JP2004269579A - Glass fiber fabric-reinforced polyolefin fine porous membrane - Google Patents

Glass fiber fabric-reinforced polyolefin fine porous membrane Download PDF

Info

Publication number
JP2004269579A
JP2004269579A JP2003058911A JP2003058911A JP2004269579A JP 2004269579 A JP2004269579 A JP 2004269579A JP 2003058911 A JP2003058911 A JP 2003058911A JP 2003058911 A JP2003058911 A JP 2003058911A JP 2004269579 A JP2004269579 A JP 2004269579A
Authority
JP
Japan
Prior art keywords
glass fiber
polyolefin
fiber fabric
film
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003058911A
Other languages
Japanese (ja)
Inventor
Norio Tsujioka
則夫 辻岡
Kazuo Akashi
和男 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003058911A priority Critical patent/JP2004269579A/en
Publication of JP2004269579A publication Critical patent/JP2004269579A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a lithium cell or a capacitor which excels in high strengths, permeability, and heat resistance and can prevent the short circuit between electrodes by breakage and shrinkage of a membrane even in a temperature atmosphere of 200°C. <P>SOLUTION: The subject glass fiber fabric-reinforced polyolefin fine porous membrane is obtained by impregnating a glass fiber fabric with a composition comprising a polyolefin and a solvent and making the resulting glass fiber fabric into a fine porous membrane. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム一次電池、リチウムイオン二次電池などのリチウム電池、コンデンサー、あるいはキャパシターなどのセパレータに使用される、多孔質膜およびその製造方法に関する。さらに詳しくは、すぐれたイオン透過性、機械的強度、耐熱性(高温下においても破膜や収縮がなく電極間短絡の発生を防止可能)、およびリチウム電池用としてのすぐれたシャットダウン特性などを兼ね備えた、高性能なセパレータに好適な微多孔膜およびその製法に関する。
【0002】
【従来の技術】
従来、リチウム電池、リチウムイオン電池、リチウムポリマー電池などリチウム電池のセパレータには、主としてポリエチレン製微多孔膜が使用され、アルミ電解コンデンサーなどのセパレータにはクラフト紙など紙製セパレータが使用されている。リチウム電池のセパレータとして主としてポリエチレン微多孔膜が使用されるのは、電池内の温度が130℃〜140℃に上昇した場合、セパレータの孔を溶融閉塞させ、正極負極間のイオンの流れをストップさせるためである。
【0003】
しかしながらポリエチレンは結晶融解温度以上で著しく強度が低下すること、およびポリエチレンセパレータは120℃程度の温度で延伸法によりフィルム化されているため、延伸温度近傍で大きく収縮することから、たとえ溶融閉塞しても、電極間の絶縁を保つのが非常に困難である。したがって、溶融閉塞後いかにして破膜や収縮を防止するかが課題となる。たとえば一例として、高温での電池安全性を保証する必要から、米国規格UL1642の「Standard for Lithium Batteries」には、150℃オーブンで10分保存する電池安全評価基準が設けられている。この安全基準を達成するにはセパレータが130℃〜140℃で閉塞無孔化した後、150〜160℃程度まで破膜や収縮せず形状を維持しておくことが必要であるが、通常使用されるポリエチレン微多孔膜では難しい。さらに近年では電気自動車用の蓄電池や家庭用の夜間蓄電池として大型リチウムイオン二次電池の開発が進んでいるが、内部エネルギーが大きく、一旦電極間短絡などが起こると発熱が非常に大きくなることから、200℃程度の温度でも破膜収縮のない、信頼性の高いセパレータの要望が強い。
【0004】
ポリエチレン製セパレータの耐熱性を高くし、高温での破膜を防止する試みとして、例えばポリエチレンに融点の高いポリプロピレンを混合する試み、あるいはポリエチレン微多孔膜とポリプロピレン微多孔膜を積層する試みなどが多数なされた。しかしながらこれらはポリエチレン製セパレータよりは耐熱に優れているが、150℃ではかなり収縮や破膜が押さえられても、160℃以上では破膜や収縮が顕著で、上記要望には答えられない。
【0005】
特許文献1には、ポリオレフィン微多孔膜に、厚さが25μm〜100μmのガラス繊維織物あるいは不織布を積層した電池セパレータ複合膜が開示されている。しかしながらこうして得られる複合膜は、ガラス繊維織物とポリオレフィン微多孔膜を微多孔膜の透過性が損なわれない程度の温度、すなわち50〜120℃で積層圧縮してつくられた積層体であり、オレフィン微多孔膜とガラス繊維層との層間接着は非常に弱く、簡単に剥離し、実用上問題がある。また通常電池用セパレータは1m以上の広幅巻物で作成された後、幅数十mmのテープ状にスリットして使用されるが、樹脂により繊維が固定されていないため、切断面からガラス繊維毛羽が脱落し、それらが微多孔膜表面に付着するなど、実用上問題が多い。更にガラス繊維織物とポリオレフィン微多孔膜との接着が不十分なため、積層工程でポリオレフィン微多孔フィルムが収縮してガラス繊維層が露出するなどの欠陥も発生させやすい。ここにおいて使用されるポリオレフィン微多孔膜は、重量平均分子量50万超の高分子量が使用されているため、ポリオレフィン樹脂がほとんどガラス繊維束には含浸せず、こうした欠陥の原因を形成していると思われる。
【0006】
一方近年は電池容量がふえるにつれ、できるだけ薄く、高強度で、高耐熱性のセパレータが要求されるが、使用されるガラス繊維織物の厚みは25〜100μmと相当厚いものであり、したがって得られる複合膜は40μmより薄くはならず、これではリチウム電池のセパレータとして電気抵抗が著しく高くなるなど、実用上問題である。
一方、アルミ電解コンデンサーなどコンデンサーは実装工程で過酷な熱工程を経由するため、使用されるセパレータには耐熱性の高い紙製セパレータが使用される。しかしながら紙製セパレータの厚みは一般的に40〜50μmが下限であることから電気容量向上のため、薄く、高強度で、200℃ハンダ工程で収縮や破膜しない微多孔膜のニーズが極めて高い。コンデンサー用のセパレータでは閉塞機能は必要ないため、ポリイミド微多孔膜など高耐熱性樹脂を使用した微多孔膜なども提案されているが、高価で、実用的でない。
【0007】
【特許文献1】
特開平10−12211号公報
【0008】
【発明が解決しようとする課題】
本発明の課題は、薄くて、高強度、透過性および耐熱性にすぐれ、200℃の温度雰囲気下でも破膜や収縮による電極間短絡を防止できる、リチウム電池用あるいはコンデンサー用のセパレータに好適な微多孔膜を提供することである。
【0009】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく検討した結果、ガラス繊維織物にポリオレフィンと溶媒からなる組成物から形成されたフィルム層を両面または片面に適用し、プレスして溶液をガラス繊維織物に含浸させ、冷却して相分離させ、ついで脱溶剤して多孔化させることにより、極薄、高強度で、且つ透過性、耐熱性にすぐれ、200℃でも破膜や収縮による電極間短絡を防止できるセパレータを提供しうることを見いだした。適用とは、組成物で形成されたフィルム層をガラス繊維織物に塗布あるいは重ね合わせることを意味する。この場合ポリオレフィンとして、例えばポリエチレン等結晶融解温度が140℃以下のポリオレフィンを使用した場合は、融点近傍でシャットダウン機能を有するリチウム電池用に最適なセパレータが得られ、ポリメチルペンテン等結晶融解温度が200℃以上のポリオレフィンを使用した場合は200℃のハンダリフロー工程で閉塞せず多孔性を維持できる、コンデンサー用に最適なセパレータが得られることを見いだし、本発明を完成するに至った。
【0010】
本発明のガラス繊維織物補強ポリオレフィン微多孔膜(以下、単に微多孔膜ともいう)は、好ましくは厚さ25μm以下の無アルカリガラス繊維織物に、好ましくは重量平均分子量が50万以下のポリオレフィンが含浸され、且つポリオレフィンが微多孔を形成して成る、透気度1000〜10秒/100ml、空孔率80%以下のガラス繊維織物補強ポリオレフィン微多孔膜でありその製法はポリオレフィンと溶媒からなる組成物で形成されたフィルム層をガラス繊維織物の両面または片面に適用しプレスして組成物をガラス繊維織物に含浸し、冷却して相分離多孔化し、次いで脱溶媒することによって製造される。
【0011】
すなわち、本発明は下記の通りである。
1.ガラス繊維織物にポリオレフィンが含浸され、且つポリオレフィンが微多孔を形成してなる、透気度1000〜10秒/100ml、空孔率80%以下の、ガラス繊維織物補強ポリオレフィン微多孔膜。
2.ガラス繊維織物の厚さが25μm以下で、微多孔膜の膜厚が40μm以下である、1.記載のガラス繊維織物補強ポリオレフィン微多孔膜。
3.ポリオレフィンの重量平均分子量が50万以下である、1.または2.記載のガラス繊維織物補強ポリオレフィン微多孔膜。
4.ガラス繊維が無アルカリガラス繊維である、1.〜3.のいずれかに記載のガラス繊維織物補強ポリオレフィン微多孔膜。
5.ポリオレフィンと溶媒とからなる組成物から形成されたフィルム層を、ガラス繊維織物の両面または片面に適用し、プレスして組成物をガラス繊維織物に含浸し、冷却してついで脱溶媒して多孔化することを特徴とするガラス繊維織物補強ポリオレフィン微多孔膜の製造法。
【0012】
【発明の実施の形態】
以下、本発明について、特にその好ましい態様を中心に、詳細に説明する。
本発明のガラス繊維織物補強ポリオレフィン微多孔膜は、ガラス繊維織物にポリオレフィンと溶媒からなる組成物を含浸させ、熱誘起相分離法により微多孔化させることによって得られる。
本発明のガラス繊維織物補強ポリオレフィン微多孔膜は、透気度1000秒〜10秒/100ml、空孔率80%以下の微多孔膜である。
膜厚は、40μm以下が好ましい。40μmを超えると、嵩高くなるためリチウム電池やアルミ電解コンデンサーの容量向上を阻害しやすく、セパレータの電気抵抗が高くなる傾向がある。また膜厚はセパレータとしての機能を保持出来る範囲で薄い方が好ましいが、ガラス繊維織物の厚みの限界から、5μmが下限である。
【0013】
ガラス繊維は構成する組成により、無アルカリ(E)ガラス、低誘電(D)ガラス、アルカリ(A)ガラスなど多くの種類が存在するが、本発明のガラス繊維織物に使用されるガラスは電気絶縁用途に最適の、無アルカリガラスを原料とするガラス繊維織物が好ましい。リチウムイオン電池用あるいは電解コンデンサー用セパレータとして、膜厚を好ましくは40μm以下、より好ましくは25μm以下にするには、ガラス繊維織物は25μm以下の厚みが好ましく、また織物を構成するガラス繊維フィラメントは5μm以下が好ましい。またポリオレフィン溶液を含浸させやすくするためには、織物を形成する糸はできるだけ開繊させておくことが好ましい。織組織は平織り、綾織り、朱子織などいずれも使用できる。ガラス繊維織物にポリオレフィン溶液を含浸させ、かつポリオレフィンとガラスとの界面親和性を高めるために、通常は織物製織後脱サイジングされ、ついでシランカップリング剤などが表面処理されることが好ましい。本発明でガラス繊維織物の厚さは、最終的に得られた微多孔膜の断面を観察して測定した値である。
【0014】
本発明に使用されるポリオレフィンは重量平均分子量が50万以下であることが好ましい。より好ましくは重量平均分子量3万以上30万以下である。重量平均分子量が50万より大きい場合、ガラス繊維織物にポリオレフィンを均一に含浸しにくく、繊維中にボイドが残留しやすく、微多孔膜にピンホール等が発生しやすい。
【0015】
ポリオレフィンとしてはエチレン、プロピレン、1−ブテン、4―メチルーペンテンー1、1−ヘキセンなどを重合した結晶性の単独重合ポリマーまたは共重合体が使用できる。ポリオレフィンは単独、あるいは同種または異種の2種類以上の混合で使用できるが、混合物として重量平均分子量50万以下であることが好ましい。ポリオレフィンの分子量分布は特に規定されないが、低分子量成分と高分子量成分が存在することが、含浸性と物性の両立により効果的である。本発明に使用される溶媒は、ポリオレフィンを十分に溶解するとともに、熱誘起相分離により多孔構造を形成させうるものであれば特に限定されないが、例えばノナン、デカン、デカリン、流動パラフィンなどの脂肪族または脂環式の炭化水素、ジブチルフタレート、ジエチルヘキシルフタレートなどのフタル酸ジエステル、脂肪族二塩基酸エステル、リン酸トリエステルなどが挙げられる。工程安定性の観点から沸点の高い流動パラフィンやフタル酸ジエステルが好ましい。ポリオレフィンと溶媒の種類や量は、孔径、透過性、空孔率などに応じて選択されるが、組成物としてのポリマーと溶媒の組成範囲は、体積比率で80:20〜20:80が好ましい。溶媒比率が高いほど、微多孔膜の空孔率は高くなる。透気度は孔径が大きいほど、空孔率が高いほど低くなる。微多孔の孔径は溶剤の種類と相分離温度などの製造条件によって決まる。ポリマー比率が80%を超えると空孔率が低下しやすく、また組成物の粘度が高くガラス繊維織物への含浸性も不十分となりやすい。ポリマー比率が20%未満だと、使用する溶媒量が多く経済的でないばかりか、押し出し機から押し出す際、ダイ出口でスウェルやネックインが大きく、押し出しが困難となる場合がある。ガラス繊維織物にポリオレフィン組成物を含浸させる方法としては、まず組成物を二軸押し出し機で溶融混練後、ダイスから押し出してフィルムを成形する方法が好ましい。ダイスから組成物を押し出し、ローラー等で引き取って無延伸フィルムを作成する方法、押し出した後テンター、ロール、あるいはインフレーション法などにより延伸してフィルムを作成する方法がある。得られたフィルムをガラス繊維織物の片面、あるいは両面に適用し、プレスして組成物をガラス繊維織物に含浸させる。
【0016】
組成物の相分離温度以上でプレス含浸することが、均一含浸の観点から好ましい。一旦組成物を冷却して相分離させた場合は、再度相分離温度以上に昇温してプレス含浸させることが可能である。押し出された無延伸フィルムを相分離温度以上に維持しながら積層プレス含浸する方法はこれらの問題を解決するのに好ましい方法である。加熱プレスは圧縮成型でも可能であるが、連続的に処理するには加熱圧縮ロールが使用できる。織物の両面にフィルムを適用しプレス含浸する方法では、ガラス繊維織物と組成物フィルム間の脱気を行い、空気を抱き込まないようにすることは重要である。またフィルムは破損しやすく、特にフィルムが延伸法によって作成された場合加温すると収縮しやすいため、あらかじめガラス繊維織物とフィルムを低温で重ね合わせ、プレス固定させた後、加熱して再度プレス含浸するのが好ましい。
【0017】
脱溶媒は加熱プレスによる含浸後、冷却して微多孔化した後、低沸点の抽出溶剤に浸漬して抽出除去し、ついで微多孔に影響がない程度の低温で乾燥除去して行われる。抽出溶剤としてはペンタン、ヘキサン、へブタンなどの低級炭化水素系溶剤が適しているが、アセトン、メチルエチルケトン、塩化メチレンなどの易揮発性溶剤も使用可能である。
【0018】
以下、本発明における物性値の測定法について述べる。
(1)極限粘度
本発明中での極限粘度は、デカリン溶媒にて135℃で測定する値である。測定法はASTM D4020に基づく。
(2)膜厚
ダイヤルゲージ(尾崎製作所:商品名、PEACOCK No.25)にて測定した。
(3)空孔率
20cm角のサンプルをとり、その体積と質量、膜の平均真密度から次式を用いて計算した。膜の平均真密度は、サンプルを600℃の炉で処理してポリオレフィンを燃焼除去し、ガラス繊維とポリオレフィンの重量比を求め、それぞれ単体の密度値を使用して求めた。
空孔率(%)=(体積(cm)−質量(g)/膜の平均真密度)/体積(cm)×100
【0019】
(4)透気度
JIS P8117に準じて測定した。
(5)シャットダウン温度および耐熱性
厚さ10μmのニッケル箔を二枚(A,B)用意し、一方のニッケル箔Aを縦15mm、横10mmの長方形部分を残してテフロン(登録商標)テープでマスキングするとともに、他方のニッケル箔Bには測定試料の微多孔膜をおき、微多孔膜の両端をテフロン(登録商標)テープで固定した。このニッケル箔Bを規定の電解液に浸漬して微多孔膜に電解液を含浸させた後、これらニッケル箔A、Bを張り合わせ2枚のガラス板で両側を押さえた。このようにして作成したニッケル箔電極を25℃のオーブンに入れ、200℃まで2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。ここでシャットダウン温度とはセパレータの電気抵抗値が10Ωに達するときの温度と定義する。昇温終了後、セパレータを取り出し、破膜および形状を観察した。
(6)重量平均分子量
GPC装置を用い、カラムに東ソー(株)製GMH−6(商品名)、溶媒にO−ジクロールベンゼンを使用し、温度135℃で測定した。
【0020】
【実施例】
[実施例1]
口径30mm、L/D=48の二軸押出機に重量平均分子量15万の高密度ポリエチレン100重量部を投入し、二軸押出機のシリンダーに設けた注入口から流動パラフィン150重量部を押出機内に注入して、220℃で十分に溶融混練を行うことによって、ポリエチレン溶液を調整し、二軸押出機の先端に取り付けたTダイからシート状に押し出した。押し出されたシート状のポリエチレン溶液を一対のローラーで引き取りながら無延伸フィルムを形成すると同時に、このローラーに厚みが16μmで目付が20g/mであるガラス繊維織物(旭シュエーベル株式会社製、商品名、スタイル1027TF)を供給し、ローラー間でガラス繊維織物と熱フィルムを加熱プレスし、ガラス繊維織物にポリエチレン組成物を含浸させた。得られたポリエチレン組成物含浸ガラス繊維織物を常温に冷却した後、メチルエチルケトンに浸漬して流動パラフィンを抽出することにより、ガラス繊維織物補強ポリエチレン微多孔膜を得た。得られたガラス繊維織物補強ポリエチレン微多孔膜を試験サンプル準備のためテープ状に切断したところ、樹脂がガラス繊維に十分含浸し、フィラメントは集束されており、切断端部からガラス繊維毛羽や糸ほつれは全く発生しなかった。得られた微多孔膜は、膜厚が25μm、空孔率が48%、透気度が350秒/100ml、シャットダウン温度138℃であった。また200℃まで昇温した耐熱性試験後のサンプルを取り出し観察したところ、収縮や破膜は全くなく、電極間絶縁性も維持されていた。以上の測定結果を表1に記載した。
【0021】
[実施例2]
実施例1の二軸押出機に、重量平均分子量10万のポリメチルペンテン100重量部を投入し、二軸押出機のシリンダーに設けた注入口からフタル酸ジオクチルエステル70重量部を押出機内に注入して、260℃で十分に溶融混練を行い、二軸押出機の先端に取り付けたTダイからポリメチルペンテン溶液をシート状に押し出した。押し出されたシート状のポリメチルペンテン溶液を一対のローラーで引き取りながら無延伸フィルムを形成すると同時に、このローラーに実施例1のガラス繊維織物を供給し、ローラー間で加熱圧縮することにより、ガラス繊維織物に溶液を含浸させ、実施例1と同じようにメチルエチルケトンに浸漬してフタル酸ジオクチルエステルを抽出し、ガラス繊維織物補強ポリメチルペンテン微多孔膜を得た。得られたガラス繊維織物補強ポリメチルペンテン微多孔膜を切断したところ、フィラメントは集束されており、切断端部からガラス繊維毛羽や糸のほつれは全く発生しなかった。得られた微多孔膜の膜厚は25μm、空孔率40%、透気度500秒であった。耐熱試験では、200℃まで電気導電性は良好で、シャットダウンせず、また耐熱性試験後のサンプルを取り出し観察したところ、収縮や破膜は全くなく、再度透気度を測定したところ、透気度は600秒/100mlであり、コンデンサー実装におけるハンダリフロー工程にも十分耐えられる耐熱性を示した。以上の測定結果を表1に記載した。
【0022】
[比較例1]
実施例1の二軸押出機に重量平均分子量100万の高密度ポリエチレン100重量部を投入し、二軸押出機のシリンダーに設けた注入口から流動パラフィン150重量部を押出機内に注入して、220℃で十分に溶融混練を行い、二軸押出機の先端に取り付けたTダイからポリエチレン溶液をシート状に押し出した。押し出されたシート状のポリエチレン溶液を一対のローラーで引き取りながら無延伸フィルムを形成すると同時に、実施例1と同様にしてガラス繊維織物にポリエチレン溶液を含浸させ、メチルエチルケトンに浸漬して流動パラフィンを抽出し、微多孔膜を得た。得られたガラス繊維織物補強ポリエチレン微多孔膜をテープ状に切断したところ、切断端部からガラス繊維毛羽が発生し、またガラス繊維織物を構成する糸がほつれた。得られた膜は厚みが不均一で、ガラス繊維内部にポリエチレンが含浸していない部分が存在した。膜の平均膜厚は25μm、空孔率40%、透気度700秒/100mlであった。シャットダウン温度測定したところ140℃でシャットダウンしたが、150℃でふたたび10Ω以下に抵抗が低下した。耐熱性試験後のサンプルを観察したところ、樹脂含浸不良部分で微多孔部分が破膜していた。以上の測定結果を表1に記載した。
【0023】
[比較例2]
実施例1の二軸押出機に重量平均分子量が100万である高密度ポリエチレン100重量部を供給し、流動パラフィン120重量部を二軸押出機のシリンダーに設けた注入口から注入して220℃で十分に溶融混練を行うことによりポリエチレン溶液を調整し、二軸押出機の先端に取り付けたTダイからポリエチレン溶液をシート状に押し出し冷却した。このシートを二軸延伸機にセットし、115℃で7×7倍に同時二軸延伸を行い、メチルエチルケトンで流動パラフィンを抽出して、膜厚25μm、空孔率40%、透気度600秒/100mlのポリエチレン微多孔フィルムを得た。ついで上記微多孔膜と実施例1で使用したガラス繊維織物を重ね合わせ、80℃に余熱し、圧力1MPaでロール圧縮して積層膜を得た。得られた積層膜の平均膜厚30μm、透気度700秒/100mlであった。得られた積層膜をテープ状に切断したところ、切断端部からガラス繊維毛羽が発生し、ガラス繊維織物を構成する糸がほつれた。シャットダウン温度測定を実施したが、140℃近辺で積層膜を構成するポリエチレン微多孔膜部分に破損が発生し、10Ωにまで抵抗が上昇しなかった。試験後、サンプルを取り出し観察したところ、ポリエチレンとガラス繊維織物が部分的に剥離し、その部分で破膜が生じていた。以上の測定結果を表1に記載した。
【0024】
【表1】

Figure 2004269579
【0025】
【発明の効果】
本発明によるガラス繊維織物補強ポリオレフィン微多孔膜は、高強度で透過性に優れ、高温で破膜や収縮がないため電極間短絡を防止でき、且つ使用時にテープ状に切断加工した場合でも切断端部からガラス繊維がほつれることのない、リチウム電池用あるいはコンデンサー用のセパレータとして特性的にも実用的にも優れた微多孔膜である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous membrane used for a lithium battery such as a lithium primary battery and a lithium ion secondary battery, a capacitor, or a separator such as a capacitor, and a method for producing the same. More specifically, it has excellent ion permeability, mechanical strength, heat resistance (it can prevent short circuit between electrodes without breakage or shrinkage even at high temperature), and excellent shutdown characteristics for lithium batteries. Also, the present invention relates to a microporous membrane suitable for a high-performance separator and a method for producing the microporous membrane.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, polyethylene microporous membranes have been mainly used as separators for lithium batteries such as lithium batteries, lithium ion batteries, and lithium polymer batteries, and paper separators such as kraft paper have been used for separators such as aluminum electrolytic capacitors. The reason why a polyethylene microporous membrane is mainly used as a lithium battery separator is that when the temperature inside the battery rises to 130 ° C to 140 ° C, the pores of the separator are melted and closed, and the flow of ions between the positive electrode and the negative electrode is stopped. That's why.
[0003]
However, polyethylene has a significant decrease in strength above the crystal melting temperature, and since the polyethylene separator is formed into a film at a temperature of about 120 ° C. by a stretching method, it shrinks greatly near the stretching temperature. However, it is very difficult to maintain the insulation between the electrodes. Therefore, how to prevent film rupture and shrinkage after melting and closing becomes an issue. For example, in order to ensure battery safety at high temperatures, US Standard UL1642 “Standard for Lithium Batteries” has a battery safety evaluation standard for storing in a 150 ° C. oven for 10 minutes. In order to achieve this safety standard, it is necessary that the separator be closed and nonporous at 130 ° C to 140 ° C and then maintain its shape without breaking or shrinking up to about 150 to 160 ° C. It is difficult with a polyethylene microporous membrane. In recent years, large lithium-ion rechargeable batteries have been developed as storage batteries for electric vehicles and nighttime storage batteries for home use.However, the internal energy is large, and once a short circuit between the electrodes occurs, the heat generation becomes extremely large. There is a strong demand for a highly reliable separator that does not undergo film shrinkage even at a temperature of about 200 ° C.
[0004]
There have been many attempts to increase the heat resistance of polyethylene separators and prevent film breakage at high temperatures, for example, by mixing polyethylene with a high melting point polypropylene or by laminating a polyethylene microporous film and a polypropylene microporous film. It was done. However, although these are more excellent in heat resistance than polyethylene separators, even if shrinkage and film breakage are considerably suppressed at 150 ° C., film breakage and shrinkage are remarkable at 160 ° C. or higher, and the above-mentioned request cannot be answered.
[0005]
Patent Document 1 discloses a battery separator composite membrane in which a glass fiber woven fabric or a nonwoven fabric having a thickness of 25 μm to 100 μm is laminated on a polyolefin microporous membrane. However, the composite membrane thus obtained is a laminate formed by laminating and compressing a glass fiber fabric and a microporous polyolefin membrane at a temperature at which the permeability of the microporous membrane is not impaired, that is, 50 to 120 ° C. The interlayer adhesion between the microporous membrane and the glass fiber layer is very weak, easily peels off, and poses a practical problem. In addition, the battery separator is usually made of a wide roll of 1 m or more and then slit into a tape having a width of several tens of mm. Since the fibers are not fixed by the resin, the glass fiber fluff is cut off from the cut surface. There are many practical problems, such as falling off and adhering to the surface of the microporous membrane. Further, since the adhesion between the glass fiber fabric and the microporous polyolefin membrane is insufficient, defects such as the glass fiber layer being exposed due to shrinkage of the polyolefin microporous film in the laminating step are likely to occur. Since the polyolefin microporous membrane used here has a high molecular weight with a weight average molecular weight of more than 500,000, the polyolefin resin hardly impregnates the glass fiber bundles and forms the cause of such defects. Seem.
[0006]
On the other hand, in recent years, as the battery capacity has increased, a separator as thin as possible, high in strength and high in heat resistance has been required. However, the thickness of the glass fiber fabric used is as large as 25 to 100 μm, and thus the obtained composite The film does not become thinner than 40 μm, which is a practical problem such as a remarkable increase in electric resistance as a lithium battery separator.
On the other hand, since a capacitor such as an aluminum electrolytic capacitor goes through a severe heat process in a mounting process, a paper separator having high heat resistance is used as a separator. However, since the lower limit of the thickness of the paper separator is generally 40 to 50 μm, the need for a thin, high-strength, microporous film that does not shrink or break in the 200 ° C. soldering step is extremely high in order to improve the electric capacity. Since a separator for a capacitor does not require a closing function, a microporous membrane using a high heat-resistant resin such as a polyimide microporous membrane has been proposed, but is expensive and impractical.
[0007]
[Patent Document 1]
JP-A-10-12211
[Problems to be solved by the invention]
An object of the present invention is to provide a separator for lithium batteries or capacitors, which is thin, has high strength, excellent permeability and heat resistance, and can prevent short circuit between electrodes due to film rupture or shrinkage even at a temperature of 200 ° C. It is to provide a microporous membrane.
[0009]
[Means for Solving the Problems]
The present inventors have studied to solve the above problems, as a result of applying a film layer formed from a composition comprising a polyolefin and a solvent to a glass fiber fabric on both sides or one side, and pressing the solution to the glass fiber fabric. Impregnated, cooled, phase-separated, and then desolvated to make it porous, making it extremely thin, high-strength, excellent in permeability and heat resistance, and preventing short-circuiting between electrodes due to film rupture or shrinkage even at 200 ° C. It has been found that a separator can be provided. Applying means applying or superimposing a film layer formed of the composition on a glass fiber fabric. In this case, when a polyolefin having a crystal melting temperature of 140 ° C. or less is used as the polyolefin, for example, an optimal separator for a lithium battery having a shutdown function near the melting point can be obtained. It has been found that when a polyolefin having a temperature of at least 100 ° C. is used, it is possible to obtain an optimum separator for a capacitor capable of maintaining porosity without being clogged in a solder reflow process at 200 ° C., thereby completing the present invention.
[0010]
The polyolefin microporous membrane reinforced with glass fiber fabric of the present invention (hereinafter also simply referred to as microporous membrane) is preferably impregnated with a non-alkali glass fiber woven fabric having a thickness of 25 μm or less, and preferably with a polyolefin having a weight average molecular weight of 500,000 or less. A polyolefin microporous membrane reinforced with glass fiber woven fabric having an air permeability of 1000 to 10 seconds / 100 ml and a porosity of 80% or less, wherein the polyolefin is formed into a microporous composition. Is applied to both sides or one side of the glass fiber fabric and pressed to impregnate the composition into the glass fiber fabric, cooled, phase-separated and porous, and then desolvated.
[0011]
That is, the present invention is as follows.
1. A glass fiber woven microporous membrane reinforced with a glass fiber woven fabric impregnated with a polyolefin and having a microporosity, and having a gas permeability of 1000 to 10 seconds / 100 ml and a porosity of 80% or less.
2. 1. The thickness of the glass fiber fabric is 25 μm or less, and the thickness of the microporous membrane is 40 μm or less. The glass fiber woven microporous polyolefin microporous membrane according to the above.
3. The weight average molecular weight of the polyolefin is 500,000 or less; Or 2. The glass fiber woven microporous polyolefin microporous membrane according to the above.
4. The glass fibers are non-alkali glass fibers; ~ 3. The glass fiber woven microporous polyolefin microporous membrane according to any one of the above.
5. A film layer formed from a composition comprising a polyolefin and a solvent is applied to both sides or one side of the glass fiber fabric, pressed to impregnate the composition into the glass fiber fabric, cooled, and then desolventized to make it porous. A method for producing a microporous polyolefin membrane reinforced with a glass fiber fabric.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with particular emphasis on preferred embodiments.
The glass fiber woven microporous polyolefin membrane of the present invention is obtained by impregnating a glass fiber woven fabric with a composition comprising a polyolefin and a solvent, and microporizing the composition by a thermally induced phase separation method.
The glass fiber woven microporous polyolefin membrane of the present invention is a microporous membrane having an air permeability of 1000 seconds to 10 seconds / 100 ml and a porosity of 80% or less.
The thickness is preferably 40 μm or less. If it exceeds 40 μm, it becomes bulky, which tends to hinder the capacity improvement of lithium batteries and aluminum electrolytic capacitors, and the electrical resistance of the separator tends to increase. The film thickness is preferably as thin as possible in order to maintain the function as a separator, but the lower limit is 5 μm from the limit of the thickness of the glass fiber fabric.
[0013]
There are many types of glass fibers, such as alkali-free (E) glass, low dielectric (D) glass, and alkali (A) glass, depending on the composition of the glass fiber. A glass fiber fabric made of alkali-free glass, which is optimal for the application, is preferred. In order to make the film thickness preferably 40 μm or less, more preferably 25 μm or less as a separator for a lithium ion battery or an electrolytic capacitor, the glass fiber fabric preferably has a thickness of 25 μm or less, and the glass fiber filament constituting the fabric has a thickness of 5 μm. The following is preferred. Further, in order to facilitate the impregnation with the polyolefin solution, it is preferable that the yarn forming the woven fabric is opened as much as possible. The weave structure can be any of plain weave, twill weave, satin weave and the like. In order to impregnate the glass fiber woven fabric with the polyolefin solution and to enhance the interfacial affinity between the polyolefin and the glass, it is usually preferable to desizing after weaving the woven fabric, and then to perform a surface treatment with a silane coupling agent or the like. In the present invention, the thickness of the glass fiber fabric is a value measured by observing a cross section of the finally obtained microporous membrane.
[0014]
The polyolefin used in the present invention preferably has a weight average molecular weight of 500,000 or less. More preferably, the weight average molecular weight is 30,000 or more and 300,000 or less. When the weight average molecular weight is larger than 500,000, it is difficult to uniformly impregnate the polyolefin into the glass fiber fabric, voids are apt to remain in the fiber, and pinholes and the like are easily generated in the microporous film.
[0015]
As the polyolefin, a crystalline homopolymer or copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-pentene-1, 1-hexene or the like can be used. Polyolefins can be used alone or as a mixture of two or more of the same or different types, but the mixture preferably has a weight average molecular weight of 500,000 or less. The molecular weight distribution of the polyolefin is not particularly limited, but the presence of a low molecular weight component and a high molecular weight component is more effective in achieving both impregnation and physical properties. The solvent used in the present invention is not particularly limited as long as it can sufficiently dissolve the polyolefin and form a porous structure by heat-induced phase separation.Examples include nonane, decane, decalin, and aliphatic paraffins such as liquid paraffin. Or alicyclic hydrocarbons, phthalic acid diesters such as dibutyl phthalate and diethylhexyl phthalate, aliphatic dibasic acid esters, and phosphoric acid triesters. Liquid paraffin and phthalic acid diester having a high boiling point are preferred from the viewpoint of process stability. The type and amount of the polyolefin and the solvent are selected according to the pore size, permeability, porosity, etc., and the composition range of the polymer and the solvent as the composition is preferably 80:20 to 20:80 by volume ratio. . The higher the solvent ratio, the higher the porosity of the microporous membrane. The air permeability decreases as the pore diameter increases and the porosity increases. The microporous pore size is determined by the type of solvent and the production conditions such as the phase separation temperature. If the polymer ratio exceeds 80%, the porosity tends to decrease, and the viscosity of the composition tends to be high, and the impregnation into the glass fiber fabric tends to be insufficient. If the polymer ratio is less than 20%, not only is the amount of the solvent used too uneconomical, but also when extruding from the extruder, the swell and neck-in at the die exit are large, making extrusion difficult. As a method for impregnating the glass fiber fabric with the polyolefin composition, it is preferable to first melt-knead the composition with a twin-screw extruder and then extrude it from a die to form a film. There is a method in which the composition is extruded from a die and taken out with a roller or the like to form a non-stretched film, or a method in which the composition is extruded and then stretched by a tenter, roll, or inflation method to form a film. The resulting film is applied to one or both sides of the glass fiber fabric and pressed to impregnate the composition with the glass fiber fabric.
[0016]
Press impregnation at a temperature equal to or higher than the phase separation temperature of the composition is preferable from the viewpoint of uniform impregnation. When the composition is once cooled and subjected to phase separation, it is possible to raise the temperature to a temperature equal to or higher than the phase separation temperature and press-impregnate the composition. A method in which the extruded unstretched film is impregnated with a laminate press while maintaining the extruded film at a temperature not lower than the phase separation temperature is a preferable method for solving these problems. The hot press can be performed by compression molding, but a hot press roll can be used for continuous processing. In the method of applying a film to both sides of a woven fabric and press-impregnating, it is important to perform degassing between the glass fiber woven fabric and the composition film so as not to trap air. Also, since the film is easily broken, especially when the film is made by a stretching method, it tends to shrink when heated, so that the glass fiber fabric and the film are laminated at a low temperature in advance, press-fixed, heated, and then press-impregnated again. Is preferred.
[0017]
The solvent is removed by impregnating with a hot press, cooling and microporizing, immersing in a low-boiling extraction solvent for extraction and removal, and then drying and removing at a low temperature that does not affect the microporosity. As the extraction solvent, lower hydrocarbon solvents such as pentane, hexane and heptane are suitable, but volatile solvents such as acetone, methyl ethyl ketone and methylene chloride can also be used.
[0018]
Hereinafter, the method for measuring the physical properties in the present invention will be described.
(1) Intrinsic viscosity The intrinsic viscosity in the present invention is a value measured at 135 ° C. in a decalin solvent. The measurement method is based on ASTM D4020.
(2) The film thickness was measured using a dial gauge (Ozaki Seisakusho: trade name, PEACK No. 25).
(3) A sample having a porosity of 20 cm square was taken, and the volume, mass, and average true density of the film were calculated using the following equation. The average true density of the film was determined by treating the sample in a furnace at 600 ° C. to burn off polyolefin, determining the weight ratio of glass fiber to polyolefin, and using the density value of each element.
Porosity (%) = (volume (cm 3 ) −mass (g) / average true density of membrane) / volume (cm 3 ) × 100
[0019]
(4) Air permeability Measured according to JIS P8117.
(5) Shutdown temperature and heat resistance Two nickel foils (A, B) having a thickness of 10 μm are prepared, and one of the nickel foils A is masked with Teflon (registered trademark) tape leaving a rectangular portion of 15 mm in length and 10 mm in width. At the same time, a microporous membrane of the measurement sample was placed on the other nickel foil B, and both ends of the microporous membrane were fixed with Teflon (registered trademark) tape. The nickel foil B was immersed in a prescribed electrolyte to impregnate the microporous membrane with the electrolyte, and then the nickel foils A and B were stuck together and both sides were pressed by two glass plates. The nickel foil electrode thus prepared is placed in a 25 ° C. oven, heated up to 200 ° C. at a rate of 2 ° C./min, and the electric resistance is measured with an alternating current of 1 kHz. Here, the shutdown temperature is defined as a temperature at which the electrical resistance value of the separator reaches 10 3 Ω. After the completion of the temperature rise, the separator was taken out, and the film breakage and the shape were observed.
(6) Weight average molecular weight Measurement was performed at 135 ° C. using a GPC apparatus and GOH-6 (trade name) manufactured by Tosoh Corporation as a column and O-dicrolbenzene as a solvent.
[0020]
【Example】
[Example 1]
100 parts by weight of high-density polyethylene having a weight-average molecular weight of 150,000 is charged into a twin-screw extruder having a diameter of 30 mm and L / D = 48, and 150 parts by weight of liquid paraffin is injected into the extruder from an injection port provided in a cylinder of the twin-screw extruder. , And sufficiently melt-kneaded at 220 ° C. to prepare a polyethylene solution, and extruded in a sheet form from a T-die attached to the tip of a twin-screw extruder. While extruding the extruded sheet-like polyethylene solution with a pair of rollers to form an unstretched film, a glass fiber woven fabric having a thickness of 16 μm and a basis weight of 20 g / m 2 (trade name, manufactured by Asahi Schwebel Co., Ltd.) , Style 1027TF), and the glass fiber fabric and the hot film were hot-pressed between rollers to impregnate the glass fiber fabric with the polyethylene composition. After cooling the obtained polyethylene composition impregnated glass fiber fabric to room temperature, it was immersed in methyl ethyl ketone to extract liquid paraffin, thereby obtaining a glass fiber fabric reinforced polyethylene microporous membrane. When the obtained glass fiber fabric reinforced polyethylene microporous membrane was cut into a tape to prepare a test sample, the resin was sufficiently impregnated into the glass fiber, the filaments were bundled, and the glass fiber fluff and thread fraying from the cut end. Did not occur at all. The obtained microporous film had a thickness of 25 μm, a porosity of 48%, an air permeability of 350 sec / 100 ml, and a shutdown temperature of 138 ° C. When the sample after the heat resistance test heated to 200 ° C. was taken out and observed, there was no shrinkage or film breakage, and the inter-electrode insulation was maintained. The above measurement results are shown in Table 1.
[0021]
[Example 2]
100 parts by weight of polymethylpentene having a weight-average molecular weight of 100,000 was charged into the twin-screw extruder of Example 1, and 70 parts by weight of dioctyl phthalate was injected into the extruder from an inlet provided in a cylinder of the twin-screw extruder. Then, the mixture was sufficiently melt-kneaded at 260 ° C., and the polymethylpentene solution was extruded into a sheet from a T-die attached to the tip of a twin-screw extruder. The extruded sheet-like polymethylpentene solution is taken up by a pair of rollers to form an unstretched film, and at the same time, the glass fiber fabric of Example 1 is supplied to the rollers, and the glass fibers are heated and compressed between the rollers to form glass fibers. The fabric was impregnated with the solution, and was immersed in methyl ethyl ketone as in Example 1 to extract dioctyl phthalate, thereby obtaining a glass fiber fabric reinforced microporous polymethylpentene membrane. When the obtained microporous membrane of glass fiber reinforced polymethylpentene was cut, the filaments were converged, and no fuzz of the glass fiber and no fraying of the yarn occurred from the cut end. The resulting microporous film had a thickness of 25 μm, a porosity of 40%, and an air permeability of 500 seconds. In the heat resistance test, the electrical conductivity was good up to 200 ° C., no shutdown, and when the sample after the heat resistance test was taken out and observed, there was no shrinkage or film breakage, and the air permeability was measured again. The degree was 600 seconds / 100 ml, indicating heat resistance enough to withstand the solder reflow step in mounting the capacitor. The above measurement results are shown in Table 1.
[0022]
[Comparative Example 1]
100 parts by weight of high-density polyethylene having a weight-average molecular weight of 1,000,000 was put into the twin-screw extruder of Example 1, and 150 parts by weight of liquid paraffin was injected into the extruder from an inlet provided in a cylinder of the twin-screw extruder. The mixture was sufficiently melt-kneaded at 220 ° C., and the polyethylene solution was extruded into a sheet from a T-die attached to the tip of a twin-screw extruder. While extruding the extruded sheet-like polyethylene solution with a pair of rollers to form an unstretched film, at the same time as in Example 1, impregnating the glass fiber fabric with the polyethylene solution and immersing in methyl ethyl ketone to extract liquid paraffin Thus, a microporous membrane was obtained. When the obtained glass fiber woven fabric reinforced polyethylene microporous membrane was cut into a tape shape, glass fiber fluff was generated from the cut end, and the yarns constituting the glass fiber woven fabric were frayed. The obtained film had a non-uniform thickness, and there was a portion not impregnated with polyethylene inside the glass fiber. The average thickness of the film was 25 μm, the porosity was 40%, and the air permeability was 700 seconds / 100 ml. When the shutdown temperature was measured, the temperature was shut down at 140 ° C., but the resistance was reduced to 10 3 Ω or less again at 150 ° C. Observation of the sample after the heat resistance test revealed that the microporous portion was broken at the resin impregnation defective portion. The above measurement results are shown in Table 1.
[0023]
[Comparative Example 2]
100 parts by weight of high-density polyethylene having a weight-average molecular weight of 1,000,000 was supplied to the twin-screw extruder of Example 1, and 120 parts by weight of liquid paraffin was injected from an inlet provided in a cylinder of the twin-screw extruder, and 220 ° C. The polyethylene solution was adjusted by sufficiently performing melt-kneading in step, and the polyethylene solution was extruded into a sheet from a T-die attached to the tip of a twin-screw extruder and cooled. This sheet was set in a biaxial stretching machine, and simultaneously biaxially stretched at 115 ° C. to 7 × 7 times, and liquid paraffin was extracted with methyl ethyl ketone, the film thickness was 25 μm, the porosity was 40%, and the air permeability was 600 seconds. / 100 ml of a polyethylene microporous film was obtained. Next, the microporous film and the glass fiber fabric used in Example 1 were superimposed, preheated to 80 ° C., and roll-compressed at a pressure of 1 MPa to obtain a laminated film. The average thickness of the obtained laminated film was 30 μm, and the air permeability was 700 seconds / 100 ml. When the obtained laminated film was cut into a tape, glass fiber fluff was generated from the cut end, and the yarns constituting the glass fiber fabric were frayed. Shutdown temperature measurement was performed. However, at around 140 ° C., the microporous polyethylene film constituting the laminated film was damaged, and the resistance did not increase to 10 3 Ω. After the test, the sample was taken out and observed. As a result, the polyethylene and the glass fiber fabric were partially peeled off, and a rupture occurred at that part. The above measurement results are shown in Table 1.
[0024]
[Table 1]
Figure 2004269579
[0025]
【The invention's effect】
The glass fiber woven microporous polyolefin membrane reinforced according to the present invention has high strength and excellent permeability, can prevent short-circuiting between electrodes because there is no rupture or shrinkage at high temperature, and has a cut end even when it is cut into a tape during use. It is a microporous membrane that is excellent in characteristics and practically as a separator for lithium batteries or capacitors without the glass fibers fraying from its parts.

Claims (5)

ガラス繊維織物にポリオレフィンが含浸され、且つポリオレフィンが微多孔を形成してなる、透気度1000〜10秒/100ml、空孔率80%以下の、ガラス繊維織物補強ポリオレフィン微多孔膜。A glass fiber woven microporous membrane reinforced with a glass fiber woven fabric impregnated with a polyolefin and having a microporosity of the polyolefin, having a gas permeability of 1000 to 10 seconds / 100 ml and a porosity of 80% or less. ガラス繊維織物の厚さが25μm以下で、微多孔膜の膜厚が40μm以下である、請求項1記載のガラス繊維織物補強ポリオレフィン微多孔膜。The glass fiber woven microporous membrane-reinforced polyolefin membrane according to claim 1, wherein the thickness of the glass fiber woven fabric is 25 µm or less, and the thickness of the microporous membrane is 40 µm or less. ポリオレフィンの重量平均分子量が50万以下である、請求項1または2記載のガラス繊維織物補強ポリオレフィン微多孔膜。The glass fiber woven fabric reinforced polyolefin microporous membrane according to claim 1 or 2, wherein the weight average molecular weight of the polyolefin is 500,000 or less. ガラス繊維が無アルカリガラス繊維である、請求項1〜3のいずれかに記載のガラス繊維織物補強ポリオレフィン微多孔膜。The glass fiber woven fabric reinforced polyolefin microporous membrane according to any one of claims 1 to 3, wherein the glass fiber is a non-alkali glass fiber. ポリオレフィンと溶媒とからなる組成物から形成されたフィルム層を、ガラス繊維織物の両面または片面に適用し、プレスして組成物をガラス繊維織物に含浸し、冷却してついで脱溶媒して多孔化することを特徴とするガラス繊維織物補強ポリオレフィン微多孔膜の製造法。A film layer formed from a composition comprising a polyolefin and a solvent is applied to both sides or one side of the glass fiber fabric, pressed to impregnate the composition into the glass fiber fabric, cooled, and then desolventized to make it porous. A method for producing a microporous polyolefin membrane reinforced with a glass fiber fabric.
JP2003058911A 2003-03-05 2003-03-05 Glass fiber fabric-reinforced polyolefin fine porous membrane Withdrawn JP2004269579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058911A JP2004269579A (en) 2003-03-05 2003-03-05 Glass fiber fabric-reinforced polyolefin fine porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058911A JP2004269579A (en) 2003-03-05 2003-03-05 Glass fiber fabric-reinforced polyolefin fine porous membrane

Publications (1)

Publication Number Publication Date
JP2004269579A true JP2004269579A (en) 2004-09-30

Family

ID=33121910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058911A Withdrawn JP2004269579A (en) 2003-03-05 2003-03-05 Glass fiber fabric-reinforced polyolefin fine porous membrane

Country Status (1)

Country Link
JP (1) JP2004269579A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103038A (en) * 2012-11-21 2014-06-05 Nec Corp Battery separator, method for manufacturing the same, and lithium ion secondary battery
JP2015062174A (en) * 2013-08-22 2015-04-02 ユニチカ株式会社 Porous film
WO2015053228A1 (en) * 2013-10-07 2015-04-16 ユニチカ株式会社 Permeable film, and method for producing same
US9293751B2 (en) 2011-09-07 2016-03-22 The Japan Steel Works, Ltd. Microporous stretched cellulose nanofiber-containing polyolefin film, method for producing microporous stretched cellulose nanofiber-containing polyolefin film, and separator for nonaqueous secondary batteries
JP2016213210A (en) * 2016-09-23 2016-12-15 日本電気株式会社 Battery separator, manufacturing method of the same, and lithium ion secondary battery
CN106711381A (en) * 2017-01-05 2017-05-24 南京航空航天大学 Novel composite diaphragm for lithium ion battery
US9755204B2 (en) 2012-12-12 2017-09-05 Nec Corporation Separator, electrode element, electric energy storage device and method for producing separator
WO2019045076A1 (en) 2017-09-04 2019-03-07 株式会社日本製鋼所 Cellulose nanofiber liquid dispersion, cellulose nanofiber composite resin, and methods for producing dispersion and resin
CN112350025A (en) * 2019-08-09 2021-02-09 江苏厚生新能源科技有限公司 Organic/inorganic hybrid microporous diaphragm and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293751B2 (en) 2011-09-07 2016-03-22 The Japan Steel Works, Ltd. Microporous stretched cellulose nanofiber-containing polyolefin film, method for producing microporous stretched cellulose nanofiber-containing polyolefin film, and separator for nonaqueous secondary batteries
JP2014103038A (en) * 2012-11-21 2014-06-05 Nec Corp Battery separator, method for manufacturing the same, and lithium ion secondary battery
US9755204B2 (en) 2012-12-12 2017-09-05 Nec Corporation Separator, electrode element, electric energy storage device and method for producing separator
JP2015062174A (en) * 2013-08-22 2015-04-02 ユニチカ株式会社 Porous film
JP2019079827A (en) * 2013-08-22 2019-05-23 ユニチカ株式会社 Porous film
JPWO2015053228A1 (en) * 2013-10-07 2017-03-09 ユニチカ株式会社 Breathable film and method for producing the same
CN105593431A (en) * 2013-10-07 2016-05-18 尤尼吉可株式会社 Permeable film, and method for producing the same
WO2015053228A1 (en) * 2013-10-07 2015-04-16 ユニチカ株式会社 Permeable film, and method for producing same
JP2016213210A (en) * 2016-09-23 2016-12-15 日本電気株式会社 Battery separator, manufacturing method of the same, and lithium ion secondary battery
CN106711381A (en) * 2017-01-05 2017-05-24 南京航空航天大学 Novel composite diaphragm for lithium ion battery
WO2019045076A1 (en) 2017-09-04 2019-03-07 株式会社日本製鋼所 Cellulose nanofiber liquid dispersion, cellulose nanofiber composite resin, and methods for producing dispersion and resin
CN112350025A (en) * 2019-08-09 2021-02-09 江苏厚生新能源科技有限公司 Organic/inorganic hybrid microporous diaphragm and application thereof
CN112350025B (en) * 2019-08-09 2022-08-05 江苏厚生新能源科技有限公司 Organic/inorganic hybrid microporous diaphragm and application thereof

Similar Documents

Publication Publication Date Title
JP5635970B2 (en) Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
JP5431581B2 (en) Polyethylene-based composite microporous membrane with highly heat-resistant organic / inorganic coating layer
KR101672815B1 (en) A separator for electrochemical device
KR101666045B1 (en) A separator for electrochemical device
JP5202826B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator
JP5596768B2 (en) Polyethylene microporous membrane and battery separator
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
KR101646101B1 (en) A separator for electrochemical device
US20140295061A1 (en) Microporous polyolefin composite film with a thermally stable porous layer at high temperature
KR101640777B1 (en) Microporous membranes and methods for producing and using such membranes
US9564624B2 (en) Microporous composite film with high thermostable organic/inorganic coating layer
WO2007117006A1 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
TW201838224A (en) Polyolefin microporous membrane, separator for secondary battery with nonaqueous electrolyte, and secondary battery with nonaqueous electrolyte
CN110461925B (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
US20210005860A1 (en) Polyolefin microporous film
KR101292656B1 (en) Polyethyleneterephthalate-based separator for secondary battery
KR101915345B1 (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
JP2004269579A (en) Glass fiber fabric-reinforced polyolefin fine porous membrane
JP2000108249A (en) Laminated composite film
KR101924988B1 (en) A method of manufacturing separator for electrochemical device
JPH1012211A (en) Composite film for battery separator
JP2022048518A (en) Polyolefin microporous film, and coating film and secondary battery including the same
KR101269203B1 (en) Microporous polyolefin film with a thermally stable layer at high temperature
WO2019151220A1 (en) Polyolefin microporous film, coating film and battery, and method for producing polyolefin microporous film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050308

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509