JP2004271025A - Missile guidance system - Google Patents

Missile guidance system Download PDF

Info

Publication number
JP2004271025A
JP2004271025A JP2003061548A JP2003061548A JP2004271025A JP 2004271025 A JP2004271025 A JP 2004271025A JP 2003061548 A JP2003061548 A JP 2003061548A JP 2003061548 A JP2003061548 A JP 2003061548A JP 2004271025 A JP2004271025 A JP 2004271025A
Authority
JP
Japan
Prior art keywords
value
flying object
visual direction
hit error
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061548A
Other languages
Japanese (ja)
Other versions
JP4046626B2 (en
Inventor
Takeshi Kuroda
健 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003061548A priority Critical patent/JP4046626B2/en
Publication of JP2004271025A publication Critical patent/JP2004271025A/en
Application granted granted Critical
Publication of JP4046626B2 publication Critical patent/JP4046626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a missile guidance system capable of achieving a fitting error of approximately several tens of cm even when the visual line direction changes with time in a staircase pattern on the basis of the field angle resolution characteristic of an image sensor. <P>SOLUTION: This missile guidance system comprises a visual direction detecting device 1 for an interception missile, a speed/time output device 6 for outputting a relative speed of BM (Ballistic Missile) and the interception missile, and a remaining time to the hit, a fitting error selecting device 2 calculating a visual direction calculated value and a fitting error calculated value on the basis of the relative speed and the remaining time on the basis of an observation model, comparing the visual direction calculated value and a visual direction detected value, and selecting a fitting error calculated value corresponding to the visual direction calculated value in a case when the deviation is within a specific value, a fitting error representative point calculating device 3, a side thruster injection quantity calculating device 4 for calculating the side thruster injection quantity for making the fitting error representative point zero, and a side thruster 5 performing the injection in accordance with the side thruster injection quantity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、飛来する弾道飛翔体(BM:Ballistic Missile)を大気圏外で迎撃する迎撃飛翔体の誘導装置に関するものであり、特に、終末期最終段階における最終機動により10数cm程度の命中精度で迎撃飛翔体を弾道飛翔体に直撃させるための飛翔体誘導装置に関するものである。
【0002】
【従来の技術】
従来の飛翔体誘導装置は、目視線方向検出装置が迎撃飛翔体に搭載され、画像センサで弾道飛翔体(目標飛翔体)の熱を検出することにより、迎撃飛翔体からBMへの方向を検出する。目視線方向時間変化率計算装置は、検出された目視線方向(迎撃飛翔体からBMの見える方向、目視方向)時刻歴に基づいて、Kalmanフィルタ等のフィルタリングにより、その時間変化率を算出する。誘導信号計算装置は、目視線方向時間変化率に基づいて横加速度(例えば比例航法による誘導信号)を算出して噴射指令として出力する。サイドスラスタは、噴射指令による横加速度を発生し、迎撃飛翔体の軌道を弾道飛翔体との会合経路に乗せることにより、迎撃飛翔体をBMに命中させる(例えば、非特許文献1参照)。
【0003】
【非特許文献1】
American Institute of Aeronautics and Astronautics刊、Tactical and Strategic Missile Guidance 第2版、p.25、p.181
【0004】
【発明が解決しようとする課題】
従来の飛翔体誘導装置は以上のように、飛来するBMを検出するために、迎撃飛翔体に固定された画像センサでBMの熱を検出する。しかし、目視線方向検出装置で用いられている画像センサは、運用上必要とされる光学系画角に対し、現在の技術水準では充分な画素数、すなわち角度分解能を達成できておらず、画像センサで検出されたBMへの目視線方向は、画角分解能特性により階段状の時間変化をする。フィルタ処理では、画角分解能特性を観測誤差としてモデル化できないため目視線方向時間変化率(微分)の計算は困難であった。
例えば、フィルタ処理後も出力信号に大きな振動が残り、上下/左右方向の対向するサイドスラスタを無駄に噴いて軌道が波打ったり、逆に振動を強く抑えるために噴射指令の時間遅れが大きくなったりしてスラスタ噴射のタイミングが遅くなったりすることで、迎撃飛翔体の命中誤差が増大するという欠点があり、命中誤差を10数cm程度にすることは困難であるという問題点があった。
【0005】
この発明は上記のような問題点を解決するためになされたもので、目視線方向が画像センサの画角分解能特性により階段状に時間変化する場合でも、10数cm程度の命中誤差を達成することのできる飛翔体誘導装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る飛翔体誘導装置は、目標飛翔体に迎撃飛翔体を命中させるために迎撃飛翔体を誘導するものであって、画像センサを有し、画像センサによる目標飛翔体の撮像画像に基づいて、目標飛翔体の目視方向を検出して目視方向検出値として所定時間毎に出力する目視方向検出装置と、目標飛翔体と迎撃飛翔体との相対速度、および迎撃飛翔体が目標飛翔体に命中するまでの残り時間を所定時間毎に出力する速度・時間出力装置と、あらかじめ格納された目視方向および命中誤差の観測モデルを用いて、相対速度および残り時間に基づいて所定時間毎の目視方向計算値および命中誤差計算値を計算し、目視方向検出値および目視方向計算値に基づいて所定範囲内の命中誤差計算値を選択する命中誤差選択装置と、選択された命中誤差計算値に基づいて、命中誤差代表値を計算する命中誤差代表点計算装置と、命中誤差代表値に対応した相対速度および残り時間に基づいて、命中誤差代表値をゼロとするサイドスラスタ噴射量を計算するサイドスラスタ噴射量計算装置と、迎撃飛翔体に搭載され、サイドスラスタ噴射量に応じて噴射を行うサイドスラスタとを備える。
命中誤差選択装置は、所定時間毎の目視方向計算値と目視方向検出値とを比較し、目視方向計算値と目視方向検出値との偏差が所定範囲内の場合に、目視方向計算値に対応する命中誤差計算値を選択するものである。
【0007】
【発明の実施の形態】
実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について詳細に説明する。図1はこの発明の実施の形態1の飛翔体誘導装置を示すブロック構成図である。
図1において、本発明の実施の形態1による飛翔体誘導装置は、画像センサを備えた目視線方向検出装置(目視方向検出装置)1が迎撃飛翔体12に搭載され、所定時間の間、迎撃飛翔体12から見たBM11への目視線方向を検出する。
速度・時間出力装置6は、BM11と迎撃飛翔体12との相対速度と、迎撃飛翔体12が弾道飛翔体11に命中するまでの残り時間とを出力する。
ZEM可能領域計算装置(命中誤差選択装置)2は、目視線方向検出装置1で検出された目視線方向の時刻歴から目視線方向検出装置1の画像センサの画角分解能特性に合致するZEMの範囲(ZEM可能領域)を計算する。
ここで、ZEM(Zero−Effort−Miss)とは、ある時点から誘導を行わない場合に予想される命中誤差を示す。
【0008】
次に、ZEM代表点計算装置3は、ZEM可能領域の中から誘導に用いるための代表点を1点抽出する。サイドスラスタ噴射量計算装置4は、ZEM代表点計算後の誘導によりそのZEMを相殺し、ZEMをゼロとするようなサイドスラスタ噴射量を決定する。サイドスラスタ5は、サイドスラスタ噴射量計算装置4からの噴射指令に応じた量の噴射を行うことにより、迎撃飛翔体12の飛翔経路を変更させ、迎撃飛翔体12をBM11に命中させる。
【0009】
図2から図4は、この発明の実施の形態1の飛翔体誘導装置を示すブロック構成図である。
図2のように、前述の図1の構成の他に、迎撃飛翔体12にピッチ・ヨー姿勢角時間変化率を検出する姿勢角時間変化率検出装置7をさらに備えて、迎撃飛翔体12の姿勢角の時間変化率を検出してもよい。この場合、ZEM可能領域計算装置2では目視線方向検出装置1で検出された目視線方向時刻歴および姿勢角時間変化率に基づいて、目視線方向検出装置1の画角分解能特性に合致するZEM可能領域を計算する。
また、図3のように、図1における飛翔体誘導装置に、ZEM初期推定計算装置8を備えてZEMの初期推定値を決定してもよい。この場合、ZEM可能領域を計算する際の初期値としてZEMの初期推定値を用い、ZEM可能領域の最初の目安を決める。
また、図4のように、姿勢各時間変化率検出装置6を備えた図3における飛翔体誘導装置に、さらにZEM初期推定計算装置8を備えてもよい。
【0010】
図5は迎撃飛翔体の運用状況を示す説明図であり、図6は迎撃飛翔体12のシーケンスを示す説明図であり、図7は迎撃飛翔体12とBM11との会合状況を示す説明図であり、図8は終末期後半における迎撃飛翔体12とBM11との距離と命中誤差とを示す関係図である。
図5において、迎撃飛翔体12の飛翔段階は、初期、中期、終末期およびBM11と会合するエンドゲームに分かれている。
図6において、通常、迎撃飛翔体12は、初中期および終末期前半における誘導によりBM11への概略会合コースに乗っている。初中期では慣性誘導や地上からの指令誘導などが行われ、終末期では迎撃飛翔体12に搭載されたセンサによる追尾誘導が行われる。なお、概略会合コースとは、近接信管を用いる空対空飛翔体の許容命中誤差が10m程度のコースを意味する。
【0011】
図7(a)は、終末期の後半からエンドゲームまでの最終起動期間におけるある最終起動時刻における迎撃飛翔体12とBM11との会合状況を示す。また、図7(b)は、会合時刻における迎撃飛翔体12とBM11との会合状況を示す。
図7(a)において、迎撃飛翔体12はBM11との概略会合コース13に乗っており、最終起動時刻においてサイドスラスタ5を噴射させる。接近速度方向は概略迎撃飛翔体12からBM11の方向となり、接近速度方向に直交する方向を接近速度直交方向とする。サイドスラスタ5を噴射させることにより、接近速度直交方向への加速度を発生させて迎撃飛翔体12をBM11との会合コース14に誘導し、命中誤差を含んだ範囲の会合点15でBM11と会合させる。なお、会合コース14とは、命中誤差が10数cm程度のコースを意味する。
【0012】
図7(b)および図8において、迎撃飛翔体12とBM11との接近速度方向に直交する接近速度法平面を想定する。この接近速度法平面に、両者の基準点(例えば、各飛翔体の航法系の基準点や重心等)が含まれた時刻を会合時刻とし、会合時刻あるいは予想会合時刻においては、特にこの接近速度法平面をMissPlane(略してMP)16という。MP16内での両者の基準点間の距離を命中誤差という。
【0013】
図9は終末期後半における目視線方向時間歴の変化を示す説明図である。
図8および図9に示すように、BM11と迎撃飛翔体12とが近づく(相対距離が小さくなる)に従って、目視線方向の値(LOS角)は大きくなる。しかし、目視線方向検出装置1で検出される目視線方向の時間歴は、前述のように画像センサの画角分解能特性により階段状に時間変化する。
本発明による飛翔体誘導装置は、画像センサの画角分解能特性情報を積極的に用いることにより、画角分解能特性により階段状に時間変化する目視線方向時刻歴からZEM可能領域を求める。さらに、ZEM可能領域の中から命中誤差の代表点(ZEM代表点)を選択し、ZEM代表点選択後の誘導により、その命中誤差を相殺し、命中誤差をゼロとするようなサイドスラスタ噴射量を決定するように構成する。
【0014】
次に、図1〜図3の全ての装置を備えた図4に示される飛翔体誘導装置の動作について詳細に説明する。
まず、目視線方向検出装置1の画角分解能特性を考慮した目視線方向観測モデルおよび目視線方向観測値の計算手順について説明する。
以下は、BM11と迎撃飛翔体12とが概略会合コース13にある場合に適用される。
BM11と迎撃飛翔体12との接近速度Vは一定であり、接近速度方向の距離は、接近速度Vと会合までの残り時間tgo(time−to−go)との積で表され、誘導による変化は、接近速度直交方向にのみ現れるものとする。
目視線方向検出装置1の画像センサは、画素が平面内に碁盤の目のように配置されているCCDのようなものを想定する。また、目標となるBM11は、その画素面上に点として結像されると想定する。
迎撃飛翔体12はロール角速度が充分小さくなるように制御されており、ピッチ系とヨー系を分離して考えることにする。ここでは、例えば目視線方向検出装置1の固定座標系でのピッチ目視線方向を観測値とする。
【0015】
まず、目視線方向検出装置1の画素による量子化が無い場合の像を考える。
会合までの残り時間tgo,iにおけるピッチ目視線方向観測値θは、以下の式(1)のように表すことができ、この式(1)を目視線方向観測モデルと呼ぶ。
【数1】

Figure 2004271025
【0016】
式(1)において、ωは目視線方向検出装置1の固定座標系のピッチ角速度、ZEMは誘導を行わなかった場合の会合時のBM11と迎撃飛翔体12との距離、VはBM11と迎撃飛翔体12との相対接近速度、θはZEMがゼロである場合の会合時のピッチ目視線方向である。
添字i(i=1,...,Nobs)は何回目の観測であるかを示す。
残り時間tgoの値が大きい遠方時においては、ZEMの寄与は小さく、かつ概略会合コース13にあるため、慣性系で目視線方向はほぼ一定方向となり、ピッチ目視線方向観測値θは一定値θと目視線方向検出装置1の固定座標系回転角の和とで近似することが出来る。
残り時間tgoの値が小さくなり、BM11と迎撃飛翔体12とが接近するにつれてZEMの寄与は大きくなり、図8に示すように、ピッチ目視線方向観測値(LOS角)θは、θi−1、θ、θi+1のように、会合が近づくに従って急激に大きくなる。図9を参照しても同様に、会合が近づく、すなわち両者の相対距離が短くなるに従って、LOS角が急激に大きくなっている。
【0017】
一方、目視線方向検出装置1の画像センサで得られた画素による量子化を考慮すると、ピッチ目視線方向観測値θは量子化されたピッチ目視線方向観測値
【数2】
Figure 2004271025
となる。量子化の関数
【数3】
Figure 2004271025
を用いて量子化を考慮した目視線方向観測モデルは、以下の式(2)のように表すことができる。
【数4】
Figure 2004271025
【0018】
次に、ZEM初期推定値、ZEM可能領域、およびZEM代表点の計算手順について説明する。
式(2)の目視線方向観測モデルにおいて、目視線方向検出装置1の固定座標系のピッチ角速度ωは、目視線方向検出装置1の固定座標系に取り付けられた姿勢角時間変化率検出装置(レートジャイロ等)6で計測可能である。また、速度・時間出力装置6から出力されるBM11と迎撃飛翔体12との相対接近速度Vおよび残り時間tgo,iは、地上レーダーの追尾処理によるBM11および迎撃飛翔体12の航跡等から推定可能な概略既知情報である。したがって、誘導を行わなかった場合の会合時のBM11と迎撃飛翔体12との間の距離ZEMと、ZEMがゼロである場合の会合時のピッチ目視線方向θとが推定すべき未知パラメータとなる。
【0019】
以上の概略既知情報および目視線方向検出装置1の画像センサから得られる量子化されたピッチ目視線方向の観測値
【数5】
Figure 2004271025
の時刻歴に基づいて、未知パラメータであるZEMを(副次的にθも)精度良く推定することができる。
なお、目視線方向検出装置1による観測時間は1秒に満たず、かつ観測中はサイドスラスタ5を噴射しないと想定しているので、目視線方向検出装置1の固定座標系のピッチ角速度ωは観測中一定値であると仮定する。
また、推定方式については、搭載を考慮して出来るだけ簡便な方式を用いる。
【0020】
基本的な考え方としては、ピッチ目視線方向θおよびZEMの概略の初期推定値を求め、その初期推定値を基準値として未知パラメータを離散的に探索する。探索においては、目視線方向観測モデルに代入して得られた計算観測値と実観測値とが、目視線方向検出装置1の画角分解能特性を考慮した上で一致する候補解(可能解)か否かを調べるという手順を取る。この候補解(可能解)の集合をZEM可能領域と呼ぶ。
【0021】
まず、ZEM初期推定計算装置8において、ピッチ目視線方向θの初期推定値
【数6】
Figure 2004271025
は、例えば1回目の実観測値
【数7】
Figure 2004271025
を用いて、以下の式(3)により計算される。
【数8】
Figure 2004271025
この近似式は、1回目の観測ではtgo,1が比較的大きく、既に述べたようにZEMの寄与が比較的小さいという考えによるものであり、式(2)から式(3)が得られる。
【0022】
次に、ZEMの初期推定値
【数9】
Figure 2004271025
の算出では、ピッチ目視線方向の実観測値
【数10】
Figure 2004271025
の時刻歴と、ピッチ目視線方向の初期推定値
【数11】
Figure 2004271025
および未知パラメータZEMから、式(2)の目視線方向観測モデルに基づいて計算される計算観測値
【数12】
Figure 2004271025
の時刻歴との2乗誤差の和Errを定義する。2乗誤差の和Errは、以下の式(4)のように表すことができる。
【数13】
Figure 2004271025
【0023】
この2乗誤差の和を最小値とするZEMを初期推定値
【数14】
Figure 2004271025
とする。
すなわち、以下の式(5)から、式(6)のように、ZEMの初期推定値が決定される。
【0024】
【数15】
Figure 2004271025
【0025】
ZEM可能領域計算装置2は、以上のようにして得られたピッチ目視線方向の初期推定値
【数16】
Figure 2004271025
と、ZEMの初期推定値
【数17】
Figure 2004271025
を探索の基準値として、基準値の周辺の適当な2次元領域に渡って離散的に探索を行う。
【0026】
探索においては、式(2)の量子化を考慮した目視線方向観測モデルに基づいて計算される量子化された計算観測値
【数18】
Figure 2004271025
の時刻歴と、実観測値
【数19】
Figure 2004271025
の時刻歴とが、全観測範囲に対して、画素の分解能(画角分解能)のレベルで一致するか否かを判定する。判定の結果、画素の分解能のレベルで一致した値の集合を、ZEM可能領域とする。ZEM可能領域の判定には、ピッチ目視線方向の初期推定値
【数20】
Figure 2004271025
と、ZEMの初期推定値
【数21】
Figure 2004271025
とを用いて、以下の式(7)によって判定を行う。
【0027】
【数22】
Figure 2004271025
式(7)において、εは例えば半画素に対応する視野角を選べば良い。
【数23】
Figure 2004271025
式(8)において、FOVとpixelsは、それぞれピッチ方向の画角と画素数とを示す。
【0028】
初期推定値を初期値として、初期推定値の周辺のピッチ目視線およびZEMの値を離散的に当てはめていく。式(7)の不等式に当てはめていった結果、式(7)の不等式を満たすピッチ目視線方向
【数24】
Figure 2004271025
と、ZEM
【数25】
Figure 2004271025
との各組み合わせを、未知パラメータの候補解
【数26】
Figure 2004271025

【数27】
Figure 2004271025
とする。前述のようにこの候補解の集合をZEM可能領域とする。
ここで添字j(j=1,...,Ncandidate)は何番目の候補解であるかを表す。
【0029】
最後に、ZEM代表点計算装置3における推定値の決定には幾つかの考え方があるが、ここでは、式(9)および式(10)のように、候補解の平均値を推定値として用いることにする。なお、候補解の中間値を推定値としてもよい。
【数28】
Figure 2004271025
【0030】
以上のようにして得られた推定値
【数29】
Figure 2004271025

【数30】
Figure 2004271025
をZEM代表点とする。
【0031】
次に、典型的な会合ケースについて計算した結果を示す。
図10は目視線方向時刻歴の真値と実観測値とを示す説明図であり、図11はZEM初期推定値/ZEM可能領域/ZEM代表点/ZEM真値を示す説明図である。
ここで、BM11と迎撃飛翔体12との接近速度Vは6[km/sec]、観測時刻tgoは、0.35〜0.25[sec]の間に、5[msec]間隔で合計21回行われた。目視線方向検出装置1の固定座標系のピッチ角速度ωは、+1[deg/sec]とした。ピッチ目視線方向θとZEMとの真値は、それぞれ+12[mrad]、+0.567[m]とした。また、画角分解能は約0.01[deg]とした。
以上のような条件でZEM代表点を算出すると、真値と比べてZEM代表点が0.1[m]以下の誤差で推定できていることが分かる。
【0032】
ZEM代表点が計算されると、サイドスラスタ噴射量計算装置4は、代表点として推定されたZEMを相殺する、すなわち命中誤差がゼロとなるように飛翔経路を変更するためのサイドスラスタ噴射量を計算し、噴射指令として出力する。サイドスラスタ5は、サイドスラスタ噴射量計算装置4からの噴射指令に基づいてサイドスラスタを噴射し、迎撃飛翔体12を経路変更させてBM11に命中させる。
【0033】
このように、目視線方向検出装置1の画角分解能特性を陽に考慮したので、目視線方向時刻歴が画角分解能特性により階段状に変化する場合であっても、従来例のフィルタリングによる場合に起こる目視線方向時間変化率の不十分な平滑化や時間遅れが生じず、サイドスラスタ5の無駄噴きや軌道の波打ちを防ぐことができ、命中誤差の増大を防ぐことができる。
また、ZEM可能領域計算において、目視線方向検出装置1の画角分解能特性とともに迎撃飛翔体12のピッチ・ヨー姿勢角時間変化率を陽に考慮したので、目視線方向観測中の迎撃飛翔体12のピッチ・ヨー姿勢角時間変化の影響を受けることなくZEM可能領域が計算でき、命中誤差の増大を防ぐことができる。
また、目視線方向時刻歴のうちの1点または複数点からZEMの初期推定値を選択し、ZEM可能領域を計算する際の初期値としてZEMの初期推定値を用いるようにしたので、初期値を基準にして計算することができ、ZEM可能領域存在範囲の検索を効率的に計算でき、演算時間の短縮や搭載計算機の負荷を軽減することができる。演算時間の短縮によって会合までの残余時間を長くすることができ、一定のZEMに対してスラスタ噴射レベルの低減、あるいは、より大きなZEMの相殺が可能となる。
【0034】
【発明の効果】
以上のように、この発明によれば、画像センサによるBM11の撮像画像に基づいて、迎撃飛翔体12の目視方向を検出して目視方向検出値として所定時間毎に出力する目視線方向検出装置1と、BM11と迎撃飛翔体12との相対速度、命中するまでの残り時間を所定時間毎に出力する速度・時間出力装置6と、観測モデルを用いて、相対速度および残り時間に基づいて所定時間毎の目視方向計算値および命中誤差計算値を計算し、所定時間毎の目視方向計算値と目視方向検出値とを比較して、目視方向計算値と目視方向検出値との偏差が所定範囲内の場合に、目視方向計算値に対応する命中誤差計算値を選択する命中誤差選択装置2と、選択された命中誤差計算値に基づいて、命中誤差代表値を計算する命中誤差代表点計算装置3と、命中誤差代表値に対応した相対距離および残り時間に基づいて、命中誤差代表値をゼロとするサイドスラスタ噴射量を計算するサイドスラスタ噴射量計算装置4と、サイドスラスタ噴射量に応じて噴射を行うサイドスラスタ5とを備えたので、目視線方向時刻歴が画角分解能特性により階段状に変化する場合であっても、目視線方向時間変化率の不十分な平滑化や時間遅れが生じず、サイドスラスタ5の無駄噴きや軌道の波打ちを防ぐことができ、命中誤差の増大を防ぐことのできる飛翔体誘導装置が得られる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1の飛翔体誘導装置を示すブロック構成図である。
【図2】この発明の実施の形態1の飛翔体誘導装置を示すブロック構成図である。
【図3】この発明の実施の形態1の飛翔体誘導装置を示すブロック構成図である。
【図4】この発明の実施の形態1の飛翔体誘導装置を示すブロック構成図である。
【図5】迎撃飛翔体の運用状況を示す説明図である。
【図6】迎撃飛翔体のシーケンスを示す説明図である。
【図7】迎撃飛翔体とBMとの会合状況を示す説明図である。
【図8】終末期後半における迎撃飛翔体とBMとの距離と命中誤差(ZEM)とを示す関係図である。
【図9】終末期後半における目視線方向時間歴の変化を示す説明図である。
【図10】目視線方向時刻歴の真値と実観測値とを示す説明図である。
【図11】ZEM初期推定値/ZEM可能領域/ZEM代表点/ZEM真値を示す説明図である。
【符号の説明】
1 目視線方向検出装置、2 ZEM可能領域計算装置、3 ZEM代表点計算装置、4 サイドスラスタ噴射量計算装置、5 サイドスラスタ、6 速度・時間出力装置、7 姿勢角時間変化率検出装置、8 ZEM初期推定計算装置、11 弾道飛翔体(BM)、12 迎撃飛翔体、13 概略会合コース、14 会合コース、15 会合点。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a guiding device for an intercepting flying object that intercepts a flying ballistic flying object (BM: Ballistic Missile) outside the atmosphere, and in particular, with an accuracy of about a few tens of centimeters by the final maneuver at the final stage of the terminal stage. The present invention relates to a flying object guiding apparatus for causing an intercepting flying object to directly hit a ballistic flying object.
[0002]
[Prior art]
In the conventional flying object guidance device, the visual line direction detection device is mounted on the intercepting flying object, and the direction from the intercepting flying object to the BM is detected by detecting the heat of the ballistic flying object (target flying object) with the image sensor. To do. The visual line direction time change rate calculation device calculates the time change rate by filtering such as a Kalman filter based on the detected visual line direction (direction in which BM can be seen from the intercepting flying object, visual direction) time history. The guidance signal calculation device calculates lateral acceleration (for example, a guidance signal by proportional navigation) based on the visual line direction time change rate and outputs it as an injection command. The side thruster generates lateral acceleration according to the injection command, and places the intercepting flying object on the meeting path with the ballistic flying object, thereby hitting the intercepting flying object to the BM (for example, see Non-Patent Document 1).
[0003]
[Non-Patent Document 1]
American Institute of Aeronautics and Astronautics, Tactical and Strategic Missile Guidance 2nd Edition, p. 25, p. 181
[0004]
[Problems to be solved by the invention]
As described above, the conventional flying object guiding apparatus detects the heat of the BM with the image sensor fixed to the intercepting flying object in order to detect the flying BM. However, the image sensor used in the visual line direction detection device does not achieve a sufficient number of pixels, that is, an angular resolution with the current technical level, with respect to the optical system angle of view required for operation. The direction of the line of sight to the BM detected by the sensor changes in a stepwise manner depending on the angle-of-view resolution characteristics. In the filter processing, the angle-of-view resolution characteristic cannot be modeled as an observation error, so it is difficult to calculate the time-direction rate change rate (differentiation) in the visual line direction.
For example, large vibrations remain in the output signal even after filtering, and the side thrusters facing up and down / left and right are jetted unnecessarily, and the trajectory undulates. On the contrary, the time delay of the injection command increases in order to suppress vibration strongly. As a result, the timing of the thruster injection is delayed, which increases the hit error of the intercepting flying object, and it is difficult to reduce the hit error to about several tens of centimeters.
[0005]
The present invention has been made to solve the above-described problems, and achieves a hit error of about several tens of centimeters even when the visual line direction changes in time stepwise due to the field angle resolution characteristics of the image sensor. An object of the present invention is to obtain a flying object guiding apparatus capable of performing the above-described operation.
[0006]
[Means for Solving the Problems]
A flying object guidance device according to the present invention guides an intercepting flying object to hit the target flying object to the target flying object, has an image sensor, and is based on a captured image of the target flying object by the image sensor. The visual direction detection device that detects the visual direction of the target flying object and outputs a visual direction detection value every predetermined time, the relative speed between the target flying object and the intercepting flying object, and the intercepting flying object becomes the target flying object. Using a speed / time output device that outputs the remaining time until hit every predetermined time and a pre-stored visual direction and hit error observation model, the visual direction per predetermined time based on the relative speed and the remaining time A hit error selection device that calculates a calculated value and a hit error calculated value, and selects a hit error calculated value within a predetermined range based on the detected visual direction detection value and the calculated visual direction value, and the selected hit error meter A hit error representative point calculation device that calculates a hit error representative value based on the value, and a side thruster injection amount that sets the hit error representative value to zero based on the relative speed and remaining time corresponding to the hit error representative value And a side thruster mounted on the intercepting flying body and performing injection according to the side thruster injection amount.
The hit error selection device compares the calculated visual direction value and the detected visual direction value every predetermined time, and corresponds to the calculated visual direction value when the deviation between the calculated visual direction value and the detected visual direction value is within a predetermined range. The hit error calculation value to be selected is selected.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, the first embodiment of the present invention will be described in detail with reference to the drawings. 1 is a block diagram showing a flying object guiding apparatus according to Embodiment 1 of the present invention.
In FIG. 1, the flying object guidance apparatus according to Embodiment 1 of the present invention includes a visual line direction detection device (visual direction detection apparatus) 1 equipped with an image sensor mounted on an intercepting flying object 12, and intercepts for a predetermined time. A visual line direction to the BM 11 viewed from the flying object 12 is detected.
The speed / time output device 6 outputs the relative speed between the BM 11 and the intercepting flying object 12 and the remaining time until the intercepting flying object 12 hits the ballistic flying object 11.
The ZEM possible area calculation device (hit error selection device) 2 is a ZEM that matches the angle-of-view resolution characteristics of the image sensor of the visual line direction detection device 1 from the time history in the visual line direction detected by the visual line direction detection device 1. The range (ZEM possible area) is calculated.
Here, ZEM (Zero-Effort-Miss) indicates a hit error expected when guidance is not performed from a certain point in time.
[0008]
Next, the ZEM representative point calculation device 3 extracts one representative point to be used for guidance from the ZEM possible region. The side thruster injection amount calculation device 4 determines the side thruster injection amount so that the ZEM is canceled by the guidance after the calculation of the ZEM representative point and the ZEM is zero. The side thruster 5 changes the flight path of the intercepting flying object 12 by injecting an amount corresponding to the injection command from the side thruster injection amount calculating device 4 and makes the intercepting flying object 12 hit the BM 11.
[0009]
2 to 4 are block configuration diagrams showing the flying object guiding apparatus according to the first embodiment of the present invention.
As shown in FIG. 2, in addition to the configuration of FIG. 1 described above, the intercepting flying object 12 is further provided with a posture angle time varying rate detection device 7 that detects the pitch / yaw attitude angle varying rate of time. The time change rate of the posture angle may be detected. In this case, the ZEM possible area calculation device 2 matches the angle of view resolution characteristics of the visual line direction detection device 1 based on the visual line direction time history and the attitude angle time change rate detected by the visual line direction detection device 1. Calculate the possible area.
In addition, as shown in FIG. 3, the flying object guiding apparatus shown in FIG. 1 may be provided with the ZEM initial estimation calculation device 8 to determine the initial estimated value of the ZEM. In this case, an initial estimated value of the ZEM is used as an initial value for calculating the ZEM possible area, and an initial standard of the ZEM possible area is determined.
Further, as shown in FIG. 4, the flying object guidance device in FIG. 3 provided with the posture time change rate detection device 6 may further include a ZEM initial estimation calculation device 8.
[0010]
FIG. 5 is an explanatory diagram showing the operational status of the intercepting flying object, FIG. 6 is an explanatory diagram showing the sequence of the intercepting flying object 12, and FIG. 7 is an explanatory diagram showing the meeting status of the intercepting flying object 12 and the BM 11. FIG. 8 is a relational diagram showing the distance between the intercepting flying object 12 and the BM 11 and the hit error in the latter half of the terminal period.
In FIG. 5, the flying stage of the interceptor flying object 12 is divided into an initial game, an intermediate game, an end game, and an end game that meets the BM 11.
In FIG. 6, the interceptor flying vehicle 12 usually rides on the general meeting course to the BM 11 by the guidance in the first middle period and the first half of the terminal period. In the first mid-term, inertial guidance or ground-based command guidance is performed, and in the last term, tracking guidance is performed by a sensor mounted on the interceptor flying object 12. The approximate meeting course means a course in which an allowable hit error of an air-to-air flying object using a proximity fuze is about 10 m.
[0011]
FIG. 7A shows a meeting state between the interceptor flying object 12 and the BM 11 at a certain final activation time in the final activation period from the latter half of the end period to the end game. Moreover, FIG.7 (b) shows the meeting condition of the intercepting flying object 12 and BM11 in meeting time.
In FIG. 7 (a), the intercepting flying object 12 is on the general meeting course 13 with the BM 11, and the side thruster 5 is injected at the final activation time. The approach speed direction is approximately the direction from the interceptor flying body 12 to the BM 11, and the direction orthogonal to the approach speed direction is the approach speed orthogonal direction. By injecting the side thruster 5, acceleration in the direction perpendicular to the approach speed is generated to guide the intercepting flying object 12 to the meeting course 14 with the BM 11, and to meet with the BM 11 at the meeting point 15 including a hit error. . The meeting course 14 means a course having a hit error of about a few tens of centimeters.
[0012]
In FIG. 7B and FIG. 8, an approach speed method plane orthogonal to the approach speed direction between the intercepting flying object 12 and the BM 11 is assumed. The time at which both reference points (for example, the reference point and the center of gravity of the navigation system of each projectile) are included in the approach speed method plane is the meeting time, and this approach speed is particularly important at the meeting time or the expected meeting time. The normal plane is called MissPlane (MP for short) 16. The distance between both reference points in the MP16 is called a hit error.
[0013]
FIG. 9 is an explanatory diagram showing changes in the visual line direction time history in the latter half of the terminal period.
As shown in FIGS. 8 and 9, as the BM 11 and the interceptor flying object 12 approach each other (relative distance decreases), the value in the line of sight (LOS angle) increases. However, the time history in the visual line direction detected by the visual line direction detection device 1 changes in a stepwise manner according to the field angle resolution characteristics of the image sensor as described above.
The flying object guidance device according to the present invention actively uses the angle-of-view resolution characteristic information of the image sensor, and obtains the ZErmable region from the visual line direction time history that changes in time stepwise by the angle-of-view resolution characteristic. Further, a side thruster injection amount is selected so that a hit error representative point (ZEM representative point) is selected from the ZEM possible area, and the hit error is offset by the guidance after selecting the ZEM representative point so that the hit error is zero. Is configured to determine.
[0014]
Next, the operation of the flying object guiding apparatus shown in FIG. 4 provided with all the apparatuses shown in FIGS. 1 to 3 will be described in detail.
First, the visual line direction observation model in consideration of the angle of view resolution characteristics of the visual line direction detection device 1 and the calculation procedure of the visual line direction observation value will be described.
The following applies when the BM 11 and the intercepting flying object 12 are in the general meeting course 13.
The approach speed V c between the BM 11 and the interceptor flying object 12 is constant, and the distance in the approach speed direction is represented by the product of the approach speed V c and the remaining time t go (time-to-go) until the meeting, It is assumed that the change due to the guidance appears only in the direction perpendicular to the approach speed.
The image sensor of the visual line direction detection device 1 is assumed to be a CCD in which pixels are arranged like a grid in a plane. Further, it is assumed that the target BM 11 is imaged as a point on the pixel surface.
The intercepting flying object 12 is controlled so that the roll angular velocity is sufficiently small, and the pitch system and the yaw system are considered separately. Here, for example, the pitch visual line direction in the fixed coordinate system of the visual line direction detection device 1 is set as the observation value.
[0015]
First, consider an image when there is no quantization by the pixels of the visual line direction detection device 1.
The pitch visual line direction observation value θ i at the remaining time t go, i until the meeting can be expressed as the following formula (1), and this formula (1) is called a visual line direction observation model.
[Expression 1]
Figure 2004271025
[0016]
In Equation (1), ω is the pitch angular velocity of the fixed coordinate system of the visual line direction detection device 1, ZEM is the distance between the BM 11 and the interceptor flying object 12 when the guidance is not performed, and V c is the BM 11 and the interceptor. The relative approach speed with respect to the flying object 12, θ 0, is the direction of the line of sight of the pitch when meeting when the ZEM is zero.
The subscript i (i = 1,..., Nobs ) indicates the number of observations.
At a long distance when the remaining time t go is large, the contribution of ZEM is small, and since it is in the approximate meeting course 13, the visual line direction is almost constant in the inertial system, and the pitch visual line direction observation value θ i is constant. It can be approximated by the value θ 0 and the sum of the rotation angle of the fixed coordinate system of the visual line direction detection device 1.
As the value of the remaining time t go decreases and the BM 11 and the interceptor flying object 12 approach each other, the contribution of ZEM increases, and as shown in FIG. 8, the pitch visual line direction observation value (LOS angle) θ i is θ i-1, θ i, as θ i + 1, becomes rapidly larger as meeting approaches. Similarly, referring to FIG. 9, the LOS angle increases rapidly as the meeting approaches, that is, as the relative distance between the two decreases.
[0017]
On the other hand, when the quantization by the pixels obtained by the image sensor of the visual line direction detection device 1 is considered, the pitch visual line direction observation value θ i is the quantized pitch visual line direction observation value ## EQU2 ##
Figure 2004271025
It becomes. Quantization function
Figure 2004271025
A visual line direction observation model that takes quantization into account using can be expressed as the following equation (2).
[Expression 4]
Figure 2004271025
[0018]
Next, the calculation procedure of the ZE initial estimated value, the ZE possible area, and the ZE representative point will be described.
In the visual line direction observation model of Expression (2), the pitch angular velocity ω of the fixed coordinate system of the visual line direction detection device 1 is a posture angle time change rate detection device (attached to the fixed coordinate system of the visual line direction detection device 1). (Rate gyro etc.) 6 can be measured. Further, the relative approach speed V c and the remaining time t go, i between the BM 11 and the intercepting flying object 12 output from the speed / time output device 6 are obtained from the track of the BM 11 and the intercepting flying object 12 by the tracking processing of the ground radar. It is estimated general known information. Accordingly, the unknown parameter to be estimated is the distance ZEM between the BM 11 and the intercepting flying object 12 at the time of meeting when guidance is not performed and the pitch line-of-sight direction θ 0 at the time of meeting when the ZEM is zero. Become.
[0019]
Approximate known information and the observed value of the quantized pitch visual line direction obtained from the image sensor of the visual line direction detection device 1
Figure 2004271025
ZE, which is an unknown parameter (secondarily also θ 0 ) can be estimated with high accuracy based on the time history.
Note that the observation time by the visual line direction detection device 1 is less than 1 second, and it is assumed that the side thruster 5 is not jetted during observation. Therefore, the pitch angular velocity ω of the fixed coordinate system of the visual line direction detection device 1 is It is assumed that the value is constant during observation.
As an estimation method, a method as simple as possible is used in consideration of mounting.
[0020]
As a basic idea, an approximate initial estimated value of the pitch line-of-sight direction θ 0 and the ZEM is obtained, and an unknown parameter is discretely searched using the initial estimated value as a reference value. In the search, a candidate solution (possible solution) in which the calculated observation value and the actual observation value obtained by substituting into the visual line direction observation model coincide with each other in consideration of the angle of view resolution characteristics of the visual line direction detection device 1. Take the procedure of checking whether or not. A set of candidate solutions (possible solutions) is referred to as a ZEM possible region.
[0021]
First, in the ZEM initial estimation calculation device 8, the initial estimated value of the pitch visual line direction θ 0
Figure 2004271025
Is, for example, the first actual observation value
Figure 2004271025
Is calculated by the following equation (3).
[Equation 8]
Figure 2004271025
This approximate expression is based on the idea that tgo , 1 is relatively large in the first observation and the contribution of ZEM is relatively small as described above, and Expression (3) is obtained from Expression (2). .
[0022]
Next, the initial estimate of ZEM
Figure 2004271025
In the calculation of the actual observed value of the pitch line-of-sight direction
Figure 2004271025
Time history and initial estimated value of pitch line-of-sight direction
Figure 2004271025
And the calculated observation value calculated from the unknown parameter ZEM on the basis of the visual line direction observation model of Equation (2)
Figure 2004271025
The sum Err of the square error with the time history of is defined. The sum Err of the square error can be expressed as the following equation (4).
[Formula 13]
Figure 2004271025
[0023]
The initial estimated value of ZEM that minimizes the sum of the squared errors
Figure 2004271025
And
That is, from the following equation (5), the initial estimated value of the ZEM is determined as in equation (6).
[0024]
[Expression 15]
Figure 2004271025
[0025]
The ZEM possible area calculation device 2 calculates the initial estimated value of the pitch line-of-sight direction obtained as described above.
Figure 2004271025
And the initial estimate of ZEM
Figure 2004271025
The search is performed discretely over an appropriate two-dimensional region around the reference value.
[0026]
In the search, a quantized calculated observation value calculated based on a visual line direction observation model considering the quantization of Equation (2)
Figure 2004271025
Time history and actual observation values
Figure 2004271025
It is determined whether or not the time histories coincide with the level of pixel resolution (viewing angle resolution) with respect to the entire observation range. As a result of the determination, a set of values that coincide with each other at the pixel resolution level is set as a ZErmable region. For the determination of the ZEM possible area, the initial estimated value of the pitch visual line direction
Figure 2004271025
And the initial estimate of ZEM
Figure 2004271025
And is determined by the following equation (7).
[0027]
[Expression 22]
Figure 2004271025
In Expression (7), for ε, for example, a viewing angle corresponding to a half pixel may be selected.
[Expression 23]
Figure 2004271025
In Expression (8), FOV and pixels indicate the angle of view and the number of pixels in the pitch direction, respectively.
[0028]
Using the initial estimated value as an initial value, the pitch visual line around the initial estimated value and the value of the ZEM are discretely applied. As a result of fitting to the inequality of equation (7), the pitch visual line direction satisfying the inequality of equation (7)
Figure 2004271025
And ZEM
[Expression 25]
Figure 2004271025
Each combination with and the unknown parameter candidate solution
Figure 2004271025
,
[Expression 27]
Figure 2004271025
And As described above, this set of candidate solutions is set as a ZEM possible region.
Here, the subscript j (j = 1,..., N candidate ) represents the number of candidate solutions.
[0029]
Finally, there are several ways of determining the estimated value in the ZERM representative point calculation device 3, but here, the average value of the candidate solutions is used as the estimated value as in the equations (9) and (10). I will decide. An intermediate value of candidate solutions may be used as an estimated value.
[Expression 28]
Figure 2004271025
[0030]
Estimated value obtained as described above
Figure 2004271025
,
[30]
Figure 2004271025
Is a ZEM representative point.
[0031]
The results calculated for a typical meeting case are shown below.
FIG. 10 is an explanatory diagram showing the true value and actual observed value of the visual line direction time history, and FIG. 11 is an explanatory diagram showing the ZE initial estimated value / ZEM possible area / ZEM representative point / ZEM true value.
Here, the approach speed V c of the interceptor missile 12 and BM11 6 [km / sec], measurement time t go is between .35 to .25 [sec], a total of 5 [msec] Interval It was performed 21 times. The pitch angular velocity ω of the fixed coordinate system of the visual line direction detection device 1 was set to +1 [deg / sec]. The true values of the pitch visual line direction θ 0 and ZEM were +12 [mrad] and +0.567 [m], respectively. The field angle resolution was about 0.01 [deg].
When the ZE representative point is calculated under the above conditions, it can be seen that the ZE representative point can be estimated with an error of 0.1 [m] or less compared to the true value.
[0032]
When the ZEM representative point is calculated, the side thruster injection amount calculation device 4 cancels the ZEM estimated as the representative point, that is, calculates the side thruster injection amount for changing the flight path so that the hit error becomes zero. Calculate and output as injection command. The side thruster 5 injects a side thruster based on the injection command from the side thruster injection amount calculation device 4, changes the path of the intercepting flying object 12, and hits the BM 11.
[0033]
Thus, since the angle-of-view resolution characteristic of the line-of-sight direction detection device 1 is explicitly taken into consideration, even when the line-of-sight direction time history changes stepwise due to the angle-of-view resolution characteristic, the conventional filtering is used. Insufficient smoothing and time delay of the time-of-sight direction time change rate that occurs in FIG. 3 can be prevented, and it is possible to prevent the side thruster 5 from being unnecessarily jetted and the orbital waviness, thereby preventing an increase in hit error.
In addition, in the calculation of the ZEM possible region, the pitch / yaw attitude angle time change rate of the intercepting flying object 12 as well as the angle-of-view resolution characteristics of the visual line direction detecting device 1 are explicitly taken into consideration. Thus, the ZEM possible region can be calculated without being affected by the change in the pitch / yaw attitude angle over time, and an increase in hit error can be prevented.
In addition, since the initial estimated value of the ZEM is selected from one or a plurality of points in the visual line direction time history, the initial estimated value of the ZEM is used as the initial value when calculating the ZEM possible region. It is possible to calculate with reference to the above, and to efficiently calculate the search for the existence range of the ZEM possible area, thereby shortening the calculation time and reducing the load on the on-board computer. By shortening the calculation time, the remaining time until the meeting can be lengthened, and the thruster injection level can be reduced or a larger ZEM can be offset with respect to a certain ZEM.
[0034]
【The invention's effect】
As described above, according to the present invention, the visual line direction detection device 1 that detects the visual direction of the intercepting flying object 12 based on the captured image of the BM 11 by the image sensor and outputs it as a visual direction detection value every predetermined time. And a relative speed between the BM 11 and the interceptor flying object 12, a speed / time output device 6 that outputs a remaining time until hitting every predetermined time, and an observation model, and a predetermined time based on the relative speed and the remaining time. Calculate the visual direction calculation value and the hit error calculation value for each time, compare the visual direction calculation value and the visual direction detection value for each predetermined time, and the deviation between the visual direction calculation value and the visual direction detection value is within the predetermined range. In this case, a hit error selection device 2 that selects a hit error calculation value corresponding to the visual direction calculation value, and a hit error representative point calculation device 3 that calculates a hit error representative value based on the selected hit error calculation value. And life Based on the relative distance and remaining time corresponding to the error representative value, the side thruster injection amount calculation device 4 that calculates the side thruster injection amount with the hit error representative value being zero, and the side that performs injection according to the side thruster injection amount The thruster 5 is provided, so that even when the visual line direction time history changes stepwise due to the angle-of-view resolution characteristics, insufficient smoothing and time delay of the visual line direction time change rate does not occur. There is an effect that it is possible to obtain a flying object guidance apparatus that can prevent the thruster 5 from being spouted and undulating the trajectory, and can prevent an increase in hit error.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram showing a flying object guiding apparatus according to a first embodiment of the present invention.
FIG. 2 is a block configuration diagram showing the flying object guiding apparatus according to the first embodiment of the present invention.
FIG. 3 is a block configuration diagram showing the flying object guiding apparatus according to the first embodiment of the present invention.
FIG. 4 is a block configuration diagram showing the flying object guiding apparatus according to the first embodiment of the present invention.
FIG. 5 is an explanatory diagram showing an operational status of an intercepting flying object.
FIG. 6 is an explanatory diagram showing a sequence of interceptor flying objects.
FIG. 7 is an explanatory view showing a meeting situation between an interceptor flying object and a BM.
FIG. 8 is a relationship diagram showing a distance between the intercepting flying object and the BM and a hit error (ZEM) in the latter half of the terminal period.
FIG. 9 is an explanatory diagram showing a change in visual line direction time history in the latter half of the terminal period.
FIG. 10 is an explanatory diagram showing a true value and an actual observed value of a visual line direction time history.
FIG. 11 is an explanatory diagram showing a ZEM initial estimated value / ZEM possible region / ZEM representative point / ZEM true value;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Line-of-sight direction detection apparatus, 2 ZEM possible area calculation apparatus, 3 ZEM representative point calculation apparatus, 4 Side thruster injection amount calculation apparatus, 5 Side thruster, 6 Speed / time output apparatus, 7 Posture angle time change rate detection apparatus, 8 ZEM initial estimation calculator, 11 ballistic projectile (BM), 12 intercepting projectile, 13 general meeting course, 14 meeting course, 15 meeting point.

Claims (3)

目標飛翔体に迎撃飛翔体を命中させるために前記迎撃飛翔体を誘導する飛翔体誘導装置であって、
画像センサを有し、前記画像センサによる前記目標飛翔体の撮像画像に基づいて、前記目標飛翔体の目視方向を検出して目視方向検出値として所定時間毎に出力する目視方向検出装置と、
前記目標飛翔体と前記迎撃飛翔体との相対速度、および前記迎撃飛翔体が前記目標飛翔体に命中するまでの残り時間を前記所定時間毎に出力する速度・時間出力装置と、
あらかじめ格納された目視方向および命中誤差の観測モデルを用いて、前記相対速度および前記残り時間に基づいて前記所定時間毎の前記目視方向計算値および前記命中誤差計算値を計算し、前記目視方向検出値および前記目視方向計算値に基づいて所定範囲内の命中誤差計算値を選択する命中誤差選択装置と、
選択された命中誤差計算値に基づいて、命中誤差代表値を計算する命中誤差代表点計算装置と、
前記命中誤差代表値に対応した相対速度および残り時間に基づいて、前記命中誤差代表値をゼロとするサイドスラスタ噴射量を計算するサイドスラスタ噴射量計算装置と、
前記迎撃飛翔体に搭載され、前記サイドスラスタ噴射量に応じて噴射を行うサイドスラスタと
を備え、
前記命中誤差選択装置は、前記所定時間毎の前記目視方向計算値と前記目視方向検出値とを比較し、前記目視方向計算値と前記目視方向検出値との偏差が前記所定範囲内の場合に、前記目視方向計算値に対応する命中誤差計算値を選択することを特徴とする飛翔体誘導装置。
A flying object guidance device for guiding the intercepting flying object to hit the intercepting flying object to the target flying object,
A visual direction detection device that includes an image sensor, detects a visual direction of the target flying object based on a captured image of the target flying object by the image sensor, and outputs a visual direction detection value every predetermined time;
A speed / time output device that outputs a relative speed between the target flying object and the intercepting flying object, and a remaining time until the intercepting flying object hits the target flying object at each predetermined time; and
Using the observation model of the visual direction and hit error stored in advance, the visual direction calculation value and the hit error calculation value for each predetermined time are calculated based on the relative speed and the remaining time, and the visual direction detection is performed. A hit error selection device that selects a hit error calculation value within a predetermined range based on the value and the visual direction calculation value;
A hit error representative point calculation device for calculating a hit error representative value based on the selected hit error calculation value;
A side thruster injection amount calculation device for calculating a side thruster injection amount with the hit error representative value being zero based on a relative speed and a remaining time corresponding to the hit error representative value;
A side thruster mounted on the interceptor flying body and performing injection according to the side thruster injection amount;
The hit error selection device compares the calculated visual direction value and the detected visual direction value for each predetermined time, and the deviation between the calculated visual direction value and the detected visual direction value is within the predetermined range. A flying object guidance device, wherein a hit error calculation value corresponding to the visual direction calculation value is selected.
前記迎撃飛翔体の姿勢角の時間変化率を検出する姿勢角時間変化率検出装置を備え、
前記命中誤差選択装置は、前記姿勢角の時間変化率に応じた観測モデルを用いて、前記目視方向計算値および前記命中誤差計算値を計算することを特徴とする請求項1に記載の飛翔体誘導装置。
A posture angle time change rate detection device for detecting a time change rate of the posture angle of the intercepting flying object,
2. The flying object according to claim 1, wherein the hit error selection device calculates the visual direction calculated value and the hit error calculated value using an observation model corresponding to a time change rate of the posture angle. Guidance device.
前記目視方向検出値の中の少なくとも1点に基づいて、前記目視方向検出値と前記目視方向計算値との偏差を最小にする初期推定値を計算する初期推定計算装置を備え、
前記命中誤差選択装置は、前記初期推定値を初期値として前記命中誤差計算値を選択することを特徴とする請求項1または請求項2に記載の飛翔体誘導装置。
An initial estimation calculation device that calculates an initial estimation value that minimizes a deviation between the visual direction detection value and the visual direction calculation value based on at least one point in the visual direction detection value;
The flying object guiding device according to claim 1, wherein the hit error selecting device selects the hit error calculated value using the initial estimated value as an initial value.
JP2003061548A 2003-03-07 2003-03-07 Flying object guidance device Expired - Fee Related JP4046626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061548A JP4046626B2 (en) 2003-03-07 2003-03-07 Flying object guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061548A JP4046626B2 (en) 2003-03-07 2003-03-07 Flying object guidance device

Publications (2)

Publication Number Publication Date
JP2004271025A true JP2004271025A (en) 2004-09-30
JP4046626B2 JP4046626B2 (en) 2008-02-13

Family

ID=33123739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061548A Expired - Fee Related JP4046626B2 (en) 2003-03-07 2003-03-07 Flying object guidance device

Country Status (1)

Country Link
JP (1) JP4046626B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788166A (en) * 2021-09-16 2021-12-14 中国科学院国家天文台 Differential interception tracking method based on space object track error
CN115406312A (en) * 2022-09-23 2022-11-29 北京航空航天大学 Missile guidance control integration method considering field angle and steering engine delay constraint
CN116839429A (en) * 2023-09-01 2023-10-03 北京航空航天大学 Guidance control integrated method considering view field angle constraint of seeker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180984B1 (en) * 2019-07-09 2020-11-19 국방과학연구소 Method and apparatus for generating acceleration control command considering end point of acceleration of flight

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788166A (en) * 2021-09-16 2021-12-14 中国科学院国家天文台 Differential interception tracking method based on space object track error
CN113788166B (en) * 2021-09-16 2024-03-15 中国科学院国家天文台 Differential interception tracking method based on space object track error
CN115406312A (en) * 2022-09-23 2022-11-29 北京航空航天大学 Missile guidance control integration method considering field angle and steering engine delay constraint
CN115406312B (en) * 2022-09-23 2023-06-23 北京航空航天大学 Missile guidance control integrated method considering view angle and steering engine delay constraint
CN116839429A (en) * 2023-09-01 2023-10-03 北京航空航天大学 Guidance control integrated method considering view field angle constraint of seeker
CN116839429B (en) * 2023-09-01 2023-11-10 北京航空航天大学 Guidance control integrated method considering view field angle constraint of seeker

Also Published As

Publication number Publication date
JP4046626B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US9625236B2 (en) Method of fire control for gun-based anti-aircraft defence
CN111351401B (en) Anti-sideslip guidance method applied to strapdown seeker guidance aircraft
US8686326B1 (en) Optical-flow techniques for improved terminal homing and control
US20170268852A1 (en) Method for steering a missile towards a flying target
US20110246069A1 (en) Method for determining the trajectory of a ballistic missile
KR20220037520A (en) Posture determination by pulse beacons and low-cost inertial measurement units
EP1767893B1 (en) Missile guidance system
RU2658115C2 (en) Method of the aircraft velocity vector and distance to the ground object simultaneous measurement
KR101208448B1 (en) Aided navigation apparatus using 3 dimensional image and inertial navigation system using the same
JP4046626B2 (en) Flying object guidance device
US11061107B1 (en) System and method for intercepting an exo-atmospheric target using passive ranging estimation
KR102066975B1 (en) Apparatus and method for induction flight control for improving shot accuracy of missile
JP3545709B2 (en) High accuracy long range light assisted inertial guided missile
KR101957662B1 (en) Apparatus for calculating target information, method thereof and flight control system comprising the same
CN111221348A (en) Sideslip correction method applied to remote guidance aircraft
Oshman et al. Enhanced air-to-air missile tracking using target orientation observations
US11221194B2 (en) IMUless flight control system
JP2015193347A (en) Inertia navigation system of missile
KR102031929B1 (en) Apparatus and method for terminal lead angle control with Time Varying Continuous Biased PNG
CN111273682B (en) Sideslip correction method based on virtual target point
JP6383817B2 (en) Flying object position measuring device, flying object position measuring method and flying object position measuring program
JP3566182B2 (en) Target position estimation device
US20140042265A1 (en) Method for automatically managing a homing device mounted on a projectile, in particular on a missile
US11841211B2 (en) Method for fire control of an anti-aircraft gun
Kim et al. Launch point prediction employing the smoothing IPDA algorithm in 3-D cluttered environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees