JP2004271099A - Energy saving heat treatment device - Google Patents

Energy saving heat treatment device Download PDF

Info

Publication number
JP2004271099A
JP2004271099A JP2003064273A JP2003064273A JP2004271099A JP 2004271099 A JP2004271099 A JP 2004271099A JP 2003064273 A JP2003064273 A JP 2003064273A JP 2003064273 A JP2003064273 A JP 2003064273A JP 2004271099 A JP2004271099 A JP 2004271099A
Authority
JP
Japan
Prior art keywords
fluid
gap
central
heat transfer
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003064273A
Other languages
Japanese (ja)
Inventor
Masaaki Nagakura
正昭 長倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO DESIGN KK
Original Assignee
ECO DESIGN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO DESIGN KK filed Critical ECO DESIGN KK
Priority to JP2003064273A priority Critical patent/JP2004271099A/en
Publication of JP2004271099A publication Critical patent/JP2004271099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy saving heat treatment device capable of saving energy with high efficiency and easy to design and manufacture in a compact form. <P>SOLUTION: To solve the above issues, a spiral heat exchanger is used as a heat exchange part and a heat source such as an electric heater 4 is incorporated in a center cavity portion 3 thereof. Namely, the spiral heat exchanger has two heat transfer plates 1, 2 spirally wound thereon and two flow paths 7, 8 formed in a countercurrent heat exchangeable manner between the heat transfer plates, the cylindrical or rectangularly columnar cavity portion 3 having a size required for heat treatment is provided at the center thereof, and a heating/cooling source such as the electric heater or a cooling heat transfer pipe is incorporated in the center cavity portion. Fluid to be treated is guided from an inlet 5 for the fluid to be treated, provided in the peripheral portion, through one flow path 7 to the center cavity portion for heat treatment, and then guided through the other flow path 8 to the peripheral portion and taken out of an outlet 6 for the fluid already treated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は流体を対象に殺菌、化学反応、成分分離等の作用を起こさせるための加熱あるいは冷却処理を伴う産業分野に関連した省エネルギー型熱処理装置に関する。
【0002】
【従来の技術】
流体を対象とした省エネルギー型熱処理の方法としてエコノマイザを用いた方法が知られている。 エコノマイザは一種の熱交換器であり、加熱あるいは冷却後の流体を加熱あるいは冷却前の流体と熱交換し、熱を回収する機能を持つ。
【0003】
そのようなエコノマイザを熱処理部と一体化することによって、配管等による熱ロスを減少した省エネルギー型熱処理装置も考案されている。その例は特開2000−121262に示されている。
【0004】
【発明が解決しようとする課題】
本発明は、エコノマイザとして機能する熱交換部と熱処理部を一体化した省エネルギー型熱処理装置であって、高効率の省エネルギーが可能、コンパクト且つ設計製作が容易な省エネルギー型熱処理装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は上記の課題を解決するために、熱交換部としてスパイラル式熱交換器を用い、その中心空隙部に熱処理部を組み込む。
【0006】
スパイラル式熱交換器は複数枚の伝熱板を渦巻き状に巻きつけ熱交換を行う方式の熱交換器であるが、特開2000−074577、特願平09−076631、特開平08−261681等種々の形式のものが考案もしくは実用化されている。
【0007】
本発明においては2枚の伝熱板を渦巻状に巻きつけて、それらの伝熱板の間に2つの流路を構成し、一方の流路に周辺部より中心部に至る流れを形成し、他方の流路に中心部から周辺部に至る流れを形成してそれら2つの流れの間に向流式に熱交換を行わせるスパイラル式熱交換器の形式を採用する。
【0008】
また、本発明においては前記形式のスパイラル式熱交換器の中心部に熱処理に必要な寸法の円柱状もしくは角柱状の空隙部(以下中心空隙部とする)を設けその部分に電気ヒータ、冷却用伝熱管等の加熱源もしくは冷却源を組み込み、流体を前記の一方の流路を経て、周辺部より中心空隙部に導いて熱処理した後、他方の流路を経て中心空隙部より周辺部に導いて取り出す。
【0009】
【発明の実施の形態】
本発明の実施の形態1〜5を実施例を示す図により説明する。尚、これらの実施の形態は請求項1〜5に対応している。
【0010】
実施の形態1.図1は2枚の伝熱板1、2を渦巻き状に巻きつけ、その2枚の伝熱板の間に周辺部より中心部に至る流入側流路7および流出側流路8を構成したスパイラル式熱交換器の中心空隙部3に線状、管状もしくはフィン付き管状の電気ヒータ4を挿入し、流体を加熱処理するために用いられる実施の形態1による省エネルギー型熱処理装置の実施例を示すものである。
【0011】
スパイラル式熱交換器は円柱状もしくは角柱状の形状を持たしてあり、その外周部に流入側流路7に流体を導くための流体入口5および流出側流路8より流体を取り出す流体出口6が設けられている。
【0012】
熱処理の対象とされる流体は、流体入口5より流入し、流入側流路7を通過して、中心空隙部に達し、電気ヒータ4にて加熱された後、流出側流路8を通過し、流体出口6より排出される。
【0013】
流入側流路を流れる流体は流出側流路を流れる流体と伝熱板1,2を通じて熱交換し、流入側流体は加熱され、流出側流体は冷却される。
【0014】
実施の形態2.図2は実施の形態2による実施例を示す。2枚の伝熱板1、2を渦巻き状に巻きつけ、その2枚の伝熱板の間に流入側流路7および流出側流路8を形成したスパイラル式熱交換器を用いることなどは実施の形態1と同様であるが、加熱の方法が異なっている。
【0015】
本実施例においては中心空隙部に充填材10を充填し且つ赤外線ヒータ9を挿入し、流体を加熱する。充填材10としては特にガラス、シリカゲル等の赤外線に対して半透明であり、耐熱性のある材質の球形、円筒形、円柱形等の細粒状充填材を用いている。
【0016】
実施の形態3.図3は軸方向を垂直に配置されたスパイラル式熱交換器の中心空隙部3に冷却用伝熱管11を挿入し、気体中の水分など凝縮性成分を除去する用途に用いられる実施の形態3による省エネルギー型熱処理装置の実施例を示すものである。
【0017】
熱処理の対象とされる凝縮性成分含有流体は、流体入口14より流入し、流入側流路7を通過して、中心空隙部に達し、冷却用伝熱管にて冷却され、凝縮性成分を除去された後、流出側流路8を通過し、流体出口15より排出される。
【0018】
凝縮性成分含有気体より除去された凝縮性成分は、中心空隙部3の下部より外部に取り出される。
【0019】
冷却用伝熱管の温度は冷媒を用いあるいはペルチェ素子などの冷却機構を用いて凝縮性成分が凝縮可能な温度に保持されている。
【0020】
実施の形態4.図4は軸方向を垂直に配置されたスパイラル式熱交換器の中心空隙部3に電気ヒータを挿入し、液体中の蒸発成分を精製し、もしくは液体中の非蒸発成分を濃縮する用途に用いられる実施の形態4による省エネルギー型熱処理装置の実施例を示すものである。
【0021】
熱処理の対象とされる原液を、流体入口16より導入し、流入側流路7を経て、中心空隙部に達せしめ、電気ヒータにて加熱して、蒸発した成分を流出側流路8を経て出口17より取り出す。
【0022】
原液より蒸発した成分は流出側流路8を通過する間に流入側流路7を流れる原液と伝熱板1,2を通じて熱交換することにより冷却され、凝縮液し、液化した状態で出口17より取り出される。
【0023】
中心空隙部で蒸発しないで残った成分は中心空隙部の下部より取り出される。
【0024】
実施の形態5.図5ははスパイラル式熱交換器の中心空隙部3に触媒25を充填し且つ電気ヒータ26を挿入し、流体中の成分に触媒により促進された化学反応を生ぜしめるために用いられる実施の形態5による省エネルギー型熱処理装置の実施例を示すものである。
【0025】
熱処理の対象とされる流体は、流体入口5より導入し、流入側流路7を通過させて、中心空隙部に達せしめ、電気ヒータ26により加熱された触媒に接触させて、流体中の反応性成分の間に化学反応を生ぜしめた後、流出側流路8を通過させて、流体出口6より排出する。
(d)流入側流路を流れる流体は流出側流路を流れる流体と伝熱板1,2を通じて熱交換し、流入側流体は加熱され、流出側流体は冷却される。
【0026】
【発明の効果】
本発明によれば流体の加熱もしくは冷却に要する熱エネルギーをスパイラル式熱交換器の部分において回収でき、高効率の省エネルギー加熱処理が実現する。
【0027】
熱エネルギーの回収率はスパイラル式熱交換器の部分の設計に依存するが、一般に加熱に要する熱エネルギーの90%以上の回収が可能となる。
【0028】
また、中心空隙部3の寸法の設定の自由度が高いために、種々の流体および処理温度に対応した熱処理部を容易に設計、製作することが可能である。
【0029】
さらに、スパイラル式熱交換器を熱交換部に採用したことにより、多管型熱交換器を用いた場合に比してコンパクトな熱処理装置が実現する。
【0030】
次に各実施の形態における特徴的な効果を述べる。
実施の形態1.高効率の省エネルギー型殺菌装置が実現する。
実施の形態2.ガラス、シリカゲルなど赤外線に対して半透過性があり、大きな比表面積を有する細粒状充填材が赤外線を吸収し、それにより発生する熱を流体に伝えるために、実施の形態1よりも更にコンパクトな熱処理装置が実現する。
実施の形態3.空気中の水分、VOPなどを高効率に凝縮可能な、凝縮器が実現する。
実施の形態4.廃液の濃縮減容、蒸留水の製造等において大幅な熱エネルギーの削減が実現する。
実施の形態5.空気中の触媒酸化による有害物質の酸化その他、触媒を用いた熱処理において大幅な省エネルギー化が実現する。
【図面の簡単な説明】
【図1】実施の形態1の実施例を示す図である。
【図2】実施の形態2の実施例を示す図である。
【図3】実施の形態3の実施例を示す図である。
【図4】実施の形態4の実施例を示す図である。
【図5】実施の形態5の実施例を示す図である。
【符号の説明】
1 伝熱板
2 伝熱板
3 中心空隙部
4 電気ヒータ
5 処理対象流体入口
6 処理済流体出口
7 流入側流路
8 流出側流路
9 赤外線ヒータ
10 充填材
11 冷却用伝熱管
12 凝縮液貯槽
13 凝縮液
14 凝縮性成分含有気体入口
15 凝縮性成分除去済み気体出口
16 原液入口
17 蒸発成分凝縮液出口
18 非蒸発成分濃縮液一時貯槽
19 非蒸発性成分濃縮液
20 非蒸発性成分濃縮液出口
21 蒸発成分気泡
22 電気ヒータ
23 中心空隙部への原液入口
24 中心空隙部からの蒸発成分出口
25 触媒
26 電気ヒータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an energy-saving heat treatment apparatus related to the industrial field, which involves a heating or cooling treatment for causing an action such as sterilization, chemical reaction, or component separation on a fluid.
[0002]
[Prior art]
A method using an economizer has been known as a method of energy-saving heat treatment for a fluid. The economizer is a kind of heat exchanger, and has a function of exchanging heat after cooling or heating with fluid before heating or cooling to recover heat.
[0003]
An energy-saving heat treatment apparatus in which such an economizer is integrated with a heat treatment section to reduce heat loss due to piping and the like has been devised. An example is shown in JP-A-2000-12262.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an energy-saving heat treatment apparatus that integrates a heat exchange section and a heat treatment section that function as an economizer, and that can provide high-efficiency energy saving, is compact, and easy to design and manufacture. And
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention uses a spiral heat exchanger as a heat exchange unit, and incorporates a heat treatment unit in a central gap portion.
[0006]
The spiral heat exchanger is a heat exchanger of a type in which a plurality of heat transfer plates are spirally wound to perform heat exchange, and is disclosed in JP-A-2000-074577, JP-A-09-076631, JP-A-08-261681, and the like. Various types have been devised or put into practical use.
[0007]
In the present invention, two heat transfer plates are spirally wound, two flow paths are formed between the heat transfer plates, and one flow path forms a flow from a peripheral portion to a central portion, and In this case, a spiral heat exchanger is used in which a flow from the center to the periphery is formed in the flow path, and heat is exchanged between the two flows in a countercurrent manner.
[0008]
Further, in the present invention, a cylindrical or prismatic void portion (hereinafter referred to as a central void portion) having a dimension required for heat treatment is provided at the center of the spiral heat exchanger of the above type, and an electric heater and a cooling A heat source or a cooling source such as a heat transfer tube is incorporated, and the fluid passes through the one flow path, is guided from the peripheral portion to the central gap portion, and is heat-treated, and then is guided through the other flow path to the peripheral portion from the central gap portion. And take it out.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments 1 to 5 of the present invention will be described with reference to the drawings showing examples. Incidentally, these embodiments correspond to claims 1 to 5.
[0010]
Embodiment 1 FIG. FIG. 1 shows a spiral type in which two heat transfer plates 1 and 2 are spirally wound, and an inflow-side flow passage 7 and an outflow-side flow passage 8 are formed between the two heat transfer plates from a peripheral portion to a central portion. An example of an energy-saving heat treatment apparatus according to the first embodiment, which is used to heat a fluid by inserting a linear, tubular or finned tubular electric heater 4 into a central gap 3 of a heat exchanger, is shown. is there.
[0011]
The spiral heat exchanger has a cylindrical or prismatic shape, and has a fluid inlet 5 for guiding fluid to the inflow-side flow path 7 and a fluid outlet 6 for taking out fluid from the outflow-side flow path 8 on its outer peripheral portion. Is provided.
[0012]
The fluid to be subjected to the heat treatment flows in from the fluid inlet 5, passes through the inflow-side channel 7, reaches the central gap, is heated by the electric heater 4, and then passes through the outflow-side channel 8. Are discharged from the fluid outlet 6.
[0013]
The fluid flowing in the inflow-side flow path exchanges heat with the fluid flowing in the outflow-side flow path through the heat transfer plates 1 and 2, the inflow-side fluid is heated, and the outflow-side fluid is cooled.
[0014]
Embodiment 2 FIG. FIG. 2 shows an example according to the second embodiment. The use of a spiral heat exchanger in which two heat transfer plates 1 and 2 are spirally wound and an inflow-side flow path 7 and an outflow-side flow path 8 are formed between the two heat transfer plates is an example. Same as Embodiment 1, but the heating method is different.
[0015]
In the present embodiment, the filling material 10 is filled in the central gap and the infrared heater 9 is inserted to heat the fluid. As the filler 10, a fine-grained filler such as glass, silica gel, or the like, which is translucent to infrared rays and has heat resistance, such as a sphere, a cylinder, and a column, is used.
[0016]
Embodiment 3 FIG. FIG. 3 shows a third embodiment which is used for removing a condensable component such as water in a gas by inserting a cooling heat transfer tube 11 into a central gap portion 3 of a spiral heat exchanger whose axial direction is vertically arranged. 1 shows an embodiment of an energy-saving heat treatment apparatus according to the present invention.
[0017]
The condensable component-containing fluid to be subjected to the heat treatment flows in through the fluid inlet 14, passes through the inflow-side flow path 7, reaches the central void, is cooled by the cooling heat transfer tube, and removes the condensable component. After that, it passes through the outflow-side channel 8 and is discharged from the fluid outlet 15.
[0018]
The condensable component removed from the condensable component-containing gas is taken out from the lower portion of the central cavity 3.
[0019]
The temperature of the cooling heat transfer tube is maintained at a temperature at which condensable components can be condensed using a refrigerant or a cooling mechanism such as a Peltier element.
[0020]
Embodiment 4 FIG. FIG. 4 shows an example in which an electric heater is inserted into the central gap 3 of a spiral heat exchanger whose axial direction is arranged vertically to purify evaporating components in a liquid or to concentrate non-evaporating components in a liquid. 13 shows an example of an energy-saving heat treatment apparatus according to Embodiment 4.
[0021]
The undiluted solution to be subjected to the heat treatment is introduced from the fluid inlet 16, reaches the central gap through the inflow side channel 7, is heated by an electric heater, and the evaporated component is passed through the outflow side channel 8. Take out from the exit 17.
[0022]
The components evaporated from the undiluted solution are cooled by exchanging heat with the undiluted solution flowing through the inflow-side channel 7 through the heat transfer plates 1 and 2 while passing through the outflow-side channel 8, condensed, and liquefied at the outlet 17. Taken out.
[0023]
The component remaining without evaporating in the center gap is taken out from the lower part of the center gap.
[0024]
Embodiment 5 FIG. FIG. 5 shows an embodiment in which the central space 3 of the spiral heat exchanger is filled with a catalyst 25 and an electric heater 26 is inserted, which is used to cause a chemical reaction promoted by the catalyst on the components in the fluid. 5 shows an embodiment of an energy-saving heat treatment apparatus according to No. 5;
[0025]
The fluid to be subjected to the heat treatment is introduced from the fluid inlet 5, passes through the inflow-side flow path 7, reaches the central void, and is brought into contact with the catalyst heated by the electric heater 26, and reacts in the fluid. After a chemical reaction has occurred between the sexual components, the chemical component is passed through the outflow channel 8 and discharged from the fluid outlet 6.
(D) The fluid flowing in the inflow-side flow path exchanges heat with the fluid flowing in the outflow-side flow path through the heat transfer plates 1 and 2, the inflow-side fluid is heated, and the outflow-side fluid is cooled.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat energy required for heating or cooling of a fluid can be collect | recovered in the part of a spiral heat exchanger, and highly efficient energy-saving heating processing is implement | achieved.
[0027]
Although the recovery rate of heat energy depends on the design of the portion of the spiral heat exchanger, generally 90% or more of the heat energy required for heating can be recovered.
[0028]
In addition, since the degree of freedom in setting the size of the center gap 3 is high, it is possible to easily design and manufacture heat treatment sections corresponding to various fluids and processing temperatures.
[0029]
Furthermore, by employing a spiral heat exchanger in the heat exchange section, a heat treatment apparatus that is more compact than in the case of using a multi-tube heat exchanger is realized.
[0030]
Next, the characteristic effects of each embodiment will be described.
Embodiment 1 FIG. A highly efficient energy-saving sterilizer is realized.
Embodiment 2 FIG. Glass, silica gel, etc. are semi-transparent to infrared rays, and the fine-grained filler having a large specific surface area absorbs infrared rays and transmits heat generated thereby to the fluid. A heat treatment device is realized.
Embodiment 3 FIG. A condenser capable of efficiently condensing moisture, VOP, and the like in the air is realized.
Embodiment 4 FIG. Significant reduction of heat energy can be realized in volume reduction of waste liquid and production of distilled water.
Embodiment 5 FIG. Significant energy savings can be achieved in oxidation of harmful substances by catalytic oxidation in the air, and in heat treatment using a catalyst.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of the first embodiment.
FIG. 2 is a diagram showing an example of the second embodiment.
FIG. 3 is a diagram showing an example of the third embodiment.
FIG. 4 is a diagram showing an example of the fourth embodiment.
FIG. 5 is a diagram showing an example of the fifth embodiment.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 heat transfer plate 2 heat transfer plate 3 central void portion 4 electric heater 5 target fluid inlet 6 processed fluid outlet 7 inflow side channel 8 outflow side channel 9 infrared heater 10 filler 11 cooling heat transfer tube 12 condensate storage tank 13 Condensed liquid 14 Condensable component-containing gas inlet 15 Condensable component-removed gas outlet 16 Stock solution inlet 17 Evaporation component condensate outlet 18 Non-evaporable component concentrate temporary storage tank 19 Non-evaporable component concentrate 20 Non-evaporable component concentrate outlet Reference Signs List 21 Evaporation component bubbles 22 Electric heater 23 Stock solution inlet 24 into center gap 24 Evaporation component outlet 25 from center gap 25 Catalyst 26 Electric heater

Claims (5)

流体を加熱処理するための熱処理装置であって、次の条件を兼ね備えたもの。
(a)2枚の伝熱板1、2を渦巻状に巻きつけて、それらの伝熱板1、2の間隙に周辺部と中心部の間を通じる2つの流路7、8が構成されたスパイラル式熱交換器を備える。
(b)前記(a)のスパイラル式熱交換器の中心部に円柱状もしくは角柱状の空隙部3(以下中心空隙部とする)を備える。
(c)前記(b)の中心空隙部3の内部に電気ヒータ4が組み込まれている。
(d)処理対象流体を周辺部に設けられた入口5より一方の流路7を経て、中心空隙部に導いて加熱した後、他方の流路8を経て中心空隙部3より周辺部に設けられた出口6に導いて処理済流体を取り出す方法で使用される。
(e)前記(d)の周辺部入口5より中心空隙部3に導かれる処理対象流体と、中心空隙部3より周辺部出口6へ導かれる処理済流体との間で、伝熱板1、2を介して向流型の熱交換が行われることにより、処理対象流体は加熱され、処理済流体は冷却される。
A heat treatment apparatus for heat-treating a fluid, which satisfies the following conditions.
(A) Two heat transfer plates 1 and 2 are spirally wound, and two flow paths 7 and 8 are formed in a gap between the heat transfer plates 1 and 2 so as to pass between a peripheral portion and a central portion. Equipped with a spiral heat exchanger.
(B) A cylindrical or prismatic gap 3 (hereinafter referred to as a center gap) is provided at the center of the spiral heat exchanger of (a).
(C) The electric heater 4 is incorporated in the center gap 3 of (b).
(D) After the fluid to be treated is guided from the inlet 5 provided in the peripheral part to the central void through one flow path 7 and heated, it is provided to the peripheral part from the central void 3 through the other flow path 8. The outlet 6 is used to remove the treated fluid.
(E) The heat transfer plate 1, between the processing target fluid guided from the peripheral inlet 5 to the central gap 3 and the processed fluid guided from the central gap 3 to the peripheral outlet 6 in (d). By performing counter-current heat exchange via 2, the fluid to be treated is heated and the treated fluid is cooled.
流体を加熱処理するための熱処理装置であって、次の条件を兼ね備えたもの。
(a)2枚の伝熱板1、2を渦巻状に巻きつけて、それらの伝熱板1、2の間隙に周辺部と中心部の間を通じる2つの流路7、8が構成されたスパイラル式熱交換器を備える。
(b)前記(a)のスパイラル式熱交換器の中心部に充填物10の充填された円柱状もしくは角柱状の空間部(以下充填部)を備える。
(c)前記(b)の充填部の内部に赤外線ヒータ9が組み込まれている。
(d)処理対象流体を周辺部に設けられた入口5より一方の流路7を経て、中心空隙部に導いて加熱した後、他方の流路8を経て中心空隙部3より周辺部に設けられた出口6に導いて処理済流体を取り出す方法で使用される。
(e)前記(d)の周辺部入口5より中心空隙部3に導かれる処理対象流体と、中心空隙部3より周辺部出口6へ導かれる処理済流体との間で、伝熱板1、2を介して向流型の熱交換が行われることにより、処理対象流体は加熱され、処理済流体は冷却される。
(f)前記(b)の充填物10はガラス、シリカゲル等赤外線に対して半透明な性質を有する材料で作られたものである。
A heat treatment apparatus for heat-treating a fluid, which satisfies the following conditions.
(A) Two heat transfer plates 1 and 2 are spirally wound, and two flow paths 7 and 8 are formed in a gap between the heat transfer plates 1 and 2 so as to pass between a peripheral portion and a central portion. Equipped with a spiral heat exchanger.
(B) At the center of the spiral heat exchanger of (a), a cylindrical or prismatic space filled with the filler 10 (hereinafter referred to as a filling portion) is provided.
(C) The infrared heater 9 is incorporated in the filling section of (b).
(D) After the fluid to be treated is guided from the inlet 5 provided in the peripheral part to the central void through one flow path 7 and heated, it is provided to the peripheral part from the central void 3 through the other flow path 8. The outlet 6 is used to remove the treated fluid.
(E) The heat transfer plate 1, between the processing target fluid guided from the peripheral inlet 5 to the central gap 3 and the processed fluid guided from the central gap 3 to the peripheral outlet 6 in (d). By performing counter-current heat exchange via 2, the fluid to be treated is heated and the treated fluid is cooled.
(F) The filler 10 of (b) is made of a material having a property of being translucent to infrared rays, such as glass or silica gel.
水分、揮発性有機物等一定温度以下に冷却することにより凝縮する性質を持つ成分(以下凝縮性成分)を含む気体を冷却し、その気体中より凝縮性成分を除去するための熱処理装置であって、次の条件を兼ね備えたもの。
(a)2枚の伝熱板1、2を渦巻状に巻きつけて、それらの伝熱板1、2の間隙に周辺部と中心部の間を通じる2つの流路7、8が構成され、中心軸を垂直にして配置されたスパイラル式熱交換器を備える。
(b)前記(a)のスパイラル式熱交換器の中心部に円柱状もしくは角柱状の空隙部3(以下中心空隙部とする)を備える。
(c)前記(b)の中心空隙部3の内部に冷媒によりあるいはペルチェ素子などの冷却用素子により前記凝縮性成分の凝縮する温度以下に冷却可能な冷却用伝熱管11が組み込まれている。
(d)凝縮性成分含有気体を周辺部に設けられた入口5より一方の流路7を経て、中心空隙部に導いて冷却し、凝縮性成分を除去した後、他方の流路8を経て中心空隙部3より周辺部に設けられた出口6に導いて凝縮性成分除去済み気体を取り出す方法で使用される。
(e)前記(d)の周辺部入口14より中心空隙部3に導かれる凝縮性成分含有気体と、中心空隙部3より周辺部出口15へ導かれる凝縮性成分除去済み気体との間で、伝熱板1、2を介して向流型の熱交換が行われることにより、凝縮性成分含有気体は冷却され、凝縮性成分除去済み気体は加熱される。
A heat treatment apparatus for cooling a gas containing a component having a property of condensing by cooling to a certain temperature or less, such as moisture and volatile organic substances (hereinafter, a condensable component), and removing a condensable component from the gas. , Which have the following conditions:
(A) Two heat transfer plates 1 and 2 are spirally wound, and two flow paths 7 and 8 are formed in a gap between the heat transfer plates 1 and 2 so as to pass between a peripheral portion and a central portion. , A spiral heat exchanger arranged with its central axis vertical.
(B) A cylindrical or prismatic gap 3 (hereinafter referred to as a center gap) is provided at the center of the spiral heat exchanger of (a).
(C) A cooling heat transfer tube 11 that can be cooled to a temperature equal to or lower than a temperature at which the condensable component condenses by a cooling element or a cooling element such as a Peltier element is incorporated in the center gap 3 of (b).
(D) The condensable component-containing gas is led from the inlet 5 provided in the peripheral part through one flow path 7 to the central void portion to be cooled, after the condensable component is removed, and then through the other flow path 8. It is used in a method of taking out the gas from which condensable components have been removed by guiding the gas from the central gap 3 to the outlet 6 provided in the peripheral portion.
(E) between the condensable component-containing gas guided from the peripheral inlet 14 to the central cavity 3 and the condensable component-removed gas guided from the central cavity 3 to the peripheral outlet 15 in (d), By performing counter-current heat exchange via the heat transfer plates 1 and 2, the condensable component-containing gas is cooled and the condensable component-removed gas is heated.
液体を加熱蒸発させて液体中の成分を蒸気圧の差異により蒸発成分と非蒸発成分に分離するための蒸留装置であって、次の条件を兼ね備えたもの。
(a)2枚の伝熱板1、2を渦巻状に巻きつけて、それらの伝熱板1、2の間隙に周辺部と中心部の間を通じる2つの流路7、8が構成され、中心軸を垂直にして配置されたスパイラル式熱交換器を備える。
(b)前記(a)のスパイラル式熱交換器の中心部に中心空隙部3を備える。
(c)前記(b)の中心空隙部3の内部に電気ヒータ21が組み込まれている。
(d)原液を周辺部に設けられた入口16より一方の流路7を経て、中心空隙部に導いて加熱蒸発した後、非蒸発成分を蒸発成分を中心空隙部の下部から外部に取り出し、蒸発成分を流路8を経て中心空隙部3より周辺部に設けられた出口17に導いて取り出す方法で使用される。
(e)前記(d)の周辺部入口16より中心空隙部3に導かれる原液と、中心空隙部3より周辺部出口17へ導かれる処理済流体との間で、伝熱板1、2を介して向流型の熱交換が行われることにより、原液は加熱され、蒸発成分は冷却されて凝縮液化する。
A distillation apparatus for heating and evaporating a liquid to separate components in the liquid into vaporized components and non-vaporized components based on a difference in vapor pressure, which has the following conditions.
(A) Two heat transfer plates 1 and 2 are spirally wound, and two flow paths 7 and 8 are formed in a gap between the heat transfer plates 1 and 2 so as to pass between a peripheral portion and a central portion. , A spiral heat exchanger arranged with its central axis vertical.
(B) A center gap 3 is provided at the center of the spiral heat exchanger of (a).
(C) The electric heater 21 is incorporated in the center gap 3 of (b).
(D) After the undiluted solution is introduced from the inlet 16 provided in the peripheral portion through one flow path 7 to the center gap portion and heated and evaporated, the non-evaporated component is taken out from the lower portion of the center gap portion to the outside. It is used by a method in which the vaporized component is guided through the flow path 8 from the center gap 3 to an outlet 17 provided in the peripheral portion to be taken out.
(E) The heat transfer plates 1 and 2 are placed between the undiluted solution led from the peripheral inlet 16 to the central gap 3 and the treated fluid led from the central gap 3 to the peripheral outlet 17 in (d). By performing counter-current heat exchange via the heat exchanger, the stock solution is heated, and the evaporated component is cooled and condensed and liquefied.
流体を加熱された触媒と接触させて、流体中の成分に化学反応を生ぜしめるための化学反応装置であって、次の条件を兼ね備えたもの。
(a)2枚の伝熱板1、2を渦巻状に巻きつけて、それらの伝熱板1、2の間隙に周辺部と中心部の間を通じる2つの流路7、8が構成されたスパイラル式熱交換器を備える。
(b)前記(a)のスパイラル式熱交換器の中心部に触媒25の充填された円柱状もしくは角柱状の空間部(以下触媒充填部)を備える。
(c)前記(b)の触媒充填部の内部に電気ヒータ26が組み込まれている。
(d)処理対象流体を周辺部に設けられた入口5より一方の流路7を経て、触媒充填部に導いて加熱された触媒と接触させ化学反応を生ぜしめた後、他方の流路8を経て触媒充填部より周辺部に設けられた出口6に導いて処理済流体を取り出す方法で使用される。
(e)前記(d)の周辺部入口5より中心空隙部3に導かれる処理対象流体と、中心空隙部3より周辺部出口6へ導かれる処理済流体との間で、伝熱板1、2を介して向流型の熱交換が行われることにより、処理対象流体は加熱され、処理済流体は冷却される。
A chemical reaction device for bringing a fluid into contact with a heated catalyst to cause a chemical reaction on components in the fluid, which satisfies the following conditions.
(A) Two heat transfer plates 1 and 2 are spirally wound, and two flow paths 7 and 8 are formed in a gap between the heat transfer plates 1 and 2 so as to pass between a peripheral portion and a central portion. Equipped with a spiral heat exchanger.
(B) A cylindrical or prismatic space filled with the catalyst 25 (hereinafter referred to as a catalyst-filled portion) is provided at the center of the spiral heat exchanger of (a).
(C) The electric heater 26 is incorporated inside the catalyst filling section of (b).
(D) The fluid to be treated is led from the inlet 5 provided in the peripheral part through one flow path 7 to the catalyst filling part and brought into contact with the heated catalyst to cause a chemical reaction, and then the other flow path 8 Through the catalyst filling portion to an outlet 6 provided in the peripheral portion to take out the treated fluid.
(E) The heat transfer plate 1, between the processing target fluid guided from the peripheral inlet 5 to the central gap 3 and the processed fluid guided from the central gap 3 to the peripheral outlet 6 in (d). By performing counter-current heat exchange via 2, the fluid to be treated is heated and the treated fluid is cooled.
JP2003064273A 2003-03-11 2003-03-11 Energy saving heat treatment device Pending JP2004271099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064273A JP2004271099A (en) 2003-03-11 2003-03-11 Energy saving heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064273A JP2004271099A (en) 2003-03-11 2003-03-11 Energy saving heat treatment device

Publications (1)

Publication Number Publication Date
JP2004271099A true JP2004271099A (en) 2004-09-30

Family

ID=33125599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064273A Pending JP2004271099A (en) 2003-03-11 2003-03-11 Energy saving heat treatment device

Country Status (1)

Country Link
JP (1) JP2004271099A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230211A (en) * 2009-03-26 2010-10-14 Earth Technica:Kk Heating/cooling device
CN106016249A (en) * 2016-05-13 2016-10-12 张元利 Environment-friendly and energy-saving gas-oil burning boiler
CN106091481A (en) * 2016-08-02 2016-11-09 山东绿泉空调科技有限公司 Capillary tube vortex heat exchanger
CN113521784A (en) * 2021-07-05 2021-10-22 内蒙古工业大学 Micro-rectification heat integration system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230211A (en) * 2009-03-26 2010-10-14 Earth Technica:Kk Heating/cooling device
CN106016249A (en) * 2016-05-13 2016-10-12 张元利 Environment-friendly and energy-saving gas-oil burning boiler
CN106091481A (en) * 2016-08-02 2016-11-09 山东绿泉空调科技有限公司 Capillary tube vortex heat exchanger
CN106091481B (en) * 2016-08-02 2023-09-29 山东绿泉空调科技有限公司 Capillary vortex heat exchanger
CN113521784A (en) * 2021-07-05 2021-10-22 内蒙古工业大学 Micro-rectification heat integration system
CN113521784B (en) * 2021-07-05 2023-01-06 内蒙古工业大学 Micro-rectification heat integration system

Similar Documents

Publication Publication Date Title
KR101862304B1 (en) Vapor-liquid heat and/or mass exchange device
US20090218210A1 (en) Energy-efficient distillation system
CN108195016B (en) Humidifier device, condenser device and bubble column condenser
Narayan et al. The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production
CA2525279C (en) Fluid distillation apparatus having improved efficiency
WO2016041292A1 (en) Fluid-gap multi-effect membrane distillation process and device thereof
US8603223B2 (en) Desalination system and method
JP2009514668A (en) Membrane distillation process and membrane distillation apparatus
Zhang et al. Investigation on the operating characteristics of a pilot-scale adsorption desalination system
Al-Ansari et al. Water–zeolite adsorption heat pump combined with single effect evaporation desalination process
EP2451560A1 (en) Rotating desorber wheel
JP2004271099A (en) Energy saving heat treatment device
BRPI0706820A2 (en) method of reducing reactor outlet gas water in the oxidation process of an aromatic compound
CN104961178A (en) Evaporation type liquid concentration treatment system and treatment method thereof
TWI815464B (en) Separation tower for treating condensate and method thereof
CN207113642U (en) A kind of Nitrobenzene Rectification tower byproduct steam condensate recycling device
CN2844832Y (en) Non-equidistant spiral baffle heat exchanger
CN109292860A (en) Falling film evaporation couples absorption refrigeration high-salt sewage processing equipment and high-salt sewage processing method
CN105692744A (en) Medical multi-effect water distiller
CN205709899U (en) A kind of ammonia gas purification device
CN204778912U (en) Concentrated processing system of evaporation formula liquid
CN1215989C (en) Drinking water dispenser of taking water from air and purifying
CN107129089B (en) Water purifying equipment
CN205127469U (en) Gas stripping ware system
CN1791555A (en) Method and device for treating water