JP2004267806A - Method for detoxifying incineration ash or the like at high temperature - Google Patents

Method for detoxifying incineration ash or the like at high temperature Download PDF

Info

Publication number
JP2004267806A
JP2004267806A JP2003057835A JP2003057835A JP2004267806A JP 2004267806 A JP2004267806 A JP 2004267806A JP 2003057835 A JP2003057835 A JP 2003057835A JP 2003057835 A JP2003057835 A JP 2003057835A JP 2004267806 A JP2004267806 A JP 2004267806A
Authority
JP
Japan
Prior art keywords
fly ash
mullite
ash
shows
dioxins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003057835A
Other languages
Japanese (ja)
Other versions
JP3867125B2 (en
Inventor
Megumi Masui
芽 増井
Toshio Yamaguchi
俊雄 山口
Yumiko Yoshimitsu
由美子 吉光
Jun Emi
準 江見
Yoshio Otani
吉生 大谷
Norikazu Namiki
則和 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACTREE Corp
Kanazawa University Technology Licensing Organization (KUTLO)
Original Assignee
ACTREE Corp
Kanazawa University Technology Licensing Organization (KUTLO)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACTREE Corp, Kanazawa University Technology Licensing Organization (KUTLO) filed Critical ACTREE Corp
Priority to JP2003057835A priority Critical patent/JP3867125B2/en
Publication of JP2004267806A publication Critical patent/JP2004267806A/en
Application granted granted Critical
Publication of JP3867125B2 publication Critical patent/JP3867125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for detoxifying incineration ash or the like capable of heating fly ash at 400°C or above without fixing the same to decompose dioxins and capable of evaporating heavy metals in fly ash as chlorides to remove them. <P>SOLUTION: Mullite (2Al<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>) is mixed with fly ash containing a harmful organochlorine compound and the resulting mixture is heated at 400°C or above, preferably 600°C or above, ideally 700°C or above to detoxify the fly ash. When the mixture of the fly ash and mullite is heated, the fly ash is held to a powdery state even at 400°C or above without being fixed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダイオキシン類等の有害な有機塩素化合物、有害な重金属類等が含有する焼却飛灰等の無害化処理方法に関する。
特に、消石灰等により中和処理されたアルカリ飛灰が含まれる飛灰を高温加熱する際に、この飛灰が固化、固着するのを防止するのに効果的な無害化処理方法に係る。
【0002】
【従来の技術】
一般廃棄物焼却炉及び産業廃棄物焼却炉においては、ダイオキシン類の発生を抑制するために、各種薬剤の投入、発生ガスの二次燃焼等、各種方法が提案され、採用されている。
しかし、ダイオキシン類は、上記焼却飛灰に多く含まれていることから、今後の総量規制に対応するためにもこの焼却飛灰の無害化処理方法を確立することが重要となっている。
【0003】
焼却飛灰の中には、アルカリ飛灰と称される冷却廃ガス中に消石灰等を噴霧し、中和処理された飛灰も含まれる。
ダイオキシン類は、400℃以上、理想的には700℃以上にしないと充分に分解しない。
ところが、このようなアルカリ飛灰は、400℃以上の高温にすると、固形化し、処理装置の内壁等に固着するために取り扱いが困難になるという問題があった。
特に、ロータリーキルン等にて連続処理しようとする場合には、キルン内に飛灰が固着することは致命的な問題となる。
【0004】
そこで従来は、例えば特公平6−38863号特許公報等に開示されているように、低温でもダイオキシン類が分解する特定の薬剤の投入や、還元雰囲気による脱塩素化する方法が提案されている。
しかし、このような処理方法では、処理工程が複雑になり高コスト原因の1つになっていた。
【0005】
【特許文献1】
特公平6−38863号特許公報
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術に有する技術的課題に鑑みて、飛灰を固着させることなく、400℃以上に加熱出来てダイオキシン類を分解し、含有する重金属類を塩化物として気化除去出来る焼却飛灰等の無害化処理方法の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明の要旨は、有害な有機塩素化合物を含有する飛灰に、ムライト(2Al・SiO)を混合し、400℃以上、好ましくは600℃以上、理想的には700℃以上に加熱することにより、この飛灰の無害化処理することにある。
このように、飛灰にムライトを混合して加熱すると400℃以上になっても飛灰の粉末同士が固着したり、加熱装置周囲に固着することなく、粉末状の状態を維持する。
【0008】
ここで、有機塩素化合物にはダイオキシン類が含まれる。
ダイオキシン類とは、ダイオキシン類対策特別措置法にポリ塩化ジベンゾ−パラ−ジオキシン(PCDD)、ポリ塩化ジベンゾフラン(PCDF)及びコプラナーポリ塩化ビフェニル(コプラナーPCB)と定義されている。
ダイオキシン類以外の有機塩素化合物の例としては、ジクロロメタン、四塩化炭素、1.2−ジクロロエタン、1.1−ジクロロエチレン、シス−1.2−ジクロロエチレン、1.1.1−トリクロロエタン、1.1.2−トリクロロエチレン、テトラクロロエチレン、1.3−ジクロロプロペン等が挙げられる。
【0009】
ムライト(Mullite)は、ネソ珪酸塩鉱物に分類され、紅柱石、珪線石、藍晶石の多形相である。
化学組成は、2Al・SiOで示されるが、SiOの四面体構造からなり、酸素原子が不足している構造欠陥を有していることが知られている。
ムライトは、天然には殆ど産出されないが、陶磁器や耐火物等の成分として普遍的に存在する。
また、火力発電所等から排出される石炭灰にムライトが石英とともに含まれていることも明らかになった。
従って、石炭灰を飛灰に混合して加熱すれば、より安価に飛灰の無害化処理が出来るだけでなく、石炭灰の有効利用の道が開けることになる。
【0010】
本発明にいう飛灰とは、「廃棄物の処理及び清掃に関する法律」に指定される一般廃棄物焼却炉及び産業廃棄物焼却炉から排出される、高度な集塵機で捕集された消石灰等のアルカリ中和剤を含む飛灰、並びに焼却炉から煙突に至るまでの煙道、煙突等処理設備内に付着した飛灰のことをいう。
【0011】
有機塩素化合物と重金属類とが混合して含まれている物質を400℃以上、好ましくは700℃以上の高温にすると、重金属類の多くが塩素化され気化回収出来ることがこれまでに報告されている。
従って、本発明にて、飛灰を固着させることなく高温に加熱できれば、重金属類の処理も容易になる。
【0012】
【発明の実施の形態】
飛灰の無害化処理方法の説明の前に、まず、焼却炉から排出された飛灰をXRD(粉末X線回折装置)にて成分分析した結果を図2の加熱処理前の飛灰のXRD分析チャートに示す。
その結果、飛灰中にCaClOHが含まれていることが分かった。
これは、消石灰噴霧により、ガス中のHClと消石灰が反応して生成したと推定される。
【0013】
次に図1に示すような実験装置を用いて、飛灰を単独又はムライト、石炭灰、及びてNaOHのいずれかを混合して加熱サンプルを作製し、加熱後にXRD成分分析とTG/DTA(熱重量−示差熱分析)による分析調査をした。
図1に示すように、試料(サンプル)を石英ガラス管の中の石英フィルターにのせて、これをサンプルベットホルダーに置き、電気炉にて700℃に上昇後、60分間温調加熱した。
この際に、石英ガラス管の上方から活性炭及びシリカゲル充填層を通過させた空気を送り、試料から揮散してくる成分を集気瓶中の超純水に溶出させた。
【0014】
図3に試料(a)として飛灰のみを700℃に加熱処理した後のXRD分析チャートを示し、図4に試料(b)として飛灰に16.9質量%のNaOHを混合して700℃に加熱処理した後のXRD分析チャートを示し、図5に試料(c)として飛灰に50質量%のムライトを混合して700℃に加熱処理した後のXRD分析チャートを示す。
図3に示すように、飛灰のみ加熱しても加熱前に含まれていたCaClOHが高温でも安定であり残っているが、図4及び図5に示すように、NaOHやムライトを混合して加熱するとCaClOHがほぼ完全に分解されていることが明らかになった。
なお、CaOは飛灰に含まれていたCa(OH)が熱分解して生成されたものと推定される。
また、試料(a)の飛灰のみ加熱したものは、粉末状の飛灰が固着、固形化し、魂状の固まりになったが試料(b)のNaOHを混合したもの及び試料(c)のムライトを混合したものは固着することはなかった。
【0015】
図6に試料(a)(飛灰のみ)の加熱処理後のTA/DTA分析チャートを示し、図7に試料(b)、図8に試料(c)のそれぞれTA/DTA分析チャートを示す。
図6に示すように温度上昇の時に370℃、500℃付近にて融解を示す吸熱ピークがみられ、温度下降のときに670℃付近で凝固を示す発熱ピークが認められる。
これに対して、図7に示すNaOHを混合したものには吸熱ピーク及び発熱ピークが小さく、図8に示すようにムライトを混合したものには吸熱ピーク(融解)及び発熱ピーク(凝固)が認められなかった。
従って、XRDの結果と比較するとムライトを混合したものにはCaClOHが分解してなくなり、融解及び凝固のピークが認められなくなったものと言える。
即ち、飛灰のみ加熱した場合にはCaClOHが原因で固着するが、ムライトを添加したものはCaClOHが分解してCaClOHが無くなったために固着しないことが明らかになった。
【0016】
次に、飛灰の固着に対するムライトの影響を調査すべく、ムライトの混合割合を変化させて加熱試験をした。
飛灰質量1に対して、ムライトを0.025,0.1,0.15,0.2,0.25,0.5,1.0の割合でそれぞれ混合した試料を作り、700℃×60分の加熱試験をした結果、0.25以上の割合で全く固着、固化しないことが明らかになった。
また、ムライトをボール状にして飛灰に繰り返し混合試験した結果、飛灰が固着しないことからムライトにはCaClOHを分解する触媒作用があると推定される。
【0017】
図9に示したグラフ1、及び図10に示したグラフ2のダイオキシン類濃度比較は、飛灰(Fly ash)を単独又はNaOH、ムライト(mulite)、石炭灰[fly ash(coal)]を混合して加熱処理した場合のそれぞれの飛灰に対するダイオキシン類濃度を比較調査したものである。
また、ダイオキシン類濃度測定は、JIS K0311排ガス中のダイオキシン類及びコプラナーPCBの測定方法に基づく。
ここで図9はグラフ1ダイオキシン類の実測濃度を示し、図10のグラフ2は毒性等量を示したものである。
毒性等量とは、各異性体の実測濃度に毒性等価係数(TEF)を乗じたものである。
なおTEFは、WHO−TEF(1998)を用いた。
その結果、飛灰を400℃以上に加熱すると、ダイオキシン類の濃度が低下し、700℃以上ではさらにダイオキシン類が低下し、ムライトや石炭灰(ムライトが含まれている)を混合すると、毒性等量の低下がより低下している。
これにより、ムライト(石炭灰)を混合して加熱すると飛灰を固着させることなくダイオキシン類が分解し、飛灰を無害化することが出来ることが明らかになった。
【0018】
なお、参考のために各異性体の濃度測定結果を図11〜図16に示す。
また、図17にエネルギー分散型蛍光X線分析装置(EDX)にて石炭灰の成分分析をした結果を示し、その他調査により石炭灰にムライトが含まれていることが明らかになった。
【0019】
【発明の効果】
有害な有機塩素化合物が含まれる飛灰にムライトを混合すると、加熱による固着、固形化が防止できるのでローターキルン等での連続的な無害化処理が可能になる。
また、高温にすることで飛灰に含まれている重金属の多くも塩素化することが出来る。
ムライトの供給源として石炭灰を利用すれば、安価に得られるだけでなく石炭灰の再利用ができる。
【図面の簡単な説明】
【図1】本発明に用いた実験装置を示す。
【図2】加熱処理前の飛灰のXRD分析チャートを示す。
【図3】飛灰のみを700℃に加熱処理したXRD分析チャートを示す。
【図4】飛灰+NaOHを700℃に加熱処理したXRD分析チャートを示す。
【図5】飛灰+ムライトを700℃に加熱処理したXRD分析チャートを示す。
【図6】飛灰のみの加熱処理後のTG/DTA分析チャートを示す。
【図7】飛灰+NaOHの加熱処理後のTG/DTA分析チャートを示す。
【図8】飛灰+ムライトの加熱処理後のTG/DTA分析チャートを示す。
【図9】ダイオキシン類濃度比較(実測濃度)を示す。
【図10】ダイオキシン類濃度比較(毒性等量)を示す。
【図11】飛灰の加熱処理前のダイオキシン類濃度測定結果を示す。
【図12】飛灰の400℃加熱処理後のダイオキシン類濃度測定結果を示す。
【図13】飛灰の700℃加熱処理後のダイオキシン類濃度測定結果を示す。
【図14】飛灰+ムライトの700℃加熱処理後のダイオキシン類濃度測定結果を示す。
【図15】飛灰+NaOHの700℃加熱処理後のダイオキシン類濃度測定結果を示す。
【図16】飛灰+石炭灰の700℃加熱処理後のダイオキシン類濃度測定結果を示す。
【図17】石炭灰のEDXによる成分分析結果を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for detoxifying incinerated fly ash or the like containing harmful organic chlorine compounds such as dioxins and harmful heavy metals.
In particular, the present invention relates to a detoxification method which is effective for preventing fly ash from solidifying and fixing when fly ash containing alkali fly ash neutralized by slaked lime or the like is heated at a high temperature.
[0002]
[Prior art]
In general waste incinerators and industrial waste incinerators, various methods have been proposed and adopted, such as introduction of various chemicals and secondary combustion of generated gas, in order to suppress the generation of dioxins.
However, since a large amount of dioxins is contained in the above incinerated fly ash, it is important to establish a method for detoxifying the incinerated fly ash in order to comply with the total amount regulation in the future.
[0003]
The incinerated fly ash includes fly ash that has been neutralized by spraying slaked lime or the like into cooling waste gas called alkali fly ash.
Dioxins do not decompose sufficiently unless heated to 400 ° C. or higher, ideally 700 ° C. or higher.
However, when the alkali fly ash is heated to a high temperature of 400 ° C. or higher, there is a problem that it becomes difficult to handle because it solidifies and adheres to the inner wall of the processing apparatus.
In particular, when continuous treatment is to be carried out in a rotary kiln or the like, it is a fatal problem that fly ash adheres in the kiln.
[0004]
Therefore, conventionally, as disclosed in, for example, Japanese Patent Publication No. 6-38863, a method has been proposed in which a specific agent capable of decomposing dioxins is decomposed even at a low temperature and dechlorination is performed in a reducing atmosphere.
However, in such a processing method, the processing steps become complicated and this is one of the causes of high cost.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 6-38863 Patent Publication
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned technical problems of the prior art, and is capable of heating to 400 ° C. or more to decompose dioxins without adhering fly ash, and capable of vaporizing and removing contained heavy metals as chlorides. The purpose is to provide a method for detoxifying ash etc.
[0007]
[Means for Solving the Problems]
The gist of the present invention is to mix mullite (2Al 2 O 3 .SiO 2 ) with fly ash containing a harmful organic chlorine compound, and to 400 ° C. or higher, preferably 600 ° C. or higher, ideally 700 ° C. or higher. By heating, the fly ash is detoxified.
As described above, when mullite is mixed with the fly ash and heated, the powder of the fly ash is maintained without being adhered to each other even when the temperature of the ash reaches 400 ° C. or higher, or adhered around the heating device.
[0008]
Here, the organic chlorine compounds include dioxins.
The dioxins are defined as polychlorinated dibenzo-para-dioxin (PCDD), polychlorinated dibenzofuran (PCDF) and coplanar polychlorinated biphenyl (coplanar PCB) in the Law Concerning Special Measures against Dioxins.
Examples of organic chlorine compounds other than dioxins include dichloromethane, carbon tetrachloride, 1.2-dichloroethane, 1.1-dichloroethylene, cis-1.2-dichloroethylene, 1.1.1-trichloroethane, 1.1. 2-trichloroethylene, tetrachloroethylene, 1.3-dichloropropene and the like can be mentioned.
[0009]
Mullite is classified as a nesosilicate mineral and is a polymorph of oralite, sillimanite, and kyanite.
The chemical composition is shown in 2Al 2 O 3 · SiO 2, consists tetrahedral structure of SiO 2, it is known to have a structural defect in which the oxygen atoms are missing.
Mullite is hardly produced in nature, but is universally present as a component of ceramics and refractories.
It was also revealed that coal ash discharged from thermal power plants, etc. contained mullite along with quartz.
Therefore, if the fly ash is mixed with the fly ash and heated, not only can the fly ash be rendered harmless at a lower cost, but also a way to effectively utilize the fly ash is opened.
[0010]
Fly ash referred to in the present invention refers to slaked lime collected by advanced dust collectors and the like discharged from general waste incinerators and industrial waste incinerators specified by the "Law on the Treatment and Cleaning of Waste". This refers to fly ash containing an alkali neutralizer, and fly ash adhering to treatment equipment such as flue and chimney from an incinerator to a chimney.
[0011]
It has been reported that when a substance containing a mixture of an organic chlorine compound and heavy metals is heated to 400 ° C. or higher, preferably 700 ° C. or higher, most of the heavy metals can be chlorinated and vaporized and recovered. I have.
Therefore, in the present invention, if the fly ash can be heated to a high temperature without fixing the fly ash, the treatment of heavy metals can be facilitated.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Prior to the description of the fly ash detoxification method, first, fly ash discharged from the incinerator was subjected to component analysis by XRD (powder X-ray diffractometer), and the result of XRD of the fly ash before the heat treatment in FIG. Shown in the analysis chart.
As a result, it was found that the fly ash contained CaClOH.
This is presumed to be caused by the reaction of slaked lime with HCl in the gas due to slaked lime spray.
[0013]
Next, using an experimental apparatus as shown in FIG. 1, fly ash is used alone or a mixture of mullite, coal ash, and NaOH is mixed to prepare a heated sample. After heating, XRD component analysis and TG / DTA ( An analytical investigation by thermogravimetry-differential thermal analysis) was conducted.
As shown in FIG. 1, a sample (sample) was placed on a quartz filter in a quartz glass tube, placed on a sample bed holder, heated to 700 ° C. in an electric furnace, and then heated for 60 minutes.
At this time, air passed through a packed bed of activated carbon and silica gel was sent from above the quartz glass tube to elute components volatilized from the sample into ultrapure water in the air collection bottle.
[0014]
FIG. 3 shows an XRD analysis chart after heat treatment of only fly ash as a sample (a) at 700 ° C. FIG. 4 shows a sample (b) in which fly ash was mixed with 16.9% by mass of NaOH at 700 ° C. FIG. 5 shows an XRD analysis chart after heat treatment, and FIG. 5 shows an XRD analysis chart as a sample (c) after mixing fly ash with 50% by mass mullite and heat-treating it to 700 ° C.
As shown in FIG. 3, even if only fly ash is heated, CaClOH contained before heating remains stable even at a high temperature, but as shown in FIGS. 4 and 5, NaOH or mullite is mixed. Heating revealed that CaClOH was almost completely decomposed.
Note that CaO is presumed to have been generated by pyrolysis of Ca (OH) 2 contained in the fly ash.
In the sample (a) obtained by heating only fly ash, the powder fly ash was fixed and solidified to form a soul-like mass, but the sample (b) mixed with NaOH and the sample (c) The mixture of mullite did not stick.
[0015]
FIG. 6 shows a TA / DTA analysis chart of sample (a) (fly ash only) after heat treatment, and FIG. 7 shows a TA / DTA analysis chart of sample (b) and FIG. 8 respectively.
As shown in FIG. 6, an endothermic peak indicating melting appears at around 370 ° C. and 500 ° C. when the temperature rises, and an exothermic peak showing solidification near 670 ° C. when the temperature falls.
On the other hand, the endothermic peak and the exothermic peak are small in the mixture of NaOH shown in FIG. 7, and the endothermic peak (melting) and the exothermic peak (coagulation) are recognized in the mixture of mullite as shown in FIG. I couldn't.
Therefore, when compared with the results of XRD, it can be said that CaClOH was not decomposed in the mixture of mullite, and no melting and solidification peaks were observed.
That is, it was clarified that when only fly ash was heated, it was fixed due to CaClOH, but that to which mullite was added was not fixed because CaClOH was decomposed and CaClOH was lost.
[0016]
Next, in order to investigate the influence of mullite on the adhesion of fly ash, a heating test was performed while changing the mixing ratio of mullite.
A sample was prepared by mixing mullite at a ratio of 0.025, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0 with respect to the mass of fly ash 1 at 700 ° C x As a result of a heating test for 60 minutes, it was found that no solidification or solidification occurred at a rate of 0.25 or more.
Further, as a result of repeated mixing test of fly ash with mullite in a ball shape, fly ash does not adhere, and it is presumed that mullite has a catalytic action to decompose CaClOH.
[0017]
The dioxin concentration comparison between the graph 1 shown in FIG. 9 and the graph 2 shown in FIG. 10 was made by mixing fly ash alone or NaOH, mullite, coal ash [fly ash (coal)]. It is a comparative study of the concentration of dioxins in each fly ash when heat treatment was performed.
The dioxin concentration measurement is based on a method for measuring dioxins and coplanar PCB in JIS K0311 exhaust gas.
Here, FIG. 9 shows the measured concentrations of dioxins in Graph 1, and Graph 2 in FIG. 10 shows the toxic equivalents.
The toxic equivalent is obtained by multiplying the measured concentration of each isomer by the toxic equivalent coefficient (TEF).
The TEF used was WHO-TEF (1998).
As a result, when fly ash is heated to 400 ° C. or more, the concentration of dioxins decreases, and when it is 700 ° C. or more, dioxins further decrease. When mullite or coal ash (containing mullite) is mixed, toxicity and the like are reduced. The drop in volume is lower.
Thus, it was revealed that when mullite (coal ash) was mixed and heated, dioxins were decomposed without fixing fly ash, and the fly ash could be rendered harmless.
[0018]
In addition, the measurement result of the concentration of each isomer is shown in FIGS. 11 to 16 for reference.
FIG. 17 shows the results of a component analysis of coal ash by an energy dispersive X-ray fluorescence spectrometer (EDX), and other investigations revealed that coal ash contained mullite.
[0019]
【The invention's effect】
When mullite is mixed with fly ash containing a harmful organic chlorine compound, sticking and solidification by heating can be prevented, so that continuous detoxification treatment with a rotor kiln or the like becomes possible.
Further, by setting the temperature to be high, many heavy metals contained in the fly ash can be chlorinated.
If coal ash is used as a source of mullite, not only can it be obtained at low cost, but also coal ash can be reused.
[Brief description of the drawings]
FIG. 1 shows an experimental apparatus used in the present invention.
FIG. 2 shows an XRD analysis chart of fly ash before heat treatment.
FIG. 3 shows an XRD analysis chart obtained by heating only fly ash to 700 ° C.
FIG. 4 shows an XRD analysis chart obtained by heat-treating fly ash + NaOH to 700 ° C.
FIG. 5 shows an XRD analysis chart obtained by heat-treating fly ash + mullite to 700 ° C.
FIG. 6 shows a TG / DTA analysis chart after heat treatment of only fly ash.
FIG. 7 shows a TG / DTA analysis chart after heat treatment of fly ash + NaOH.
FIG. 8 shows a TG / DTA analysis chart after heat treatment of fly ash + mullite.
FIG. 9 shows a comparison of dioxin concentrations (measured concentrations).
FIG. 10 shows a comparison of dioxin concentrations (toxic equivalents).
FIG. 11 shows the results of measuring the concentration of dioxins before heat treatment of fly ash.
FIG. 12 shows the results of measuring the concentration of dioxins after heat treatment of fly ash at 400 ° C.
FIG. 13 shows the results of measuring the concentration of dioxins after heat treatment of fly ash at 700 ° C.
FIG. 14 shows the results of measuring the concentration of dioxins after heat treatment of fly ash + mullite at 700 ° C.
FIG. 15 shows the results of measuring the concentration of dioxins after heat treatment of fly ash + NaOH at 700 ° C.
FIG. 16 shows the results of measuring the concentration of dioxins after heat treatment of fly ash and coal ash at 700 ° C.
FIG. 17 shows the results of component analysis of coal ash by EDX.

Claims (3)

有害な有機塩素化合物を含有する飛灰に、ムライト(2Al・SiO)を混合し、400℃以上に加熱することにより、無害化処理することを特徴とする焼却飛灰等の無害化処理方法。The fly ash containing harmful organic chlorine compounds, mullite (2Al 2 O 3 · SiO 2 ) were mixed by heating to above 400 ° C., innocuous, such as incineration fly ash, which comprises detoxified Treatment method. 有機塩素化合物がダイオキシン類である請求項1記載の焼却飛灰等の無害化処理方法。The method for detoxifying incinerated fly ash and the like according to claim 1, wherein the organic chlorine compound is a dioxin. ムライトが石炭灰から得られたものである請求項1記載の焼却飛灰等の無害化処理方法。2. The method for detoxifying fly ash or the like according to claim 1, wherein the mullite is obtained from coal ash.
JP2003057835A 2003-03-04 2003-03-04 Detoxification method for incineration fly ash, etc. (high temperature) Expired - Lifetime JP3867125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057835A JP3867125B2 (en) 2003-03-04 2003-03-04 Detoxification method for incineration fly ash, etc. (high temperature)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057835A JP3867125B2 (en) 2003-03-04 2003-03-04 Detoxification method for incineration fly ash, etc. (high temperature)

Publications (2)

Publication Number Publication Date
JP2004267806A true JP2004267806A (en) 2004-09-30
JP3867125B2 JP3867125B2 (en) 2007-01-10

Family

ID=33121103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057835A Expired - Lifetime JP3867125B2 (en) 2003-03-04 2003-03-04 Detoxification method for incineration fly ash, etc. (high temperature)

Country Status (1)

Country Link
JP (1) JP3867125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141002A (en) * 2022-06-08 2022-10-04 上海大学 Method for fixing chlorine in household garbage incineration fly ash
JP7474212B2 (en) 2021-03-04 2024-04-24 株式会社トクヤマ Incineration fly ash treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474212B2 (en) 2021-03-04 2024-04-24 株式会社トクヤマ Incineration fly ash treatment method
CN115141002A (en) * 2022-06-08 2022-10-04 上海大学 Method for fixing chlorine in household garbage incineration fly ash
CN115141002B (en) * 2022-06-08 2023-07-18 上海大学 Method for fixing chlorine in fly ash generated by incineration of household garbage

Also Published As

Publication number Publication date
JP3867125B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
AU781411B2 (en) Adsorption powder for removing mercury from high temperature, high moisture gas streams
US6589318B2 (en) Adsorption powder for removing mercury from high temperature, high moisture gas streams
US6582497B1 (en) Adsorption power for removing mercury from high temperature high moisture gas streams
Pan et al. Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double arc plasma torch
JP2004534641A (en) Carbon-based adsorptive powder containing copper (II) chloride
JP3867125B2 (en) Detoxification method for incineration fly ash, etc. (high temperature)
JPH05264024A (en) Method of incinerating waste
Wei et al. Reburning treatment of the froths obtained after the flotation of incinerator fly ash
Lu et al. Effects of inorganic chlorine source on dioxin formation using fly ash from a fluidized bed incinerator
JP2001327837A (en) Exhaust gas treating system and treating method
JPH10151430A (en) Treatment for detoxifying harmful substance contained in ash discharged from incinerator
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
JP3969372B2 (en) Organochlorine compound decomposition accelerator and decomposition method
JP3573000B2 (en) Decomposition method of dioxins
JP2000246059A (en) Reactive agent for decomposing hardly decomposable organochlorine compound and method for decomposing it
JP3753959B2 (en) Combustion exhaust gas treatment equipment
WO2001023072A1 (en) Adsorption powder for removing mercury from high temperature, high moisture gas streams
JP3866914B2 (en) Combustion exhaust gas treatment equipment
Mizukoshi et al. Suppression of solidification of calcium-rich incinerator fly ash during thermal treatment for decomposition/detoxification of dioxins
JP2004081990A (en) Agent and equipment for removing toxic substance in combustion exhaust gas
JP2004331739A (en) Dioxin-decomposing agent
JP2001145862A (en) Method for detoxifying incineration ash
JP2006021200A (en) Combustion exhaust gas treatment system
JP4609057B2 (en) Dioxin decomposition agent and decomposition method
JP2005169306A (en) Waste treating agent and waste treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3867125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151020

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term