JP2004268004A - Strainer device - Google Patents

Strainer device Download PDF

Info

Publication number
JP2004268004A
JP2004268004A JP2003105876A JP2003105876A JP2004268004A JP 2004268004 A JP2004268004 A JP 2004268004A JP 2003105876 A JP2003105876 A JP 2003105876A JP 2003105876 A JP2003105876 A JP 2003105876A JP 2004268004 A JP2004268004 A JP 2004268004A
Authority
JP
Japan
Prior art keywords
hollow
pipe
filtration
strainer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105876A
Other languages
Japanese (ja)
Inventor
Tetsuo Harada
哲男 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIN SANGYO KK
Original Assignee
HOSHIN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIN SANGYO KK filed Critical HOSHIN SANGYO KK
Priority to JP2003105876A priority Critical patent/JP2004268004A/en
Publication of JP2004268004A publication Critical patent/JP2004268004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide (1) maintenance and automation of a stable water intake and supply capacity by separation/removal/recovery of water organisms and dirts captured by a filtration wire netting, (2) establishment of prevention of lowering in the amount of water intake and extension of its life by imparting corrosion resistance while preventing a deposition of the water organisms, (3) extinction passing of unfilterable water organisms in a larval stage through the inside of the strainer, and (4) prevention of lowering in cooling capacity of the water destination by preventing the deposition of the water organisms in the larval stage passed while surviving to the inside of the pipe and the growth thereof. <P>SOLUTION: The strainer device has a hollow rotary shaft rotatably and vertically installed at the hollow inside central part of a filtration cylinder of a filtration chamber, a hollow support arm whose base is communicated and connected to the hollow rotary shaft and arranged on the radial line of the hollow inside part of the filtration cylinder, blades whose outside surfaces are vertically disposed with prescribed intervals with respect to the inner peripheral face of the filtration cylinder and wherein a rear part of a suction nozzle opened in the outside face is communicated and connected to the tip of the hollow support arm, a rotary driving device of the hollow rotary shaft, and a backwashing device wherein a suction pipe with a suction pump is communicated and connected to the hollow rotary shaft and a sucked solid matter sedimentation and separation tank is interposed in the suction pipe. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、工場用冷却水等の取水用のストレーナー装置に関するものである。
【0002】
【従来の技術】
臨海工業地帯における冷却水は、その大半が中層海水を利用している。中層海水は利用工場の海水取入口から取入れ使用後温排水として再び海に戻している。
【0003】
取入れ海水中には季節に応じて様々な海洋生物が混入し又塵なども多いため、海水取入口側にて海水分解して塩素注入し殺菌後ストレーナー装置にて大物生物や塵を除去している。
例えば海洋生物の紫貝の産卵期は、11月〜3月のため付着期は4月〜5月になるため4月5月の2ケ月間塩素を注入している。
【0004】
また一般的に幼生期水中生物は微細で、ストレーナーを通過して冷却機やその途中迄の配管内に入り付着成長するので、殺菌力のある塩素注入するか配管内の溶解酸素を止めて死滅させたり、または強磁場帯通過させることで鉄製パイプの内壁をFeにして幼生期水中生物の付着を防止しているがこの場合は非常に強力な磁場形成のため人体に対する悪影響が大きく設置場所とその近辺の安全対策が必要である。その上これらの死骸がステーブクーラー内に入り残存付着すると冷却効率を著しく低下させ冷却機の交換時期を著しく早めてしまう。
【0005】
又この他の方法として、海洋生物の管内流速が5〜8cm/secと遅い時に付着し易いため36cm/sec以上になるように流速を早くする運転により付着防止を計る方法があるがポンプが大型化し電力費が嵩むため常にバイパス弁にて途中より逃がすため設備費が掛かる欠点がある。
これらの状況から機械的電気的清掃方法の余地があるものの未だ未開発な状況である。
例えば、大型発電所の腹水器用冷却水として海水を利用する場合の海水取入装置は、タブロゲ等に見られるように取水口部を比重を海水と同じにしたゴムボール等で作り海水の流れに添って浮動させこれに取水パイプを接続しているため、取水パイプの清掃は、取水パイプ内に添った自動清掃が可能であるが取水パイプに接続するストレーナー装置の清掃は構造的に見て密閉型のため甚だ困難であり一般に煩雑な逆洗浄を採用している。
【0006】
ストレーナー装置の一般的な構造は、取水パイプを連通接続した沈殿室の上部に、濾過室を連通接続し、濾過室内にその周壁の内周面に添って所定間隔で濾過円筒を竪配置し、濾過室4の外壁に濾過水の給水パイプを連通接続したものである。
濾過室の濾過円筒は、内側より外に向かって海水が流れるので二重金網の内側金網を比較的大きい海洋生物や塵類の捕捉用として目を比較的大きくし外側金網を細かい海洋生物や塵の捕捉用として目を小さくした2重金網であるが、ここでの捕捉物除去は、通常ストレーナー装置の取水・供給稼働を一旦停止してこの停止中にストレーナー内の流水方向を逆流させる所謂逆洗浄を数回も行って濾過円筒の2重金網から捕捉物を離脱し沈殿室に落下させ沈殿室底部の排出口からストレーナー外に排出しなければならない煩雑で時間の掛かるものである。このため冷却機に海水を連続供給する場合は複数台のストレーナー装置を必要とする。
【0007】
【発明が解決しようとする課題】
以上のことから本発明が解決しょうとする海水・淡水等の取水装置のストレーナー装置における課題は次の通りである。
▲1▼.濾過金網で捕捉した水中生物及び塵類を最も少ない逆洗浄回数で確実に迅速離脱除去回収させて安定した取水供給を維持させなければならないこととその自動化を図ること。
▲2▼.安価な手段で耐蝕性を持たせ同時に水中生物の付着を防止し、取水量の低下防止と延命を図らなければならないこと。
▲3▼.濾過不能の幼生期水中生物は可能な限りストレーナー内で死滅通過させること。
▲4▼.死滅通過した幼生期水中生物と供に生存通過の幼生期水中生物が存在しても給水側管内でこれらの付着防止と付着成長を防止して送水先の冷却能低下を防止しなければならないこと。
【0008】
【課題を解決するための手段】
前記課題を解決する本発明の特徴とする主要な手段は、取水パイプを連通接続した沈殿室の上部に、濾過室を連通接続し、濾過室内にその周壁の内周面に添って所定間隔で濾過円筒を竪配置し、濾過室4の外壁に給水パイプを連通接続したストレーナー装置において、濾過円筒の内空中心部に回転可能に竪設した中空回転シャフトと、中空回転シャフトに基部を連通接続し濾過円筒の内空部半径方向線上に配置した中空支持腕と、外側面を濾過円筒の内周面と所定間隔にして竪配設すると供に外側面に開口した吸引ノズルの後部を中空支持腕の先端に連通接続固定した翼と、中空回転シャフトの回転駆動装置と、中空回転シャフトに吸引ポンプ付設の吸引管を連通接続し吸引管に吸引固形物沈殿分離タンクを介設してなる逆洗浄装置とを設けたストレーナー装置にある。
【0009】
即ち、本発明のストレーナー装置はその逆洗浄を、吸引管で吸水しながら濾過円筒の内空部中で回転シャフトを回転させて、二重金網の内周面と所定近距離離間して飛行機の揚力翼を金網内周面の周方向に沿って移動させることにより、その翼断面効果である外側後面部の減圧効果により振動を与えながら一方の外側面前部の高圧流により吸引ノズルからの吸引力を更に高めて高速吸引して対面する内外二重の金網内周面に付着した大小の水中生物及び塵を確実に迅速離脱吸引除去するものである。これによりストレーナー装置自体とそれ以降の海水通過率を高位に安定維持せしめるものである。
【0010】
【発明の実施の形態】
本発明において翼とは、飛行機の主翼の如き揚力翼を言い、翼上面を外側面として濾過円筒の内周面に向け、翼下面(通常飛行時に揚力を受ける面)を内周面として濾過円筒の中空部中心側に向け、翼先端を濾過円筒の内周方向に沿った移動方向に向け、翼後端をその反移動方向に向けて竪配置したものである。
【0011】
又、翼に複数の磁石を埋設すると良い。例えば翼内にネオジ磁石(3000〜4000G)等を埋設すると翼の回転と金網の間にフラデーの左手法則で強磁場体が発生しこれが回転すると起電流が発生するため陰極電流にて浮遊水中生物は特に幼生期水中生物はこの微電流によっても直接死滅する。また海水中のNaClは微電流によってNaイオンとClイオインとなるため塩素イオンの殺菌効果でも殆どが死滅する。そして供給先の例えばスティーブクーラー等の冷却機迄流れてここで加熱され全量が死滅し温海水と供に排出される。
【0012】
又、取水パイプ及び又は給水パイプの横断面内の周方向に所定角度間隔で半径方向線上にフェライト磁石等の磁石を配置し該磁石のパイプ中心側の磁極をS又はNの同一極性にすることにより、ここに強反発磁場を作り出しここの通水に乱流を発生させて磁石に添ったキャビテーションを発生させる。1例として1000Gのフェライト磁場を三角形に配置することでその中心磁場は2800〜3000Gの強磁場帯となりこれによる乱流とそれによるキャビテーションは強大なものとなる。これでこの強乱流強磁場帯に海水中にある幼生期海洋生物(紫貝、フジツボ、2枚貝等)を通過させることにより乱流強磁場帯の中で海洋生物の着生期幼生は持っている足から分泌する接着液をパイプ内壁面に付着させることができない。
又このキャビテーションにより取水中及び又は給水中の溶解空気が急激に気化しようとする時超音波が発生する。この超音波にて特に幼生期水中生物のパイプ内壁面付着を防止する。
【0013】
又、翼、磁石のケース、取水パイプ及び又は給水パイプの面内、濾過円筒の内外二重式金網の支持枠等を、銅又はCr銅又はBe銅,キュープロニッケル(Cu90−Ni10%,Cu70−Ni30等)等の銅合金製にすると、その表面より、接触する用水に常に銅イオンを放出させ銅イオン殺菌効果により2枚貝などの付着を抑制し付着率を極端に低下させることが出来る。磁石のケースについては混入金属などから磁石を保護する効果がある。
海水用で取水パイプ内の該磁石によるキャビテーション摩耗対策を兼ねる場合は、耐腐性、耐摩耗性に優れたキュープロニッケルなどが好ましい。
【0014】
又、ストレーナー装置はコスト的に安価にするため主力は鉄板で作られるので、ストレーナーの一部を銅又は銅合金にすると銅と鉄の間のイオン化率は鉄に対して銅は+4のため鉄側が溶解する。この鉄の腐蝕を防止するため犠牲極と成る亜鉛板又は亜鉛−アルミ合金板を入れると良い。この犠牲亜鉛板等は早く溶解するため運転中に交換出来るように例えば沈殿室内に配置し、防水型の目視窓を開閉可能に設けてこの犠牲極の減肉状況を観察し適宜なタイミングで点検マンが取り替えるようにすればよい。
この目視窓は、ストレーナー逆洗の際、必ず吸い込み圧力で内面が清掃可能に設置位置を考慮するとよい。
【0015】
【発明の実施例】
図1、図2において、ストレーナー装置は、取水パイプ1を連通接続した沈殿室2の上部に、濾過室3を連通接続し、濾過室3内にその周壁の内周面に添って所定間隔で濾過円筒4を竪配置し、濾過室3の外壁3aに給水パイプ5を連通接続してある。
濾過室3の濾過円筒4の内空中心部には回転可能中空回転シャフト6を竪設し、中空回転シャフト6に2列の中空支持腕7を設ける。各中空支持腕7は基部を中空回転シャフト6に連通接続し濾過円筒4の内空部半径方向線上に配置してある。各列の中空支持腕7先端部にそれぞれ翼9を連通接続する。各翼9はその外側面9aを濾過円筒4の内周面と所定間隔にして竪配設しその外側面9aに開口した吸引ノズル11の後部を中空支持腕7の先端部と連通接続固定する。中空回転シャフト6の上部には、回転駆動装置を接続し、中空回転シャフト6の下部には、ベアーリングジョイント13のベアーリング部14で回転自在に支持し、ベアーリングジョイント13は吸水パイプ15に接続してある。吸引管15は、バルブVB1と吸引固形物沈殿分離タンク16を介設して吸引ポンプ17に連通接続してある。
中空回転シャフト6の回転駆動装置は、中空回転シャフト6の上部を室上部壁の防水機構18に貫通させ減速機19を介してモーター20に繋げたものである。モーター20の回転により一対の翼9は、中空回転シャフト6を中心に濾過室4内壁面に添って回転する。この回転中における濾過室4の内外海水通過量は3〜6m/minにしてある。
【0016】
図3において、翼9は、前述の通り飛行機の主翼の如き揚力翼を言い、翼上面を外側面9aとして濾過円筒4の内周面に向け、翼下面(通常飛行時に揚力を受ける面)を内周面9bとして濾過円筒4の中空部中心側に向け、翼先端Tを濾過円筒の内周方向に沿った移動方向Gに向け、翼後端Bをその反移動方向に向けて竪配置したものである。
その翼断面形状の特性から中空回転シャフト6を回転させて濾過円筒4内周面に沿って外側面を移動させると翼の外側面9aの最上部P1即ち濾過円筒4の二重金網4a,4bの内側金網4aと対面する面の最接近部は高速流の圧縮部となり吸引ノズル11への吸引作用を助長増大させ濾過円筒4内周面の付着物を強力に吸引離脱除去すると供に、その後方部では二重金網の内側金網4aから徐々に離れる減圧領域となるため水流を大きく脈動させ濾過円筒4内周面の付着物に振動を与えながら減圧吸引して離脱させて濾過円筒4の内空部から沈殿室2に沈降させるのである。
【0017】
翼9と中空支持腕7先部との接合構造は、翼9本体にその内外周面に亘って成形した吸引ノズル11の翼内周面側に中空支持腕7先端部を螺合接続し、摩耗による交換を容易にしてある。
翼9は、外側面部が濾過円筒4内周面付着物との摩耗に対して定期修理の際測定の上で隙間が調整できるように、中空支持腕7の中間部にターンパイプジョイント23を設けこれの回転で微調節するのである。調節後は締付ナットで締付固定する。
中空支持腕7は、中空回転シャフト6との曲げモーメントに耐えるため厚肉ステンレス(SUS316L)パイプである。
翼9にはφ3mm×10mm長400Gのネオジマグネット10を100個図示の如く均等間隔で埋設しM4×5mmのSUS製ホローセット等で止めてある。
このネオジマグネット10は翼9の回転でストレーナー側に起電力作用をし微電流を発生させ幼生期海洋生物の付着を防止する。
翼9は、回転の際の圧縮水及び内側金網4aにトラップされた塵などとの接触に対して耐摩耗性を持たせるためCr銅又はBe銅の鋳造焼入品で硬度Hs45±5と銅でありながら硬くしてある。
【0018】
図5には、取水パイプ1及び給水パイプ5の横断面内の周方向に所定角度間隔で半径方向線上に1000G(ガウス)フェライト磁石8を銅合金製ケース8a内に配置し該磁石8のパイプ中心側の磁極を同一極性この例はS極にした要部横断面図を示す。
このように同極配置すると同極反撥磁場のため該フェライト磁石8が2800〜3000Gの強磁場を形成しここの通水流に対して直角に磁力線が出て乱流とこれによるキャビティーションを発生させ海洋生物などの付着を防止する。
【0019】
沈殿室2には、前記銅又は銅合金製の部材を使用しているためストレーナー装置の鉄側が溶解するのでこの鉄の腐蝕を防止する防止するため亜鉛板又は亜鉛−アルミ合金板の犠牲極25を交換可能に設け且つこれを交換するための防水目視型の開閉窓26を設けてある。
【0020】
しこうして、逆洗浄による自動排出貝殻除去操作を伴うため、無理の無い理想的な自動運転には、ストレーナー装置の2基運転が良いが、1基運転の場合は、図1、図2に示す如く、沈殿室2とは別途に、吸引ポンプ17を付設した吸引パイプ15に連通接続させた吸引固形物の沈殿分離タンク16を有する逆洗浄装置を設置したので完全な自動運転が可能となる。
【0021】
この逆洗浄装置の稼働は、通常の取水・給水稼働中に、濾過円筒4に多くの付着物が付着して詰まり始め通水不良となると、給水パイプ5内に設けた出口圧力計12の指示値が取水パイプ1内に設けた圧力計24の指示値より所定値低くなった時、それが復帰するまでの予測時間中自動的にモーター20を駆動させ翼9を回転させると供に沈殿分離タンク16のバルブSV3を閉にし吸引ポンプ17を稼働させ逆洗浄バルブSV1、VB4を開にして供給側から海水を吸い込み濾過円筒4を逆洗浄する。 この逆洗浄時の海水と付着物の流れは翼の吸引ノズル11、中空支持腕7、中空回転シャフト6、逆洗浄水の吸引パイプ15、バルブVB1、沈殿分離タンク16、濾過網16a、バルブVB4、吸引ポンプ17の順となる。
これと同時に、吸引ノズル11で吸引されず翼9後部の減圧振動作用で濾過円筒から中空部に離脱され中空部に出され沈殿室2に沈降した貝殻等の水中生物や塵なども沈殿室2外に放出するためバルブSV2も開とし沈殿室2内の貝殻、塵を沈殿分離タンク16に導入しその底部に沈降させ一時的に貯留させ、逆洗浄直後またはタイマーによりバルブSV3を開としこれらを自重落降排出する。
【0022】
【発明の効果】
本発明による効果は次の通りである。
▲1▼.濾過金網で捕捉した水中生物及び塵類を吸引ノズル付き翼の回転による逆洗浄で簡単に確実に迅速離脱除去させて安定した取水供給を維持することができその自動化が図れた。
▲2▼.ストレーナー内の耐蝕性を持たせると同時に水中生物の付着を防止し、取水量の低下防止と延命を図ることができた。
▲3▼.濾過不能の幼生期水中生物をストレーナー内で死滅通過させることができる。
▲4▼.ストレーナー装置を生存通過の幼生期水中生物は、管内での付着防止と成長を防止して送水先の冷却能低下を防止することができる。
【0023】
つまり本発明のストレーナー装置は、通常の取水・供給稼働時は濾過室で所定の通水機能を維持しながら海水中の海洋生物と塵類を濾過捕捉すると供にそれの逆洗浄時には翼を回転させ効率よく迅速に離脱除去する。また翼へ磁石を埋設すれば翼回転により海水にフレミングの法則で微電流を流し又海水を磁化しまた塩素イオンやZn+Alの溶解イオンを溶かし込んで海水給排鉄管路内壁面を赤錆の無いFeの強化錆にし海水接触面の腐蝕を防止する供に、海洋生物の付着を防止する。
また取水パイプや給水パイプ内で強力反撥磁場帯とキャビティーション泡の相乗効果により幼生期海洋生物の駆除及び付着と付着生成を防止する。
これによって海水を使用する冷却装置の冷却能を長期に亘って高位に安定維持させるものである。
また小型化及び自動化が可能であり、安定した冷却水等の取水側のストレーナー装置として活用できるので、海水に限らず川水、池水等の淡水の取水に際しても淡水中の生物の発生を抑え且つ幼生期淡水生物でも海水同様の優れた駆除効果を発揮する。
このため本発明のストレーナー装置はあらゆる産業における冷却装置の復水器に利用する事が出来る。
【0022】
【図面の簡単な説明】
【図1】本発明の1実施例を示す図2の矢視I−Iからの平断面説明図である
【図2】図1の矢視II−IIからみた側断面説明図である。
【図3】図2の矢視III−IIIからみたパイプ内磁石の配設態様を示す横断面説明図である。
【図4】本発明の1実施例における翼の要部拡大斜視説明図である。
【符号の説明】
1:取水パイプ
2:沈殿室
3:濾過室
4:濾過円筒
5:給水パイプ
6:中空回転シャフト
7:中空支持腕
9:翼
10:ネオジマグネット
11:吸引ノズル
13:ベアーリングジョイント
14:ベアーリング部
15:吸水パイプ
SV1、SV2、SV3、SV4:バルブ
16:吸引固形物沈殿分離タンク
17:吸引ポンプ
18:防水機構
20:減速機
19:モーター
23:ターンパイプジョイント
25:亜鉛板又は亜鉛−アルミ合金板の犠牲極
26:防水目視型の開閉窓
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a strainer device for taking water such as cooling water for factories.
[0002]
[Prior art]
Most of the cooling water in the coastal industrial zone uses middle seawater. Mid-level seawater is taken in from the seawater inlet of the user factory and returned to the sea as warm wastewater after use.
[0003]
Since various marine organisms are mixed in the intake seawater depending on the season and there are many dusts, seawater is decomposed at the seawater intake side, chlorine is injected, sterilization is performed, and large organisms and dust are removed with a strainer device. I have.
For example, the spawning season of purple marine shellfish is from November to March, and the attachment period is from April to May, so chlorine is injected for two months from April to May.
[0004]
In general, larval aquatic organisms are fine and pass through the strainer and enter the cooler and pipes in the middle, and grow by adhesion.Therefore, kill them by injecting bactericidal chlorine or stopping dissolved oxygen in the pipes. The inner wall of the iron pipe is made of Fe 2 O 4 to prevent the attachment of larval aquatic organisms by passing or passing through a strong magnetic field band. However, in this case, the formation of a very strong magnetic field has a large adverse effect on the human body. It is necessary to take safety measures at and around the installation site. In addition, if these dead bodies enter the stave cooler and adhere to the stove cooler, the cooling efficiency is significantly reduced, and the time for replacing the cooler is significantly shortened.
[0005]
As another method, there is a method of preventing adhesion by increasing the flow velocity so as to be 36 cm / sec or more because the marine organism easily adheres when the flow velocity in the pipe is as slow as 5 to 8 cm / sec. However, there is a drawback in that the cost is increased, and the cost of equipment is increased because the electric power is increased and the gas is always escaped from the middle by the bypass valve.
Although there is room for mechanical and electrical cleaning methods in these circumstances, it is still an untapped condition.
For example, in the case of using seawater as cooling water for ascites in a large power plant, a seawater intake device is made of a rubber ball or the like whose specific gravity is the same as that of seawater, as seen in tabloges, etc. The water intake pipe is connected to the water intake pipe, so that the water intake pipe can be cleaned automatically along the water intake pipe.However, the cleaning of the strainer device connected to the water intake pipe is structurally sealed. Because of the mold, it is extremely difficult and generally employs complicated backwashing.
[0006]
The general structure of the strainer device is that the filtration chamber is connected and connected to the upper part of the sedimentation chamber to which the intake pipe is connected and connected, and the filtration cylinders are vertically arranged at predetermined intervals along the inner peripheral surface of the peripheral wall in the filtration chamber, A filtration water supply pipe is connected to the outer wall of the filtration chamber 4.
Since the seawater flows from the inside to the outside of the filtration chamber in the filtration chamber, the inside of the double wire mesh is relatively large for catching relatively large marine life and dust, and the outside wire mesh is fine. This is a double wire mesh with a small eye for catching. However, the removal of trapped material here is a so-called reverse flow in which the water intake / supply operation of the strainer device is temporarily stopped and the flowing direction of the water in the strainer is reversed during this stop. The washing is performed several times, and the trapped material is separated from the double wire mesh of the filtration cylinder, dropped into the sedimentation chamber, and discharged from the outlet at the bottom of the sedimentation chamber to the outside of the strainer, which is troublesome and time-consuming. Therefore, when seawater is continuously supplied to the cooler, a plurality of strainer devices are required.
[0007]
[Problems to be solved by the invention]
From the above, the problems to be solved by the present invention in the strainer device of the water intake device for seawater, freshwater, etc. are as follows.
▲ 1 ▼. An object is to ensure that aquatic organisms and dust trapped by a filter wire mesh are quickly separated, removed and recovered with the least number of backwashing steps to maintain a stable water supply and to automate the same.
▲ 2 ▼. Inexpensive means must be used to provide corrosion resistance and at the same time prevent the ingress of underwater organisms, to prevent a reduction in water intake and to prolong life.
(3). Non-filterable larval aquatic organisms should be killed and passed through strainers whenever possible.
▲ 4 ▼. Even if there are larval aquatic organisms that have survived and pass through the larval aquatic organisms that have passed, they must be prevented from adhering and preventing their growth in the pipe on the water supply side to prevent a decrease in the cooling capacity of the water supply destination. .
[0008]
[Means for Solving the Problems]
The main feature of the present invention that solves the above-mentioned problem is that a filtration chamber is connected and connected to an upper part of a sedimentation chamber to which an intake pipe is connected and connected at predetermined intervals along an inner peripheral surface of a peripheral wall in the filtration chamber. In a strainer device in which a filtration cylinder is vertically arranged and a water supply pipe is connected to the outer wall of the filtration chamber 4, a hollow rotary shaft vertically rotatably installed in the center of the inner space of the filtration cylinder and a base connected to the hollow rotary shaft are connected. A hollow support arm arranged on the radial line in the inner space of the filtration cylinder, and a rear end of the suction nozzle opened on the outer surface when the outer surface is vertically arranged at a predetermined distance from the inner peripheral surface of the filtration cylinder. A wing fixed in communication with the tip of the arm, a rotary driving device for the hollow rotary shaft, and a suction pipe provided with a suction pump connected to the hollow rotary shaft, and a suction pipe is provided with a suction solid sedimentation separation tank interposed therebetween. Provide a cleaning device In the strainer apparatus.
[0009]
In other words, the strainer device of the present invention rotates the rotary shaft in the inner space of the filtration cylinder while absorbing water with a suction pipe and separates the backwash by a predetermined short distance from the inner peripheral surface of the double wire mesh. By moving the lifter blades along the circumferential direction of the inner peripheral surface of the wire mesh, the suction force from the suction nozzle is generated by the high pressure flow at one of the outer surface fronts while giving vibration due to the pressure reduction effect of the outer rear surface, which is the effect of the blade cross section. The size and size of underwater creatures and dust adhering to the inner peripheral surface of the inner and outer double wire mesh facing each other by high-speed suction are surely rapidly removed and removed. Thereby, the strainer device itself and the seawater passing rate thereafter can be stably maintained at a high level.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the wing refers to a lifting wing such as the main wing of an airplane, with the upper surface of the wing facing the inner peripheral surface of the filtering cylinder with the outer surface facing the inner surface of the filtering cylinder, and the lower surface of the wing (the surface that receives lift during normal flight) as the inner peripheral surface. The blade is vertically arranged with the tip of the blade in the direction of movement along the inner circumferential direction of the filtration cylinder and the rear end of the blade in the direction opposite to the direction of movement.
[0011]
In addition, a plurality of magnets may be embedded in the wing. For example, if a neodymium magnet (3000-4000G) is buried in the wing, a strong magnetic field is generated between the rotation of the wing and the wire mesh according to the Fradet's left rule, and when this rotates, an electromotive current is generated. In particular, larval aquatic organisms are directly killed by this microcurrent. Further, since NaCl in seawater is converted into Na ion and Cl ion by a small current, most of the NaCl is killed even by the bactericidal effect of chlorine ion. Then, it flows to a cooler such as a stee cooler at the supply destination, where it is heated and the whole amount is killed and discharged together with warm seawater.
[0012]
In addition, a magnet such as a ferrite magnet is arranged on a radial line at a predetermined angular interval in a circumferential direction in a cross section of the intake pipe and / or the water supply pipe, and a magnetic pole on the pipe center side of the magnet has the same polarity of S or N. As a result, a strong repulsive magnetic field is generated here, and turbulence is generated in the water passing therethrough to generate cavitation along the magnet. For example, by arranging a ferrite magnetic field of 1000 G in a triangular shape, the central magnetic field becomes a strong magnetic field band of 2800 to 3000 G, and the turbulence and the cavitation due to the turbulence thereby become strong. The larvae of the marine life (purple shell, barnacle, bivalve, etc.) in the seawater pass through the strong turbulence strong magnetic field zone, and the larvae of the marine life in the turbulent strong magnetic field zone Adhesive liquid secreted from the feet you have cannot adhere to the inner wall of the pipe.
Also, due to the cavitation, ultrasonic waves are generated when the dissolved air in the intake water and / or the supply water is going to vaporize rapidly. The ultrasonic waves prevent the larval underwater organisms from adhering to the inner wall of the pipe.
[0013]
Further, copper, Cr copper or Be copper, cupronickel (Cu90-Ni10%, Cu70) are used for supporting the wings, the case of the magnet, the plane of the intake pipe and / or the water supply pipe, the inner and outer double wire mesh of the filter cylinder, and the like. -Ni30 etc.), the copper ion is always released from the surface into the contacting water, the adhesion of bivalves etc. is suppressed by the copper ion sterilizing effect, and the adhesion rate can be extremely reduced. . The magnet case has an effect of protecting the magnet from mixed metal and the like.
In the case of seawater, when cavitation abrasion due to the magnets in the intake pipe is also used, cupro nickel or the like having excellent corrosion resistance and wear resistance is preferable.
[0014]
In addition, the main component is made of iron plate to make the strainer device inexpensive, so if a part of the strainer is made of copper or copper alloy, the ionization rate between copper and iron is iron, so copper is +4 compared to iron. The side dissolves. In order to prevent the corrosion of iron, a zinc plate or a zinc-aluminum alloy plate serving as a sacrificial electrode is preferably provided. This sacrificial zinc plate is melted quickly so that it can be replaced during operation, for example, placed in the sedimentation chamber. A waterproof viewing window is provided so that it can be opened and closed. The man should replace it.
It is advisable to consider the installation position of this viewing window so that the inner surface can always be cleaned by suction pressure when the strainer is backwashed.
[0015]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In FIGS. 1 and 2, the strainer device has a filtration chamber 3 connected to an upper part of a sedimentation chamber 2 to which an intake pipe 1 is connected and connected, and is provided inside the filtration chamber 3 at a predetermined interval along an inner peripheral surface of a peripheral wall thereof. A filtration cylinder 4 is arranged vertically, and a water supply pipe 5 is connected to an outer wall 3 a of the filtration chamber 3.
A rotatable hollow rotary shaft 6 is vertically installed at the center of the inner space of the filtration cylinder 4 of the filtration chamber 3, and the hollow rotary shaft 6 is provided with two rows of hollow support arms 7. Each hollow support arm 7 has a base connected to the hollow rotary shaft 6 and is disposed on a radial line in the inner space of the filter cylinder 4. The wings 9 are connected to the tips of the hollow support arms 7 in each row. Each wing 9 has its outer surface 9a vertically arranged at a predetermined distance from the inner peripheral surface of the filtration cylinder 4, and the rear portion of the suction nozzle 11 opened on its outer surface 9a is connected and fixed to the tip of the hollow support arm 7 by communication. . A rotary drive device is connected to the upper part of the hollow rotary shaft 6, and the lower part of the hollow rotary shaft 6 is rotatably supported by a bearing part 14 of a bearing 13, and the bearing 13 is connected to a water absorbing pipe 15. Connected. The suction pipe 15 is connected to a suction pump 17 via a valve VB1 and a suction solid precipitate separation tank 16.
The rotary driving device of the hollow rotary shaft 6 is configured such that the upper portion of the hollow rotary shaft 6 penetrates the waterproof mechanism 18 on the upper wall of the chamber and is connected to the motor 20 via the speed reducer 19. The rotation of the motor 20 causes the pair of blades 9 to rotate around the hollow rotary shaft 6 along the inner wall surface of the filtration chamber 4. The amount of seawater passing through the inside and outside of the filtration chamber 4 during this rotation is set to 3 to 6 m 2 / min.
[0016]
In FIG. 3, the wing 9 is a lift wing such as the main wing of an airplane as described above. The upper surface of the wing is directed toward the inner peripheral surface of the filter cylinder 4 with the upper surface of the wing being the outer surface 9a. As the inner peripheral surface 9b, the blade tip T is vertically arranged toward the center of the hollow portion of the filtration cylinder 4, the wing tip T is oriented in the moving direction G along the inner peripheral direction of the filtration cylinder, and the wing trailing end B is oriented in the opposite direction of movement. Things.
When the hollow rotary shaft 6 is rotated to move the outer surface along the inner peripheral surface of the filter cylinder 4 due to the characteristics of the blade cross-sectional shape, the uppermost portion P1 of the outer surface 9a of the blade, that is, the double wire mesh 4a, 4b of the filter cylinder 4 is obtained. The closest part of the surface facing the inner wire mesh 4a becomes a compression part of a high-speed flow, which enhances the suction action to the suction nozzle 11 and strongly removes and adheres the deposits on the inner peripheral surface of the filtration cylinder 4, and thereafter On the other hand, the depressurized region gradually separates from the inner wire mesh 4a of the double wire mesh, so that the water flow is greatly pulsated, and the debris is suctioned and removed while applying vibration to the attached matter on the inner peripheral surface of the filter cylinder 4 to separate the filter cylinder 4 from the inside. The sediment is settled from the empty space into the sedimentation chamber 2.
[0017]
The joint structure between the wing 9 and the tip of the hollow support arm 7 is formed by screwing the tip of the hollow support arm 7 to the inner peripheral surface side of the wing 9 of the suction nozzle 11 formed over the inner and outer peripheral surfaces of the wing 9 body, Easy replacement due to wear.
The wing 9 is provided with a turn pipe joint 23 at an intermediate portion of the hollow support arm 7 so that the gap can be adjusted by measuring the outer surface of the filter cylinder 4 against the deposits on the inner peripheral surface of the filter cylinder 4 at the time of periodic repair. Fine adjustment is made by this rotation. After the adjustment, tighten and fix with the tightening nut.
The hollow support arm 7 is a thick stainless steel (SUS316L) pipe to withstand a bending moment with the hollow rotary shaft 6.
As shown in the figure, 100 wings 9 are provided with 100 φ3 mm × 10 mm neodymagnets 10 having a length of 400 G and are buried at equal intervals and fixed with an M4 × 5 mm SUS hollow set or the like.
The neodymagnet 10 generates an electromotive force on the strainer side by the rotation of the wings 9 to generate a small current, thereby preventing attachment of larval marine life.
The wing 9 is made of a cast and quenched product of Cr copper or Be copper and has a hardness of Hs45 ± 5 and has a hardness of Hs45 ± 5 in order to have abrasion resistance against contact with compressed water and dust trapped in the inner wire mesh 4a during rotation. But it is hard.
[0018]
FIG. 5 shows that a 1000 G (Gauss) ferrite magnet 8 is arranged in a copper alloy case 8 a on a radial line at a predetermined angular interval in a circumferential direction in a cross section of the intake pipe 1 and the water supply pipe 5, and a pipe of the magnet 8 is provided. This example shows a cross section of a main part in which the magnetic poles on the center side have the same polarity.
When arranged in the same polarity, the ferrite magnet 8 forms a strong magnetic field of 2800 to 3000 G due to the same polarity repulsive magnetic field, and lines of magnetic force appear at right angles to the flowing water to generate turbulence and cavitation due to the turbulence. To prevent marine organisms from adhering.
[0019]
In the sedimentation chamber 2, since the iron side of the strainer device is melted because the member made of copper or copper alloy is used, the sacrificial electrode 25 of a zinc plate or a zinc-aluminum alloy plate is used to prevent corrosion of the iron. Are provided so as to be replaceable, and a waterproof visual opening / closing window 26 for replacing the same is provided.
[0020]
Thus, the operation of removing the discharged shells by backwashing is involved. Therefore, for ideal automatic operation without difficulty, two units of the strainer device are good. However, in the case of one unit, the operation is shown in FIGS. 1 and 2. As described above, separately from the sedimentation chamber 2, a backwashing device having a suction solid sedimentation separation tank 16 connected to a suction pipe 15 provided with a suction pump 17 is installed, so that a completely automatic operation becomes possible.
[0021]
The operation of the backwashing device is based on the indication of the outlet pressure gauge 12 provided in the water supply pipe 5 when a large amount of deposits adhere to the filter cylinder 4 and clogging starts during the normal water intake / water supply operation, resulting in poor water flow. When the value becomes lower than the indicated value of the pressure gauge 24 provided in the water intake pipe 1 by a predetermined value, the motor 20 is automatically driven and the blade 9 is rotated during the predicted time until the pressure is restored, and the sedimentation is separated. The valve SV3 of the tank 16 is closed, the suction pump 17 is operated, and the backwash valves SV1 and VB4 are opened to suck seawater from the supply side and backwash the filter cylinder 4. The flow of seawater and deposits during the backwash is determined by the suction nozzle 11 of the blade, the hollow support arm 7, the hollow rotary shaft 6, the suction pipe 15 of the backwash water, the valve VB1, the sedimentation separation tank 16, the filtration net 16a, and the valve VB4. , And the suction pump 17 in that order.
At the same time, the water is not sucked by the suction nozzle 11 and is separated from the filter cylinder into the hollow part by the depressurizing vibration action at the rear part of the wing 9, is discharged into the hollow part, and is immersed in the sedimentation chamber 2. The valve SV2 is also opened to discharge to the outside, and shells and dust in the sedimentation chamber 2 are introduced into the sedimentation / separation tank 16 and settled at the bottom thereof to be temporarily stored. Immediately after the back washing or the timer SV3 is opened by the timer to open these. Releases under its own weight.
[0022]
【The invention's effect】
The effects of the present invention are as follows.
▲ 1 ▼. The underwater organisms and dust caught by the filtration wire mesh were easily and reliably removed and removed quickly and easily by backwashing by rotating the blades with suction nozzles, and a stable water supply was maintained.
▲ 2 ▼. The corrosion resistance inside the strainer was improved, and at the same time, the adhesion of underwater organisms was prevented.
(3). Non-filterable larval aquatic organisms can be killed and passed through the strainer.
▲ 4 ▼. Larval aquatic organisms that survive and pass through the strainer device can be prevented from adhering and growing in the pipe, thereby preventing a decrease in the cooling capacity of the water supply destination.
[0023]
In other words, the strainer device of the present invention is capable of filtering and capturing marine organisms and dust in seawater while maintaining a predetermined water-passing function in the filtration chamber during normal intake / supply operation, and rotating the wings when backwashing the same. And removes quickly and efficiently. If a magnet is buried in the wing, a small current flows through seawater by the rotation of the wing according to Fleming's law, magnetizes the seawater, and dissolves chlorine ions or Zn + Al dissolved ions to remove the rust-free Fe in the seawater supply / exhaust iron pipe inner wall. 2 O 4 is reinforced to prevent corrosion of the seawater contact surface, and also prevents marine organisms from adhering.
In addition, the synergistic effect of the strong repulsion magnetic field zone and the cavitation bubbles in the water intake pipe and water supply pipe prevents the eradication of larval marine organisms and prevents the formation and formation of marine organisms.
As a result, the cooling capacity of the cooling device using seawater is stably maintained at a high level for a long period of time.
In addition, since it can be miniaturized and automated and can be used as a strainer device on the intake side for stable cooling water, etc., the generation of organisms in freshwater can be suppressed even when taking freshwater such as river water and pond water as well as seawater and Even larval freshwater organisms have the same excellent control effect as seawater.
For this reason, the strainer device of the present invention can be used for a condenser of a cooling device in any industry.
[0022]
[Brief description of the drawings]
FIG. 1 is a plan sectional view taken on line II of FIG. 2 showing one embodiment of the present invention. FIG. 2 is a side sectional view taken on line II-II of FIG.
FIG. 3 is an explanatory cross-sectional view showing an arrangement mode of magnets in a pipe as viewed from the direction of arrows III-III in FIG. 2;
FIG. 4 is an enlarged perspective view illustrating a main part of a wing according to an embodiment of the present invention.
[Explanation of symbols]
1: Intake pipe 2: Sedimentation chamber 3: Filtration chamber 4: Filtration cylinder 5: Water supply pipe 6: Hollow rotating shaft 7: Hollow support arm 9: Blade 10: Neodymium magnet 11: Suction nozzle 13: Bearing joint 14: Bearing Part 15: Water absorption pipes SV1, SV2, SV3, SV4: Valve 16: Suction solid sedimentation separation tank 17: Suction pump 18: Waterproof mechanism 20: Reduction gear 19: Motor 23: Turn pipe joint 25: Zinc plate or zinc-aluminum Alloy plate sacrificial pole 26: Waterproof visual window

Claims (8)

取水パイプを連通接続した沈殿室の上部に、濾過室を連通接続し、濾過室内にその周壁の内周面に添って所定間隔で濾過円筒を竪配置し、濾過室4の外壁に給水パイプを連通接続したストレーナー装置において、濾過円筒の内空中心部に回転可能に竪設した中空回転シャフトと、中空回転シャフトに基部を連通接続し濾過円筒の内空部半径方向線上に配置した中空支持腕と、外側面に吸引ノズルを開口し吸引ノズルの後部を中空支持腕の先端に連通接続固定し外側面を濾過円筒の内周面に対向し且つ該外側面を濾過円筒の内周面に沿って移動可能に竪配設た翼と、中空回転シャフトの回転駆動装置と、中空回転シャフトに吸引ポンプ付設の吸引管を連通接続し吸引管に吸引固形物沈殿分離タンクを介設してなる逆洗浄装置とを設けたことを特徴とするストレーナー装置。A filtration chamber is connected to the upper part of the sedimentation chamber to which the water intake pipe is connected, and a filtration cylinder is vertically arranged at a predetermined interval along the inner peripheral surface of the peripheral wall in the filtration chamber. In the strainer device connected in communication, a hollow rotary shaft vertically rotatably installed in the center of the inner space of the filtration cylinder, and a hollow support arm connected to the base of the hollow rotation shaft and connected to a radial line of the inner space of the filtration cylinder A suction nozzle is opened on the outer surface, the rear portion of the suction nozzle is communicatively connected to the tip of the hollow support arm, and the outer surface is opposed to the inner peripheral surface of the filtration cylinder and the outer surface is along the inner peripheral surface of the filtration cylinder. Wings vertically movable so as to be movable, a rotary driving device for a hollow rotary shaft, and a suction pipe provided with a suction pump connected to the hollow rotary shaft, and a suction pipe is provided with a suction solid sedimentation separation tank. It is noted that the Strainer apparatus according to. 翼に複数の磁石を埋設したことを特徴とする請求項1に記載のストレーナー装置。The strainer device according to claim 1, wherein a plurality of magnets are embedded in the wing. 翼を銅又は銅合金製にしたことを特徴とする請求項1に記載のストレーナー装置。The strainer device according to claim 1, wherein the wing is made of copper or a copper alloy. 取水パイプ及び又は給水パイプの横断面内の周方向に所定角度間隔で半径方向線上に磁石を配置し該磁石のパイプ中心側の磁極を同一極性にしたことを特徴とする請求項1に記載のストレーナー装置。2. The magnet according to claim 1, wherein magnets are arranged on a radial line at predetermined angular intervals in a circumferential direction in a cross section of the water intake pipe and / or the water supply pipe, and magnetic poles of the magnets on the center side of the pipe have the same polarity. Strainer equipment. 取水パイプ及び又は給水パイプの横断面内の周方向に所定角度間隔で半径方向線上に銅製ケース内に装填した磁石を配置し該磁石のパイプ中心側の磁極を同一極性にしたことを特徴とする請求項4に記載のストレーナー装置。A magnet loaded in a copper case is disposed radially at predetermined angular intervals in a circumferential direction in a cross section of an intake pipe and / or a water supply pipe, and magnets arranged in a pipe center side of the magnet have the same polarity. The strainer device according to claim 4. 取水パイプ及び又は給水パイプの面内に銅又は銅合金をライニングしたことを特徴とする請求項1に記載のストレーナー装置。The strainer device according to claim 1, wherein copper or a copper alloy is lined in a plane of the intake pipe and / or the water supply pipe. 濾過円筒の支持枠を銅又は銅合金製にしたことを特徴とする請求項1に記載のストレーナー装置。The strainer device according to claim 1, wherein the support frame of the filtration cylinder is made of copper or a copper alloy. 亜鉛板を沈殿室内に交換可能に設けたことを特徴とする請求項5から請求項7のいずれか一つに記載のストレーナー装置。The strainer device according to any one of claims 5 to 7, wherein the zinc plate is replaceably provided in the precipitation chamber.
JP2003105876A 2003-03-05 2003-03-05 Strainer device Pending JP2004268004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105876A JP2004268004A (en) 2003-03-05 2003-03-05 Strainer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105876A JP2004268004A (en) 2003-03-05 2003-03-05 Strainer device

Publications (1)

Publication Number Publication Date
JP2004268004A true JP2004268004A (en) 2004-09-30

Family

ID=33127894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105876A Pending JP2004268004A (en) 2003-03-05 2003-03-05 Strainer device

Country Status (1)

Country Link
JP (1) JP2004268004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226002A (en) * 2014-09-23 2014-12-24 浙江传化华洋化工有限公司 Reciprocating filter for filtering nanofiltrate and using method thereof
CN112999722A (en) * 2021-03-11 2021-06-22 杭州骢稷科技有限公司 Self-cleaning filter with rotary spray head
CN115400511A (en) * 2021-06-21 2022-11-29 盐城市兰丰环境工程科技有限公司 Special dust remover for mine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226002A (en) * 2014-09-23 2014-12-24 浙江传化华洋化工有限公司 Reciprocating filter for filtering nanofiltrate and using method thereof
CN112999722A (en) * 2021-03-11 2021-06-22 杭州骢稷科技有限公司 Self-cleaning filter with rotary spray head
CN115400511A (en) * 2021-06-21 2022-11-29 盐城市兰丰环境工程科技有限公司 Special dust remover for mine

Similar Documents

Publication Publication Date Title
CA3052566C (en) Apparatus for removal and collection of fouling from a dived structure and a method for using the apparatus
KR101709143B1 (en) The Erasing apparatus and the method for floating particles in wasted water
JP5996568B2 (en) Suction device
CN104507591B (en) Cleaning head for clean surface, the equipment including the cleaning head and clean method
JP2009018299A (en) Integrated submarine maintenance system
CN111706556A (en) Prevent blockking up water intaking fire control water pump
JP4505420B2 (en) Filter
EP0259696B1 (en) Method for filtering water containing plankton
JP2004268004A (en) Strainer device
KR20040092421A (en) water quality improvement system of stagnant waters
CN216664276U (en) Anti-blocking dredging equipment for fish pond
JP3549092B2 (en) Method and apparatus for suppressing marine organism adhesion and growth
CN208678542U (en) A kind of antifouling self-cleaning seawater filter
CN209940668U (en) Miniature surface of water biological clearance collection device
CN210656556U (en) Magnetized mineral water apparatus for producing
CN210847319U (en) Self-suction type underwater fishing net cleaning device
CN212757614U (en) Sedimentation and filtration device for swimming pool water treatment
CN108569800A (en) A kind of monoblock type open air water body purification device
CN112726802A (en) Dirt-removing anti-blocking drainage device
CN208175815U (en) A kind of fresh-water fishes fish pond trash-removal device
CN111758664A (en) Intelligent water body circulation system for crab industrial aquaculture
KR20170061335A (en) System for protecting floating fish cage
CN214657653U (en) Dirt-removing anti-blocking drainage device
CN216986508U (en) Land-based circulating water aquaculture pond and tail water treatment equipment
CN215381148U (en) Aquatic product cleaning device