JP2004265662A - Method of manufacturing inorganic oxide semiconductor electrode for photoelectric conversion - Google Patents

Method of manufacturing inorganic oxide semiconductor electrode for photoelectric conversion Download PDF

Info

Publication number
JP2004265662A
JP2004265662A JP2003052916A JP2003052916A JP2004265662A JP 2004265662 A JP2004265662 A JP 2004265662A JP 2003052916 A JP2003052916 A JP 2003052916A JP 2003052916 A JP2003052916 A JP 2003052916A JP 2004265662 A JP2004265662 A JP 2004265662A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
inorganic oxide
photoelectric conversion
electrode
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003052916A
Other languages
Japanese (ja)
Other versions
JP4461691B2 (en
Inventor
Satoshi Uchida
聡 内田
Miho Fuha
美帆 冨羽
Shigehiko Masaki
成彦 正木
Hirotane Takizawa
博胤 滝澤
Munenori Andou
宗徳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003052916A priority Critical patent/JP4461691B2/en
Publication of JP2004265662A publication Critical patent/JP2004265662A/en
Application granted granted Critical
Publication of JP4461691B2 publication Critical patent/JP4461691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process which can form a porous inorganic oxide semiconductor layer having a high conversion efficiency in a short time by using a resin substrate, allowing an electrode for photoelectric conversion and an photoelectric conversion cell using the inorganic oxide semiconductor layer to be manufactured. <P>SOLUTION: A method of manufacturing an inorganic oxide semiconductor electrode for photoelectric conversion includes a transparent substrate having a transparent conductive layer and the porous inorganic oxide semiconductor layer. The method comprises a step 1 in which inorganic oxide semiconductor particles having an average particle diameter of 5 nm or more and 500 nm or less are applied onto the transparent conductive layer to form the porous inorganic oxide semiconductor layer, a step 2 in which the transparent conductive layer and the porous inorganic oxide semiconductor layer are irradiated with a microwave in the frequency of 1 GHz or more and 300 GHz or less and in the output of 1 W or more and a specified value or less, and a step 3 in which the porous inorganic oxide semiconductor layer is exposed to a sensitized dye. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無機酸化物多孔質状の無機酸化物半導体電極を作成する製造工程、および、当該無機酸化物半導体電極を用いた光電変換用電極、光電変換セルに関する。
【0002】
【従来の技術】
太陽光発電は単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、テルル化カドミウムやセレン化インジウム銅などの化合物太陽電池が実用化、もしくは研究開発対象となっているが、普及させる上で製造コスト、原材料確保、エネルギーペイバックタイムが長い等の問題点を克服する必要がある。一方、大面積化や低価格を指向した有機材料を用いた太陽電池もこれまでに多く提案されているが変換効率が低く、耐久性も悪いという問題があった。
【0003】
こうした状況の中で、色素によって増感された無機酸化物半導体多孔質を用いた光電変換用電極および光電変換セル、ならびにこれを作成するための材料および製造技術が開示された(非特許文献1および特許文献1参照)。提案された電池は、ルテニウム錯体等の増感色素によって分光増感された酸化チタン多孔質層を作用電極としヨウ素を主体とする電解質および対電極から成る色素増感型の光電変換セルである。この方式の第一の利点は酸化チタン等の安価な酸化物半導体を用いるため、安価な光電変換素子を提供できる点であり、第二の利点は用いられるルテニウム錯体が可視光域に幅広く吸収を有していることから比較的高い変換効率が得られる点である。
【0004】
また、酸化チタンペーストで成膜後焼成してできた酸化チタン多孔質層に、トリピリジルカルボキシレート配位子を有するルテニウム錯体を吸着させた電極を用いてセルを作製し、変換効率10.4%を達成したことが報告されている(非特許文献2参照)。
【0005】
このような色素増感型光電変換セルの製造上の問題点のひとつとして、高温の焼結プロセスを必要とする問題点がある。酸化チタン多孔質層を形成する際に一般的に用いられる手法は酸化チタン粒子の分散ペーストを塗布して形成した酸化チタン粒子層に400℃以上の温度を与えることによって粒子間にネッキングを生じさせることにより多孔質化させ、電子伝達性を向上させるものである。このため用いることができる基材がガラスのような耐熱性の高い材質に限られるので光電変換セルの基材材料費や製造時に消費するエネルギー費等の製造コストを高価な物にしている。樹脂を基材としてこれが溶解しない温度を与えて酸化チタン多孔質層を作る方法も試みられているが変換効率が低いものにとどまっていた。さらに低温焼成で作成された酸化チタン多孔質層はもろく、セルの耐久性が低いものであった(非特許文献3参照)。低温で焼成する焼結方法は焼結時間も比較的長時間となり、この点からも量産時のプロセスとしては問題があった。
【0006】
樹脂を基材とした場合の無機酸化物多孔質層の製造方法として無機酸化物粒子層に加圧する方法がある(非特許文献7および特許文献4参照)。しかし、プレス処理単独の場合、用いられる圧力が数百kgf/cm2と高圧であるため高圧の油圧装置が必要な上、ロールツーロールなどの連続生産装置では圧力を伝達するロールが磨耗、破壊しやすい、処理速度が遅い等、連続生産には不向きな方法であった。
【0007】
無機酸化物を含むセラミクスの焼結にはマイクロ波が用いられることがある(非特許文献4および5参照)。
マイクロ波加熱の特徴の一つは、外部加熱と違い、マイクロ波エネルギーの吸収可能な誘電体が優先的に発熱する選択性を有することにある。基材に対してこれに製膜された無機酸化物粒子層を選択的に加熱することができれば樹脂基材を用いた光電変換セルのシート化に有効な手段として有用である。
【0008】
色素増感型太陽電池の無機酸化物半導体電極処理におけるマイクロ波の適用としては、、様々なエネルギーや電磁波照射の列挙の一つとしてマイクロ波が登場するが、実施されたエネルギーおよび電磁波照射は加熱、紫外光、赤外光のみで、マイクロ波照射での実施例は無い上に、明細書中での説明も無い(特許文献2および3参照)。さらに透明電極、又はこれに酸化チタン粒子を塗布したものに一般的な家庭用電子レンジ(500W、2.45GHz)でマイクロ波照射を行うと、数秒で基材や導電層の破壊に至ることから単純な電磁波処理では電極の処理が困難であることがわかる。
【0009】
又、本発明を演者らが発表した学術会議(電気化学会 第70回大会 2002年9月12〜13日 東京工芸大学厚木キャンパス)において、桐蔭横浜大学から電着法によって得られた一定の変換効率を既に有する酸化チタンの多孔質層に対しての効率向上効果として照射条件不明確ながら家庭用電子レンジでマイクロ波照射を行った例(550W、2.45GHz)が同時に発表された(非特許文献6参照)が、簡便で量産性の優れた塗布法によって得られた粒子層への応用で、粒子間のネッキングや透明導電層−粒子間の結着を生じさせた例は同発表においても無い。
同学術会議で演者らも家庭用電子レンジで酸化チタン粒子のみをマイクロ波処理した例を示したが、この条件では粒子径の収縮変化は無く、粒子間のネッキングを生じさせるような実質的な形態変化が確認できなかった(図2)。簡便で量産性の優れた塗布法によって製膜された酸化チタン粒子層から多孔質層を形成させるためのマイクロ波応用には条件検討が必要なことが示唆された。
【0010】
【非特許文献1】Nature(第353巻、第737〜740頁、1991年
【特許文献1】米国特許4927721号明細書
【非特許文献2】J.Am.Chem.Soc.(2001),Vol.123,p.p.1613−1624
【非特許文献3】ECN contributions 16th European Photovoltaic Solar Enargy Conference and Exhibition, May 1−5,2000 abstract; P.M.Sommeling et.al,”Flexible dye−sensitized nanocristalline TiO2 solar cells”
【非特許文献4】「豊田中央研究所R&Dレビュー、 Vol.30 No.4(1995.12)p.25 機能性セラミックスのマイクロ波焼結」
【非特許文献5】「セラミックスの高速焼結技術 セラミックス電磁プロセッシング、 株式会社ティー・アイ・シー 1998年 三宅正司編」
【特許文献2】特開2001−357896号公報
【特許文献3】特開2002‐134435号公報
【非特許文献6】電気化学会 第70回大会 2002年9月12〜13日 東京工芸大学厚木キャンパス 2E19
【非特許文献7】Nanoletters,1,(2001),p.p.97‐100,H.Lindstron,et.al.
【特許文献4】国際公開第00/72373号パンフレット
【0011】
【発明が解決しようとする課題】
色素増感型の光電変換セルの安価なプロセスを可能にするには、短時間の処理でかつ安価な樹脂基材を用いて高い変換効率有することのできる多孔質状の無機酸化物半導体層形成の技術が求められていた。
【0012】
本発明の目的は、短時間の処理で、かつ樹脂基材を用いて高い変換効率を有した多孔質状の無機酸化物半導体層を形成できる製造工程を提供し、ひいては、当該無機酸化物半導体層を用いた光電変換用電極、光電変換セルの製造をも可能とすることである。
【0013】
【課題を解決するための手段】
発明者らは、マイクロ波を低出力で使用することで上記課題を解決することを見出し、本発明に至った。
【0014】
即ち、本発明は、透明導電層を具えた透明基材と、無機酸化物半導体多孔質層とを含む光電変換用無機酸化物半導体電極の製造方法であって、
平均粒子径5nm以上500nm以下の無機酸化物半導体粒子を透明導電層上に塗布して製膜して無機酸化物半導体多孔質層とする工程1、
透明導電層および無機酸化物半導体多孔質層に、周波数1GHz以上300GHz以下のマイクロ波を1W以上、かつ、下記式の出力以下で照射して発熱させる工程2、
増感色素を無機酸化物半導体多孔質層と接触させる工程3を含む工程により製造されることを特徴とする光電変換用無機酸化物半導体電極の製造方法。
式 y = 2×10−8 x+ 300(式中、yは高周波出力(W)、xは高周波周波数(Hz)を表す。)
また、透明導電層を具えた透明基材と、無機酸化物半導体多孔質層とを含む光電変換用無機酸化物半導体電極の製造方法であって、
平均粒子径5nm以上500nm以下の無機酸化物半導体粒子を透明導電層上に塗布して製膜して無機酸化物半導体多孔質層とする工程1、
透明導電層および無機酸化物半導体多孔質層に周波数1GHz以上300GHz以下のマイクロ波を照射して発熱させる工程であって、被照射体に放熱体を密着させながらマイクロ波を照射する工程4、
増感色素を無機酸化物半導体多孔質層と接触させる工程3を含む工程により製造されることを特徴とする光電変換用無機酸化物半導体電極の製造方法に関する。
【0015】
また、本発明は、透明導電層を具えた透明基材と、無機酸化物半導体多孔質層とを含む光電変換用無機酸化物半導体電極の製造方法であって、
無機酸化物半導体多孔質層が、平均粒子径5nm以上500nm以下の無機酸化物半導体粒子を透明導電層上に塗布して製膜する工程1の後及び/又は前に、無機酸化物半導体多孔質層にプレス処理する工程5を行うことを特徴とする上記光電変換用無機酸化物半導体電極の製造方法に関する。
【0016】
また、本発明は、無機酸化物半導体多孔質層に与えるプレス処理の圧力が0.01Kgf/cm 以上100Kgf/cm未満であることを特徴とする上記光電変換用無機酸化物半導体電極の製造方法に関する。
【0017】
また、本発明は、透明導電層が、酸化スズ、酸化インジウム、酸化亜鉛、炭素の少なくとも1つを含む上記光電変換用無機酸化物半導体電極の製造方法に関する。
【0018】
また、本発明は、マイクロ波照射時に、マイクロ波の入射方向が透明基材面側からの照射することを特徴とする上記光電変換用無機酸化物半導体電極の製造方法に関する。
【0019】
また、本発明は、マイクロ波照射時に、マイクロ波照射によって被照射体を50℃以上1000℃以下に昇温させることを特徴とする上記光電変換用無機酸化物半導体電極の製造方法に関する。
【0020】
また、本発明は、マイクロ波照射時に、マイクロ波照射によって被照射体を200℃/分以下の速度で昇温させることを特徴とする上記光電変換用無機酸化物半導体電極の製造方法に関する。
【0021】
また、本発明は、上記光電変換用無機酸化物半導体電極と、電解質層と、導電性対極とを備えた光電変換用半導体セルに関する。
【0022】
【発明の実施の形態】
(マイクロ波処理による無機酸化物半導体多孔質層の形成方法 工程2)
本発明では、被照射体である透明電極の透明導電層上に塗布法によって製膜された平均粒子径5nm以上500nm以下の無機酸化物半導体粒子から成る無機酸化物半導体粒子層および透明導電層に照射し、エネルギー吸収によりこれらを発熱させる工程を経て粒子間のネッキングおよび粒子−透明電極間に結着を生じさせることができる。とりわけ優先的に発熱するのは誘電損率の高い酸化スズ、酸化インジウム、酸化亜鉛、炭素などを含む透明導電層である。透明導電層に塗布された無機酸化物半導体粒子層は比較的誘電損率が低いので主として透明導電層から伝わる発熱により昇温し、粒子間のネッキングおよび粒子−透明導電層間に結着を生じる。図3は本発明のマイクロ波処理後の酸化チタン多孔質層の電子顕微鏡写真である。透明導電層の優先的な温度上昇の影響を受けた形で基材温度も上昇する。
【0023】
表1は、予備試験として、(a)ガラス基材のみ、(b)透明導電層(フッ素ドープ酸化スズ=FTO)付きガラス基材、(c)酸化チタン粒子塗布層付きガラス基材、(d)透明導電層付きガラス基材の透明導電層上に酸化チタン粒子塗布層を付けた物、の4種の被照射体に28GHz、500Wのマイクロ波を5分間照射した後の被照射体温度である。マイクロ波照射に対して十分な発熱を得るには透明導電層の存在が必須であることがわかる。
【0024】
表1 マイクロ波焼成の予備試験
周波数28GHz、500Wのマイクロ波を5分間照射した後の被照射体温度。
透明導電層側にマイクロ波照射を行うことを表面照射と称する。
被照射体と熱電対やアルミナ台座との位置関係を表1(b)裏面照射の場合を例として図4に示す。
【0025】
【表1】

Figure 2004265662
【0026】
被照射体である誘電体が体積あたりに吸収されるエネルギーP(W/cm)は、P=εε”ωE/2(ここで、εは真空の誘電率、ε”(=εtanδ)は誘電体の誘電損率[εは比誘電率、tanδは誘電正接]、ωは角周波数、Eは電界強度)であり、電磁波の周波数と電界強度の双方がエネルギーの吸収強度に寄与するので、特定の誘電損率を有する被照射体に対して目的の処理状態に必要な温度になるようにエネルギーを調節するには照射電磁波の電界強度を変化させる方法と周波数を変化させる方法の2つの方法が存在する。電界強度の寄与は2乗で効いてくるのでこれを高くすることによるエネルギー増大の寄与は大きい。又、周波数の高い電磁波を用いると、誘電体の誘電損率もこれに依存して一般的に増大し、効率的なエネルギー吸収に繋がる。
【0027】
無機酸化物をはじめとするセラミックスのマイクロ波焼結においては、被照射体の昇温に伴う誘電損率の増大によって生じる熱暴走(thermal runaway)等に起因する局部的な過熱から生じる被照射体の破壊や歪み等がしばしば問題となる。被照射体が無機酸化物半導体電極である場合、照射条件が不適切であれば基材や導電層の破壊、クラック形成、部分的な溶解、変形等が生じる。
【0028】
一般的な電子レンジ(2.45GHz、高周波出力500W程度)で導電性ガラス(フッ素ドープ酸化スズ導電層で被覆)あるいはこの導電層側に酸化チタン粒子層を塗布して電磁波照射を行うと、数秒で基材の破壊が起こる。これは導電層に用いられる酸化スズの昇温が加速度的に起こり基材との間に熱分布の差が大きくなり歪が生じる為である。基材の面積が大きくなる程基材の破壊等は起こりやすくなる。たとえば2.45GHz高周波出力500W家庭用電子レンジにおける電磁波照射において2.5cm×2.5cm×1.1mmのFTOガラスでは照射後3〜5秒で基材の破壊が起こり十分な昇温は得られない。基材を小さくカットしたり、照射面積を小さくするマスクを施したりすると破壊が起こるまでの照射時間を延長できるが、大面積を必要とする太陽電池の製造にとっては適切な方法ではない。塗布製膜された無機酸化物粒子層を有する導電層にマイクロ波照射を行って、焼成により粒子間のネッキングおよび粒子−透明導電層間に結着を生じさせるには適切な照射条件が必要である。
【0029】
被照射体に温度差が生じた場合に熱暴走が生じないためには以下の条件を満足しなければならない。
Pt−Pt<[(t−t)/l]A・R
(ここでPt−Pt:温度t、tでの吸収エネルギー、(t−t)/l:温度勾配、A:熱伝導断面積、R:熱伝導率 ;佐治他三郎、「セラミックスの高速焼成技術」(株)ティー・アイ・シー刊、第I部 第1章 第1節 )
【0030】
従って、熱伝導断面積が決まっている導電性基材に対して熱暴走を生じさせない対策は、高周波出力の比較的低い領域での連続照射を行うか、パルス状の高出力波を間欠的に照射する、熱伝導率の高い放熱板等の放熱体に密着させる等の放熱対策を行う、被照射体にプレヒートを行う等の均熱対策を行う等の熱分布を緩和するような工夫が必要となる。
又、高い周波数のマイクロ波を使用すると被照射体の誘電損率の温度依存性が小さくなり、式中Pt−Pt項を小さくすることに繋がるため効果的である。
【0031】
2.45GHzでのマイクロ波照射で、容易に入手可能な照射装置として家庭用電子レンジを用いる場合、同一のマグネトロンで可変出力を行おうとすると、汎用出力の500W照射に比べて低出力の連続照射試験ではインバーターの周波数上昇に伴いフィラメント温度が低下しマグネトロンの発振が不安定となり、低出力領域での照射試験は行いづらいものがあった。入手可能な家庭用電子レンジでマグネトロンやインバーター回路を改良して100W、200Wの連続低出力照射の実験が可能なものは現在までに、2001年発売の東芝社製ER−A30Sシリーズのみである(電波新聞2001年5月22日刊)。本発明での2.45GHz100W照射は、当該装置を用いて照射試験を行った。その他の家庭用電子レンジでは解凍モード等で高周波出力の500W付近の照射を間欠的に行うことで、100W相当、200W相当等と称している。周波数2.45GHzでの低出力領域の試験検討が容易でなかったことがわかる。
【0032】
さらに工業的な2.45GHzのマイクロ波利用としては、木材の乾燥や冷凍品の加熱等の分野で出力1000W以上の利用が先行し、医療や電子材料加工等の特殊途で100W前後の低出力領域のマイクロ波が使われ始めたのは近年のことである。
【0033】
(放熱体について 工程4)
マイクロ波照射処理時において、被照射体に放熱対策を行う場合はヒートシンクやシート状の放熱体および冷媒で冷却可能な放熱体等に酸化チタン電極を密着させる等の対策が挙げられる。密着面は被照射体の裏面でも表面でもかまわない。放熱体の材質は、使用温度での熱伝導率が10W/m・K以上であるものが好ましく、アルミ等の金属が好ましい。しかし、被照射体の急激な局部過熱を緩和する働きを行うものであれば、これに限らない。例えば、熱伝導率が10W/m・K未満の材質であっても、材質内部に冷媒を通すことにより本発明の放熱体とすることができる。高い熱伝導率を有する金属以外の材質の一例としてはグラファイト、ベリリア、窒化アルミ、炭化ケイ素等が挙げられる。放熱体として材質内部に冷媒を通す場合、冷媒の温度コントロールを行い安定な放熱効果を得ることがさらに望ましい。被照射体の放熱体への密着方法は器具による固定、圧着、粘着、接着、接触、吸引等が挙げられるが密着状態を生じさせることができれば他の方法でもかまわない。被照射体の放熱体の間に例えば10ミリ以内の距離があっても放熱効果を及ぼすことができる配置関係であればこれに該当する。被照射体に気体、液体状の冷却冷媒を放熱体として直接接触させることも該当する。
【0034】
図5は放熱体としてアルミ製のヒートシンクとテープを密着させた実施例である。
被照射体に対してマイクロ波を照射する方法として、マイクロ波照射器に対してシート状の被照射体が連続的に移動し巻き取り作業を伴って処理する方法は安価に製造する方法として有用である。この際、被照射体が放熱体に密着を保ちながら連続的に位置関係を変化させゆく工夫をすることにより連続的な放熱効果を得ることもできる。
【0035】
(プレス処理について 工程5)
マイクロ波照射前に、無機酸化物半導体多孔質層にプレス処理を行うことは高い変換効率を得るために効果的である。とりわけ透明導電層を有した基材が樹脂製である場合は強い圧力をかけても基材の破壊に至ることなく効果を得ることができる。プレス処理単独での効果はNanoletters,1,(2001),p.p.97‐100,H.Lindstron,et.al.および国際公開第00/72373号パンフレットで述べられている。ただしプレス処理単独で処理を行う場合、用いられる圧力が数百kgf/cm2と高圧であるため高圧の油圧装置が必要な上、ロールツーロールなどの連続生産装置では圧力を伝達するロールが磨耗、破壊しやすい、処理速度が遅い等、連続生産には不向きな方法である。圧力として量産製造工程上の観点からは一般的な印刷工程用のロール厚力で可能な0.01Kgf/cm 以上100Kgf/cm未満の圧力で予備加圧として圧力を付与し、その後にマイクロ波処理を行う方法が初めて量産性を有しかつ高い変換効率を得るために最も有効な製造方法となる。圧力を付与する方法は加圧ジャッキ等で数秒〜数分間圧力をかけても良いし、ロール間で連続して加圧しても良い。加圧時には圧力シリンダーで直接圧力をかけると、無機酸化物の一部が基材から剥がれてシリンダー側へ付着するので、間にポリエチレン等のフィルム等を入れておくことが望ましい。プレス処理をマイクロ波処理前に行うと、無機酸化物半導体多孔質層を構成する粒子間や粒子−透明導電層間の距離を狭めてマイクロ波処理を行うことができるのでネッキングが形成しやすくなり、変換効率の向上等に特に有効であるが、プレス処理をマイクロ波処理後に行っても変換効率向上の効果を得ることができる。プレス処理をマイクロ波処理後に行うと、プレス処理時に起こりやすい無機酸化物層の剥がれなどが起こりにくくなる。
【0036】
高い周波数のマイクロ波として20GHz以上の領域をミリ波領域と呼ぶことがある。
この領域にあたる高い周波数のマイクロ波による処理では、(1)処理容器内に一様な電界強度分布を作りやすい、(2)処理開始温度(たとえば室温)での誘電損率が一般に大きくなるのでエネルギー吸収が効率的である、(3)誘電損率の温度依存性が小さくなり加熱途上でしばしば発生する熱暴走を避けやすい、(4)非熱的作用から焼結に必要な温度そのものを下げることができる(H.D.Kimrey,et.al.、MRS.Symp.Proc.,189(1991)p.p.243−255)等特徴的な性質を有した電磁波領域であり、大面積での無機酸化物半導体電極の製造に有利な点を多く持つ。
【0037】
本発明における検討においては、高い周波数のマイクロ波の電磁波加熱焼結装置として、富士電波工業株式会社製 FMS‐10‐28(発振周波数 28GHz)を用いた。本装置では10KW以下の範囲で高周波出力を変化させて無機酸化物粒子層に電磁波照射を行うことができる。
【0038】
28GHzをはじめとする高い周波数での試験検討については、試験機の商品開発そのものが近年であり(佐治他三郎、ニューセラミックス,8[5](1995)p.21; 三宅正司、「セラミックスの高速焼成技術」(株)ティー・アイ・シー刊、総論 第1節 )、工業的な利用としてはこれからの状況である。
本発明におけるマイクロ波照射の実施例は周波数28Hzおよび2.45GHzの電磁波において行ったが、1GHz以上300GHz 以下の範囲であればこの周波数に限らない。この範囲での各周波数に対して、本発明で連続照射可能な高周波出力は、1W以上、y =2×10−8 x+ 300(式中、yは高周波出力(W)、xは高周波周波数(Hz)を表す。)以下である。同式においては、周波数2.45GHzのマイクロ波使用時においては1W以上約350W以下、周波数28GHzのマイクロ波使用時においては1W以上約850W以下の高周波出力を使用することに該当する。この範囲以上の高周波出力を被照射体に照射すると、無機酸化物粒子層の粒子間のネッキングや粒子−透明導電層間の結着を形成する前に、被照射体の局部過熱のために基材や透明導電層および無機酸化物半導体層等に破壊、変形、溶解、クラック形成等が起こり、光電変換用無機酸化物電極を製造することができない。本発明の範疇として、これ以上の高周波出力を使用する場合は被照射体に金属性の放熱体を密着させる、適切な電磁波遮蔽物を設ける、マイクロ波照射装置から被照射体を遠ざける、照射方法を10秒以下で1回以上の間欠照射にする等により実質的に照射強度を低下させる処置を行い、熱暴走を抑制することで光電変換用無機酸化物電極を製造することができる。
【0039】
本発明においては、マイクロ波の照射の前後で、水を含む溶剤や、さらにオルトチタン酸テトライソプロピルを含む無味酸化物前駆体等、および有機、無機の処理剤で被照射体の前処理、後処理を行っても良い。
【0040】
(無機酸化物半導体粒子層 工程1)
本発明で用いられる平均粒子径5nm以上500nm以下の無機酸化物半導体粒子層の材質は、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、酸化鉄、酸化ニッケル、酸化コバルト、酸化ストロンチウム、酸化タンタル、酸化アンチモン、酸化ランタノイド、酸化イットリウム、酸化バナジウム等を挙げることができるが、これらがマイクロ波処理後、無機酸化物半導体多孔質層を形成し、光励起された状態での電子電導性を有しさらに増感色素を連結することによって可視光および/又は近赤外光領域までの光電変換が可能となるものであればこれに限らない。無機酸化物半導体粒子の材質は複数種の無機酸化物同士の組合せ構成であってもかまわない。無機酸化物半導体多孔質層表面が増感色素によって増感されるためには無機酸化物半導体多孔質層の電導帯が増感色素の光励起順位から電子を受け取りやすい位置に存在することが望ましい。このため前記無機酸化物半導体粒子の中でも酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ等が特に用いられる。さらに、価格や環境衛生性等の点から、酸化チタンが特に用いられる。本発明においては平均粒子径径5nm以上500nmの無機酸化物半導体粒子から一種又は複数の種類を選択して組み合わせることができる。
【0041】
無機酸化物半導体粒子層はたとえば溶剤中に無機酸化物半導体粒子を分散させたペーストを作成し、これを透明電極表面に塗布し、溶剤を蒸発させて形成する。ペースト作成時には必要に応じて、硝酸やアセチルアセトン等の酸やポリエチレングリコール、トリトンX−100等の分散剤や有機物をペースト成分に混合しても良いが少量の使用が望ましい。無機酸化物半導体粒子層の製膜方法としては塗布法が簡便で量産性を有する方法として望ましい。スピンコーターによる塗布方法やスクリーン印刷を用いた塗布法、スキージーを用いた塗布方法、ディップ法、吹き付け法、転写法、ローラー法等を用いることができる。製膜後、基材を痛めない温度で乾燥させて揮発成分を除去することが望ましい。特開2002−184477に開示されたエアロゾル方式等のように溶剤を用いない吹き付けの製膜法および吹き付け時に加熱等のエネルギー付与を併用する方法によっても良い。
【0042】
無機酸化物半導体粒子層の製膜後、被照射体にマイクロ波照射をする前あるいは後に製膜層に対して加圧、光照射、加電圧処理、プラズマ処理、化学処理、超音波処理、電子線処理、オゾン処理等の別の処理方法を併用することもできる。又、マイクロ波の照射の前後で、水を含む溶剤や、さらにオルトチタン酸テトライソプロピル等のような無味酸化物前駆体等、および有機、無機の処理剤で被照射体の前処理、後処理を行っても良い。
【0043】
(透明導電層)
用いられる透明導電層としては、太陽光の可視から近赤外領域に対して光吸収が少ない導電材料なら特に限定されないが、ITO(インジウム−スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛等の導電性の良好な金属酸化物や炭素が好適である。酸化スズ、酸化インジウム、酸化亜鉛、炭素などはマイクロ波照射時の誘電損率が高い材料でありのエネルギーを効率的に吸収し優先的に発熱し、透明導電層上に形成された無機酸化物粒子層にこの熱を伝え、粒子間のネッキングや粒子−透明導電層間の結着を形成することができる。本発明においては透明電極層と無機酸化物粒子層との間に結着を促進したり、電子伝達を改善したり、逆電子過程を防止する等の目的で他の層を追加しても良い。
【0044】
(透明基材)
用いられる透明基材としては太陽光の可視から近赤外領域に対して光り吸収が少ない材料であれば特に限定されない。石英、並ガラス、BK7、鉛ガラス等のガラス基材、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビニルブチラート、ポリプロピレン、テトラアセチルセルロース、シンジオクタチックポリスチレン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフォン、ポリエステルスルフォン、ポリエーテルイミド、環状ポリオレフィン、ブロム化フェノキシ、塩化ビニール等の樹脂基材等を用いることができる。
【0045】
(光電変換用電極 工程3)
本発明においてマイクロ波処理によって得られた無機多孔質の無機酸化物半導体電極は、これを透明基材ごと増感色素を溶解させた溶液中に浸すことにより無機多孔質表面と増感色素の連結置換基の親和性を利用して増感色素を無機多孔質表面に接触・結合させる方法が一般的であるが、この方法に限定されない。
【0046】
増感色素の溶液を作るための溶剤は、増感色素を溶解させ、無機酸化物層に色素吸着の仲立ちを行える溶剤である必要がある。増感色素を溶解させるために必要に応じて加熱、溶解助剤の添加および不溶分のろ過を行っても良い。溶剤は二種類以上の溶剤を混合して用いても良く、溶剤としてエタノール、イソプロピルアルコール、ベンジルアルコールなどのアルコール系溶剤、アセトニトリル、プロピオニトリルなどのニトリル系溶剤、クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、酢酸エチル、サクサンブチル等のエステル系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤、ヘキサン、オクタン、トルエン、キシレン等の炭水化物系位溶剤、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチルイミダゾリノン、Nメチルピロリドン、水等を用いることができるがこれに限らない。溶剤は二種類以上の溶剤を混合して用いても良い。
【0047】
透明基材の導電面上に形成される無機酸化物半導体多孔質層の膜厚は0.5μm以上200μm以下であることが望ましい。膜厚がこの範囲未満である場合有効な変換効率が得られない。又膜厚がこの範囲より厚い場合成膜時に割れや剥がれが生じる等作成が困難になる反面、無機酸化物多孔質体表層と導電面との距離が増えるために発生電荷が導電面に有効に伝えられなくなるので、良好な変換効率を得にくくなる。

【0048】
(光電変換用増感色素の説明)
本発明において用いられる光電変換用増感色素としては、式1に示した構造のルテニウム錯体色素が代表的である。SOLARONIX社製 Ruthenium 535、Ruthenium 535−bisTBAなどがこれに該当する。
【0049】
【化1】
Figure 2004265662
(式1)
【0050】
さらに光電変換用増感色素としては、アゾ系色素、キナクリドン系色素、ジケトピロロピロール系色素、スクワリリウム系色素シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィン系色素、クロロフィル系色素、ルテニウム錯体系色素、インジゴ系色素、ペリレン系色素、オキサジン系色素、アントラキノン系色素、フタロシアニン系色素、ナフタロシアニン系色素等、およびその誘導体が挙げられるが光を吸収し無機酸化物半導体電極の伝導帯に励起電子を注入できる色素であればこれらに限定されない。これらの増感色素はその構造中に連結基を1個以上有する場合は、無機半導体多孔質体表面に連結することができ、光励起された色素の励起電子を無機半導体多孔質体の電導帯に迅速に伝えることができるので望ましい。
【0051】
(光電変換セル)
本発明において用いられる光電変換用電極は、電解質層を介して導電性対極を組み合わせることによって光電変換セルを形成する。
【0052】
(電解質層)
本発明で用いられる電解質層は電解質、媒体、および添加物から構成されることが好ましい。本発明の電解質はIとヨウ化物(例としてLiI、NaI、KI、CsI、MgI、CaI、CuI、ーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3‐メチル‐2‐オキサゾリジノンなどの複素環化合物、ジメチルスルホキシド、スルホランなど非プロトン極性物質、水などを用いることができる。
【0053】
又、固体状(ゲル状を含む)の媒体を用いる目的で、ポリマーを含ませることもできる。この場合、ポリアクリロニトリル、ポリフッ化ビニリデン等のポリマーを前記溶液状媒体中に添加したり、エチレン性不飽和基を有した多官能性モノマーを前記溶液状媒体中で重合させて媒体を固体状にする。
【0054】
電解質層としてはこの他、CuI、CuSCN媒体を必要としない電解質および、Nature,Vol.395, 8 Oct. 1998,p583−585記載の2,2’,7,7’‐テトラキス(N,N‐ジ‐p‐メトキシフェニルアミン)9,9’‐スピロビフルオレンのような正孔輸送材料を用いることができる。
【0055】
本発明に用いられる電解質層には光電変換セルの電気的出力を向上させたり、耐久性を向上させる働きをする添加物を添加することができる。電気的出力を向上させる添加物として4‐t‐ブチルピリジンや、2‐ピコリン、2,6‐ルチジン等が挙げられる。耐久性を向上させる添加物としてMgI等が挙げられる。
【0056】
(導電性対極)
本発明で用いられる導電性対極は光電変換セルの正極として機能するものである。具体的に対極に用いる導電性の材料としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、金属酸化物(ITO(インジウム‐スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛)、または炭素等が挙げられる。対極の膜厚は、特に制限はないが、5nm以上10μm以下であることが好ましい。
【0057】
(組み立て方)
前記の光電変換用電極と導電性対極を電解質層を介して組み合わせることによって光電変換セルを形成する。必要に応じて電解質層の漏れや揮発を防ぐために、光電変換セルの周囲に封止を行う。封止には熱可塑性樹脂、光硬化性樹脂、ガラスフリット等を封止材料として用いることができる。光電変換セルは必要に応じて小面積の光電変換セルを連結させて作る。光電変換セルを直列に組み合わせることによって起電圧を高くすることができる。
【0058】
【実施例】
以下に実施例を具体的に示すが本発明は以下に限定されるものではない。
(実施例1)
・酸化チタン粒子層の調整
メタチタン酸スラリー(テイカ社製 TKS202)を原料として水熱/オートクレーブ処理をして粒子径30nmの単分散コロイド粒子を作り、バインダー無添加のまま透明電極上に4mm×5mm角の大きさに塗布して製膜した。
・透明電極
導電膜を有した樹脂基材の透明電極として、日本板硝子社製ガラス基材透明電極(FTO透明導電層)を使用した。
・放熱板の装着
透明電極基材を放熱板であるアルミ製ヒートシンクに貼り付けた。その際、透明導電膜側も酸化チタン粒子層以外の透明導電層の露出部分をアルミテープで覆った(図5)。
・電磁波照射処理(酸化チタン電極の作成)
高エネルギー照射用の電磁波加熱焼結装置として、富士電波工業株式会社製 FMS‐10‐28(発振周波数 28GHz、電磁波出力最大10KW(出力可変))を用い、電磁波出力2kW、2分間の電磁波照射を行った。
【0059】
・増感色素の吸着
増感色素としてSOLARONIX社製 Ruthenium535−bisTBAを用い、エタノール溶剤に溶解し色素溶液酸化チタン電極を浸して色素を吸着させた。着色した電極表面をエタノールで洗浄して乾燥させ、光電変換用電極を得た。
・電解質溶液の調整
下記処方で電解質溶液を得た。
溶媒 メトキシアセトニトリル
LiI 0.1M
0.05M
4‐t‐ブチルピリジン 0.5M
1‐プロピル‐2,3‐ジメチルイミダゾリウムヨージド 0.6M
【0060】
・光電変換セルの組み立て
図1の様に光電変換セルの試験サンプルを組み立てた。
導電性対極にはフッ素ドープ酸化スズ層付ガラス基板の導電層上にスパッタリング法により白金層を積層した物を用いた。
樹脂フィルム製スペーサーとしては、三井・デュポンポリケミカル社製 「ハイミラン」フィルムの25μm厚の物を用いた。
【0061】
・変換効率の測定方法
分光計器社製ソーラーシュミレーター(ハイパーキセノンエキサイター)をエアマスフィルターとを組み合わせ、光量計で100mW/cmの光量に調整して測定用光源とし、光電変換セルの試験サンプルに光照射をしながら I‐Vカーブトレーサーを使用してI‐Vカーブ特性を測定した(図6)。変換効率ηは、I‐Vカーブ特性測定から得られたVoc(開放電圧値)、Isc(短絡電流値)、ff(フィルファクター値)を用いて下式により算出した。
【0062】
【式1】
Figure 2004265662
【0063】
・被照射体温度の測定
熱電対をマイクロ波照射側の反対側から被照射体に接するように配置して測定した。
【0064】
・ネッキング形成の確認
SEM観察を行ったところ粒子間のネッキング形成が確認された(図3)。
【0065】
(実施例2)
導電性基板(日本板硝子社製)のみに対する28GHz電磁波の連続照射時における予備試験を行った上で焼成試験を行った。
・28GHz照射での予備試験
電磁波照射装置として富士電波工業株式会社製 FMS‐10‐28を使用。透明電極を導電層上向きでアルミナ板上に置いた状態で、照射の高周波出力 200W、500W、1000W、2000Wで基材への影響を調べた。照射時間に対する被照射体の温度変化を図7に示す。図にはFTO透明導電層のないガラス基材の温度変化も含めたが、これとの比較からも透明導電層がマイクロ波エネルギーを優先的に吸収して発熱に寄与していることが分かる。
【0066】
【表2】
Figure 2004265662
【0067】
以上の結果から28GHzの連続照射の実施例として1000W未満で5分間の照射条件を用いた。
・照射面の予備試験
導電層表面に酸化チタン粒子層を製膜した透明電極を、酸化チタン粒子層上向きでアルミナ板上に置いた状態で電磁波照射した場合と裏面から照射した場合での焼成電極のセル特性を比較した。セル作成方法、評価方法等は実施例1と同様。裏面照射時の配置図を図8に示す。500Wで5分間照射。
【0068】
【表3】
Figure 2004265662
【0069】
以上の結果から本実験条件では裏面からの照射の方がより好ましいことがわかる。
【0070】
・1000W未満の出力領域での連続照射試験
導電層表面に酸化チタン粒子層を製膜した透明電極を、裏面から200W、500W、700Wで5分間マイクロ波照射した場合の焼成電極のセル特性を比較した。セル作成方法、評価方法等は実施例1と同様。各高周波出力処理時の焼成電極を用いた場合の変換効率の変化を図9に示す。照射時間に対する被照射体の温度変化を図10に示す。
【0071】
【表4】
Figure 2004265662
【0072】
(実施例3)
導電性基板(日本板硝子社製)のみに対する2.45GHz電磁波の連続照射時における予備試験を行った上で焼成試験を行った。
・2.45GHz照射での予備試験
電磁波照射装置として東芝社製ER−A30S1を使用。
透明電極を導電層上向きでアルミナ板上に置いた状態で、照射の高周波出力 100W、200W、500W、1000Wで基材への影響を調べた。
【0073】
【表5】
Figure 2004265662
【0074】
以上の結果から2.45GHzの連続照射の実施例として200W未満での連続照射条件を用いた。
【0075】
・100Wの出力領域での連続照射試験
導電層表面に酸化チタン粒子層を製膜した透明電極を、裏面から100Wで照射した場合の焼成電極のセル特性を比較した。セル作成方法、評価方法等は実施例1と同様。
【0076】
【表6】
Figure 2004265662
【0077】
(実施例4)
樹脂製導電性基板(王子トービ社製)のみに対する28GHz電磁波の連続照射時における予備試験を行った上で焼成試験を行った。
・28GHz照射での予備試験
電磁波照射装置として富士電波工業株式会社製 FMS‐10‐28を使用。透明電極を導電層上向きでアルミ製放熱体に密着させた状態で、照射の高周波出力 200W、500W、1000Wで基材への影響を調べた。
【0078】
【表7】
Figure 2004265662
【0079】
以上の結果から樹脂製導電性基板への28GHzの連続照射の実施例として500W未満で30秒間の照射条件を用いた。
【0080】
・200Wの出力での連続照射試験
導電層表面に酸化チタン粒子層を製膜した樹脂製透明電極を、アルミ製放熱体に接触させた状態で表面から200Wで照射した場合の焼成電極のセル特性を比較した。セル作成方法、評価方法等は実施例1と同様。
【0081】
(実施例5)
樹脂製導電性基板(王子トービ社製)のみに対する2.45GHz電磁波の連続照射時における予備試験を行った上で焼成試験を行った。
・2.45GHz照射での予備試験
電磁波照射装置として東芝社製ER−A30S1を使用。
透明電極を導電層上向きで裏面にアルミ製放熱体(シート状)に粘着させた状態で、照射の高周波出力 100W、200W、500W、1000Wで基材への影響を調べた。
【0082】
【表8】
Figure 2004265662
【0083】
以上の結果から樹脂製導電性基板への2.45GHzの連続照射の実施例として500W未満で30秒間の照射条件を用いた。
【0084】
・200Wの出力での連続照射試験
導電層表面に酸化チタン粒子層を製膜した樹脂製透明電極を、裏面にアルミ製放熱体(シート状;エッジ部を丸く加工)に粘着させた状態で表面から200Wで照射した場合の焼成電極のセル特性を比較した。セル作成方法、評価方法等は実施例1と同様。
【0085】
(実施例6)実施例5で用いた酸化チタン粒子層を酸化スズ(Nano Tek社製;平均粒子径約30nmを使用)粒子層に変更し同様の実験を行った。
【0086】
(実施例7)実施例5で用いた酸化チタン粒子層を酸化亜鉛(Nano Tek社製;平均粒子径約30nmを使用)粒子層に変更し同様の実験を行った。
【0087】
(実施例8)実施例5で用いた酸化チタン粒子層を酸化チタンP−25(日本アエロジル社製;平均粒子径約25nmを使用)粒子層に変更し、マイクロ波照射前に油圧ジャッキで90Kgf/cmのプレス処理を行った以外は実施例5と同様の実験を行った。
【0088】
(実施例9)実施例8で用いたマイクロ波を28GHz、200Wに変えた以外は実施例8と同様の実験を行った。
【0089】
(比較例1)実施例1で行った電磁波照射を行わなかった以外は実施例1と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様。
【0090】
(比較例2)実施例1で行った放熱板を装着せずに電磁波照射を行った以外は実施例1と同様の方法で酸化チタン電極の作成を行った。
【0091】
(比較例3)実施例1で用いた電磁波照射装置を一般の家庭用電子レンジ(2.45GHz、高周波出力500W)に代えて行った以外は実施例1と同様の方法で酸化チタン電極の作成を行った。
【0092】
(比較例4)実施例4で行った電磁波照射を行わなかった以外は実施例4と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様。
【0093】
(比較例5)実施例4で行った電磁波照射を高周波出力2000Wにした以外は実施例4と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様。
【0094】
(比較例6)実施例5で使用した放熱シートを用いない以外は実施例5と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様。
【0095】
(比較例7)実施例1で行った電磁波照射を電気炉加熱処理にした以外は実施例1と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様。
(比較例8)実施例8で行った油圧ジャッキでの90Kgf/cmのプレス処理を行った後、マイクロ波を行わなかった以外は実施例8と同様の実験を行った。セル作成方法、評価方法等は実施例1と同様。
【0096】
【表9】
Figure 2004265662
【0097】
【発明の効果】
本発明において透明電極の無機酸化物半導体粒子層を製膜した透明導電層にマイクロ波照射を行うこと得られた発熱により、無機酸化物半導体多孔質層を形成し高い変換効率を得ることのできる無機酸化物半導体電極を作成することができた。低出力領域の照射を行う、高周波領域のマイクロ波照射を行う、放熱体を密着させながら照射を行う等の条件を取り入れることで、被照射体に生じる局部的な過熱に起因する基材や導電層の破壊、溶解、変形、クラック形成等を防ぎながら処理を行うことが可能となった。電気炉等を用いた外部加熱処理時に比べて処理時間を大幅に減じることができるため、バッチ処理によらない連続処理が可能となる。さらに基材として樹脂基材を用いることでコストを大幅に低減できる。当該製造方法をもちいることによりセルを安価に量産することが可能となった。
【図面の簡単な説明】
【図1】光電変換セル試験サンプル。
【図2】酸化チタン粒子のみに対する家庭用電子レンジによるマイクロ波照射時の粒径測定結果(酸化チタン:石原産業社製ST−01、粒径測定方法:XRD法により測定)。
【図3】実施例1におけるマイクロ波照射後の酸化チタン多孔質層の電子顕微鏡写真。
【図4】表1におけるマイクロ波焼成の予備試験時、被照射体と熱電対やアルミナ台座との位置関係((b)裏面照射の場合)。
【図5】実施例1における放熱対策。
【図6】実施例1と比較例1におけるセルのI−Vカーブ特性比較。
【図7】実施例2における透明電極に対する予備照射試験でマイクロ波照射時間に対する被照射体の温度変化。
【図8】実施例2におけるマイクロ波裏面照射時の配置図。
【図9】実施例2における各高周波出力処理時の焼成電極を用いた変換効率の変化。
【図10】実施例2におけるマイクロ波照射時間に対する被照射体の温度変化。
【図11】比較例2におけるマイクロ波照射後の被照射体の様子。
【図12】比較例5におけるマイクロ波照射後の被照射体の様子。
【符号の説明】
1.酸化チタン多孔質層(光電変換用増感色素が吸着済)
2.電解質溶液層
3.透明導電層(ITO又はFTO)
4.Pt電極層
5.PET基材、又はガラス基材
6.樹脂フィルム製スペーサー
7.変換効率測定用導線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a production process for producing a porous inorganic oxide semiconductor electrode, a photoelectric conversion electrode using the inorganic oxide semiconductor electrode, and a photoelectric conversion cell.
[0002]
[Prior art]
For solar power generation, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium copper selenide have been put into practical use or are subject to research and development. It is necessary to overcome problems such as manufacturing cost, securing raw materials, and long energy payback time. On the other hand, many solar cells using organic materials aimed at increasing the area and cost have been proposed, but there is a problem that conversion efficiency is low and durability is poor.
[0003]
Under such circumstances, a photoelectric conversion electrode and a photoelectric conversion cell using an inorganic oxide semiconductor porous material sensitized with a dye, and a material and a manufacturing technique for producing the electrode have been disclosed (Non-patent Document 1). And Patent Document 1). The proposed battery is a dye-sensitized photoelectric conversion cell comprising a titanium oxide porous layer spectrally sensitized with a sensitizing dye such as a ruthenium complex, an electrolyte mainly composed of iodine, and a counter electrode. The first advantage of this method is that an inexpensive oxide semiconductor such as titanium oxide is used, so that an inexpensive photoelectric conversion element can be provided. The second advantage is that the ruthenium complex used has a wide absorption in the visible light range. Therefore, a relatively high conversion efficiency can be obtained.
[0004]
In addition, a cell was produced using an electrode in which a ruthenium complex having a tripyridylcarboxylate ligand was adsorbed on a titanium oxide porous layer formed by baking after film formation with a titanium oxide paste, and a conversion efficiency of 10.4. % Has been reported (see Non-Patent Document 2).
[0005]
One of the problems in manufacturing such a dye-sensitized photoelectric conversion cell is that it requires a high-temperature sintering process. A commonly used method for forming a titanium oxide porous layer is to cause necking between particles by applying a temperature of 400 ° C. or higher to a titanium oxide particle layer formed by applying a dispersion paste of titanium oxide particles. This makes it porous and improves the electron transferability. For this reason, since the base material which can be used is restricted to the material with high heat resistance like glass, the manufacturing cost of the base material cost of a photoelectric conversion cell, the energy cost consumed at the time of manufacture, etc. is made expensive. Attempts have also been made to make a porous titanium oxide layer by applying a temperature at which the resin does not dissolve, but the conversion efficiency is low. Furthermore, the titanium oxide porous layer prepared by low-temperature firing was brittle and the cell durability was low (see Non-Patent Document 3). The sintering method for firing at a low temperature also has a relatively long sintering time, and from this point, there is a problem as a mass production process.
[0006]
As a method for producing an inorganic oxide porous layer using a resin as a base material, there is a method in which an inorganic oxide particle layer is pressurized (see Non-Patent Document 7 and Patent Document 4). However, in the case of the press process alone, since the pressure used is as high as several hundred kgf / cm 2, a high pressure hydraulic device is required, and in a continuous production device such as a roll-to-roll, the roll that transmits the pressure is worn and broken. It was not suitable for continuous production because it was easy and the processing speed was slow.
[0007]
Microwaves may be used for sintering ceramics containing inorganic oxides (see Non-Patent Documents 4 and 5).
One of the characteristics of microwave heating is that, unlike external heating, a dielectric capable of absorbing microwave energy has a selectivity that generates heat preferentially. If the inorganic oxide particle layer formed on the substrate can be selectively heated, it is useful as an effective means for forming a sheet of a photoelectric conversion cell using a resin substrate.
[0008]
As an application of microwaves in inorganic oxide semiconductor electrode processing of dye-sensitized solar cells, microwaves appear as one of the enumerations of various energy and electromagnetic wave irradiations. In addition, there is no example of microwave irradiation using only ultraviolet light and infrared light, and there is no description in the specification (see Patent Documents 2 and 3). Furthermore, if microwave irradiation is performed on a transparent electrode or a material coated with titanium oxide particles on a conventional microwave oven (500 W, 2.45 GHz), the substrate and the conductive layer are destroyed in a few seconds. It can be seen that it is difficult to process the electrodes by simple electromagnetic wave processing.
[0009]
In addition, at the academic conference where the presenters presented the present invention (The Electrochemical Society 70th Conference, September 12-13, 2002, Atsugi Campus, Tokyo Polytechnic University), a certain amount obtained by the electrodeposition method from Toho Yokohama University An example (550 W, 2.45 GHz) in which microwave irradiation was performed in a home microwave oven with unclear irradiation conditions as an efficiency improvement effect for a porous layer of titanium oxide that already had conversion efficiency was simultaneously announced (non- Patent Document 6) is an application to a particle layer obtained by a simple and excellent mass productivity coating method, and examples in which necking between particles and binding between transparent conductive layers and particles are caused in the same announcement There is no.
At the same academic conference, the performers also showed an example in which only titanium oxide particles were microwaved in a home microwave oven, but under these conditions there was no change in the particle diameter shrinkage, and there was a substantial effect that would cause necking between particles. Morphological change could not be confirmed (FIG. 2). It was suggested that microwave application for forming a porous layer from a titanium oxide particle layer formed by a simple and excellent mass productivity coating method needs to be examined.
[0010]
[Non-Patent Document 1] Nature (Vol. 353, 737-740, 1991)
[Patent Document 1] US Pat. No. 4,927,721
[Non-Patent Document 2] Am. Chem. Soc. (2001), Vol. 123, p. p. 1613-1624
[Non-patent Document 3] ECN contributions 16 th European Photovoltaic Solar Energy Conference and Exhibition, May 1-5, 2000 abstract; M.M. Somemeling et. al, “Flexible dye-sensitized nanocrystalline TiO2 solar cells”
[Non-patent Document 4] “Toyota Central R & D Review, Vol. 30 No. 4 (1995.12) p. 25 Microwave sintering of functional ceramics”
[Non-patent document 5] "High-speed sintering technology for ceramics, electromagnetic processing of ceramics, TIS Co., Ltd. 1998, Masaji Miyake"
[Patent Document 2] Japanese Patent Laid-Open No. 2001-357896
[Patent Document 3] Japanese Patent Laid-Open No. 2002-134435
[Non-patent document 6] The 70th Annual Meeting of the Electrochemical Society of Japan September 12-13, 2002 Tokyo Institute of Technology Atsugi Campus 2E19
[Non-Patent Document 7] Nanoletters, 1, (2001), p. p. 97-100, H.C. Lindtron, et. al.
[Patent Document 4] International Publication No. 00/72373 Pamphlet
[0011]
[Problems to be solved by the invention]
In order to enable an inexpensive process for a dye-sensitized photoelectric conversion cell, a porous inorganic oxide semiconductor layer can be formed with a high conversion efficiency using an inexpensive resin base material in a short time. The technology of was requested.
[0012]
An object of the present invention is to provide a manufacturing process capable of forming a porous inorganic oxide semiconductor layer having a high conversion efficiency by using a resin base material in a short time, and consequently the inorganic oxide semiconductor. It is also possible to manufacture a photoelectric conversion electrode and a photoelectric conversion cell using the layer.
[0013]
[Means for Solving the Problems]
The inventors have found that the above problems can be solved by using microwaves at a low output, and have reached the present invention.
[0014]
That is, the present invention is a method for producing an inorganic oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate comprising a transparent conductive layer and an inorganic oxide semiconductor porous layer,
Step 1, by applying inorganic oxide semiconductor particles having an average particle diameter of 5 nm or more and 500 nm or less on a transparent conductive layer to form an inorganic oxide semiconductor porous layer,
Step 2 of generating heat by irradiating a transparent conductive layer and an inorganic oxide semiconductor porous layer with microwaves having a frequency of 1 GHz or more and 300 GHz or less at 1 W or more and an output of the following formula or less:
A method for producing an inorganic oxide semiconductor electrode for photoelectric conversion, comprising a step comprising a step 3 of bringing a sensitizing dye into contact with an inorganic oxide semiconductor porous layer.
Formula y = 2 × 10 -8 x + 300 (wherein y represents a high frequency output (W) and x represents a high frequency (Hz)).
Moreover, a method for producing an inorganic oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate comprising a transparent conductive layer and an inorganic oxide semiconductor porous layer,
Step 1, by applying inorganic oxide semiconductor particles having an average particle diameter of 5 nm or more and 500 nm or less on a transparent conductive layer to form an inorganic oxide semiconductor porous layer,
A step of irradiating the transparent conductive layer and the inorganic oxide semiconductor porous layer with microwaves having a frequency of 1 GHz or more and 300 GHz or less to generate heat, the step of irradiating the microwaves while adhering the radiator to the irradiated body;
The present invention relates to a method for producing an inorganic oxide semiconductor electrode for photoelectric conversion, which is produced by a process including a process 3 in which a sensitizing dye is brought into contact with an inorganic oxide semiconductor porous layer.
[0015]
Further, the present invention is a method for producing an inorganic oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate comprising a transparent conductive layer and an inorganic oxide semiconductor porous layer,
After and / or before the step 1 in which the inorganic oxide semiconductor porous layer is coated with inorganic oxide semiconductor particles having an average particle diameter of 5 nm or more and 500 nm or less on the transparent conductive layer, the inorganic oxide semiconductor porous layer is formed. It is related with the manufacturing method of the said inorganic oxide semiconductor electrode for photoelectric conversion characterized by performing the process 5 which press-processes to a layer.
[0016]
In the present invention, the pressure of the press treatment applied to the inorganic oxide semiconductor porous layer is 0.01 kgf / cm. 2 100 kgf / cm 2 It is related with the manufacturing method of the said inorganic oxide semiconductor electrode for photoelectric conversion characterized by being less than.
[0017]
Moreover, this invention relates to the manufacturing method of the said inorganic oxide semiconductor electrode for photoelectric conversions in which a transparent conductive layer contains at least 1 of a tin oxide, an indium oxide, a zinc oxide, and carbon.
[0018]
The present invention also relates to the above-described method for producing an inorganic oxide semiconductor electrode for photoelectric conversion, wherein the microwave incident direction is irradiated from the transparent substrate surface side during microwave irradiation.
[0019]
The present invention also relates to the above-described method for producing an inorganic oxide semiconductor electrode for photoelectric conversion, wherein the temperature of an irradiated object is raised to 50 ° C. or higher and 1000 ° C. or lower by microwave irradiation during microwave irradiation.
[0020]
The present invention also relates to the above-described method for producing an inorganic oxide semiconductor electrode for photoelectric conversion, characterized in that, during microwave irradiation, the irradiated object is heated at a rate of 200 ° C./min or less by microwave irradiation.
[0021]
Moreover, this invention relates to the semiconductor cell for photoelectric conversion provided with the said inorganic oxide semiconductor electrode for photoelectric conversions, an electrolyte layer, and a conductive counter electrode.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
(Method of forming inorganic oxide semiconductor porous layer by microwave treatment, step 2)
In the present invention, an inorganic oxide semiconductor particle layer and a transparent conductive layer comprising inorganic oxide semiconductor particles having an average particle diameter of 5 nm or more and 500 nm or less formed by a coating method on a transparent conductive layer of a transparent electrode that is an object to be irradiated. Through the steps of irradiating and generating heat by absorbing energy, necking between the particles and binding between the particles and the transparent electrode can be caused. In particular, a transparent conductive layer containing tin oxide, indium oxide, zinc oxide, carbon or the like having a high dielectric loss factor preferentially generates heat. Since the inorganic oxide semiconductor particle layer applied to the transparent conductive layer has a relatively low dielectric loss factor, the temperature rises mainly due to heat generated from the transparent conductive layer, causing necking between particles and binding between the particle and the transparent conductive layer. FIG. 3 is an electron micrograph of the titanium oxide porous layer after the microwave treatment of the present invention. The substrate temperature also rises in the form affected by the preferential temperature rise of the transparent conductive layer.
[0023]
Table 1 shows, as preliminary tests, (a) glass substrate only, (b) glass substrate with transparent conductive layer (fluorine-doped tin oxide = FTO), (c) glass substrate with titanium oxide particle coating layer, (d ) At the temperature of the irradiated object after irradiating a microwave of 28 GHz and 500 W for 5 minutes to the four types of irradiated objects of the transparent conductive layer of the glass substrate with the transparent conductive layer and having the titanium oxide particle coating layer attached. is there. It can be seen that the presence of a transparent conductive layer is essential for obtaining sufficient heat generation with respect to microwave irradiation.
[0024]
Table 1 Preliminary tests for microwave firing
Temperature of irradiated object after irradiation with microwaves of frequency 28 GHz and 500 W for 5 minutes.
Performing microwave irradiation on the transparent conductive layer side is referred to as surface irradiation.
FIG. 4 shows the positional relationship between the object to be irradiated, the thermocouple, and the alumina pedestal as an example of the case of Table 1 (b) backside irradiation.
[0025]
[Table 1]
Figure 2004265662
[0026]
Energy P (W / cm) absorbed by the dielectric as the irradiated body per volume 3 ) Is P = ε 0 ε ”ωE 2 / 2 (where ε 0 Is the dielectric constant of vacuum, ε ″ (= ε r tan δ) is the dielectric loss factor of the dielectric [ε r Is the relative dielectric constant, tan δ is the dielectric tangent], ω is the angular frequency, and E is the electric field strength), and both the frequency of the electromagnetic wave and the electric field strength contribute to the energy absorption strength. There are two methods for adjusting the energy of the irradiated body so as to obtain a temperature necessary for a target processing state, that is, a method of changing the electric field intensity of the irradiated electromagnetic wave and a method of changing the frequency. Since the contribution of the electric field strength is effective by the square, the contribution of the energy increase by increasing this is large. In addition, when an electromagnetic wave having a high frequency is used, the dielectric loss factor of the dielectric generally increases depending on this, leading to efficient energy absorption.
[0027]
In microwave sintering of ceramics including inorganic oxides, the irradiated object caused by local overheating caused by thermal runaway caused by an increase in dielectric loss factor accompanying the temperature rise of the irradiated object Destruction or distortion of the material often becomes a problem. When the object to be irradiated is an inorganic oxide semiconductor electrode, if the irradiation condition is inappropriate, the base material or the conductive layer is destroyed, cracks are formed, partial dissolution, deformation, or the like occurs.
[0028]
When a general microwave oven (2.45 GHz, high frequency output of about 500 W) is coated with a conductive glass (covered with a fluorine-doped tin oxide conductive layer) or a titanium oxide particle layer on this conductive layer side and irradiated with electromagnetic waves, it takes several seconds. In this case, the base material is destroyed. This is because the temperature rise of tin oxide used for the conductive layer is accelerated and the difference in heat distribution with the base material is increased to cause distortion. The larger the area of the base material, the easier the destruction of the base material occurs. For example, in electromagnetic wave irradiation in a 2.45 GHz high frequency output 500 W household microwave oven, a 2.5 cm × 2.5 cm × 1.1 mm FTO glass breaks the substrate 3 to 5 seconds after irradiation, and a sufficient temperature rise is obtained. Absent. If the base material is cut small or a mask for reducing the irradiation area is applied, the irradiation time until destruction occurs can be extended, but this is not an appropriate method for manufacturing a solar cell requiring a large area. Appropriate irradiation conditions are necessary to perform microwave irradiation on the conductive layer having the inorganic oxide particle layer formed by coating and cause necking between particles and binding between particles and the transparent conductive layer by firing. .
[0029]
The following conditions must be satisfied so that thermal runaway does not occur when a temperature difference occurs in the irradiated object.
Pt 1 -Pt 2 <[(T 1 -T 2 / L] A ・ R
(Where Pt 1 -Pt 2 : Temperature t 1 , T 2 Absorbed energy at (t 1 -T 2 ) / L: temperature gradient, A: heat conduction cross section, R: heat conductivity; Saji et al. Saburo, “High-speed firing technology of ceramics”, Tea IC Co., Ltd., Part I Chapter 1 Section 1 )
[0030]
Therefore, measures to prevent thermal runaway from occurring on conductive substrates with a fixed heat conduction cross-sectional area are either continuous irradiation in a relatively low region of high-frequency output or intermittent pulsed high-power waves. It is necessary to devise measures to alleviate the heat distribution, such as irradiating, heat dissipation measures such as close contact with a heat dissipation body such as a heat dissipation plate with high thermal conductivity, and preheating to the irradiated object. It becomes.
Also, if microwaves with a high frequency are used, the temperature dependence of the dielectric loss factor of the irradiated object is reduced, and Pt in the formula 1 -Pt 2 This is effective because it leads to a smaller term.
[0031]
2. When using a microwave oven for household use as an easily available irradiation device with microwave irradiation at 45 GHz, continuous output with low output compared to general-purpose output of 500 W when trying to perform variable output with the same magnetron In the test, the filament temperature decreased as the frequency of the inverter increased, and the oscillation of the magnetron became unstable, making it difficult to perform the irradiation test in the low output region. To date, only Toshiba ER-A30S series released in 2001 can be tested with 100W and 200W continuous low-power irradiation by improving the magnetron and inverter circuit with an available household microwave oven ( Denpa Shimbun, published May 22, 2001). In the present invention, 2.45 GHz 100 W irradiation was performed by an irradiation test using the apparatus. Other household microwave ovens are referred to as equivalent to 100 W, equivalent to 200 W, etc. by intermittently irradiating around 500 W of high frequency output in the decompression mode or the like. It turns out that examination examination of the low output region at a frequency of 2.45 GHz was not easy.
[0032]
Furthermore, industrial use of 2.45 GHz microwaves is preceded by over 1000 W output in fields such as drying of wood and heating of frozen products, and low output of around 100 W for medical and electronic material processing. It is only in recent years that microwaves in the area have begun to be used.
[0033]
(Regarding the radiator, step 4)
In the microwave irradiation process, when taking measures against heat radiation to the irradiated object, measures such as bringing a titanium oxide electrode into close contact with a heat sink, a sheet-like heat radiator, a heat radiator that can be cooled with a refrigerant, and the like can be given. The contact surface may be the back surface or the front surface of the irradiated object. The material of the radiator is preferably one having a thermal conductivity of 10 W / m · K or more at the operating temperature, and preferably a metal such as aluminum. However, the present invention is not limited to this as long as it functions to alleviate rapid local overheating of the irradiated object. For example, even if the material has a thermal conductivity of less than 10 W / m · K, the radiator of the present invention can be obtained by passing a coolant through the material. Examples of materials other than metals having high thermal conductivity include graphite, beryllia, aluminum nitride, silicon carbide and the like. When a refrigerant is passed through the material as a radiator, it is more desirable to obtain a stable heat radiation effect by controlling the temperature of the refrigerant. Examples of the method for adhering the irradiated body to the radiator include fixing by an instrument, pressure bonding, adhesion, adhesion, contact, suction, and the like, but other methods may be used as long as the adhesion state can be generated. For example, this is applicable to any arrangement relationship that can exert a heat radiation effect even if there is a distance of 10 mm or less between the heat radiators of the irradiated body. It is also applicable to bring a gas or liquid cooling refrigerant into direct contact with the irradiated body as a radiator.
[0034]
FIG. 5 shows an embodiment in which an aluminum heat sink and a tape are adhered to each other as a radiator.
As a method of irradiating the object to be irradiated with microwaves, a method in which the sheet-like object to be irradiated moves continuously with respect to the microwave irradiator and is processed with a winding operation is useful as a method for manufacturing at low cost. It is. At this time, it is also possible to obtain a continuous heat radiation effect by devising the object to continuously change the positional relationship while keeping the irradiated body in close contact with the heat radiator.
[0035]
(About press processing, step 5)
It is effective to press the inorganic oxide semiconductor porous layer before microwave irradiation in order to obtain high conversion efficiency. In particular, when the substrate having the transparent conductive layer is made of a resin, the effect can be obtained without destroying the substrate even when a strong pressure is applied. The effect of the press treatment alone is described in Nanoletters, 1, (2001), p. p. 97-100, H.C. Lindtron, et. al. And in WO 00/72373 pamphlet. However, when the press process is performed alone, the pressure used is as high as several hundred kgf / cm2, so a high pressure hydraulic device is required, and in a continuous production apparatus such as a roll-to-roll, the roll that transmits the pressure is worn, This method is not suitable for continuous production because it is easy to break and processing speed is slow. From the viewpoint of mass production process as pressure, 0.01Kgf / cm possible with roll thickness for general printing process 2 100 kgf / cm 2 A method in which a pressure is applied as a pre-pressurization at a pressure less than that, followed by microwave treatment is the most effective production method for the first time for mass production and high conversion efficiency. As a method of applying pressure, pressure may be applied for several seconds to several minutes with a pressure jack or the like, or pressure may be continuously applied between rolls. When pressure is applied directly with a pressure cylinder at the time of pressurization, a part of the inorganic oxide peels off from the substrate and adheres to the cylinder side, so it is desirable to put a film such as polyethylene in between. When the press treatment is performed before the microwave treatment, the distance between the particles constituting the inorganic oxide semiconductor porous layer and the distance between the particles and the transparent conductive layer can be reduced, so that the microwave treatment can be performed, so that necking is easily formed. Although it is particularly effective for improving the conversion efficiency, the effect of improving the conversion efficiency can be obtained even if the press treatment is performed after the microwave treatment. When the press treatment is performed after the microwave treatment, peeling of the inorganic oxide layer, which is likely to occur during the press treatment, is less likely to occur.
[0036]
A region of 20 GHz or more as a high frequency microwave may be referred to as a millimeter wave region.
In the processing by microwaves of high frequency corresponding to this region, (1) it is easy to create a uniform electric field intensity distribution in the processing container, and (2) the dielectric loss factor at the processing start temperature (for example, room temperature) generally increases, so that energy Absorption is efficient, (3) The temperature dependence of the dielectric loss factor is small, and thermal runaway that often occurs during heating is easy to avoid. (4) The temperature itself required for sintering is lowered from the non-thermal action. (HD Kimley, et.al., MRS.Symp.Proc., 189 (1991) pp. 243-255) and so on. It has many advantages for the production of inorganic oxide semiconductor electrodes.
[0037]
In the examination in the present invention, FMS-10-28 (oscillation frequency: 28 GHz) manufactured by Fuji Radio Industry Co., Ltd. was used as a microwave microwave heating and sintering apparatus of high frequency. In this apparatus, electromagnetic wave irradiation can be performed on the inorganic oxide particle layer by changing the high frequency output within a range of 10 KW or less.
[0038]
For high-frequency testing including 28 GHz, product development of testing machines has been in recent years (Saji et al. Saburo, New Ceramics, 8 [5] (1995) p.21; Miyake Shoji, “High-Speed Ceramics Baking technology "(published by TIC Co., Ltd., general remarks section 1).
Although the example of the microwave irradiation in this invention was performed in the electromagnetic waves of frequency 28Hz and 2.45GHz, if it is the range of 1 GHz or more and 300 GHz or less, it will not restrict to this frequency. For each frequency in this range, the high frequency output that can be continuously irradiated in the present invention is 1 W or more, and y = 2 × 10. -8 x + 300 (wherein y represents a high frequency output (W) and x represents a high frequency (Hz)). This equation corresponds to using a high frequency output of 1 W or more and about 350 W or less when using a microwave with a frequency of 2.45 GHz, and using a high frequency output of 1 W or more and about 850 W or less when using a microwave with a frequency of 28 GHz. When the object to be irradiated is irradiated with a high frequency output exceeding this range, the base material is used for local overheating of the object to be irradiated before necking between the particles of the inorganic oxide particle layer or binding between the particles and the transparent conductive layer. In addition, destruction, deformation, dissolution, crack formation, etc. occur in the transparent conductive layer and the inorganic oxide semiconductor layer, and the inorganic oxide electrode for photoelectric conversion cannot be produced. As a category of the present invention, when using a higher frequency output than this, an irradiation method is provided in which an appropriate electromagnetic wave shield is provided so that a metallic heat sink is closely attached to the irradiated body, and the irradiated body is moved away from the microwave irradiation apparatus. The inorganic oxide electrode for photoelectric conversion can be manufactured by performing a treatment for substantially reducing the irradiation intensity by, for example, making intermittent irradiation at least once in 10 seconds or less, and suppressing thermal runaway.
[0039]
In the present invention, before and after the microwave irradiation, pretreatment of the irradiated object with a solvent containing water, a tasteless oxide precursor containing tetraisopropyl orthotitanate, and an organic or inorganic treatment agent, and after Processing may be performed.
[0040]
(Inorganic oxide semiconductor particle layer, step 1)
The material of the inorganic oxide semiconductor particle layer having an average particle diameter of 5 nm to 500 nm used in the present invention is titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, iron oxide, nickel oxide, cobalt oxide, Examples include strontium oxide, tantalum oxide, antimony oxide, lanthanoid oxide, yttrium oxide, vanadium oxide, etc., but these form an inorganic oxide semiconductor porous layer after microwave treatment, and the electrons in a photoexcited state The present invention is not limited to this as long as it has electrical conductivity and can be converted into visible light and / or near-infrared light by connecting a sensitizing dye. The material of the inorganic oxide semiconductor particles may be a combination of a plurality of types of inorganic oxides. In order for the surface of the inorganic oxide semiconductor porous layer to be sensitized by the sensitizing dye, it is desirable that the conduction band of the inorganic oxide semiconductor porous layer be present at a position where electrons can be easily received from the photoexcitation order of the sensitizing dye. For this reason, titanium oxide, tin oxide, zinc oxide, niobium oxide and the like are particularly used among the inorganic oxide semiconductor particles. Further, titanium oxide is particularly used from the viewpoint of price and environmental hygiene. In the present invention, one or more kinds of inorganic oxide semiconductor particles having an average particle diameter of 5 nm to 500 nm can be selected and combined.
[0041]
The inorganic oxide semiconductor particle layer is formed, for example, by preparing a paste in which inorganic oxide semiconductor particles are dispersed in a solvent, applying this to the surface of the transparent electrode, and evaporating the solvent. When preparing the paste, if necessary, an acid such as nitric acid or acetylacetone, a dispersant such as polyethylene glycol or Triton X-100, or an organic substance may be mixed with the paste component, but a small amount is preferably used. As a method for forming the inorganic oxide semiconductor particle layer, a coating method is simple and desirable as a method having mass productivity. A coating method using a spin coater, a coating method using screen printing, a coating method using a squeegee, a dipping method, a spraying method, a transfer method, a roller method, or the like can be used. After film formation, it is desirable to remove volatile components by drying the substrate at a temperature that does not hurt. A spray film forming method that does not use a solvent, such as an aerosol method disclosed in Japanese Patent Application Laid-Open No. 2002-184477, and a method that uses energy application such as heating at the time of spraying may be used.
[0042]
After film formation of inorganic oxide semiconductor particle layer, before or after microwave irradiation to irradiated object, pressure, light irradiation, applied voltage treatment, plasma treatment, chemical treatment, ultrasonic treatment, electron Other treatment methods such as wire treatment and ozone treatment can be used in combination. In addition, before and after microwave irradiation, pre- and post-treatment of the irradiated object with a solvent containing water, a tasteless oxide precursor such as tetraisopropyl orthotitanate, and organic and inorganic treatment agents May be performed.
[0043]
(Transparent conductive layer)
The transparent conductive layer used is not particularly limited as long as it is a conductive material that absorbs little light from the visible to the near infrared region of sunlight, but ITO (indium-tin oxide) or tin oxide (fluorine or the like is doped) A metal oxide having good conductivity, such as zinc oxide, or carbon is preferable. Tin oxide, indium oxide, zinc oxide, carbon, etc. are inorganic oxides formed on a transparent conductive layer that absorbs energy efficiently and preferentially generates heat because it is a material with a high dielectric loss factor during microwave irradiation. This heat can be transferred to the particle layer to form a necking between the particles and a bond between the particles and the transparent conductive layer. In the present invention, another layer may be added for the purpose of promoting the binding between the transparent electrode layer and the inorganic oxide particle layer, improving the electron transfer, or preventing the reverse electron process. .
[0044]
(Transparent substrate)
The transparent substrate to be used is not particularly limited as long as it is a material that absorbs less light in the visible to near infrared region of sunlight. Glass substrates such as quartz, ordinary glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetylcellulose, syndioctane polystyrene, polyphenylene sulfide, polyarylate Resin base materials such as polysulfone, polyester sulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride can be used.
[0045]
(Photoelectric conversion electrode, step 3)
In the present invention, the inorganic porous inorganic oxide semiconductor electrode obtained by microwave treatment is immersed in a solution in which the sensitizing dye is dissolved together with the transparent base material, thereby connecting the inorganic porous surface and the sensitizing dye. A method of contacting and binding a sensitizing dye to an inorganic porous surface using the affinity of a substituent is common, but is not limited to this method.
[0046]
The solvent for preparing the sensitizing dye solution needs to be a solvent that can dissolve the sensitizing dye and mediate the dye adsorption to the inorganic oxide layer. In order to dissolve the sensitizing dye, heating, addition of a solubilizing agent, and filtration of insoluble matter may be performed as necessary. Two or more kinds of solvents may be used as a mixture, and alcohol solvents such as ethanol, isopropyl alcohol, and benzyl alcohol, nitrile solvents such as acetonitrile and propionitrile, and halogens such as chloroform, dichloromethane, and chlorobenzene. Solvents, ether solvents such as diethyl ether and tetrahydrofuran, ester solvents such as ethyl acetate and succinbutyl, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, carbonate solvents such as diethyl carbonate and propylene carbonate, hexane and octane , Use of carbohydrate solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water, etc. Kill is not limited to this. Two or more kinds of solvents may be mixed and used.
[0047]
The thickness of the inorganic oxide semiconductor porous layer formed on the conductive surface of the transparent substrate is desirably 0.5 μm or more and 200 μm or less. When the film thickness is less than this range, effective conversion efficiency cannot be obtained. If the film thickness is thicker than this range, it may be difficult to create such as cracking or peeling during film formation, but the distance between the inorganic oxide porous body surface layer and the conductive surface increases, so the generated charge is effectively applied to the conductive surface. Since it cannot be transmitted, it becomes difficult to obtain good conversion efficiency.
(
[0048]
(Description of sensitizing dye for photoelectric conversion)
As the sensitizing dye for photoelectric conversion used in the present invention, a ruthenium complex dye having a structure shown in Formula 1 is representative. Examples include Ruthenium 535 and Ruthenium 535-bisTBA manufactured by SOLARONIX.
[0049]
[Chemical 1]
Figure 2004265662
(Formula 1)
[0050]
Furthermore, as sensitizing dyes for photoelectric conversion, azo dyes, quinacridone dyes, diketopyrrolopyrrole dyes, squarylium dyes cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphine dyes, Examples include chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, oxazine dyes, anthraquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, and derivatives thereof. The present invention is not limited to these as long as the dye can inject excited electrons into the conduction band of the electrode. If these sensitizing dyes have one or more linking groups in their structure, they can be connected to the surface of the inorganic semiconductor porous body, and the excited electrons of the photoexcited dye can be used as the conduction band of the inorganic semiconductor porous body. This is desirable because it can be communicated quickly.
[0051]
(Photoelectric conversion cell)
The photoelectric conversion electrode used in the present invention forms a photoelectric conversion cell by combining a conductive counter electrode through an electrolyte layer.
[0052]
(Electrolyte layer)
The electrolyte layer used in the present invention is preferably composed of an electrolyte, a medium, and an additive. The electrolyte of the present invention is I 2 And iodide (for example, LiI, NaI, KI, CsI, MgI 2 , CaI 2 , Alcohols such as CuI, -tel, polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerol, nitrile compounds such as acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, benzonitrile, ethylene Carbonate compounds such as carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, aprotic polar substances such as dimethyl sulfoxide and sulfolane, water, and the like can be used.
[0053]
In addition, a polymer can be included for the purpose of using a solid (including gel) medium. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium to make the medium solid. To do.
[0054]
As the electrolyte layer, an electrolyte that does not require a CuI or CuSCN medium, and Nature, Vol. 395, 8 Oct. A hole transport material such as 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenylamine) 9,9′-spirobifluorene described in 1998, p583-585. it can.
[0055]
The electrolyte layer used in the present invention may contain an additive that functions to improve the electrical output of the photoelectric conversion cell or improve the durability. Examples of additives that improve electrical output include 4-t-butylpyridine, 2-picoline, and 2,6-lutidine. MgI etc. are mentioned as an additive which improves durability.
[0056]
(Conductive counter electrode)
The conductive counter electrode used in the present invention functions as a positive electrode of the photoelectric conversion cell. Specific examples of conductive materials used for the counter electrode include metals (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxides (ITO (indium-tin oxide), tin oxide (fluorine, etc.)). Including doped substances), zinc oxide), or carbon. The thickness of the counter electrode is not particularly limited, but is preferably 5 nm or more and 10 μm or less.
[0057]
(How to assemble)
A photoelectric conversion cell is formed by combining the photoelectric conversion electrode and a conductive counter electrode through an electrolyte layer. In order to prevent leakage and volatilization of the electrolyte layer as necessary, sealing is performed around the photoelectric conversion cell. For sealing, a thermoplastic resin, a photocurable resin, glass frit, or the like can be used as a sealing material. The photoelectric conversion cell is made by connecting small-area photoelectric conversion cells as necessary. The electromotive voltage can be increased by combining the photoelectric conversion cells in series.
[0058]
【Example】
Examples will be specifically shown below, but the present invention is not limited to the following examples.
Example 1
・ Titanium oxide particle layer adjustment
Mono-dispersed colloidal particles with a particle diameter of 30 nm are made by using hydrotitanium / autoclave treatment using metatitanic acid slurry (TKS 202 manufactured by Teika) as a raw material, and applied to a transparent electrode with a size of 4 mm x 5 mm square with no binder added. To form a film.
・ Transparent electrode
As a transparent electrode of a resin substrate having a conductive film, a glass substrate transparent electrode (FTO transparent conductive layer) manufactured by Nippon Sheet Glass Co., Ltd. was used.
・ Installation of heat sink
The transparent electrode substrate was affixed to an aluminum heat sink as a heat sink. At that time, the exposed portion of the transparent conductive layer other than the titanium oxide particle layer was also covered with aluminum tape on the transparent conductive film side (FIG. 5).
・ Electromagnetic wave irradiation treatment (creation of titanium oxide electrode)
As an electromagnetic heating and sintering apparatus for high energy irradiation, FMS-10-28 (oscillation frequency 28 GHz, electromagnetic wave output maximum 10 kW (variable output)) manufactured by Fuji Radio Industry Co., Ltd., electromagnetic wave output 2 kW, electromagnetic wave irradiation for 2 minutes went.
[0059]
・ Adsorption of sensitizing dye
As a sensitizing dye, Ruthenium 535-bisTBA manufactured by SOLARONIX was used, dissolved in an ethanol solvent, and immersed in a dye solution titanium oxide electrode to adsorb the dye. The colored electrode surface was washed with ethanol and dried to obtain a photoelectric conversion electrode.
・ Preparation of electrolyte solution
An electrolyte solution was obtained according to the following formulation.
Solvent Methoxyacetonitrile
LiI 0.1M
I 2 0.05M
4-t-butylpyridine 0.5M
1-propyl-2,3-dimethylimidazolium iodide 0.6M
[0060]
・ Assembly of photoelectric conversion cell
A test sample of a photoelectric conversion cell was assembled as shown in FIG.
As the conductive counter electrode, a platinum layer laminated by a sputtering method on the conductive layer of the glass substrate with a fluorine-doped tin oxide layer was used.
As the resin film spacer, a 25 μm thick “High Milan” film manufactured by Mitsui DuPont Polychemical Co., Ltd. was used.
[0061]
・ Method of measuring conversion efficiency
A solar simulator (Hyper Xenon Exciter) manufactured by Spectrometer Co., Ltd. is combined with an air mass filter, and the light meter is 100 mW / cm 2 The IV curve characteristics were measured by using an IV curve tracer while irradiating the test sample of the photoelectric conversion cell with light. The conversion efficiency η was calculated by the following equation using Voc (open circuit voltage value), Isc (short circuit current value), and ff (fill factor value) obtained from the IV curve characteristic measurement.
[0062]
[Formula 1]
Figure 2004265662
[0063]
・ Measurement of irradiated object temperature
A thermocouple was placed from the opposite side of the microwave irradiation side so as to be in contact with the object to be measured.
[0064]
・ Confirmation of necking formation
SEM observation confirmed the formation of necking between the particles (FIG. 3).
[0065]
(Example 2)
A firing test was carried out after conducting a preliminary test at the time of continuous irradiation of 28 GHz electromagnetic waves only on a conductive substrate (manufactured by Nippon Sheet Glass Co., Ltd.).
・ Preliminary test at 28 GHz irradiation
FMS-10-28 manufactured by Fuji Radio Industry Co., Ltd. is used as the electromagnetic wave irradiation device. With the transparent electrode placed on the alumina plate with the conductive layer facing upward, the influence on the substrate was examined with high-frequency outputs of 200 W, 500 W, 1000 W, and 2000 W. FIG. 7 shows the temperature change of the irradiated object with respect to the irradiation time. Although the figure also includes the temperature change of the glass substrate without the FTO transparent conductive layer, it can be seen from the comparison with this that the transparent conductive layer preferentially absorbs microwave energy and contributes to heat generation.
[0066]
[Table 2]
Figure 2004265662
[0067]
From the above results, irradiation conditions of less than 1000 W for 5 minutes were used as an example of continuous irradiation at 28 GHz.
・ Preliminary test of irradiated surface
Comparison of the cell characteristics of the fired electrode when the transparent electrode with the titanium oxide particle layer formed on the surface of the conductive layer was irradiated with electromagnetic waves with the titanium oxide particle layer facing upward on the alumina plate and when irradiated from the back side . The cell creation method, evaluation method, etc. are the same as in Example 1. FIG. 8 shows a layout at the time of backside illumination. Irradiated at 500W for 5 minutes.
[0068]
[Table 3]
Figure 2004265662
[0069]
From the above results, it is understood that irradiation from the back surface is more preferable under the present experimental conditions.
[0070]
・ Continuous irradiation test in the output range of less than 1000W
The cell characteristics of the fired electrode were compared when a transparent electrode having a titanium oxide particle layer formed on the surface of the conductive layer was irradiated with microwaves at 200 W, 500 W, and 700 W for 5 minutes from the back surface. The cell creation method, evaluation method, etc. are the same as in Example 1. FIG. 9 shows the change in conversion efficiency when using the fired electrode during each high-frequency output process. FIG. 10 shows the temperature change of the irradiated object with respect to the irradiation time.
[0071]
[Table 4]
Figure 2004265662
[0072]
(Example 3)
A firing test was carried out after conducting a preliminary test at the time of continuous irradiation of 2.45 GHz electromagnetic waves only on a conductive substrate (manufactured by Nippon Sheet Glass Co., Ltd.).
・ Preliminary test at 2.45 GHz irradiation
ER-A30S1 manufactured by Toshiba is used as the electromagnetic wave irradiation device.
With the transparent electrode placed on the alumina plate with the conductive layer facing upward, the influence on the base material was examined with high frequency outputs of irradiation of 100 W, 200 W, 500 W, and 1000 W.
[0073]
[Table 5]
Figure 2004265662
[0074]
From the above results, continuous irradiation conditions of less than 200 W were used as an example of continuous irradiation at 2.45 GHz.
[0075]
・ Continuous irradiation test in 100 W output range
The cell characteristics of the fired electrode were compared when the transparent electrode having a titanium oxide particle layer formed on the surface of the conductive layer was irradiated at 100 W from the back surface. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0076]
[Table 6]
Figure 2004265662
[0077]
Example 4
A firing test was carried out after conducting a preliminary test at the time of continuous irradiation of a 28 GHz electromagnetic wave only on a resin conductive substrate (manufactured by Oji Tobi).
・ Preliminary test at 28 GHz irradiation
FMS-10-28 manufactured by Fuji Radio Industry Co., Ltd. is used as the electromagnetic wave irradiation device. With the transparent electrode facing upward on the conductive layer and in close contact with the aluminum heat sink, the influence on the substrate was examined with high-frequency irradiation powers of 200 W, 500 W, and 1000 W.
[0078]
[Table 7]
Figure 2004265662
[0079]
Based on the above results, irradiation conditions of less than 500 W for 30 seconds were used as an example of 28 GHz continuous irradiation to the resin conductive substrate.
[0080]
・ Continuous irradiation test at 200W output
The cell characteristics of the fired electrode were compared when a resin transparent electrode having a titanium oxide particle layer formed on the surface of the conductive layer was irradiated from the surface at 200 W while being in contact with an aluminum radiator. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0081]
(Example 5)
A firing test was carried out after conducting a preliminary test at the time of continuous irradiation of 2.45 GHz electromagnetic waves only on a resin conductive substrate (manufactured by Oji Tobi).
・ Preliminary test at 2.45 GHz irradiation
ER-A30S1 manufactured by Toshiba is used as the electromagnetic wave irradiation device.
With the transparent electrode facing upward and the back surface adhered to a heat sink made of aluminum (in the form of a sheet), the influence of the irradiation on the substrate was examined with high frequency outputs of 100 W, 200 W, 500 W, and 1000 W.
[0082]
[Table 8]
Figure 2004265662
[0083]
From the above results, an irradiation condition of less than 500 W for 30 seconds was used as an example of continuous irradiation of 2.45 GHz onto a resin conductive substrate.
[0084]
・ Continuous irradiation test at 200W output
A fired electrode when irradiated with 200 W from the surface in a state where a resin transparent electrode having a titanium oxide particle layer formed on the surface of the conductive layer is adhered to an aluminum radiator (sheet-like; the edge portion is rounded) on the back surface The cell characteristics were compared. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0085]
(Example 6) The titanium oxide particle layer used in Example 5 was changed to a tin oxide (manufactured by Nano Tek; average particle diameter of about 30 nm) particle layer, and a similar experiment was conducted.
[0086]
(Example 7) The titanium oxide particle layer used in Example 5 was changed to a zinc oxide (manufactured by Nano Tek; average particle diameter of about 30 nm) particle layer, and a similar experiment was conducted.
[0087]
(Example 8) The titanium oxide particle layer used in Example 5 was changed to a titanium oxide P-25 (manufactured by Nippon Aerosil Co., Ltd .; average particle diameter of about 25 nm) particle layer, and 90 kggf with a hydraulic jack before microwave irradiation. / Cm 2 The same experiment as in Example 5 was performed except that the press treatment was performed.
[0088]
(Example 9) An experiment similar to that of Example 8 was performed except that the microwave used in Example 8 was changed to 28 GHz and 200 W.
[0089]
(Comparative Example 1) A titanium oxide electrode was prepared in the same manner as in Example 1 except that the electromagnetic wave irradiation performed in Example 1 was not performed, and the conversion efficiency was measured. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0090]
(Comparative Example 2) A titanium oxide electrode was prepared in the same manner as in Example 1 except that the electromagnetic radiation was applied without mounting the heat dissipation plate used in Example 1.
[0091]
(Comparative Example 3) Preparation of a titanium oxide electrode in the same manner as in Example 1 except that the electromagnetic wave irradiation apparatus used in Example 1 was replaced with a general household microwave oven (2.45 GHz, high frequency output 500 W). Went.
[0092]
Comparative Example 4 A titanium oxide electrode was prepared in the same manner as in Example 4 except that the electromagnetic wave irradiation performed in Example 4 was not performed, and the conversion efficiency was measured. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0093]
(Comparative Example 5) A titanium oxide electrode was prepared in the same manner as in Example 4 except that the electromagnetic wave irradiation performed in Example 4 was changed to a high frequency output of 2000 W, and the conversion efficiency was measured. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0094]
(Comparative Example 6) A titanium oxide electrode was prepared in the same manner as in Example 5 except that the heat dissipation sheet used in Example 5 was not used, and the conversion efficiency was measured. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0095]
(Comparative Example 7) A titanium oxide electrode was prepared in the same manner as in Example 1 except that the electromagnetic wave irradiation performed in Example 1 was changed to electric furnace heat treatment, and the conversion efficiency was measured. The cell creation method, evaluation method, etc. are the same as in Example 1.
(Comparative example 8) 90 kgf / cm with the hydraulic jack performed in Example 8 2 After performing the pressing process, the same experiment as in Example 8 was performed except that microwaves were not performed. The cell creation method, evaluation method, etc. are the same as in Example 1.
[0096]
[Table 9]
Figure 2004265662
[0097]
【The invention's effect】
In the present invention, the transparent conductive layer formed with the inorganic oxide semiconductor particle layer of the transparent electrode can be irradiated with microwaves, and the heat generated can form an inorganic oxide semiconductor porous layer to obtain high conversion efficiency. An inorganic oxide semiconductor electrode could be prepared. Incorporating conditions such as irradiation in the low output area, microwave irradiation in the high frequency area, and irradiation while the heat sink is in close contact with the substrate and electrical conductivity due to local overheating generated in the irradiated object It became possible to perform processing while preventing destruction, dissolution, deformation, crack formation, etc. of the layer. Since the processing time can be greatly reduced as compared with the external heat treatment using an electric furnace or the like, continuous processing without batch processing is possible. Furthermore, the cost can be significantly reduced by using a resin base material as the base material. By using this manufacturing method, it became possible to mass-produce cells at low cost.
[Brief description of the drawings]
FIG. 1 shows a photoelectric conversion cell test sample.
FIG. 2 is a particle size measurement result during microwave irradiation with a household microwave oven for only titanium oxide particles (titanium oxide: ST-01 manufactured by Ishihara Sangyo Co., Ltd., particle size measurement method: measured by XRD method).
3 is an electron micrograph of a titanium oxide porous layer after microwave irradiation in Example 1. FIG.
FIG. 4 shows a positional relationship between an object to be irradiated and a thermocouple or an alumina pedestal during a microwave baking preliminary test in Table 1 ((b) in the case of backside irradiation).
FIG. 5 shows heat dissipation measures in Example 1.
6 is a comparison of cell IV curve characteristics between Example 1 and Comparative Example 1. FIG.
7 shows the temperature change of the irradiated object with respect to the microwave irradiation time in the preliminary irradiation test for the transparent electrode in Example 2. FIG.
8 is a layout diagram at the time of microwave backside irradiation in Example 2. FIG.
9 shows a change in conversion efficiency using a fired electrode during each high-frequency output process in Example 2. FIG.
10 shows the temperature change of the irradiated object with respect to the microwave irradiation time in Example 2. FIG.
11 shows a state of an irradiated object after microwave irradiation in Comparative Example 2. FIG.
12 shows a state of an irradiated object after microwave irradiation in Comparative Example 5. FIG.
[Explanation of symbols]
1. Titanium oxide porous layer (photosensitive sensitizing dye already adsorbed)
2. Electrolyte solution layer
3. Transparent conductive layer (ITO or FTO)
4). Pt electrode layer
5. PET substrate or glass substrate
6). Resin film spacer
7). Conversion efficiency measurement lead

Claims (9)

透明導電層を具えた透明基材と、無機酸化物半導体多孔質層とを含む光電変換用無機酸化物半導体電極の製造方法であって、
平均粒子径5nm以上500nm以下の無機酸化物半導体粒子を透明導電層上に塗布して製膜して無機酸化物半導体多孔質層とする工程1、
透明導電層および無機酸化物半導体多孔質層に、周波数1GHz以上300GHz以下のマイクロ波を1W以上、かつ、下記式の出力以下で照射して発熱させる工程2、
増感色素を無機酸化物半導体多孔質層と接触させる工程3を含む工程により製造されることを特徴とする光電変換用無機酸化物半導体電極の製造方法。
式 y = 2×10−8 x+ 300(式中、yは高周波出力(W)、xは高周波周波数(Hz)を表す。)
A method for producing an inorganic oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate comprising a transparent conductive layer and an inorganic oxide semiconductor porous layer,
Step 1, by applying inorganic oxide semiconductor particles having an average particle diameter of 5 nm or more and 500 nm or less on a transparent conductive layer to form an inorganic oxide semiconductor porous layer,
Step 2 of generating heat by irradiating a transparent conductive layer and an inorganic oxide semiconductor porous layer with microwaves having a frequency of 1 GHz or more and 300 GHz or less at 1 W or more and an output of the following formula or less:
A method for producing an inorganic oxide semiconductor electrode for photoelectric conversion, comprising a step comprising a step 3 of bringing a sensitizing dye into contact with an inorganic oxide semiconductor porous layer.
Expression y = 2 × 10 −8 x + 300 (where y represents a high frequency output (W) and x represents a high frequency frequency (Hz)).
透明導電層を具えた透明基材と、無機酸化物半導体多孔質層とを含む光電変換用無機酸化物半導体電極の製造方法であって、
平均粒子径5nm以上500nm以下の無機酸化物半導体粒子を透明導電層上に塗布して製膜して無機酸化物半導体多孔質層とする工程1、
透明導電層および無機酸化物半導体多孔質層に周波数1GHz以上300GHz以下のマイクロ波を照射して発熱させる工程であって、被照射体に放熱体を密着させながらマイクロ波を照射する工程4、
増感色素を無機酸化物半導体多孔質層と接触させる工程3を含む工程により製造されることを特徴とする光電変換用無機酸化物半導体電極の製造方法。
A method for producing an inorganic oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate comprising a transparent conductive layer and an inorganic oxide semiconductor porous layer,
Step 1, by applying inorganic oxide semiconductor particles having an average particle diameter of 5 nm or more and 500 nm or less on a transparent conductive layer to form an inorganic oxide semiconductor porous layer,
A step of irradiating the transparent conductive layer and the inorganic oxide semiconductor porous layer with microwaves having a frequency of 1 GHz or more and 300 GHz or less to generate heat, the step of irradiating the microwaves while adhering the radiator to the irradiated body;
A method for producing an inorganic oxide semiconductor electrode for photoelectric conversion, comprising a step comprising a step 3 of bringing a sensitizing dye into contact with an inorganic oxide semiconductor porous layer.
透明導電層を具えた透明基材と、無機酸化物半導体多孔質層とを含む光電変換用無機酸化物半導体電極の製造方法であって、
さらに、無機酸化物半導体多孔質層にプレス処理する工程5を行うことを特徴とする請求項1または2記載の光電変換用無機酸化物半導体電極の製造方法。
A method for producing an inorganic oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate comprising a transparent conductive layer and an inorganic oxide semiconductor porous layer,
Furthermore, the process 5 which press-processes to an inorganic oxide semiconductor porous layer is performed, The manufacturing method of the inorganic oxide semiconductor electrode for photoelectric conversion of Claim 1 or 2 characterized by the above-mentioned.
無機酸化物半導体多孔質層に与えるプレス処理の圧力が0.01Kgf/cm 以上100Kgf/cm未満であることを特徴とする請求項3記載の光電変換用無機酸化物半導体電極の製造方法。The method for producing an inorganic oxide semiconductor electrode for photoelectric conversion according to claim 3, wherein the pressure of the press treatment applied to the inorganic oxide semiconductor porous layer is 0.01 kgf / cm 2 or more and less than 100 kgf / cm 2 . 透明導電層が、酸化スズ、酸化インジウム、酸化亜鉛、炭素の少なくとも1つを含む請求項1〜4いずれか記載の光電変換用無機酸化物半導体電極の製造方法。The method for producing an inorganic oxide semiconductor electrode for photoelectric conversion according to any one of claims 1 to 4, wherein the transparent conductive layer contains at least one of tin oxide, indium oxide, zinc oxide, and carbon. マイクロ波照射時に、マイクロ波の入射方向が透明基材面側からの照射することを特徴とする請求項1〜5いずれか記載の光電変換用無機酸化物半導体電極の製造方法。The method for producing an inorganic oxide semiconductor electrode for photoelectric conversion according to any one of claims 1 to 5, wherein the incident direction of the microwave is irradiated from the transparent substrate surface side during the microwave irradiation. マイクロ波照射時に、マイクロ波照射によって被照射体を40℃以上1000℃以下に昇温させることを特徴とする請求項1〜6いずれか記載の光電変換用無機酸化物半導体電極の製造方法。The method for producing an inorganic oxide semiconductor electrode for photoelectric conversion according to any one of claims 1 to 6, wherein the temperature of the irradiated object is raised to 40 ° C or higher and 1000 ° C or lower by microwave irradiation during microwave irradiation. マイクロ波照射時に、マイクロ波照射によって被照射体を200℃/分以下の速度で昇温させることを特徴とする請求項1〜7いずれか記載の光電変換用無機酸化物半導体電極の製造方法。The method for producing an inorganic oxide semiconductor electrode for photoelectric conversion according to any one of claims 1 to 7, wherein the temperature of the irradiated object is raised by microwave irradiation at a rate of 200 ° C / min or less during microwave irradiation. 請求項1〜8いずれか記載の光電変換用無機酸化物半導体電極と、電解質層と、導電性対極とを備えた光電変換用半導体セル。A semiconductor cell for photoelectric conversion comprising the inorganic oxide semiconductor electrode for photoelectric conversion according to claim 1, an electrolyte layer, and a conductive counter electrode.
JP2003052916A 2003-02-28 2003-02-28 Method for producing inorganic oxide semiconductor electrode for photoelectric conversion Expired - Fee Related JP4461691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052916A JP4461691B2 (en) 2003-02-28 2003-02-28 Method for producing inorganic oxide semiconductor electrode for photoelectric conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052916A JP4461691B2 (en) 2003-02-28 2003-02-28 Method for producing inorganic oxide semiconductor electrode for photoelectric conversion

Publications (2)

Publication Number Publication Date
JP2004265662A true JP2004265662A (en) 2004-09-24
JP4461691B2 JP4461691B2 (en) 2010-05-12

Family

ID=33117670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052916A Expired - Fee Related JP4461691B2 (en) 2003-02-28 2003-02-28 Method for producing inorganic oxide semiconductor electrode for photoelectric conversion

Country Status (1)

Country Link
JP (1) JP4461691B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074068A1 (en) * 2004-01-30 2005-08-11 Teijin Dupont Films Japan Limited Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
JP2006060064A (en) * 2004-08-20 2006-03-02 Ishikawajima Harima Heavy Ind Co Ltd Method for heating thin film with microwave
EP1808928A1 (en) * 2004-10-13 2007-07-18 Teijin Dupont Films Japan Limited Multilayer body for dye-sensitized solar cell, electrode for dye-sensitized solar cell and method for producing same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011222430A (en) * 2010-04-14 2011-11-04 Hitachi Zosen Corp Method of forming photocatalyst film in dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074068A1 (en) * 2004-01-30 2005-08-11 Teijin Dupont Films Japan Limited Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
US8039735B2 (en) 2004-01-30 2011-10-18 Teijin Dupont Films Japan Limited Laminated film for dye-sensitized solar cell and electrode for dye-sensitized solar cell, and process for their production
JP2006060064A (en) * 2004-08-20 2006-03-02 Ishikawajima Harima Heavy Ind Co Ltd Method for heating thin film with microwave
EP1808928A1 (en) * 2004-10-13 2007-07-18 Teijin Dupont Films Japan Limited Multilayer body for dye-sensitized solar cell, electrode for dye-sensitized solar cell and method for producing same
EP1808928A4 (en) * 2004-10-13 2009-07-08 Teijin Dupont Films Japan Ltd Multilayer body for dye-sensitized solar cell, electrode for dye-sensitized solar cell and method for producing same
US8604335B2 (en) 2004-10-13 2013-12-10 Teijin Dupont Films Japan Limited Laminate for dye-sensitized solar cell, electrode for dye-sensitized solar cell and method for producing it
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011222430A (en) * 2010-04-14 2011-11-04 Hitachi Zosen Corp Method of forming photocatalyst film in dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4461691B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
Wang et al. Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells
Sedghi et al. Influence of TiO2 electrode properties on performance of dye-sensitized solar cells
TWI480229B (en) A battery electrode material, a battery electrode paste, a method for manufacturing an electrode material for a battery, a dye-sensitized solar cell, and a battery
WO2012105581A1 (en) Method for producing oxide semiconductor layer
JP4881600B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
KR20120129247A (en) Sintering method of semiconductor oxide by using intense pulsed light
Kouhestanian et al. Investigating the effects of thickness on the performance of ZnO-based DSSC
JP2012521622A (en) Low temperature sintering of dye-sensitized solar cells
JP4461691B2 (en) Method for producing inorganic oxide semiconductor electrode for photoelectric conversion
JP2004319439A (en) Dye-sensitized solar cell and its manufacturing method
Sudhagar et al. Efficient performance of electrostatic spray-deposited TiO 2 blocking layers in dye-sensitized solar cells after swift heavy ion beam irradiation
JP4982067B2 (en) Method for producing photoelectrode for dye-sensitized solar cell
JP2005302509A (en) Dye-sensitized solar cell
JP5636736B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
Wu et al. Rapid dye-sensitized solar cell working electrode preparation using far infrared rapid thermal annealing
Cai et al. Porous acetylene-black spheres as the cathode materials of dye-sensitized solar cells
JP2012043662A (en) Metal oxide semiconductor electrode manufacturing method
JP2004273770A (en) Method for manufacturing inorganic oxide semiconductor electrode for photoelectric conversion
Shinde et al. Experimental and theoretical study of 1, 4-naphthoquinone based dye in dye-sensitized solar cells using ZnO photoanode
Ho et al. Enhanced efficiency via blocking layers at photocathode interfaces in cobalt-mediated tandem dye-sensitized solar cells
Pervez et al. Photoanode annealing effect on charge transport in dye-sensitized solar cell
Raj et al. Fabrication of low-cost carbon paste based counter electrodes for dye-sensitized solar cells
Liu et al. Operating temperature and temperature gradient effects on the photovoltaic properties of dye sensitized solar cells assembled with thermoelectric–photoelectric coaxial nanofibers
Elangovan et al. Performance of dye-sensitized solar cells based on various sensitizers applied on TiO 2-Nb 2 O 5 core/shell photoanode structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees