the convex portion is sharp at an acute angle, and a representative example thereof is a so-called phrase-type diffraction grating pattern. As shown in FIG. 2, the blazed diffraction grating has a sawtooth cross-section on the grating surface, and is formed by processing the grating height L to a desired height that satisfies the following expression (1). The light can be concentrated only on the diffracted light of the desired order. In the following formula (1), λ is the wavelength used, L is the grating height of the grating surface of the blazed diffraction grating, n1 is the refractive index of the substrate of the diffraction grating, n2 is the refractive index of a medium adjacent to the grating surface, and m Is an integer representing the diffraction order.
[0027]
(Equation 1)
L × (n1-n2) = m × λ (1)
[0028]
[Method of manufacturing deformed preform]
In the method for manufacturing an optical element of the present invention, as a method for manufacturing the deformed preform 1 manufactured in the first step, a processing surface of a base material processed into a continuous shape such as a flat surface or a continuous curved surface is used. There are methods of performing cutting (continuous transfer) using a cutting tool having a small cutting edge, grinding (transferring shape) using a general-purpose grindstone, and photoetching. In addition, in addition to these methods, a molding die having a mold surface having a step larger than a desired uneven pattern is pressed against a processing surface of a base material processed into a continuous shape such as a flat surface or a continuous curved surface, and deformed. There is a method of manufacturing a preform.
[0029]
Here, as an example, a method of manufacturing a deformed preform by pressing a molding die having a mold surface with a step larger than a desired concave-convex pattern on a surface to be processed of the base material processed as described above is described with reference to FIG. This will be described below with reference to (1), (2), and (3).
[0030]
First, as shown in FIG. 3A, a base material 10 made of glass or a thermoplastic resin such as a low-melting glass for a deformed preform, and a deformed preform having an uneven pattern for the deformed preform on a mold surface. A molding die 11 is prepared. Next, the base material 10 and the deformed preform forming die 11 are heated in an appropriate atmosphere gas (for example, nitrogen, argon, vacuum, or the like) to soften the base material 10 and apply the deformed preform to the base material 10. Approaching mold 11. Subsequently, as shown in FIG. 3B, the deformed preform forming die 11 is pressed against the base material 10, and the uneven pattern on the surface of the deformed preform forming die 11 is transferred to the surface of the base material 10. Then, as shown in FIG. 3 (3), when the deformed preform forming mold 11 is released from the base material 10, the deformed preform 1 having a concavo-convex pattern (preform pattern) on the surface is obtained. At this time, at least one of the concave and convex portions of the concave and convex pattern formed on the surface of the deformed preform 1 was rounded.
[0031]
The method for producing the deformed preform is not limited to the above method.
[0032]
Whichever method is used to produce the deformed preform, the step between the concave and convex portions of the concave and convex pattern of the deformed preform (14 in FIG. 3C) is the concave portion of the concave and convex pattern desired as the diffractive optical element. It is preferable that the height is equal to or slightly higher than the step between the projection and the projection. By doing so, when the mold surface of the mold is pressed against the surface having the preform pattern in the deformed preform (when molding the diffractive optical element), the mold sinks into the deformed preform, and A gap is hardly generated between the preform and the mold, and high transferability can be obtained over the entire surface of the formed diffraction grating.
[0033]
[Base material]
As a base material used for the optical element of the present invention, glass is preferable, and particularly, low melting point glass is preferable. When the base material is glass as described above, a concavo-convex pattern can be formed on the surface of the base material by a glass molding method in which the process is stable, that is, a deformed preform can be manufactured. is there. Further, as a base material used for the optical element of the present invention, a thermoplastic resin can also be used. When the base material is a thermoplastic resin as described above, the deformed preform can be manufactured by an injection molding method having a low manufacturing cost, so that the manufacturing cost of the optical element itself can be suppressed. However, glass has lower temperature dependency than thermoplastic resin. That is, the optical element made of glass has smaller temperature dependence of the optical characteristics than the optical element made of a thermoplastic resin, and can exhibit stable performance. Further, it is possible to meet the demand for an optical element having precise performance.
[0034]
[Optical element molding method]
As a molding method for transferring the concavo-convex pattern of the optical element of the present invention, a glass molding method is particularly effective. When transferring the concavo-convex pattern of the optical element by the glass molding method, the deformed glass preform (base material) and the metal mold are heated in a vacuum or in an inert gas atmosphere such as nitrogen or argon. Then, a metal mold is pressed against the glass preform on the surface of the softened glass deformed preform, and the inverted shape of the mold surface of the mold is transferred. The heating temperature varies depending on the type of glass used for the deformed preform (base material), but is in the range of about 300 ° C to about 650 ° C.
[0035]
The mold for a glass mold used in the method for manufacturing an optical element of the present invention is made of metal, has a Ni-P-based electroless plating layer formed on its surface, and cuts a desired lattice shape into the electroless plating layer. It is produced by doing. In particular, when the deforming preform (base material) of the optical element has a high softening temperature and needs to be molded under a high temperature and a high pressure, W (tungsten) is used in order to increase the heat resistance and height of the glass mold. ) May be contained in the Ni—P-based electroless plating layer. In addition, even when a mold for a glass mold is used at a high temperature, thermal expansion between the Ni-P-based electroless plating layer and the metal base material is performed so that cracks are less likely to occur and stable molding can be performed. It is preferable to keep the difference between the coefficients small. At this time, it is preferable to use a carbon steel having a small difference in thermal expansion coefficient from that of the Ni-P-based electroless plating layer as a base material of the molding die.
[0036]
[Positioning method]
In the method for manufacturing an optical element according to the present invention, the convex portions and the concave portions on the surface of the deformed preform on which the preform pattern is formed are the concave portions and the convex portions on the mold surface of the molding die (that is, the concave portions having the inverse shape of the desired concave and convex pattern). (A convex portion and a convex portion). Therefore, in order to accurately determine the relative positions of the concave and convex portions of the mold and the concave and convex portions of the preform pattern, it is necessary to devise a method of positioning the two. The positioning method used in the present invention is as follows. 1. A method in which the mold and the deformed preform are placed in a common cylinder (sleeve) and arranged. 2. A method in which a molding die and a deformed preform are pressed against a positioning pin of a molding machine. A method of detecting the position of the diffracted light obtained by projecting the light on the concave / convex pattern of the deformed preform using an optical positioning sensor, or the like can be used. The positioning method used in the present invention is not limited to the above-described positioning method.
[0037]
[Deviation between the unevenness of the deformed preform and the unevenness of the mold]
In the deformed preform, the amount of deviation between the convex portion and the concave portion on the surface on which the preform pattern is formed, and the concave portion and the convex portion on the mold surface of the molding die (that is, the concave portion and the convex portion in the inverted shape of the desired concave and convex pattern) are as follows: It is preferable to determine in consideration of the tip shape of the convex portion of the deformed preform and the pitch of the lattice. As a guide, it is desirable that the amount of deviation completely include the rounded portion of the convex portion of the deformed preform and be set to one fifth or less of the lattice pitch.
[0038]
That is, as shown in FIG. 1, it is desirable that the rounded portion of the convex portion 1b of the deformed preform 1 (the thick line portion B in FIG. 1A) is included in the range of the deviation amount ΔP. Conversely, as shown in FIG. 4, when the rounded portion of the convex portion of the deformed preform 1 (the thick line portion B ′ in FIG. 4A) exists outside the deviation amount ΔP, the concave portion of the deformed preform 1 A gap S is generated between the convex portion of the molding die 2 and the tip of the convex portion 3b formed on the surface of the diffractive optical element 3 remains undesirably.
[0039]
[Molding mold for preform pattern]
When the desired concavo-convex pattern is a one-dimensional type diffraction grating pattern in which the concave portion and the convex portion are parallel linear shapes, the preform pattern formed on the surface of the deformed preform and the diffractive optical element are formed on the surface. It is possible to share a mold for forming a desired uneven pattern. First, a preform pattern is formed by pressing a mold 2 having an inverted shape of a desired concavo-convex pattern on the surface of a base material, and a deformed preform 1 is manufactured. At this time, the tip of the convex portion of the preform pattern is rounded. Subsequently, as shown in FIG. 1, the above-described molding die 2 is placed on the preform pattern 1c formed on the surface of the deformed preform 1 by the pitch of the lattice of the molding die 2 and the lattice formed on the deformed preform. A desired diffraction grating pattern 3c can be formed on the surface of the diffractive optical element 3 by disposing and pressing the pitch by a shift amount ΔP (described above). As described above, the number of molds used for manufacturing the diffractive optical element can be reduced to one, which is useful for suppressing the manufacturing cost.
[0040]
When the desired concavo-convex pattern is a two-dimensional type diffraction grating pattern in which the concavities and convexities are concentric, as shown in FIG. That is, the preform mold 11 having a shape in which the radius of each annular zone of the desired concavo-convex pattern is deviated by ΔP as shown by a chain line in FIG. 6 is pressed to form the preform pattern 2c, and the deformed preform 2 is formed. It is good to make.
[0041]
The inventor presumes the reason why the convex portion formed on the surface of the optical element can be formed into a sharp edge as described above by the manufacturing method of the present invention described above. That is, in the present invention, the tip of the projection on the surface of the mold of the molding die first contacts the projection on the surface of the deformed preform on which the preform pattern is formed (hereinafter, the projection of the deformed preform). Next, a molding die and a deformed preform are arranged. Here, since the projection on the surface of the mold is sharp at an acute angle, the molding proceeds while shaving off the projection on the deformed preform. That is, the tip shape of the grating formed on the optical element is not a transfer of a concave portion on the mold surface of the mold, but a processing method such as a cutting process in which a convex portion on the mold surface of the mold is viewed as a blade. Formed by In addition, the tip of the convex part of the shaved deformed preform is filled in the concave part of the adjacent lattice when the forming is advanced and the mold is completely pushed into the deformed preform. Therefore, basically, although it is the shape transfer of the mold, only the convex portion of the lattice where transferability is normally reduced is cut off by a method similar to cutting, so that an optical element having a sharp tip shape The processing of is now possible.
[0042]
The optical element of the present invention may be a contact multilayer type diffractive optical element as shown in FIG. The contact multilayered diffractive optical element is formed by interposing a first member 15 and a second member 16 which are different optical materials selected so that an optical constant is a desired combination, with a lattice plane 17 interposed therebetween. They are closely attached. Here, the contact multilayer diffractive optical element of the present invention is a glass substrate provided with a diffraction grating in which the first member 15 is molded by a glass mold (corresponding to a single-layer diffractive optical element produced by a glass molding method). ) Is filled with an uncured UV-curable resin or a thermosetting resin, adjusted to a predetermined thickness, and then irradiated with ultraviolet rays or heated and cured to form a second member 16. Can be produced. Such a contact multilayer diffractive optical element is often used in an optical system that requires high diffraction efficiency in a wide wavelength range, such as a photographing optical system of a camera. Therefore, the method for manufacturing an optical element according to the present invention, which can form a grating shape in a contact multilayered diffractive optical element according to a desired diffraction grating pattern, is effective.
[0043]
In addition, as a material of the second member 16 of the above-mentioned contact multilayer diffractive optical element, urethane acrylate, epoxy acrylate, or the like, which can be cured by ultraviolet irradiation or heating, is used.
[0044]
As described above, according to the method for manufacturing an optical element of the present invention, an optical element in which the projections of the concavo-convex pattern formed on the surface have sharp (diffraction) tips can be manufactured by the glass molding method.
[0045]
By the way, as described above, conventionally, when a diffraction grating pattern is formed from a normal base material, the tip of the convex portion of the pattern is rounded, and that portion becomes a phase mismatching portion, and the diffraction efficiency decreases. Oops. In particular, the diffraction efficiency is important in the case of a blazed diffraction grating having a sawtooth cross section. The blazed diffraction grating can concentrate incident light only on the diffracted light of the design order, so that it is also used in an imaging optical system requiring high performance. The diffraction efficiency is the intensity ratio of the diffracted light of the design order to the incident light, and a blazed diffraction grating can be designed so that a specific wavelength is theoretically 100%.
[0046]
However, when there is a rounded portion, ie, a phase mismatching portion, at the tip of the convex portion of the diffraction grating, light incident on this portion becomes phase mismatched and causes flare. Here, in the case of a diffraction grating in which portions other than the phase mismatch portion are formed in a shape according to a desired pattern, flare of incident light is caused by Δr being the width of the phase mismatch portion, and P being a grating. If the distance (pitch) is used, it is approximately the ratio of Δr / P. Therefore, the diffraction efficiency is considered to be approximately ((1−Δr / P) × 100)%. For example, when a diffractive optical element is used in a photographing optical system, in order to obtain a good image, the diffraction efficiency is required to be at least 95% or more, preferably 97% or more. This means that a lattice having the above Δr / P of about 0.03 or less is required. As described above, in a diffractive optical element requiring high shape accuracy, it is very effective to manufacture the optical element using the method for manufacturing an optical element of the present invention.
[0047]
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0048]
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. Here, a method for manufacturing the optical element of the present invention will be described. In this example, the optical element to be manufactured is a single-layer diffractive optical element, and the base material is made of low-melting glass (Sumitta P-SK60: φ50 mm). As shown in FIG. 6, the desired concavo-convex pattern has a grating height of 16 μm, and a pitch of the grating decreases from the center to the outside, and is 2 mm at the center and 160 μm at the outermost periphery. And a concentric blaze type diffraction grating pattern (the number of ring zones is 50).
[0049]
First, as shown in FIG. 6A, a deformed preform is manufactured. For this purpose, a base material 10 (for a deformed preform) and a preform mold 11 were prepared. The base material 10 is a flat plate having a diameter of 50 mm and a thickness of 10 mm made of a low-melting glass (Sumita P-SK60). The deforming preform forming die 11 is made of carbon steel, provided with an electroless plating layer made of a Ni-P-W composition on the surface, and cutting the surface of this plating layer with a diamond tool having a tip diameter of 2 μm. An inverted shape of the preform pattern (formed on the surface of the deformed preform) was formed. The preform pattern is a pattern in which the grating height is 18 μm and the pitch of the grating is shifted toward the center by 10 μm (shift amount ΔP =) with respect to each pitch of the desired blazed diffraction grating. An inverted shape of this pattern is formed on the surface of the deformable preform forming die 11.
[0050]
While heating the base material 10 and the deformed preform forming mold 11 at 410 ° C. in a nitrogen gas atmosphere, as shown in FIG. After pressing to transfer the inverted shape of the mold surface 11c, the mold was released. In the deformed preform 2 having the preform pattern 2c formed on the surface in this manner, a rounded portion having a width of about 8 μm is generated at the tip of the convex portion 2b of the lattice as shown in FIG. Was.
[0051]
Subsequently, as shown in FIG. 7, a diffractive optical element 3 having a desired blazed diffraction grating pattern 3c is manufactured from the deformed preform 1. For this reason, the molding die 2 was prepared. The molding die 2 is made of carbon steel, provided with an electroless plating layer made of a Ni-P-W composition on the die surface 2c, and arranging the surface of this plating layer with a desired blazed diffraction grating using a diamond bit having a tip diameter of 2 μm. The reverse shape of the pattern was cut.
[0052]
While heating the deformed preform 1 and the molding die 2 in a nitrogen gas atmosphere at 410 ° C., the lattice pitch of the molding die 2 was formed on the deformed preform 1 as shown in FIG. The preform pattern was positioned so as to be shifted by 10 μm (corresponding to ΔP in FIG. 7) from the pitch of the lattice of the preform pattern, and faced directly. At this time, all the rounded portions having a width of about 8 μm, which are generated at the tips of the convex portions 1b of the lattice of the deformed preform 1, are included in the range of the deviation amount ΔP (= 10 μm).
[0053]
As shown in FIG. 7 (2), the mold surface 2c of the molding die 2 was pressed against the surface of the deformed preform 1 on which the preform pattern 1c was formed to form a desired blazed diffraction grating pattern. Then, as shown in FIG. 7 (3), the mold 2 was released from the deformed preform 1 to produce a diffractive optical element 3 having a desired diffraction grating pattern 3c.
[0054]
As described above, in the manufacturing method of the optical element of the present embodiment, the rounded portion generated at the tip of the convex portion 1b of the lattice of the deformed preform 1 is formed at the tip of the acute angle convex portion 2b of the mold surface of the molding die 2. Thus, the diffractive optical element 3 in which the tips of all the protrusions 3b have sharp cutting edges were obtained.
[0055]
(Second embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, a contact multilayered diffractive optical element 20 was manufactured using the single-layer diffractive optical element 3 manufactured in the first embodiment. As shown in FIGS. 5 and 8, the contact multilayered diffractive optical element 20 is composed of a first member 15 and a second member 16 which are different optical materials adhered to each other with a grating surface 17 therebetween. In this embodiment, the first member 15 is made of low-melting glass (Sumita P-SK60), and the second member 16 is made of urethane acrylate.
[0056]
As described above, the single-layer diffractive optical element 3 manufactured in the first example is made of low-melting glass having a refractive index n1 of 1.5909 (Sumita P-SK60: φ50 mm), and has a grating on its surface. The height L is 16 μm, and the pitch of the grating becomes smaller from the center to the outer side. A concentric blazed diffraction grating pattern (50 ring zones) is formed at 2 mm at the center and 160 μm at the outermost periphery. I have. The blaze wavelength λ is 587 nm, and the integer m representing the diffraction order is 1.
[0057]
Here, when the value related to the single-layer diffractive optical element 3 manufactured in the first example was substituted into the conditional expression (1) and the refractive index n2 of the second member was calculated, 1.5542 was obtained. Therefore, in the present embodiment, urethane acrylate of an ultraviolet curable resin having a refractive index of 1.5542 was selected as the second member 16 constituting the contact multilayer diffractive optical element 20.
[0058]
Further, in order to reduce the wavelength dependence of the diffraction efficiency and obtain a high diffraction efficiency in a wide wavelength range, the dispersion difference between the first member 15 and the second member 16 constituting the contact multilayered diffraction grating 20 is reduced. It is effective to increase it. In this embodiment, the Abbe number of Sumita P-SK60 used as the first member 15 is 62.3, and the Abbe number of urethane acrylate used as the second member 16 is 37.0, and the diffraction efficiency is high. Satisfies the required dispersion difference.
[0059]
Hereinafter, a method for manufacturing the contact multilayered diffractive optical element 20 according to the present invention will be described with reference to FIG. Therefore, first, a resin layer forming die 18 for forming a resin layer was prepared. The resin layer forming mold 18 is a flat plate made of stainless steel and having a diameter of 50 mm and a thickness of 30 mm.
[0060]
Next, as shown in FIG. 9A, an appropriate amount of liquid urethane acrylate 16 was dropped on the lattice plane 17 of the single-layer diffractive optical element 3 manufactured in the first example. Subsequently, as shown in FIG. 9 (2), a molding die 18 for a resin layer was pressed against the dropped urethane acrylate 16 such that the thickness of the resin layer became 200 μm. Then, in this state, the ultraviolet light of the high-pressure mercury lamp was irradiated from the single-layer diffractive optical element 3 side to cure the urethane acrylate 16 dropped on the lattice surface 17. At this time, the integrated irradiation amount of the ultraviolet ray is 2000 mJ / cm. 2 was. After the photo-curing, as shown in FIG. 9 (3), by releasing the mold 18 for the resin layer from the urethane acrylate 16, a desired contact multilayered diffractive optical element 20 could be obtained.
[0061]
Here, the diffraction efficiency of the contact multilayered diffractive optical element 20 obtained by the above-described manufacturing method was measured. The measuring method is to irradiate the grating of the contact multilayer diffractive optical element 20 with a laser beam, measure the first-order diffracted light intensity, and obtain the diffraction efficiency as a ratio of the first-order diffracted light intensity to the incident light intensity. As a result, the contact multilayered diffractive optical element 20 according to the present invention has a diffraction efficiency of 98% when the wavelength of the irradiated laser light is 458 nm, a diffraction efficiency of 99% when the wavelength of the irradiated laser light is 543 nm, and an irradiation efficiency of 99%. When the wavelength of the laser beam to be emitted was 633 nm, the diffraction efficiency was 98%, and it was confirmed that the diffraction efficiency was high over a wide range of the visible light region. Therefore, this contact multilayer diffractive optical element is particularly effective for an optical system that requires high diffraction efficiency in a wide wavelength range, such as an imaging optical system of a camera.
[0062]
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. As shown in FIG. 10, the photographic camera optical system 25 according to the present invention is provided with the close contact multilayer diffraction grating 20 manufactured in the second embodiment.
[0063]
As described above, the contact multilayer diffraction grating 20 of the present invention has a high diffraction efficiency, a small flare, and a low manufacturing cost in a wide wavelength range. Therefore, the optical system 25 for a photographing camera according to the present invention can be configured with a high transmittance, a small flare, and a low manufacturing cost. Further, the photographic camera optical system 25 of the present invention can be made compact by effectively utilizing the characteristics of a small diffractive optical element.
[0064]
In the third embodiment, a single contact multilayered diffractive optical element 20 is provided in the photographic camera optical system 25, but the number of optical elements provided in the present invention is limited to the present embodiment. It is not done. For example, two or more diffractive optical elements may be provided in the optical system according to the present invention.
[0065]
【The invention's effect】
As described above, according to the method for manufacturing an optical element of the present invention, an optical element having a small phase mismatching area and high diffraction efficiency can be manufactured. Further, the optical element according to the present invention manufactured by this manufacturing method has a small area of the phase mismatch portion, and can obtain high diffraction efficiency. The optical system according to the present invention using this optical element has a high transmittance and can suppress flare.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for manufacturing an optical element according to the present invention.
FIG. 2 is a view showing the shape of a grating surface of a blazed diffractive optical element.
FIG. 3 is a diagram illustrating a method for manufacturing a deformed preform used in the method for manufacturing a diffractive optical element of the present invention.
FIG. 4 is a diagram showing a conventional relationship between irregularities on a surface of a mold and irregularities on a surface of a deformed preform.
FIG. 5 is a view showing a contact multilayer diffractive optical element of the present invention.
FIG. 6 is a diagram illustrating a procedure of a method for manufacturing an optical element in the first embodiment.
FIG. 7 is a diagram illustrating a procedure of a method for manufacturing an optical element in the first embodiment.
FIG. 8 is a view illustrating a contact multilayer diffractive optical element of the present invention.
FIG. 9 is a diagram illustrating a method for manufacturing a contact multilayer diffractive optical element of the present invention.
FIG. 10 is a diagram showing a photographing camera optical system of the present invention.
FIG. 11 is a diagram illustrating another method for manufacturing the optical element of the present invention.
FIG. 12 is a diagram illustrating a conventional method for manufacturing an optical element.
[Explanation of symbols]
1 deformed preform
1a Depression of deformed preform
1b Convex part of deformed preform
1c Preform pattern
2 Mold
2a Recess of mold
2b Convex part of mold
2c Mold surface of mold (reverse shape of desired concavo-convex pattern)
3 Diffractive optical element (optical element)
3b Convex part of diffractive optical element
3c Diffraction grating pattern (desired uneven pattern)
10 Base material
11 Mold for deformed preform (mold for preform)
15 First member
16 Second member
17 Lattice surface
18 Mold for resin layer
20 Close contact multilayer diffractive optical element (optical element)
25 Optical system for photographing camera (optical system)

Claims (10)

表面に所望の凹凸パターンを有する光学素子を製造する方法であって、
母材の表面に前記所望の凹凸パターンの凹部と凸部に対して所定量ずれた位置に凹部と凸部を有したプリフォームパターンを形成する第1の段階と、
前記母材における前記プリフォームパターンが形成された表面に、前記所望の凹凸パターンの反転形状の型表面を有する成形型を、前記所望の凹凸パターンを形成するように位置決めして押し付けて、前記母材の表面に前記所望の凹凸パターンを形成する第2の段階とを備えることを特徴とする光学素子の製造方法。
A method for producing an optical element having a desired concavo-convex pattern on the surface,
A first step of forming a preform pattern having a concave portion and a convex portion at a position shifted by a predetermined amount from the concave portion and the convex portion of the desired concave and convex pattern on the surface of the base material;
On a surface of the base material on which the preform pattern is formed, a molding die having a mold surface having an inverted shape of the desired concavo-convex pattern is positioned and pressed so as to form the desired concavo-convex pattern. And a second step of forming the desired concavo-convex pattern on the surface of the material.
前記所定量は、前記プリフォームパターンが形成された母材に前記成形型を押し付け、前記母材に形成された前記プリフォームパターンの凸部の丸み帯びた部分を削り落とし、前記母材における前記プリフォームパターンが形成された表面に、前記所望の凹凸パターンを形成できる量であることを特徴とする請求項1に記載の光学素子の製造方法。The predetermined amount presses the molding die against the base material on which the preform pattern is formed, scrapes off a rounded portion of a convex portion of the preform pattern formed on the base material, and 2. The method according to claim 1, wherein the amount is such that the desired concavo-convex pattern can be formed on the surface on which the preform pattern is formed. 前記所望の凹凸パターンはその凹部と凸部が平行な直線形状である一次元タイプの回折格子パターンであり、
前記第1の段階において、母材の表面に、前記所望の凹凸パターンの反転形状を有する前記成形型を前記所定量ずらした位置に押し付けて、前記プリフォームパターンを形成することを特徴とする請求項1又は2に記載の光学素子の製造方法。
The desired concavo-convex pattern is a one-dimensional type diffraction grating pattern in which the concave portions and the convex portions have a linear shape parallel to each other,
In the first step, the preform pattern is formed by pressing the mold having an inverted shape of the desired concavo-convex pattern onto the surface of the base material at a position shifted by the predetermined amount. Item 3. The method for manufacturing an optical element according to Item 1 or 2.
前記所望の凹凸パターンはその凹部と凸部が同心円形状である二次元タイプの回折格子パターンであり、
前記第1の段階において、母材の表面に、前記プリフォームパターンの反転形状を有するプリフォーム用成形型を押し付けて、前記プリフォームパターンを形成することを特徴とする請求項1又は2に記載の光学素子の製造方法。
The desired concavo-convex pattern is a two-dimensional type diffraction grating pattern in which the concave and convex portions are concentric,
The preform pattern is formed by pressing a preform mold having an inverted shape of the preform pattern against a surface of a base material in the first step. A method for manufacturing an optical element.
前記回折格子パターンは、鋸歯状の断面形状であるブレーズ格子パターンであることを特徴とする請求項3又は4に記載の光学素子の製造方法。5. The method according to claim 3, wherein the diffraction grating pattern is a blazed grating pattern having a sawtooth cross section. 6. 前記第1の段階で前記母材における前記プリフォームパターンが形成された表面の凹部と凸部との段差は、前記型表面の凹部と凸部との段差より、同じもしくは高いことを特徴とする請求項1〜5のいずれかに記載の光学素子の製造方法。The step between the concave portion and the convex portion on the surface of the base material on which the preform pattern is formed in the first step is the same or higher than the step between the concave portion and the convex portion on the mold surface. A method for manufacturing an optical element according to claim 1. 前記母材の材料は、ガラスであることを特徴とする請求項1〜6のいずれかに記載の光学素子の製造方法。The method for manufacturing an optical element according to claim 1, wherein a material of the base material is glass. 前記第2の段階において、前記プリフォームパターンが形成された母材を所定温度まで加熱し、この加熱により軟化した前記母材に前記成形型を押し付けることを特徴とする請求項7に記載の光学素子の製造方法。8. The optical device according to claim 7, wherein in the second step, the base material on which the preform pattern is formed is heated to a predetermined temperature, and the molding die is pressed against the base material softened by the heating. Device manufacturing method. 請求項1〜8のいずれかに記載の光学素子の製造方法により製造されることを特徴とする光学素子。An optical element manufactured by the method for manufacturing an optical element according to claim 1. 請求項9に記載の光学素子を備えることを特徴とする光学系。An optical system comprising the optical element according to claim 9.
JP2003058303A 2003-03-05 2003-03-05 Optical element manufacturing method Expired - Fee Related JP4320708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058303A JP4320708B2 (en) 2003-03-05 2003-03-05 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058303A JP4320708B2 (en) 2003-03-05 2003-03-05 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2004271583A true JP2004271583A (en) 2004-09-30
JP4320708B2 JP4320708B2 (en) 2009-08-26

Family

ID=33121441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058303A Expired - Fee Related JP4320708B2 (en) 2003-03-05 2003-03-05 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4320708B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233171A (en) * 2006-03-02 2007-09-13 Nikon Corp Display device, image observation apparatus, camera and image observation method
JP2010128343A (en) * 2008-11-28 2010-06-10 Nikon Corp Diffraction optical element, optical system, and optical apparatus
JP2011123317A (en) * 2009-12-11 2011-06-23 Nikon Corp Diffraction optical element, optical system and optical apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278629A (en) * 2000-03-31 2001-10-10 Fuji Photo Optical Co Ltd Method of forming optical element and optical material for forming optical element
JP2002293553A (en) * 2001-03-29 2002-10-09 Matsushita Electric Ind Co Ltd Method for producing optical element, production apparatus and molding raw material of optical element, mold for premolding and lens array of optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278629A (en) * 2000-03-31 2001-10-10 Fuji Photo Optical Co Ltd Method of forming optical element and optical material for forming optical element
JP2002293553A (en) * 2001-03-29 2002-10-09 Matsushita Electric Ind Co Ltd Method for producing optical element, production apparatus and molding raw material of optical element, mold for premolding and lens array of optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233171A (en) * 2006-03-02 2007-09-13 Nikon Corp Display device, image observation apparatus, camera and image observation method
JP2010128343A (en) * 2008-11-28 2010-06-10 Nikon Corp Diffraction optical element, optical system, and optical apparatus
JP2011123317A (en) * 2009-12-11 2011-06-23 Nikon Corp Diffraction optical element, optical system and optical apparatus

Also Published As

Publication number Publication date
JP4320708B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4697584B2 (en) Diffractive optical element and method of manufacturing diffractive optical element
US9011742B2 (en) Manufacturing micro-structured elements
JP5590851B2 (en) Diffractive optical element, laminated diffractive optical element and method of manufacturing the same
CN104335082B (en) Curved face diffraction grating fabrication method, curved face diffraction grating cast, and curved face diffraction grating employing same
JP2007199540A (en) Reflection-type replica photonic device
CN103328175A (en) Method for manufacturing photoaligning integrated large area metallic stamp, and method for manufacturing polymer optical device using same
JP5965698B2 (en) Diffraction grating and manufacturing method thereof
JP4320708B2 (en) Optical element manufacturing method
JP2010276845A (en) Fresnel lens sheet, method of manufacturing the same and method of manufacturing stamper used for the same, and photovoltaic power generation apparatus including the fresnel lens sheet
JP2004046093A (en) Method for manufacturing diffraction optical element
JP2004240417A (en) Optical element and manufacturing method thereof
JP4244570B2 (en) Cutting method for diffractive optical element and cutting method for mold for forming diffractive optical element
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
JP2002355826A (en) Method for producing lens part for optical communication
JP2004157404A (en) Diffraction optical element and method for manufacturing diffraction optical element, and optical system using diffraction optical element
JP2013033222A (en) Diffractive optical element and imaging apparatus using the same
JP2001141918A (en) Diffraction optical device and its production method
JP2004151377A (en) Optical element, method for manufacturing optical element, and optical system equipped with the optical element
JP3566635B2 (en) Optical article manufacturing method
JP5359624B2 (en) Method and apparatus for manufacturing diffractive optical element
JP3495925B2 (en) Optical element manufacturing method
JP2005173057A (en) Method for manufacturing optical element
US20230146101A1 (en) Method and apparatus for microstructured filters in laminates for light attenuation
JP3545796B2 (en) Optical device and optical device manufacturing method
US20120327514A1 (en) Diffractive optical element and imaging apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Ref document number: 4320708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees