JP2004266296A - Gallium nitride compound semiconductor element - Google Patents

Gallium nitride compound semiconductor element Download PDF

Info

Publication number
JP2004266296A
JP2004266296A JP2004169434A JP2004169434A JP2004266296A JP 2004266296 A JP2004266296 A JP 2004266296A JP 2004169434 A JP2004169434 A JP 2004169434A JP 2004169434 A JP2004169434 A JP 2004169434A JP 2004266296 A JP2004266296 A JP 2004266296A
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
type gallium
semiconductor layer
exposed surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004169434A
Other languages
Japanese (ja)
Other versions
JP3846491B2 (en
Inventor
Toshiya Kamimura
俊也 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004169434A priority Critical patent/JP3846491B2/en
Publication of JP2004266296A publication Critical patent/JP2004266296A/en
Application granted granted Critical
Publication of JP3846491B2 publication Critical patent/JP3846491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: the light-emitting area of an active layer can not be formed large enough because there is a restriction: "(an area of an upper exposed surface of an n-type gallium nitride compound semiconductor layer)>(an area of an upper exposed surface of a negative electrode)≥(an area required for formation of a bump)", although the smaller the area of the upper exposed surface formed by etching the n-type gallium nitride compound semiconductor layer is, the larger the light-emitting area of the active layer can be acquired, so that it is desirable for realizing high luminous intensity. <P>SOLUTION: An insulating protective film is formed from an upper exposed surface or a side wall surface of an n-type gallium nitride compound semiconductor layer formed on an lower layer side, through each side wall surface of each layer formed over the n-type gallium nitride compound semiconductor layer, extending to an upper exposed surface of a p-type gallium nitride compound semiconductor layer or an upper exposed surface of a positive electrode formed on the p-type gallium nitride compound semiconductor layer. A negative electrode is formed from the upper exposed surface of the n-type gallium nitride compound semiconductor layer extending to the insulating protective film. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、活性層の発光面の面積が大きなフリップチップ型の窒化ガリウム系化合物半導体発光素子に関する。   The present invention relates to a flip-chip type gallium nitride-based compound semiconductor light emitting device having a large light emitting surface area of an active layer.

従来技術による窒化ガリウム系化合物半導体より成る発光素子300の断面図(a)及び平面図(b)を図3に示す。301はサファイア基板、302はバッファ層、303はn型窒化ガリウム系化合物半導体層、304は活性層、307はpクラッド層305及びpコンタクト層306より構成されたp型窒化ガリウム系化合物半導体層、310は正電極、320は絶縁性保護膜、330は負電極である。また、簡単のため本従来技術においては、n型窒化ガリウム系化合物半導体層303のエッチングによる上部露出面及び負電極330の上部露出面の形はそれぞれ正方形としており、その面積はそれぞれL3 2、D2である。本従来技術を示す図3(b)においては、L3 2>D2であるが、一般にも、従来技術においては、
(n型窒化ガリウム系化合物半導体層の上部露出面の面積)>(負電極の上部露出面の面積) …(1)
となっていた。
FIG. 3 is a cross-sectional view (a) and a plan view (b) of a light emitting device 300 made of a gallium nitride-based compound semiconductor according to a conventional technique. 301 is a sapphire substrate, 302 is a buffer layer, 303 is an n-type gallium nitride-based compound semiconductor layer, 304 is an active layer, 307 is a p-type gallium nitride-based compound semiconductor layer composed of a p-cladding layer 305 and a p-contact layer 306, 310 is a positive electrode, 320 is an insulating protective film, and 330 is a negative electrode. For the sake of simplicity, in this conventional technique, the upper exposed surface of the n-type gallium nitride-based compound semiconductor layer 303 by etching and the upper exposed surface of the negative electrode 330 are each square, and their areas are L 3 2 , a D 2. In FIG. 3 (b) showing this prior art, it is L 3 2> D 2, also commonly in the prior art,
(Area of upper exposed surface of n-type gallium nitride-based compound semiconductor layer)> (Area of upper exposed surface of negative electrode) (1)
It was.

負電極の上部露出面の面積は、リード・フレームや絶縁基板などに発光素子を接続させる際に、電極上に形成するバンプの大きさなどにより制約を受けるため、ある程度以下の大きさにすることはできない。その下限値を定数αとすると、(1)より、
(n型窒化ガリウム系化合物半導体層303の上部露出面の面積)>(負電極330の上部露出面の面積)≧α …(2)
である。一方、n型窒化ガリウム系化合物半導体層のエッチングによる上部露出面の面積(図3ではL3 2)は小さいほど、活性層304の発光面積を広く取ることができるため、高光度を実現する上で望ましい。しかし、n型窒化ガリウム系化合物半導体層303の上部露出面の面積は、(2)による制約を受けるため、活性層304の発光面積を十分には広く取ることができず、高光度を実現する上で問題となっていた。
The area of the upper exposed surface of the negative electrode should be smaller than a certain size because it is limited by the size of the bump formed on the electrode when connecting the light emitting element to the lead frame or insulating substrate. Can not. Assuming that the lower limit is a constant α, from (1),
(Area of upper exposed surface of n-type gallium nitride based compound semiconductor layer 303)> (Area of upper exposed surface of negative electrode 330) ≧ α (2)
It is. On the other hand, the area of the upper exposed surface by etching the n-type gallium nitride-based compound semiconductor layer (in FIG. 3 L 3 2) The smaller, it is possible to widen the light-emitting area of the active layer 304, for realizing the high luminous intensity Is desirable. However, since the area of the upper exposed surface of the n-type gallium nitride-based compound semiconductor layer 303 is restricted by (2), the light emitting area of the active layer 304 cannot be made sufficiently large, and high luminous intensity is realized. Had been a problem above.

本発明は、これらの問題を解決するために成されたものであり、その目的は、上記の(2)による制約を排除し、活性層の発光面積を十分に広く取ることにより、高光度の発光素子を実現することである。   The present invention has been made in order to solve these problems, and an object of the present invention is to eliminate the restriction by the above (2) and to obtain a sufficiently large light emitting area of the active layer, thereby achieving high luminous intensity. It is to realize a light emitting element.

上記の課題を解決するための手段は、基板上に窒化ガリウム系化合物半導体から成る層が積層されたフリップチップ型の発光素子において、下層側に形成されたn型窒化ガリウム系化合物半導体の層のエッチングによる上部露出面またはn型窒化ガリウム系化合物半導体の層のエッチングによる側壁面より、n型窒化ガリウム系化合物半導体の層より上側に形成された各層の各側壁面を経て、p型窒化ガリウム系化合物半導体の層の上部露出面またはp型窒化ガリウム系化合物半導体の層の上に形成された正電極の上部露出面にまで渡って形成された絶縁性保護膜と、n型窒化ガリウム系化合物半導体の層の上部露出面より、絶縁性保護膜上に渡って形成された負電極とを備えることである。   Means for solving the above-mentioned problem is that, in a flip-chip type light-emitting element in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate, a layer of an n-type gallium nitride-based compound semiconductor formed on a lower layer side is formed. From the upper exposed surface by etching or the side wall surface by etching of the n-type gallium nitride-based compound semiconductor layer, through each side wall surface of each layer formed above the n-type gallium nitride-based compound semiconductor layer, the p-type gallium nitride-based An insulating protective film formed over the upper exposed surface of the compound semiconductor layer or the upper exposed surface of the positive electrode formed on the p-type gallium nitride-based compound semiconductor layer; and an n-type gallium nitride-based compound semiconductor And a negative electrode formed over the insulating protective film from the upper exposed surface of the layer.

本発明の手段により、
(n型窒化ガリウム系化合物半導体層の上部露出面の面積)<(負電極の上部露出面の面積) …(3)
とすることが可能となる。例えば、図1に示した、本発明を適用した窒化ガリウム系化合物半導体より成る発光素子100の断面図(a)及び平面図(b)からも判るように、発光素子100では、
(n型窒化ガリウム系化合物半導体層の上部露出面の面積)=L1 2 …(4)
(負電極の上部露出面の面積)=D2 …(5)
であり、明らかに「L1 2<D2」となっている。即ち、本発明の手段によれば、例えば、活性層104の発光面積を図3に示した従来技術の発光素子300の活性層304の発光面積よりも広く取ることが可能となる。
窒化ガリウム系化合物半導体発光素子の特性としては、電流密度と発光効率とは、リニアーな比例関係にはなく、電流密度が小さいほど発光効率がよいことが分かっている。従って、本発明の上記の手段によれば、発光面積をより大きくとれるため、電流の値が同じならば電流密度を低下でき、全体としてより高光度な発光素子を作ることが可能となる。
また、本発明によれば、図3に示したようなエッチング側壁面10から漏れていた光が、負電極により反射されて、サファイア基板面側から取り出せるようになるため、発光光度がより高くなるという効果もある。
更に、本発明を利用すれば、絶縁性保護膜により正電極と負電極のバンプの高さ及び面積を容易に同じにできるので、リード・フレームや絶縁基板などに発光素子を接続させる際に、発光素子を傾斜しにくいものに容易にできるいという効果もある。
また、上記の手段において、n型窒化ガリウム系化合物半導体の層の上部露出面を発光素子の外周一周に渡って形成すれば、n型窒化ガリウム系化合物半導体層を流れる電流が、n型窒化ガリウム系化合物半導体層の周辺から中央へと、より対称性の良いものとなり、電流路の対象性が向上する。このため、活性層の全域に渡って均一一様な発光パターンが得られ、より高光度の発光素子が得られるようになる。
By means of the present invention,
(Area of upper exposed surface of n-type gallium nitride compound semiconductor layer) <(Area of upper exposed surface of negative electrode) (3)
It becomes possible. For example, as can be seen from the cross-sectional view (a) and the plan view (b) of the light-emitting element 100 made of a gallium nitride-based compound semiconductor to which the present invention is applied as shown in FIG.
(Area of the upper exposed surface of the n-type gallium nitride-based compound semiconductor layer) = L 1 2 ... (4 )
(Area of upper exposed surface of negative electrode) = D 2 (5)
, And the clearly become the "L 1 2 <D 2". That is, according to the means of the present invention, for example, the light emitting area of the active layer 104 can be made larger than the light emitting area of the active layer 304 of the conventional light emitting element 300 shown in FIG.
As a characteristic of the gallium nitride-based compound semiconductor light emitting device, it is known that the current density and the luminous efficiency are not in a linear proportional relationship, and the luminous efficiency is better as the current density is smaller. Therefore, according to the above-described means of the present invention, since the light emitting area can be made larger, the current density can be reduced if the current value is the same, and a light emitting element with higher luminous intensity as a whole can be manufactured.
Further, according to the present invention, the light leaking from the etching side wall surface 10 as shown in FIG. 3 is reflected by the negative electrode and can be extracted from the sapphire substrate surface side, so that the luminous intensity becomes higher. There is also an effect.
Furthermore, if the present invention is utilized, the height and area of the bumps of the positive electrode and the negative electrode can be easily made the same by the insulating protective film, so that when connecting the light emitting element to a lead frame or an insulating substrate, There is also an effect that the light emitting element can be easily made to be less inclined.
In the above means, when the upper exposed surface of the n-type gallium nitride-based compound semiconductor layer is formed around the outer periphery of the light-emitting element, the current flowing through the n-type gallium nitride-based compound semiconductor layer is reduced to n-type gallium nitride-based compound semiconductor. From the periphery to the center of the system compound semiconductor layer, the symmetry becomes better, and the symmetry of the current path is improved. For this reason, a uniform light emitting pattern can be obtained over the entire area of the active layer, and a light emitting element with higher luminous intensity can be obtained.

以下、本発明を具体的な実施例に基づいて説明する。   Hereinafter, the present invention will be described based on specific examples.

まず、第1の実施例として、本発明を適用した窒化ガリウム系化合物半導体より成る発光素子100について説明する。図1に、この発光素子100の断面図(a)及び平面図(b)を示す。101はサファイア基板、102は窒化アルミニウム(AlN)からなるバッファ層、103はシリコン(Si)ドープの窒化ガリウム(GaN)からなる高キャリア濃度のn型窒化ガリウム系化合物半導体層、104はInxGa1-xN(0<x<1)からなる活性層、107は、p型のAlyGa1-yN(0<y<1)からなるpクラッド層105とp型の窒化ガリウム(GaN)からなるpコンタクト層106より構成されたp型窒化ガリウム系化合物半導体層、110はニッケル(Ni)よりなる正電極、120はSiO2からなる絶縁性保護膜、130は、銀(Ag)からなる金属層131とニッケル(Ni)よりなる金属層132より構成された負電極である。
即ち、発光素子100は、下層側に形成されたn型窒化ガリウム系化合物半導体の層103のエッチングによる側壁面10より、n型窒化ガリウム系化合物半導体の層103より上側に形成された各層の各側壁面10を経て、p型窒化ガリウム系化合物半導体の層107の上部露出面およびp型窒化ガリウム系化合物半導体の層107の上に形成された正電極110の上部露出面にまで渡って形成された絶縁性保護膜120と、n型窒化ガリウム系化合物半導体の層103の上部露出面より、絶縁性保護膜120上に渡って形成された負電極130とを備えた構成となっている。
この構成により、発光素子100においては、前記の通り(3)、(4)、(5)が満たされるので、前記の通り本発明の作用により、本発明による効果を得ることができる。
First, as a first embodiment, a light emitting device 100 made of a gallium nitride based compound semiconductor to which the present invention is applied will be described. FIG. 1 shows a cross-sectional view (a) and a plan view (b) of the light emitting device 100. 101 is a sapphire substrate, 102 is a buffer layer made of aluminum nitride (AlN), 103 is a high carrier concentration n-type gallium nitride based compound semiconductor layer made of silicon (Si) doped gallium nitride (GaN), and 104 is In x Ga An active layer 107 made of 1-xN (0 <x <1) has a p-type clad layer 105 made of p-type Al y Ga 1-y N (0 <y <1) and a p-type gallium nitride (GaN). ), A p-type gallium nitride-based compound semiconductor layer composed of a p-contact layer 106, 110 is a positive electrode made of nickel (Ni), 120 is an insulating protective film made of SiO 2 , and 130 is silver (Ag). A negative electrode composed of a metal layer 131 made of nickel and a metal layer 132 made of nickel (Ni).
That is, the light-emitting element 100 has a structure in which each of the layers formed above the n-type gallium nitride-based compound semiconductor layer 103 from the side wall surface 10 formed by etching the n-type gallium nitride-based compound semiconductor layer 103 formed on the lower layer side. Via the side wall surface 10, it is formed over the upper exposed surface of the p-type gallium nitride-based compound semiconductor layer 107 and the upper exposed surface of the positive electrode 110 formed on the p-type gallium nitride-based compound semiconductor layer 107. And a negative electrode 130 formed over the insulating protective film 120 from the upper exposed surface of the n-type gallium nitride-based compound semiconductor layer 103.
With this configuration, in the light emitting element 100, (3), (4), and (5) are satisfied as described above, so that the effect of the present invention can be obtained by the operation of the present invention as described above.

次に、第2の実施例として、本発明を適用した窒化ガリウム系化合物半導体より成る発光素子200について説明する。図2に、この発光素子200の断面図(a)及び平面図(b)を示す。201はサファイア基板、202は窒化アルミニウム(AlN)からなるバッファ層、203はシリコン(Si)ドープの窒化ガリウム(GaN)からなる高キャリア濃度のn型窒化ガリウム系化合物半導体層、204はInxGa1-xN(0<x<1)からなる活性層、207は、p型のAlyGa1-yN(0<y<1)からなるpクラッド層205とp型の窒化ガリウム(GaN)からなるpコンタクト層206より構成されたp型窒化ガリウム系化合物半導体層、210はニッケル(Ni)よりなる正電極、220はSiO2からなる絶縁性保護膜、230はニッケル(Ni)よりなる負電極である。
即ち、発光素子200は、下層側に形成されたn型窒化ガリウム系化合物半導体の層203のエッチングによる側壁面10より、n型窒化ガリウム系化合物半導体の層203より上側に形成された各層の各側壁面10を経て、p型窒化ガリウム系化合物半導体の層207の上部露出面およびp型窒化ガリウム系化合物半導体の層207の上に形成された正電極210の上部露出面にまで渡って形成された絶縁性保護膜220と、n型窒化ガリウム系化合物半導体の層203の上部露出面より、絶縁性保護膜220上に渡って形成された負電極230とを備えた構成となっている。更に、n型窒化ガリウム系化合物半導体の層203の上部露出面は、発光素子200の外周一周に渡って形成されており、負電極230は、このn型窒化ガリウム系化合物半導体の層203の上部露出面全周に渡って形成された構成となっている。
この構成により、発光素子200においては、本発明が実施されているので、前記の通り本発明の作用により、本発明による効果を得ることができる。
Next, as a second embodiment, a light emitting device 200 made of a gallium nitride-based compound semiconductor to which the present invention is applied will be described. FIG. 2 shows a cross-sectional view (a) and a plan view (b) of the light emitting device 200. 201 is a sapphire substrate, 202 is a buffer layer made of aluminum nitride (AlN), 203 is a high carrier concentration n-type gallium nitride based compound semiconductor layer made of gallium nitride (GaN) doped with silicon (Si), and 204 is In x Ga The active layer 207 composed of 1-xN (0 <x <1), the p - cladding layer 205 composed of p - type Al y Ga 1-y N (0 <y <1) and the p-type gallium nitride (GaN) ), A p-type gallium nitride-based compound semiconductor layer composed of a p-contact layer 206, 210 is a positive electrode made of nickel (Ni), 220 is an insulating protective film made of SiO 2 , and 230 is nickel (Ni). It is a negative electrode.
That is, the light-emitting element 200 has a structure in which each of the layers formed above the n-type gallium nitride-based compound semiconductor layer 203 from the side wall surface 10 formed by etching the n-type gallium nitride-based compound semiconductor layer 203 formed on the lower layer side. Through the side wall surface 10, it is formed over the upper exposed surface of the p-type gallium nitride-based compound semiconductor layer 207 and the upper exposed surface of the positive electrode 210 formed on the p-type gallium nitride-based compound semiconductor layer 207. And a negative electrode 230 formed over the insulating protective film 220 from the upper exposed surface of the n-type gallium nitride-based compound semiconductor layer 203. Further, the upper exposed surface of the n-type gallium nitride-based compound semiconductor layer 203 is formed over the entire circumference of the light emitting element 200, and the negative electrode 230 is formed on the upper surface of the n-type gallium nitride-based compound semiconductor layer 203. The configuration is formed over the entire circumference of the exposed surface.
With this configuration, since the present invention is implemented in the light emitting element 200, the effect of the present invention can be obtained by the operation of the present invention as described above.

また、上記実施例では、正電極110、210は、ニッケル(Ni)で構成されているが、正電極は、プラチナ(Pt)、コバルト(Co)、金(Au)、パラジウム(Pd)、ニッケル(Ni)、マグネシウム(Mg)、銀(Ag)、アルミニウム(Al)、バナジウム(V)、マンガン(Mn)、ビスマス(Bi)、レニウム(Re)、銅(Cu)、スズ(Sn)またはロジウム(Rh)の内の少なくとも1種類の金属を含んでいる単層構造の電極であっても、また、これらの金属を2種類以上含んだ多層構造の電極であっても本実施例と同様の効果が得られる。   In the above embodiment, the positive electrodes 110 and 210 are made of nickel (Ni), but the positive electrodes are made of platinum (Pt), cobalt (Co), gold (Au), palladium (Pd), nickel (Ni), magnesium (Mg), silver (Ag), aluminum (Al), vanadium (V), manganese (Mn), bismuth (Bi), rhenium (Re), copper (Cu), tin (Sn) or rhodium (Rh) Even if it is an electrode having a single layer structure containing at least one kind of metal, or an electrode having a multilayer structure containing two or more kinds of these metals, it is the same as the present embodiment. The effect is obtained.

また、負電極は、プラチナ(Pt)、コバルト(Co)、金(Au)、パラジウム(Pd)、ニッケル(Ni)、マグネシウム(Mg)、銀(Ag)、アルミニウム(Al)、バナジウム(V)、銅(Cu)、スズ(Sn)、ロジウム(Rh)、チタン(Ti)、クロム(Cr)、ニオブ(Nb)、亜鉛(Zn)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)またはハフニウム(Hf)の内の少なくとも1種類の金属を含んでいる単層構造の電極であっても、また、これらの金属を2種類以上含んだ多層構造の電極であっても本実施例と同様の効果が得られる。   The negative electrode is made of platinum (Pt), cobalt (Co), gold (Au), palladium (Pd), nickel (Ni), magnesium (Mg), silver (Ag), aluminum (Al), and vanadium (V). , Copper (Cu), tin (Sn), rhodium (Rh), titanium (Ti), chromium (Cr), niobium (Nb), zinc (Zn), tantalum (Ta), molybdenum (Mo), tungsten (W) Alternatively, even if the electrode has a single-layer structure containing at least one kind of metal of hafnium (Hf), or an electrode having a multi-layered structure containing two or more kinds of these metals, the present embodiment can be applied. Similar effects can be obtained.

また、発光素子200においては、負電極230が正電極210の上方にまで達していない部分があるが、n型窒化ガリウム系化合物半導体の層203を流れる電流の電流路の対象性を確保するためには、特に問題とはならない。ただし、図3に示したような各層の側壁面10から漏れる光を負電極により反射させて、サファイア基板面側から取り出せるようにする意味では、負電極230は、全周に渡って正電極210の上方にまで達していた方が、高光度を実現する上でより望ましい。
なお、上記の実施例では、活性層104、204、304はSQW構造としたが、活性層の構造は、MQW構造でもよい。また、活性層、クラッド層、コンタクト層、その他の層は、任意の混晶比の4元、3元、2元系のAlxGayIn1-x-yN(0≦x≦1,0≦y≦1,0≦x+y≦1)としても良い。
Further, in the light emitting element 200, there is a portion where the negative electrode 230 does not reach above the positive electrode 210, but in order to secure symmetry of a current path of a current flowing through the layer 203 of the n-type gallium nitride-based compound semiconductor. Is not a problem. However, in the sense that the light leaking from the side wall surface 10 of each layer as shown in FIG. 3 is reflected by the negative electrode and can be extracted from the sapphire substrate surface side, the negative electrode 230 is Is more desirable to achieve high luminous intensity.
Although the active layers 104, 204, and 304 have the SQW structure in the above embodiment, the active layer may have an MQW structure. The active layer, a cladding layer, a contact layer, other layers, quaternary any mixing ratio, ternary, of binary Al x Ga y In 1-xy N (0 ≦ x ≦ 1,0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1).

本発明を適用した窒化ガリウム系化合物半導体より成る発光素子100の断面図(a)及び平面図(b)。1A and 1B are a cross-sectional view and a plan view, respectively, of a light emitting device 100 made of a gallium nitride-based compound semiconductor to which the present invention is applied. 本発明を適用した窒化ガリウム系化合物半導体より成る発光素子200の断面図(a)及び平面図(b)。1A and 1B are a cross-sectional view and a plan view, respectively, of a light emitting device 200 made of a gallium nitride-based compound semiconductor to which the present invention is applied. 従来技術による窒化ガリウム系化合物半導体より成る発光素子300の断面図(a)及び平面図(b)。Sectional view (a) and plan view (b) of a light emitting device 300 made of a gallium nitride-based compound semiconductor according to a conventional technique.

符号の説明Explanation of reference numerals

100、200、300:窒化ガリウム系化合物半導体より成る発光素子
101、201、301:サファイア基板
102、202、302:バッファ層
103、203、303:n型窒化ガリウム系化合物半導体層
104、204、304:活性層
105、205、305:pクラッド層
106、206、306:pコンタクト層
107、207、307:p型窒化ガリウム系化合物半導体層
110、210、310:正電極
120、220、320:絶縁性保護膜
130、230、330:負電極
100, 200, 300: Light-emitting elements 101, 201, 301: sapphire substrates 102, 202, 302: buffer layers 103, 203, 303: n-type gallium nitride-based compound semiconductor layers 104, 204, 304 : Active layers 105, 205, 305: p cladding layers 106, 206, 306: p contact layers 107, 207, 307: p-type gallium nitride based compound semiconductor layers 110, 210, 310: positive electrodes 120, 220, 320: insulating Protective films 130, 230, 330: negative electrode

Claims (1)

基板上に窒化ガリウム系化合物半導体から成る層が積層されたフリップチップ型の発光素子において、
下層側に形成されたn型窒化ガリウム系化合物半導体の層のエッチングによる上部露出面または前記n型窒化ガリウム系化合物半導体の層のエッチングによる側壁面より、前記n型窒化ガリウム系化合物半導体の層より上側に形成された各層の各側壁面を経て、p型窒化ガリウム系化合物半導体の層の上部露出面または前記p型窒化ガリウム系化合物半導体の層の上に形成された正電極の上部露出面にまで渡って形成された絶縁性保護膜と、
前記n型窒化ガリウム系化合物半導体の層の上部露出面より、前記絶縁性保護膜上に渡って形成された負電極と
を有することを特徴とする窒化ガリウム系化合物半導体素子。
In a flip-chip type light emitting element in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate,
From the upper exposed surface by etching the n-type gallium nitride compound semiconductor layer formed on the lower layer side or the side wall surface by etching the n-type gallium nitride compound semiconductor layer, from the n-type gallium nitride compound semiconductor layer Through each side wall surface of each layer formed on the upper side, the upper exposed surface of the p-type gallium nitride-based compound semiconductor layer or the upper exposed surface of the positive electrode formed on the p-type gallium nitride-based compound semiconductor layer An insulating protective film formed up to
A gallium nitride-based compound semiconductor device, comprising: a negative electrode formed over an upper exposed surface of the n-type gallium nitride-based compound semiconductor layer and over the insulating protective film.
JP2004169434A 2004-06-08 2004-06-08 Gallium nitride compound semiconductor device Expired - Fee Related JP3846491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004169434A JP3846491B2 (en) 2004-06-08 2004-06-08 Gallium nitride compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169434A JP3846491B2 (en) 2004-06-08 2004-06-08 Gallium nitride compound semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7129498A Division JP3582349B2 (en) 1998-03-04 1998-03-04 Gallium nitride based compound semiconductor device

Publications (2)

Publication Number Publication Date
JP2004266296A true JP2004266296A (en) 2004-09-24
JP3846491B2 JP3846491B2 (en) 2006-11-15

Family

ID=33128749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169434A Expired - Fee Related JP3846491B2 (en) 2004-06-08 2004-06-08 Gallium nitride compound semiconductor device

Country Status (1)

Country Link
JP (1) JP3846491B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072967A1 (en) * 2005-12-19 2007-06-28 Showa Denko K.K. Flip-chip type semiconductor light-emitting device, method for manufacturing flip-chip type semiconductor light-emitting device, printed circuit board for flip-chip type semiconductor light-emitting device, mounting structure for flip-chip type semiconductor light-emitting device-and light-emitting diode lamp
JP2007173269A (en) * 2005-12-19 2007-07-05 Showa Denko Kk Flip-chip semiconductor light emitting device, method of manufacturing same, structure for mounting same, and light emitting diode lamp
US8124999B2 (en) 2008-07-18 2012-02-28 Toyoda Gosei Co., Ltd. Light emitting element and method of making the same
JP2012164700A (en) * 2011-02-03 2012-08-30 Sanken Electric Co Ltd Light-emitting element
CN108807626A (en) * 2011-09-15 2018-11-13 晶元光电股份有限公司 Light-emitting component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072967A1 (en) * 2005-12-19 2007-06-28 Showa Denko K.K. Flip-chip type semiconductor light-emitting device, method for manufacturing flip-chip type semiconductor light-emitting device, printed circuit board for flip-chip type semiconductor light-emitting device, mounting structure for flip-chip type semiconductor light-emitting device-and light-emitting diode lamp
JP2007173269A (en) * 2005-12-19 2007-07-05 Showa Denko Kk Flip-chip semiconductor light emitting device, method of manufacturing same, structure for mounting same, and light emitting diode lamp
US8022419B2 (en) 2005-12-19 2011-09-20 Showa Denko K.K. Flip-chip type semiconductor light-emitting device, method for manufacturing flip-chip type semiconductor light-emitting device, printed circuit board for flip-chip type semiconductor light-emitting device, mounting structure for flip-chip type semiconductor light-emitting device, and light-emitting diode lamp
US8124999B2 (en) 2008-07-18 2012-02-28 Toyoda Gosei Co., Ltd. Light emitting element and method of making the same
JP2012164700A (en) * 2011-02-03 2012-08-30 Sanken Electric Co Ltd Light-emitting element
CN108807626A (en) * 2011-09-15 2018-11-13 晶元光电股份有限公司 Light-emitting component
CN108807626B (en) * 2011-09-15 2020-02-21 晶元光电股份有限公司 Light emitting element

Also Published As

Publication number Publication date
JP3846491B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
KR100594534B1 (en) ? group nitride based semiconductor luminescent element and light-emitting device
JP5305790B2 (en) Semiconductor light emitting device
JP5045336B2 (en) Semiconductor light emitting device
US7902565B2 (en) Semiconductor light emitting device and method for manufacturing same
US20050264172A1 (en) UV emitting LED having mesa structure
WO2006082687A1 (en) GaN LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE
JP2005210051A (en) Nitride semiconductor light emitting diode for flip chip
JP2010062274A (en) Semiconductor light-emitting element and its manufacturing method
TW201427075A (en) Light emitting device with excellent current spreading effect and method of manufacturing the same
JP2008108905A (en) Semiconductor light-emitting element
JP4923693B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JP4386185B2 (en) Nitride semiconductor device
JP4868821B2 (en) Gallium nitride compound semiconductor and light emitting device
TWI568024B (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP3582349B2 (en) Gallium nitride based compound semiconductor device
JP5353809B2 (en) Semiconductor light emitting element and light emitting device
JP5608762B2 (en) Semiconductor light emitting device
JP3846491B2 (en) Gallium nitride compound semiconductor device
JP5361569B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4622426B2 (en) Semiconductor light emitting device
JP5045001B2 (en) Semiconductor light emitting device
US7482634B2 (en) Monolithic array for solid state ultraviolet light emitters
JP2006013034A (en) Group iii nitride compound semiconductor light-emitting device and manufacturing method therefor
JP5851001B2 (en) Semiconductor light emitting device
CN106159053B (en) Light emitting device and light emitting device package

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees