JP2004264774A - Conductive intermediate transfer rubber belt - Google Patents

Conductive intermediate transfer rubber belt Download PDF

Info

Publication number
JP2004264774A
JP2004264774A JP2003057479A JP2003057479A JP2004264774A JP 2004264774 A JP2004264774 A JP 2004264774A JP 2003057479 A JP2003057479 A JP 2003057479A JP 2003057479 A JP2003057479 A JP 2003057479A JP 2004264774 A JP2004264774 A JP 2004264774A
Authority
JP
Japan
Prior art keywords
intermediate transfer
rubber
conductive intermediate
resin
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003057479A
Other languages
Japanese (ja)
Other versions
JP3759115B2 (en
Inventor
Akio Konuki
昭男 小貫
Osamu Tani
理 谷
Koshi Nishitani
幸志 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinyosha Co Ltd
Original Assignee
Kinyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinyosha Co Ltd filed Critical Kinyosha Co Ltd
Priority to JP2003057479A priority Critical patent/JP3759115B2/en
Publication of JP2004264774A publication Critical patent/JP2004264774A/en
Application granted granted Critical
Publication of JP3759115B2 publication Critical patent/JP3759115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a conductive intermediate transfer belt in short time by simplifying a manufacturing process and also to prevent the occurrences of color slippage and inside void by reducing modulus of permanent set by increasing stress at the time of low elongation which is the required characteristic of a product. <P>SOLUTION: The conductive intermediate transfer belt 10 is constituted by mixing a resin, short fibers and a conductive material or a semiconductive material in rubber compound and the modulus of permanent set is ≤7%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に複写機、プリンター、ファクシミリ等の電子写真印刷装置の中間転写体に使用される導電性中間転写ゴムベルトに関する。
【0002】
【従来の技術】
周知の如く、複写機、プリンター、ファクシミリ等のカラーの電子写真印刷装置としては、図5に示す構成のものが知られている。こうした装置においては、現像装置の感光体1からのトナーを感光ドラム2、導電性中間転写ベルト3に順次静電転写し、静電転写したトナーを用紙4に静電転写する手法が採られている。なお、図中の符番5a,5b,5cは前記ベルト3を支持する支持ロール、符番6は前記ドラム2と共にベルト3を挟持する一次転写ロール、符番7は前記支持ロール5aと共にベルト3を挟持する二次転写ロールを示す。ところで、前記ベルト3としては、現在、樹脂フィルム、糸巻のゴムベルト、織物入りのゴムベルトが使用されている。
【0003】
樹脂フィルムを使用したベルトとしては、特に低伸び時の応力が高く永久伸び率(クリープ性)の小さいポリイミド樹脂の無端ベルトが使用されている。しかし、樹脂フィルムを使用したベルトの場合、ポリイミドの樹脂組成の問題から、N−メチルピロリドンの様な有害な溶剤に樹脂を溶解し、被膜化する際、その溶剤をとばし、且つ高温で樹脂を処理する必要がある。従って、多大な設備とともに、成形に費やす時間が大きくかかるとともに、溶剤に対する環境汚染対策を要するという欠点があった。
【0004】
ゴムを使用したベルトの例としては、ベルトの伸び止めとして糸を使用し、糸を巻く手法で成型する方法が知られている(特許文献1)。このベルトは、エラストマーあるいは樹脂等からなる基層内部に、織物状にした繊維を螺旋状等にした芯体を埋め込んで中間転写体とした構成を有している。しかし、糸を使用したベルトは、ドラムに糸を巻くのに非常に時間がかかり、コスト高となるので、量産に不向きである。
【0005】
更に、ベルトの伸び止めとして織物を使用し、織物にゴムを塗布して無端ベルトを成型して得られるゴムベルトが知られている(特許文献2、3)。特許文献2には、1層以上の繊維層と、この繊維層の片面叉は両面に積層された弾性層とを有する中間転写部材について開示されている。特許文献3には、内部に芯体層を有し、繊維相互の間隔が50〜3000μmである弾性層及び被覆層を含む2層以上の層構成である中間転写ベルトについて開示されている。しかし、特許文献2,3の場合、織物を無端状にするため、袋織りにする必要があるが、その際、織密度を一定にするのが非常に困難である。その結果、中間転写ベルトとして使用し画像出しをした時に、画像ムラが発生する欠点がある。
【0006】
これらの成形方法の欠点を解消する方法として、特許文献4が挙げられる。即ち、この方法は、アクリルゴムをトルエン等の溶剤で糊状にしたゴム糊にカーボンブラックや、短繊維を混入させて成型後溶剤をとばす方法である。しかし、この方法では、ゴムを糊状にし、成形する際、短繊維の不均一分散が起こり、画像出しをした時に画像ムラを発生する欠点がある。また、ゴムを糊上にしたトルエン等の溶剤を飛ばすのに時間がかかり、コスト高となり、量産に不向きである。更に、ゴムをトルエン等の溶剤で糊状にすることにより、火災防止等の処置をする必要があり、設備費がかかる等の問題があった。
【0007】
更に、特許文献5には、ゴムに短繊維を混入した例が開示されている。この例は、酸化アルミニウム、酸化亜鉛等の金属酸化物の針状生成物からなる導電性の短繊維長さ0.03〜5.0mmにカットした導電性物質を10〜40部ゴムコンパウンドに混入したものである。しかし、この場合、導電性物質の混合比率が大きいと、加工性に問題が生じ、伸び止め効果が期待される短繊維の混合比率が上げられない。その結果、ベルトとした時の永久伸びが大きくなり、使用時に問題が生じる。
【0008】
【特許文献1】
特開平9−251246(段落[0015]及び図1)
【0009】
【特許文献2】
特開昭平10−232572号(段落[0010]及び図1等)
【0010】
【特許文献3】
特開平11−84901号(特許請求の範囲参照)
【0011】
【特許文献4】
特開平10−48963号(段落[0034]等)
【0012】
【特許文献5】
特許第2996684号(第2頁右欄20〜33行目)
【0013】
【発明が解決しようとする課題】
本発明はこうした事情を考慮してなされたもので、上述した問題点であるベルト製造での工程を簡素化し、短時間で製造できること、及び製品の要求特性である低伸び時の応力を大きくし、永久伸び率を小さくして色ズレや中ヌケのない安定した導電性中間転写ゴムベルトを提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本発明は、加工性の良い弾性ゴム材料を使用して低伸び時の応力を大きくし、永久伸び率(クリープ性)を小さくすることで樹脂に近い特性を維持し、製造工程を簡素化して短時間で製造でき、量産性の良い導電性中間転写ゴムベルトを作るものである。
【0015】
ところで、低伸び時の応力を向上させる為には、多量のフィラーを充填することが必要であり、更に応力を向上させるには短繊維を充填することが必要となる。しかし、これらのフィラーや短繊維の充填剤は混練り加工性やプレス成型加工性を著しく悪くするという課題を有している。一方、本発明において、主題である加工性例えば混練り加工性やプレス成型加工性については樹脂を配合することによって、混練り時の熱によって混練り加工性が改良できる。また、プレス成型加工性においては、プレス熱(例えば150℃)でのプレス時の流れ特性が良くなり、カーボンブラックや短繊維の高充填配合の欠点を補うとともに、樹脂の硬化後の低伸び時の応力向上にも良好な結果を示す。その結果、ゴム材料を使用しても中間転写ベルトに必要な低伸び時の高応力と永久伸び率の必要特性を満足させることができる。
【0016】
即ち、本発明に係る導電性中間転写ゴムベルトは、ゴム配合物に、樹脂、短繊維、及び導電性材料叉は半導電性材料を配合してなり、永久伸び率が7%以下であることを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明について更に詳しく説明する。
本発明において、中間転写ゴムベルトは、請求項3記載のように、1%伸び時の応力が20kgf/cm以上であり、5%伸び時の応力が150kgf/cm以上であることが好ましく、23℃−65%(室温)、荷重5kg/cm,96時間放置後の永久伸び率が7%以下であることが最良である。ここで、上記応力の範囲を維持することにより、良好な加工性を保持しつつ十分な応力を得ることができる。
【0018】
本発明において、請求項4記載のように体積抵抗値は10〜1013Ω・cmであることが好ましい。ここで、体積抵抗値が10Ω・cm未満では導電性物質を多量に配合しなければならず物性特にワレ現象が起こり、1013Ω・cmを越えると静電作用が不足しトナーの静電移転が不可能になるからである。
【0019】
本発明において、前記ゴム配合物に含まれるゴムとしては、例えば、天然ゴム(NR)、ニトリルゴム(NBR)、エピクロルヒドリンゴム(ECO)、水素化ニトリルゴム(HNBR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、エチレンプロピレンゴム(EPM、EPDM)、フッ素ゴム(FR)、シリコーンゴム(SiR)、ウレタンゴム(UR)、及びそれらのアロイが挙げられる。
【0020】
本発明において、ゴムの配合剤としては、例えば加硫剤、加硫促進剤、共架橋剤、老化防止剤、軟化剤、可塑剤、補強剤、充填剤が挙げられる。
前記加硫剤としては、例えばイオウ、有機含イオウ化合物、有機過酸化物が使用可能である。加硫剤のゴムに対する添加量は、通常、ゴム100重量部に対して0.1〜30重量部が好ましく、更に好ましくは0.1〜10重量部である。
【0021】
前記加硫促進剤としては、例えば、マグネシア(MgO)、テトラメチルチウラムジスルフィード、テトラエチレンチウラムジスルフィド等のチウラム類、ジブチルジチオカーバミン酸亜鉛、ジエチルジチオカーバミン酸亜鉛等のジチオカーバメート類、2−メチルカプトベンゾチアゾール、N−シクロヘキシル−2−ベンゾチアゾールスルフィンアミド等のチアゾール類、その他のチオウレア類が挙げられる。
【0022】
加硫助剤としては、例えば、亜鉛華、金属酸化物ステアリン酸、オレイン酸等の脂肪酸が公知として挙げられる。
前記共架橋剤としては、有機過酸化物による共架橋剤としての、エチレングリコール・ジメタクリレート、トリメチロールプロパン・トリメタクリレート、多官能性メタクリレートモノマー、トリアリルイソシアヌレート、含金属モノマー等従来から使用されているものが挙げられる。
【0023】
前記老化防止剤としては、例えば、2−メルカプトベンゾイミダゾール等のイミダゾール類、フェニル−α−ナフチルアミン、NN−ジ−β−ナフチル−P−フェニレンジアミン等のアミン類、スチレン化フェノール等のフェノール類が挙げられる。
【0024】
前記軟化剤としては、例えば、ステアリン酸等の脂肪酸、パラフィンワックスが挙げられる。
前記可塑剤としては、例えばジブチルフタレート、ジオクチルフタレート、プロセスオイルが挙げられる。
【0025】
前記補強剤としては、例えばカーボンブラック、ホワイトカーボンが挙げられ、その他短繊維も有力である。ここで、短繊維としては、例えば、10〜50番手で長さ0.1〜10.0mm位、好ましくは0.3〜0.6mmの長さが混練り、プレス成形の加工性と物性のバランスがとれている。前記補強剤のゴムに対する配合量は、ゴム100重量部に対して10〜150重量部が好ましく、30〜100重量部が更に好ましい。ここで、補強剤が10重量部未満では物性値が出ず、150重量部を越えると加工性が悪く成型ができない。
【0026】
本発明において、前記樹脂としては、例えばフェノール樹脂、熱硬化型ウレタン樹脂、エポキシ樹脂、反応性モノマー等の熱硬化性樹脂、あるいはポリ塩化ビニル(PVC)、ポリ酢酸ビニル(PVA)、熱可塑性性ウレタン等の熱可塑性樹脂が挙げられる。前記樹脂のゴムに対する配合量は、ゴム100重量部に対して10〜150重量部が好ましく、30〜100重量部が更に好ましい。ここで、樹脂の配合量が10重量部未満の場合、樹脂の量が少なすぎるので、加工性が良くなるが、物性値が悪くなる。一方、樹脂の配合量が150重量部を越えると、樹脂の特性が出すぎてゴムの特性が生かされず、割れなどが生じる。
【0027】
本発明において、前記短繊維としては、例えば綿、麻、絹、レーヨン、アセテート、ナイロン、アクリル、ビニロン、ビニリデン、ポリエステル、ポリスチレン、ポリプロピレン、ポリイミド、アラミド、セラミック繊維、ガラス繊維、カーボン繊維、金属繊維が挙げられる。前記短繊維のゴムに対する配合量は、ゴム100重量部に対して5〜50重量部が好ましく、10〜30重量部が更に好ましい。ここで、短繊維が5重量部未満では他の補強剤と組み合わせても十分な物性がでず、50重量部を越えると加工性が悪くなり成型できない。
【0028】
本発明において、前記導電性材料としては、例えば電子系導電剤としてのカーボンブラック、金属酸化物叉は導電処理した金属酸化物が挙げられる。前記導電性材料のゴムに対する配合量は、ゴム100重量部に対して30〜100重量部が好ましく、30〜70重量部が更に好ましい。ここで、導電性材料が30重量部未満では抵抗値が高くなるとともに補強効果も小さく、100重量部を超えると加工性が悪くなり成型できない。
【0029】
本発明において、請求項5記載のように転写ベルトの表面にトナー離型層を設けることが好ましい。この理由は、トナー離型層を設けないと、例えばゴム表面だけではトナーが付着して画像形成に障害が及ぶからである。前記トナー離型層は、例えばトナー離型材料を吹き付け法で塗布する事により形成できるが、これに限定されない。
前記トナー離型層の材料としては、例えば、FEUA変性フッ素樹脂塗料(旭硝子製)、含フッ素ポリオール変性フッ素樹脂塗料(住友精化製)、PUDF変性フッ素樹脂塗料(関西ペイント製)、ポリウレタン変性フッ素樹脂塗料(日本ミラクトラン製、日本ビーケミカル製)、アクリル変性フッ素樹脂塗料(日本アチソン製)、フェノール変性フッ素樹脂塗料(日本アチソン製)、アルキット変性フッソシリコーン塗料(信越化学製)、アクリル変性シリコーン塗料(信越化学製)、水溶性ナイロン(帝国化学製、日本ビーケミカル製)Nメチルメトキシ化ナイロン(帝国化学製、日本ビーケミカル製)が挙げられる。
【0030】
本発明において、中間転写ゴムベルトの表面には、請求項6記載のように転写ベルトの表面に硬度がJISA硬度計で10°〜95°のゴム弾性層を設け、体積抵抗値が10〜1013であることが好ましい。ここで、ゴム弾性層の硬度を上述の様に規定したのは、硬度が10°未満ではニップ圧による表面の伸びが大きくなるためトナー層のヒビ割れが発生し、95°を超えるとゴム弾性が悪くなるため画像形成に障害を及ぼすからである。また、体積抵抗値を上述の様に規定したのは、抵抗値が10未満では電流が流れすぎて他部位の影響を与え画像形成に障害が生じるからであり、抵抗値が1013を越えると静電作用が不足し、静電移転が不可能になるからである。
【0031】
前記ゴム弾性層の上には、請求項7記載のようにトナー離型層を設けることが好ましい。この理由は、トナーによる汚染を防止するためである。
【0032】
本発明において、中間転写ゴムベルトの裏面には、請求8記載のように耐磨耗性ゴム層を設けることが好ましい。これは、ゴムベルトがロール等により回転する際に磨耗するのを減少させるためである。
【0033】
本発明において、請求項9記載のように、中間転写ベルト自体がプレス成型により形成することができる。これは、ベルトの組成の加工性がよいためである。ここで、プレス成型とは、金型を用いて成型加工するものであり、通常のプレス成型、トランスファ成型、射出成型等が挙げられる。
【0034】
本発明において、例えば図4に示すように、ゴム層11の裏面(内側)でかつ該ゴム層11の周方向に沿う片側叉は両端に蛇行防止用突起19を設けることが好ましい。ここで、図4は導電性中間転写ベルトが単層構造の場合であるが、2層構造でも3層構造でも差し支えない。図4のような構成にすることにより、前記ベルトを図5のようなカラー電子写真印刷装置に組み込んで駆動させる際、ベルトの蛇行を防止できる。なお、図4のベルトをプレス金型に組みこむ場合は、図7(A)、(B)に示すように、蛇行防止用突起19に対応するドラム芯金13の表面に蛇行防止用突起19と嵌合する蛇行防止溝21が環状に形成されている。但し、図7(B)は図7(A)の要部の拡大図を示す。
【0035】
本発明において、前記導電性転写ベルトはプレス成型で形成できるが、前記蛇行防止用突起19を備えた導電性転写ベルトも、前記ゴム層11の組成であるゴム材と一体成型で形成することができる。この場合、蛇行防止用突起19の組成は、例えば下記表1に示すような組成となっている。このように、一体成型で形成できるのは、導電性転写ベルトを構成するゴム層や蛇行防止用突起となる層の材料の加工性がよいからである。
【0036】
【表1】

Figure 2004264774
【0037】
本発明において、前記導電性転写ベルトは、請求項10記載のようにプレス成型を溶剤を用いることなく行うことができる。これは、上述したように、導電性転写ベルトを構成するゴム層の加工性が良いからである。
【0038】
以下、本発明に係るエンドレス状の導電性中間転写ベルトの構造及び製造方法について説明する。
1)図1に示すように単層構造の導電性中間転写ベルトの場合:
図1の中間転写ベルト10は、ゴムに樹脂、短繊維及び導電性材料等を配合してなるゴムコンパウンドを所定の厚さ、寸法にして得られるエンドレス状(環状)のゴム層11のみからなるベルトを示す。この中間転写ベルトは、図6(A),(B)のプレス金型12を用いて製造される。プレス金型12は、ドラム芯金13と、このドラム芯金13の内側でかつ幅方向に夫々配置されて該ドラム芯金13を支持するドラム芯金受け14と、前記ドラム芯金13及びドラム芯金受け14の外側に配置された一対の上部用割型15a,下部用割型15bとから構成されている。但し、図6(A)はプレス金型の断面図、図6(B)は図6(A)のX矢視図を示す。
【0039】
まず、混練り後のゴムコンパウンドをカレンダーロールで所定の厚さにゴムシートに分出しする。次に、分出ししたゴムシートを所定の寸法に切断する。つづいて、図6のプレス金型12の一構成であるドラム芯金13に所定の寸法に切断した前記ゴムシートを巻きつける。
【0040】
次に、プレス金型12のドラム芯金受け14を図6(A)のようにセットした後、ドラム芯金13の上下に夫々上部用割型15a,下部用割型15bを配置する。つづいて、プレス金型12を例えば150℃で10分間、50kg/cmの圧力でプレス成型する。
【0041】
次に、プレス後、脱型してエンドレスのゴムベルト16を作成する。つづいて、このゴムベルト16を研磨機で0.3mm厚さまで研磨する。更に、研磨したゴムベルト16の両端を所定の寸法にカットして導電性中間転写ベルト10を製造する。
【0042】
2)図2に示すように2層構造の導電性中間転写ベルトの場合:
図1の中間転写ベルト20は、ゴム層11の表面にゴム弾性層17を形成した2層構造のエンドレス状のベルト構造となっている。
【0043】
まず、下記表2に示す組成のゴム混合物を混練りし、所定の厚さにカレンダーロールで分出してシートを準備する。次に、上記1)で得られた研磨後のゴムベルトの上に前記シートを巻き、さらにセットする。つづいて、図6のプレス金型12を150℃で10分間、50kg/cmの圧力でプレス成型する。
【0044】
次に、プレス後、脱型してゴム層11とゴム弾性層17からなる2層構成のエンドレスベルトを作成する。つづいて、このエンドレスベルトを研磨機で0.5mm厚さまで研磨する。更に、研磨したエンドレスベルトの両端を所定の寸法にカットして体積抵抗値3×1011Ω・cmの導電性中間転写ベルト20を製造する。
【0045】
【表2】
Figure 2004264774
【0046】
3)図3に示すように3層構造の導電性中間転写ベルトの場合:
図3の中間転写ベルト30は、ゴム層11の表面にゴム弾性層17、トナー離型層18を順次形成した3層構造のエンドレス状のベルト構造となっている。
この中間転写ベルト30は、上記2)で得られた2層構造のエンドレスベルトにトナー離型剤として、水溶性ナイロン(日本ピーケミカル製)をスプレーガンを使用して8μmの厚さにコートし、乾燥した後、150℃で30分間オーブン中で焼結硬化させることにより、製造する。
【0047】
【実施例】
以下、本発明の各実施例1〜5、比較例1〜4及び参考例について説明する。
各実施例1〜4、比較例1〜6及び参考例における各組成は下記表3に示すとおりである。下記表3には、混練り加工性、プレス成型性、伸び1%,5%時の応力、永久伸び、印刷画像評価についても示した。なお、永久伸びのテスト条件は、表3の下欄に開示したように、テストピース厚さ0.3mm、幅10mmとし、条件を23℃−55%(室温),重り5kg,96時間とした。
【0048】
また、原料ゴム材としては、NBR(商品名:ゼオン230S、日本ゼオン製)、加硫助剤として酸化亜鉛2種、加硫剤として硫黄、加硫促進剤として商品名:ノクセラーDM−P(大内新興製)、老化防止剤として商品名:ノクラック224S(川口化学製)、加工助剤としてステアリン酸、可塑剤として商品名:DOP(大八化学製)を使用し、補強剤の比較試験を行った。
【0049】
【表3】
Figure 2004264774
【0050】
比較例1の場合、混練り、プレス成型の加工性は良好であったが、物性値として応力、永久伸び率が悪く、当然印刷画像評価も悪かった。なお、比較例1では、導電性材料としてカーボンブラック(商品名:HAF(シースト3)、東海カーボン製)を混練り限界の100重量部用いた。
【0051】
比較例2の場合、混練り、プレス成型の加工性は良好であったが、物性値として応力、永久伸び率が悪く、当然印刷画像評価も悪かった。なお、比較例2では、樹脂として、住友ベークライト製の商品名:スミライトレジン12687を混練り限界の100重量部用いた。
【0052】
比較例3の場合、混練り、プレス成型の加工性は良好であったが、物性値として応力、永久伸び率が悪く、当然印刷画像評価も悪かった。なお、比較例3では、短繊維として、コーネックス繊維の15番手を長さ0.6mmにカットした短繊維を混練り限界の30重量部用いた。
【0053】
比較例4、5の場合、混練り、プレス成型の加工性は良好であったが、物性値として応力、永久伸び率が悪く、当然印刷画像評価も悪かった。なお、比較例4では、カーボンブラックとしての上記HAF、樹脂としての上記スミライトレジン12687、短繊維としての上記コーネックス繊維を用いた。
【0054】
比較例6の場合、混練り、プレス成型の加工性は良好であったが、物性値として応力、永久伸び率が悪く、当然印刷画像評価も悪かった。特に、伸び5%時の応力は3%で破断した。なお、比較例6では、カーボンブラックとしての上記HAF、樹脂としての上記スミライトレジン12687、短繊維としての上記コーネックス繊維を用いた。
【0055】
実施例1の場合、加工性は良好であり、物性値の応力、永久伸び率も良好で印刷画像評価でも色ズレ、中ヌケ等がなく良好な画像が得られた。なお、実施例1及び下記実施例2〜4における上記HAF、スミライトレジン12687、コーネックス繊維の配合量は表1の通りである。
【0056】
また、実施例2〜4の場合も、加工性は良好であり、物性値の応力、永久伸び率も良好で印刷画像評価でも色ズレ、中ヌケ等がなく良好な画像が得られた。
参考例では、混練り、プレス成型の加工性が悪く、またゴムベルトの成型ができず、物性試験印刷画像試験ができなかった。
【0057】
以上の実施例より、実施例2,3,4配合の補強剤のブレンド配合が良く、カーボンブラックはHAF 50〜100重量部の範囲、樹脂は住みライトレジン12687 40〜70重量部の範囲、短繊維は25〜30重量部の範囲であれば、混練り加工性、プレス成型加工性を満足させ、物性値の1%伸び時の応力が20kgf/cm以上となり、5%伸び時の応力が150kgf/cm以上となる。また、印刷画像に大きな影響を与える永久伸び率が7.0%から1.8%となり、この範囲に入ったゴムベルトは印刷画像テストも色ズレや中ヌケもなく、満足した画像が得られた。なお、印刷画像評価テストは、図5の電子写真印刷装置でテスト評価を行った。
【0058】
【発明の効果】
以上詳述した如く本発明によれば、所定の硬度のゴムに、樹脂、短繊維、及び導電性材料叉は半導電性材料を配合した構成であるため、通常のゴム加工設備を使用でき、新たな設備を必要とせず安定的に安価なベルト成型ができ、ベルト製造での工程を簡素化、製造の短時間をなし得る。また、製品の要求特性である低伸び時の応力を大きくし、永久伸び率を小さくして色ズレや中ヌケのない安定した導電性中間転写ゴムベルトを提供できる。
【図面の簡単な説明】
【図1】本発明の一実施形態であるエンドレス状の単層構造の導電性中間転写ゴムベルトの断面図。
【図2】本発明の一実施形態であるエンドレス状の2層構造の導電性中間転写ゴムベルトの断面図。
【図3】本発明の一実施形態であるエンドレス状の3層構造の導電性中間転写ゴムベルトの断面図。
【図4】本発明の一実施形態であるエンドレス状の蛇行防止構造の導電性中間転写ゴムベルトの断面図。
【図5】図5はカラー電子写真印刷装置の説明図。
【図6】本発明に係る導電性中間転写ゴムベルトを製造するためのプレス金型の説明図。
【図7】図4の導電性転写ゴムベルトと図6のプレス金型との関係を示す説明図。
【符号の説明】
10,20,30…導電性中間転写ゴムベルト、 11…ゴム層、
12…プレス金型、 13…ドラム芯金、
14…ドラム芯金受け、 15a…上部用割型、
15b…下部用割型、 16…ゴムベルト、
17…ゴム弾性層、 18…トナー離型層、
19…蛇行防止用突起、 21…蛇行防止溝。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive intermediate transfer rubber belt used for an intermediate transfer member of an electrophotographic printing apparatus such as a copying machine, a printer, and a facsimile.
[0002]
[Prior art]
As is well known, a color electrophotographic printing apparatus such as a copying machine, a printer, and a facsimile has a configuration shown in FIG. In such an apparatus, a method is employed in which toner from a photoreceptor 1 of a developing device is electrostatically transferred to a photosensitive drum 2 and a conductive intermediate transfer belt 3 sequentially, and the electrostatically transferred toner is electrostatically transferred to a sheet 4. I have. Reference numerals 5a, 5b and 5c in the figure denote support rolls for supporting the belt 3, reference numeral 6 denotes a primary transfer roll for holding the belt 3 together with the drum 2, and reference numeral 7 denotes a belt 3 together with the support roll 5a. 2 shows a secondary transfer roll that holds the sheet. By the way, as the belt 3, a resin film, a thread-wound rubber belt, and a rubber belt containing a fabric are currently used.
[0003]
As a belt using a resin film, an endless belt of a polyimide resin having a high stress particularly at a low elongation and a small permanent elongation (creep) is used. However, in the case of a belt using a resin film, due to the problem of the resin composition of the polyimide, the resin is dissolved in a harmful solvent such as N-methylpyrrolidone. Need to be processed. Therefore, there are drawbacks that, together with a large amount of equipment, a large amount of time is spent for molding, and that measures for environmental contamination of the solvent are required.
[0004]
As an example of a belt using rubber, there is known a method in which a thread is used as a stopper for elongating the belt and is formed by winding the thread (Patent Document 1). This belt has a configuration in which a core formed by spirally forming woven fibers is embedded in a base layer made of an elastomer or a resin to form an intermediate transfer member. However, a belt using a yarn takes a very long time to wind the yarn around the drum, which increases the cost and is not suitable for mass production.
[0005]
Further, there is known a rubber belt obtained by using a woven fabric as an elongation stopper for the belt, applying rubber to the woven fabric, and molding an endless belt (Patent Documents 2 and 3). Patent Document 2 discloses an intermediate transfer member having one or more fiber layers and an elastic layer laminated on one or both sides of the fiber layers. Patent Literature 3 discloses an intermediate transfer belt having a core layer inside, and an intermediate transfer belt having two or more layers including an elastic layer and a coating layer in which the distance between fibers is 50 to 3000 μm. However, in the case of Patent Literatures 2 and 3, in order to make the woven fabric endless, it is necessary to make a weave, but it is very difficult to keep the woven density constant. As a result, there is a disadvantage that image unevenness occurs when an image is displayed using the intermediate transfer belt.
[0006]
Patent Literature 4 is a method for solving the drawbacks of these molding methods. That is, this method is a method in which carbon black or short fibers are mixed into rubber paste obtained by converting acrylic rubber into a paste form with a solvent such as toluene, and the solvent is blown off after molding. However, this method has a drawback in that when the rubber is formed into a paste and molded, the short fibers are unevenly dispersed, and image unevenness occurs when an image is displayed. In addition, it takes time to evaporate a solvent such as toluene on which the rubber is glued, which increases the cost and is not suitable for mass production. Furthermore, it is necessary to take measures such as fire prevention by converting the rubber into a paste form with a solvent such as toluene, and there is a problem that the equipment cost is high.
[0007]
Further, Patent Document 5 discloses an example in which short fibers are mixed in rubber. In this example, 10 to 40 parts of a conductive material cut into a length of 0.03 to 5.0 mm of a conductive short fiber made of a needle-like product of a metal oxide such as aluminum oxide and zinc oxide is mixed into a rubber compound. It was done. However, in this case, if the mixing ratio of the conductive substance is large, a problem occurs in the workability, and the mixing ratio of the short fiber expected to have the effect of preventing elongation cannot be increased. As a result, the permanent elongation of the belt becomes large, which causes a problem during use.
[0008]
[Patent Document 1]
JP-A-9-251246 (paragraph [0015] and FIG. 1)
[0009]
[Patent Document 2]
JP-A-10-232572 (paragraph [0010] and FIG. 1 etc.)
[0010]
[Patent Document 3]
JP-A-11-84901 (refer to claims)
[0011]
[Patent Document 4]
JP-A-10-48963 (paragraph [0034] etc.)
[0012]
[Patent Document 5]
Patent No. 2999684 (page 20, right column, lines 20 to 33)
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and simplifies the process of manufacturing a belt, which is the above-described problem, enables the belt to be manufactured in a short time, and increases the stress at low elongation, which is a required characteristic of the product. It is another object of the present invention to provide a stable conductive intermediate transfer rubber belt having a small permanent elongation and free from color shift and center drop.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention uses an elastic rubber material having good workability to increase stress at low elongation and reduce permanent elongation (creep) to maintain characteristics close to resin. In addition, the manufacturing process is simplified to produce a conductive intermediate transfer rubber belt which can be manufactured in a short time and has good mass productivity.
[0015]
By the way, in order to improve the stress at the time of low elongation, it is necessary to fill a large amount of filler, and to further improve the stress, it is necessary to fill short fibers. However, these fillers and short fiber fillers have a problem that the kneading processability and press molding processability are significantly deteriorated. On the other hand, in the present invention, the kneading workability can be improved by the heat at the time of kneading by blending a resin with respect to the workability which is the subject, for example, kneading workability and press molding workability. In addition, in terms of press molding workability, the flow characteristics at the time of pressing with press heat (for example, 150 ° C.) are improved, thereby compensating for the drawbacks of high filling and blending of carbon black and short fibers, and at the time of low elongation after curing of the resin. The results also show good results in the improvement of the stress of the. As a result, even if a rubber material is used, it is possible to satisfy the required characteristics of high stress at low elongation and permanent elongation required for the intermediate transfer belt.
[0016]
That is, the conductive intermediate transfer rubber belt according to the present invention is obtained by blending a resin, a short fiber, a conductive material or a semiconductive material with a rubber compound, and has a permanent elongation of 7% or less. Features.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
In the present invention, the intermediate transfer rubber belt preferably has a stress at 1% elongation of 20 kgf / cm 2 or more, and a stress at 5% elongation of 150 kgf / cm 2 or more, It is best that the permanent elongation after standing at 23 ° C.-65% (room temperature) under a load of 5 kg / cm for 96 hours is 7% or less. Here, by maintaining the range of the stress, a sufficient stress can be obtained while maintaining good workability.
[0018]
In the present invention, as described in claim 4, the volume resistance value is preferably from 10 2 to 10 13 Ω · cm. Here, a large amount occurs properties especially fracture phenomena must blended conductive material is less than volume resistivity of 10 2 Ω · cm, 10 13 Ω · cm insufficient electrostatic action exceeds the electrostatic toner This is because electricity transfer becomes impossible.
[0019]
In the present invention, examples of the rubber contained in the rubber compound include natural rubber (NR), nitrile rubber (NBR), epichlorohydrin rubber (ECO), hydrogenated nitrile rubber (HNBR), butadiene rubber (BR), and styrene. Butadiene rubber (SBR), isoprene rubber (IR), ethylene propylene rubber (EPM, EPDM), fluoro rubber (FR), silicone rubber (SiR), urethane rubber (UR), and alloys thereof.
[0020]
In the present invention, examples of the rubber compounding agent include a vulcanizing agent, a vulcanization accelerator, a co-crosslinking agent, an antioxidant, a softener, a plasticizer, a reinforcing agent, and a filler.
As the vulcanizing agent, for example, sulfur, organic sulfur-containing compounds, and organic peroxides can be used. The amount of the vulcanizing agent added to the rubber is usually preferably 0.1 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the rubber.
[0021]
Examples of the vulcanization accelerator include thiurams such as magnesia (MgO), tetramethylthiuram disulfide, tetraethylenethiuram disulfide, dithiocarbamates such as zinc dibutyldithiocarbamate, zinc diethyldithiocarbamate, and the like. Thiazoles such as 2-methylcaptobenzothiazole and N-cyclohexyl-2-benzothiazolesulfinamide, and other thioureas.
[0022]
Examples of the vulcanization aid include known fatty acids such as zinc white, metal oxide stearic acid, and oleic acid.
As the co-crosslinking agent, as a co-crosslinking agent with an organic peroxide, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, a polyfunctional methacrylate monomer, triallyl isocyanurate, a metal-containing monomer and the like are conventionally used. Are included.
[0023]
Examples of the antioxidant include imidazoles such as 2-mercaptobenzimidazole, amines such as phenyl-α-naphthylamine, NN-di-β-naphthyl-P-phenylenediamine, and phenols such as styrenated phenol. No.
[0024]
Examples of the softener include fatty acids such as stearic acid and paraffin wax.
Examples of the plasticizer include dibutyl phthalate, dioctyl phthalate, and process oil.
[0025]
Examples of the reinforcing agent include carbon black and white carbon, and other short fibers are also effective. Here, as the short fiber, for example, a length of about 0.1 to 10.0 mm, preferably 0.3 to 0.6 mm at 10 to 50 count is kneaded, and the workability and physical properties of press molding are kneaded. Balanced. The compounding amount of the reinforcing agent with respect to the rubber is preferably from 10 to 150 parts by weight, more preferably from 30 to 100 parts by weight, based on 100 parts by weight of the rubber. Here, if the amount of the reinforcing agent is less than 10 parts by weight, no physical property value is obtained, and if it exceeds 150 parts by weight, workability is poor and molding cannot be performed.
[0026]
In the present invention, as the resin, for example, a phenol resin, a thermosetting urethane resin, an epoxy resin, a thermosetting resin such as a reactive monomer, or polyvinyl chloride (PVC), polyvinyl acetate (PVA), thermoplastic resin A thermoplastic resin such as urethane is exemplified. The compounding amount of the resin with respect to the rubber is preferably from 10 to 150 parts by weight, more preferably from 30 to 100 parts by weight, based on 100 parts by weight of the rubber. Here, when the amount of the resin is less than 10 parts by weight, the workability is improved because the amount of the resin is too small, but the physical property value is deteriorated. On the other hand, if the compounding amount of the resin exceeds 150 parts by weight, the characteristics of the resin become too high and the characteristics of the rubber cannot be utilized, resulting in cracks and the like.
[0027]
In the present invention, examples of the short fibers include cotton, hemp, silk, rayon, acetate, nylon, acrylic, vinylon, vinylidene, polyester, polystyrene, polypropylene, polyimide, aramid, ceramic fibers, glass fibers, carbon fibers, and metal fibers. Is mentioned. The amount of the short fibers blended with the rubber is preferably 5 to 50 parts by weight, more preferably 10 to 30 parts by weight, based on 100 parts by weight of the rubber. Here, if the short fiber is less than 5 parts by weight, sufficient physical properties are not obtained even when combined with another reinforcing agent, and if it exceeds 50 parts by weight, workability is deteriorated and molding cannot be performed.
[0028]
In the present invention, examples of the conductive material include carbon black as an electronic conductive agent, a metal oxide, and a metal oxide subjected to conductive treatment. The amount of the conductive material to be mixed with the rubber is preferably 30 to 100 parts by weight, more preferably 30 to 70 parts by weight, based on 100 parts by weight of the rubber. Here, when the conductive material is less than 30 parts by weight, the resistance value is increased and the reinforcing effect is small. When the conductive material is more than 100 parts by weight, workability is deteriorated and molding cannot be performed.
[0029]
In the present invention, it is preferable to provide a toner release layer on the surface of the transfer belt. The reason for this is that if the toner release layer is not provided, for example, the toner adheres to only the rubber surface and the image formation is hindered. The toner release layer can be formed by, for example, applying a toner release material by a spraying method, but is not limited thereto.
Examples of the material of the toner release layer include FEUA-modified fluororesin paint (manufactured by Asahi Glass), fluorine-containing polyol-modified fluororesin paint (manufactured by Sumitomo Seika), PUDF-modified fluororesin paint (manufactured by Kansai Paint), and polyurethane-modified fluorine. Resin paint (Nippon Miractran, Nippon Bee Chemical), Acrylic modified fluororesin paint (Nippon Acheson), Phenol modified fluororesin paint (Nippon Acheson), Alkit modified fluorosilicone paint (Shin-Etsu Chemical), Acrylic modified silicone paint (Manufactured by Shin-Etsu Chemical Co., Ltd.), water-soluble nylon (manufactured by Teikoku Chemical Co., Ltd., manufactured by Nippon Bee Chemical Co., Ltd.) and N-methylmethoxylated nylon (manufactured by Teikoku Chemical Co., Ltd., manufactured by Nippon Bee Chemical Co., Ltd.).
[0030]
In the present invention, on the surface of the intermediate transfer rubber belt, a rubber elastic layer having a hardness of 10 ° to 95 ° by a JISA hardness meter is provided on the surface of the transfer belt as described in claim 6, and the volume resistance value is 10 6 to 10. It is preferably 13 . The reason why the hardness of the rubber elastic layer is defined as described above is that if the hardness is less than 10 °, the elongation of the surface due to the nip pressure becomes large, so that the toner layer cracks. This is because the image quality is deteriorated, which causes an obstacle to image formation. The reason why the volume resistance is defined as described above is that if the resistance is less than 10 6 , the current will flow too much, affecting other parts and causing a failure in image formation, and the resistance will exceed 10 13 . This is because the electrostatic action becomes insufficient and the electrostatic transfer becomes impossible.
[0031]
It is preferable that a toner release layer is provided on the rubber elastic layer. The reason is to prevent contamination by toner.
[0032]
In the present invention, it is preferable to provide a wear-resistant rubber layer on the back surface of the intermediate transfer rubber belt. This is to reduce abrasion of the rubber belt when it is rotated by a roll or the like.
[0033]
In the present invention, the intermediate transfer belt itself can be formed by press molding. This is because the workability of the composition of the belt is good. Here, press molding refers to molding using a mold, and includes ordinary press molding, transfer molding, injection molding, and the like.
[0034]
In the present invention, for example, as shown in FIG. 4, it is preferable to provide a meandering prevention projection 19 on the back surface (inside) of the rubber layer 11 and on one side or both ends along the circumferential direction of the rubber layer 11. Here, FIG. 4 shows a case where the conductive intermediate transfer belt has a single-layer structure, but may have a two-layer structure or a three-layer structure. With the configuration as shown in FIG. 4, when the belt is driven by being incorporated in a color electrophotographic printing apparatus as shown in FIG. 5, the meandering of the belt can be prevented. When the belt of FIG. 4 is assembled into a press die, as shown in FIGS. 7A and 7B, the meandering prevention protrusions 19 are formed on the surface of the drum core 13 corresponding to the meandering prevention protrusions 19. The meandering preventing groove 21 that fits with the groove is formed in an annular shape. However, FIG. 7B is an enlarged view of a main part of FIG. 7A.
[0035]
In the present invention, the conductive transfer belt can be formed by press molding. However, the conductive transfer belt having the meandering preventing projections 19 can also be formed integrally with the rubber material that is the composition of the rubber layer 11. it can. In this case, the composition of the meandering preventing projection 19 is, for example, as shown in Table 1 below. The reason why the conductive transfer belt can be formed by integral molding is that the material of the rubber layer constituting the conductive transfer belt and the layer serving as the meandering prevention protrusions have good workability.
[0036]
[Table 1]
Figure 2004264774
[0037]
In the present invention, the conductive transfer belt can be press-molded without using a solvent. This is because the workability of the rubber layer constituting the conductive transfer belt is good as described above.
[0038]
Hereinafter, the structure and manufacturing method of the endless conductive intermediate transfer belt according to the present invention will be described.
1) In the case of a conductive intermediate transfer belt having a single-layer structure as shown in FIG.
The intermediate transfer belt 10 shown in FIG. 1 includes only an endless (annular) rubber layer 11 obtained by setting a rubber compound obtained by mixing a resin, a short fiber, a conductive material, and the like into a predetermined thickness and size. Show the belt. This intermediate transfer belt is manufactured using the press die 12 shown in FIGS. The press mold 12 includes a drum core 13, a drum core receiver 14 that is arranged inside the drum core 13 and in the width direction and supports the drum core 13, the drum core 13 and the drum core 13. It comprises a pair of upper split dies 15a and lower split dies 15b arranged outside the cored bar receiver 14. 6 (A) is a cross-sectional view of the press die, and FIG. 6 (B) is a view as viewed in the direction of arrow X in FIG. 6 (A).
[0039]
First, the kneaded rubber compound is separated into a predetermined thickness by a calender roll into a rubber sheet. Next, the separated rubber sheet is cut into a predetermined size. Subsequently, the rubber sheet cut to a predetermined size is wound around a drum core 13 which is one configuration of the press die 12 shown in FIG.
[0040]
Next, after setting the drum core receiver 14 of the press die 12 as shown in FIG. 6A, the upper split die 15a and the lower split die 15b are arranged above and below the drum core 13, respectively. Subsequently, the press mold 12 is press-formed at a pressure of 50 kg / cm 2 , for example, at 150 ° C. for 10 minutes.
[0041]
Next, after pressing, the mold is removed to form an endless rubber belt 16. Subsequently, the rubber belt 16 is polished to a thickness of 0.3 mm by a polishing machine. Further, the both ends of the polished rubber belt 16 are cut into a predetermined size to manufacture the conductive intermediate transfer belt 10.
[0042]
2) In the case of a conductive intermediate transfer belt having a two-layer structure as shown in FIG.
The intermediate transfer belt 20 of FIG. 1 has a two-layer endless belt structure in which a rubber elastic layer 17 is formed on the surface of a rubber layer 11.
[0043]
First, a rubber mixture having the composition shown in Table 2 below is kneaded, and the mixture is separated to a predetermined thickness by a calender roll to prepare a sheet. Next, the sheet is wound on the polished rubber belt obtained in the above 1) and further set. Subsequently, the press mold 12 shown in FIG. 6 is press-molded at 150 ° C. for 10 minutes at a pressure of 50 kg / cm 2 .
[0044]
Next, after pressing, the mold is removed to form an endless belt having a two-layer structure including the rubber layer 11 and the rubber elastic layer 17. Subsequently, the endless belt is polished to a thickness of 0.5 mm with a polishing machine. Further, both ends of the polished endless belt are cut to a predetermined size to manufacture a conductive intermediate transfer belt 20 having a volume resistance value of 3 × 10 11 Ω · cm.
[0045]
[Table 2]
Figure 2004264774
[0046]
3) In the case of a conductive intermediate transfer belt having a three-layer structure as shown in FIG.
The intermediate transfer belt 30 in FIG. 3 has a three-layer endless belt structure in which a rubber elastic layer 17 and a toner release layer 18 are sequentially formed on the surface of the rubber layer 11.
The intermediate transfer belt 30 is formed by coating a water-soluble nylon (manufactured by Nippon Pea Chemical Co., Ltd.) as a toner release agent on the two-layer endless belt obtained in the above 2) to a thickness of 8 μm using a spray gun. After drying, it is manufactured by sintering and curing in an oven at 150 ° C. for 30 minutes.
[0047]
【Example】
Hereinafter, Examples 1 to 5, Comparative Examples 1 to 4, and Reference Examples of the present invention will be described.
Each composition in each of Examples 1 to 4, Comparative Examples 1 to 6, and Reference Example is as shown in Table 3 below. Table 3 below also shows the kneading workability, press moldability, stress at 1% and 5% elongation, permanent elongation, and print image evaluation. As disclosed in the lower column of Table 3, the test conditions for permanent elongation were a test piece thickness of 0.3 mm and a width of 10 mm, and the conditions were 23 ° C.-55% (room temperature), a weight of 5 kg, and 96 hours. .
[0048]
The raw rubber material is NBR (trade name: Zeon 230S, manufactured by Zeon Corporation), two kinds of zinc oxide as vulcanization aids, sulfur as a vulcanizing agent, and trade name: Noxeller DM-P as a vulcanization accelerator ( Ouchi Shinko), Nocrack 224S (produced by Kawaguchi Chemical) as an anti-aging agent, stearic acid as a processing aid, trade name: DOP (produced by Daihachi Chemical) as a plasticizer, comparative test of reinforcing agents Was done.
[0049]
[Table 3]
Figure 2004264774
[0050]
In the case of Comparative Example 1, the workability of kneading and press molding was good, but the stress and permanent elongation were poor in physical properties, and the printed image evaluation was naturally poor. In Comparative Example 1, carbon black (trade name: HAF (Seast 3), manufactured by Tokai Carbon Co., Ltd.) was used as a conductive material at a kneading limit of 100 parts by weight.
[0051]
In the case of Comparative Example 2, the workability of kneading and press molding was good, but the stress and permanent elongation as physical properties were poor, and the printed image evaluation was naturally poor. In Comparative Example 2, 100 parts by weight of the kneading limit was used as the resin, Sumitomo Bakelite's trade name: Sumilite Resin 12687.
[0052]
In the case of Comparative Example 3, the workability of kneading and press molding was good, but the stress and permanent elongation as physical properties were poor, and the printed image evaluation was naturally poor. In Comparative Example 3, as the short fiber, a short fiber obtained by cutting the 15th count of the Conex fiber to a length of 0.6 mm was used at a kneading limit of 30 parts by weight.
[0053]
In the case of Comparative Examples 4 and 5, the workability of kneading and press molding was good, but the stress and permanent elongation were poor in physical properties, and the printed image evaluation was naturally poor. In Comparative Example 4, the HAF as the carbon black, the Sumilite resin 12687 as the resin, and the Conex fiber as the short fiber were used.
[0054]
In the case of Comparative Example 6, the workability of kneading and press molding was good, but the stress and permanent elongation were poor physical property values, and the printed image evaluation was naturally poor. In particular, when the elongation was 5%, the stress was broken at 3%. In Comparative Example 6, the HAF as the carbon black, the Sumilite resin 12687 as the resin, and the Conex fiber as the short fiber were used.
[0055]
In the case of Example 1, the workability was good, the stress of the physical property value and the permanent elongation were also good, and a good image was obtained without any color shift, center drop, etc. even in the printed image evaluation. Table 1 shows the amounts of the HAF, Sumilite resin 12687, and Conex fiber in Example 1 and Examples 2 to 4 described below.
[0056]
Also, in the case of Examples 2 to 4, the workability was good, the stress of the physical property value and the permanent elongation were also good, and a good image was obtained without any color shift, center drop, etc. even in the printed image evaluation.
In the reference example, the workability of kneading and press molding was poor, the rubber belt could not be molded, and the physical property test and the print image test could not be performed.
[0057]
From the above examples, the blending ratio of the reinforcing agents of Examples 2, 3 and 4 is good, the carbon black is in the range of 50 to 100 parts by weight of HAF, and the resin is in the range of 40 to 70 parts by weight of Sumitomo Light Resin 12687. If the fiber is in the range of 25 to 30 parts by weight, the kneading workability and the press forming workability are satisfied, and the stress at 1% elongation of the physical property value is 20 kgf / cm 2 or more, and the stress at 5% elongation is It becomes 150 kgf / cm 2 or more. Further, the permanent elongation, which greatly affects the printed image, was changed from 7.0% to 1.8%, and the rubber belt falling within this range did not undergo any printed image test, no color misregistration, and no missing, and a satisfactory image was obtained. . The print image evaluation test was performed by using the electrophotographic printing apparatus shown in FIG.
[0058]
【The invention's effect】
As described above in detail, according to the present invention, a rubber having a predetermined hardness, a resin, a short fiber, and a configuration in which a conductive material or a semiconductive material is blended, so that ordinary rubber processing equipment can be used, Inexpensive belt molding can be performed stably without the need for new equipment, the belt manufacturing process can be simplified, and the manufacturing time can be shortened. In addition, it is possible to provide a stable conductive intermediate transfer rubber belt free from color misregistration and center drop by increasing the stress at low elongation, which is a required characteristic of the product, and reducing the permanent elongation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conductive intermediate transfer rubber belt having an endless single-layer structure according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a conductive intermediate transfer rubber belt having an endless two-layer structure according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of an endless three-layer conductive intermediate transfer rubber belt according to an embodiment of the present invention.
FIG. 4 is a sectional view of a conductive intermediate transfer rubber belt having an endless meandering preventing structure according to an embodiment of the present invention.
FIG. 5 is an explanatory diagram of a color electrophotographic printing apparatus.
FIG. 6 is an explanatory view of a press die for producing the conductive intermediate transfer rubber belt according to the present invention.
FIG. 7 is an explanatory view showing a relationship between the conductive transfer rubber belt of FIG. 4 and a press die of FIG. 6;
[Explanation of symbols]
10, 20, 30 ... conductive intermediate transfer rubber belt, 11 ... rubber layer,
12: Press mold, 13: Drum core,
14: Drum core receiver, 15a: Split mold for upper part,
15b: Split mold for lower part, 16: Rubber belt,
17: rubber elastic layer, 18: toner release layer,
19: meandering prevention protrusion, 21: meandering prevention groove.

Claims (13)

ゴム配合物に、樹脂、短繊維、及び導電性材料叉は半導電性材料を配合してなり、永久伸び率が7%以下であることを特徴とする導電性中間転写ベルト。A conductive intermediate transfer belt comprising a rubber compound, a resin, a short fiber, a conductive material or a semiconductive material, and having a permanent elongation of 7% or less. JISA硬度で90°〜100°であることを特徴とする請求項1記載の導電性中間転写ベルト。2. The conductive intermediate transfer belt according to claim 1, wherein the belt has a JISA hardness of 90 to 100 degrees. 1%伸び時の応力が20kgf/cm以上であり、5%伸び時の応力が150kgf/cm以上であることを特徴とする請求項1若しくは請求項2記載の導電性中間転写ゴムベルト。3. The conductive intermediate transfer rubber belt according to claim 1, wherein a stress at 1% elongation is 20 kgf / cm 2 or more, and a stress at 5% elongation is 150 kgf / cm 2 or more. 体積抵抗値が10〜1013Ω・cmであることを特徴とする請求項1乃至請求項3いずれか記載の導電性中間転写ゴムベルト。The conductive intermediate transfer rubber belt according to any one of claims 1 to 3, wherein a volume resistance value is 10 2 to 10 13 Ω · cm. 表面にトナー離型層を設けたことを特徴とする請求項1乃至4いずれか記載の導電性中間転写ゴムベルト。5. The conductive intermediate transfer rubber belt according to claim 1, wherein a toner release layer is provided on the surface. 表面に硬度がJISA硬度計で10°〜95°のゴム弾性層を設け、体積抵抗値が10〜1013であることを特徴とする請求項1乃至請求項3記載の導電性中間転写ゴムベルト。The conductive intermediate transfer rubber belt according to any one of claims 1 to 3, wherein a rubber elastic layer having a hardness of 10 ° to 95 ° according to a JISA hardness meter is provided on the surface, and a volume resistance value is 10 6 to 10 13. . 前記ゴム弾性層の上にトナー離型層を設けたことを特徴とする請求項6記載の導電性中間転写ゴムベルト。7. The conductive intermediate transfer rubber belt according to claim 6, wherein a toner release layer is provided on the rubber elastic layer. 裏面に耐磨耗性ゴム層を設けたことを特徴とする請求項1乃至7いずれか記載の導電性中間転写ゴムベルト。8. The conductive intermediate transfer rubber belt according to claim 1, wherein a wear-resistant rubber layer is provided on a back surface. ベルト自体がプレス成形により形成されることを特徴とする請求項1乃至3もしくは請求項6いずれか記載の導電性中間転写ゴムベルト。7. The conductive intermediate transfer rubber belt according to claim 1, wherein the belt itself is formed by press molding. 裏面に蛇行防止用突起がプレス成形により形成されていることを特徴とする請求項1乃至4もしくは請求項6いずれか記載の導電性中間転写ゴムベルト。The conductive intermediate transfer rubber belt according to any one of claims 1 to 4, wherein the meandering prevention protrusion is formed on the back surface by press molding. ベルト自体が無溶剤で形成されることを特徴とする請求項1乃至4もしくは請求項6いずれか記載の導電性中間転写ゴムベルト。7. The conductive intermediate transfer rubber belt according to claim 1, wherein the belt itself is formed without a solvent. 前記樹脂が、フェノール樹脂、熱硬化性型ウレタン樹脂、エポキシ樹脂のいずれかの熱硬化性樹脂であることを特徴とする請求項1記載の導電性中間転写ゴムベルト。2. The conductive intermediate transfer rubber belt according to claim 1, wherein the resin is a thermosetting resin selected from a phenol resin, a thermosetting urethane resin, and an epoxy resin. 前記樹脂が、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、熱可塑性型ウレタン樹脂のいずれかの熱可塑性樹脂であることを特徴とする請求項1記載の導電性中間転写ゴムベルト。2. The conductive intermediate transfer rubber belt according to claim 1, wherein the resin is any one of a polyvinyl chloride resin, a polyvinyl acetate resin, and a thermoplastic urethane resin.
JP2003057479A 2003-03-04 2003-03-04 Conductive intermediate transfer rubber belt Expired - Fee Related JP3759115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057479A JP3759115B2 (en) 2003-03-04 2003-03-04 Conductive intermediate transfer rubber belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057479A JP3759115B2 (en) 2003-03-04 2003-03-04 Conductive intermediate transfer rubber belt

Publications (2)

Publication Number Publication Date
JP2004264774A true JP2004264774A (en) 2004-09-24
JP3759115B2 JP3759115B2 (en) 2006-03-22

Family

ID=33120892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057479A Expired - Fee Related JP3759115B2 (en) 2003-03-04 2003-03-04 Conductive intermediate transfer rubber belt

Country Status (1)

Country Link
JP (1) JP3759115B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256228A (en) * 2005-03-18 2006-09-28 Seiko Epson Corp Pump controlling mechanism, printer using this pump controlling mechanism and method for controlling pump
JP2006301258A (en) * 2005-04-20 2006-11-02 Fuji Xerox Co Ltd Semiconductive belt and image forming apparatus using same semiconductive belt
JP2007033705A (en) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd Semi-conductive belt and image forming apparatus using semi-conductive belt
JP2007131790A (en) * 2005-11-11 2007-05-31 Fuji Xerox Co Ltd Semi-conductive belt and image-forming device
JP2010009039A (en) * 2008-06-25 2010-01-14 Xerox Corp Improved intermediate transfer belt and image forming apparatus having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256228A (en) * 2005-03-18 2006-09-28 Seiko Epson Corp Pump controlling mechanism, printer using this pump controlling mechanism and method for controlling pump
JP2006301258A (en) * 2005-04-20 2006-11-02 Fuji Xerox Co Ltd Semiconductive belt and image forming apparatus using same semiconductive belt
JP2007033705A (en) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd Semi-conductive belt and image forming apparatus using semi-conductive belt
JP2007131790A (en) * 2005-11-11 2007-05-31 Fuji Xerox Co Ltd Semi-conductive belt and image-forming device
JP2010009039A (en) * 2008-06-25 2010-01-14 Xerox Corp Improved intermediate transfer belt and image forming apparatus having the same

Also Published As

Publication number Publication date
JP3759115B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP2000019855A (en) Intermediate transfer member and image forming device
JP2004264774A (en) Conductive intermediate transfer rubber belt
JP4923525B2 (en) Semiconductive belt and image forming apparatus
US20160077463A1 (en) Electrically conductive rubber composition, and developing roller
JP2007033705A (en) Semi-conductive belt and image forming apparatus using semi-conductive belt
JPH1097146A (en) Intermediate transfer body, electrophotographic device using this intermediate transfer body and production of intermediate transfer body
JP3624097B2 (en) Conductive seamless belt
US20180181018A1 (en) Charging member, process cartridge, and image forming apparatus
JPH1048963A (en) Intermediate transfer body, image forming device, and its manufacture
JP3315933B2 (en) Conductive seamless belt
JP5882844B2 (en) Conductive endless belt
JP2000213529A (en) Conductive-elastic roller
JP2001215812A (en) Intermediate transfer belt and method of its manufacture
JP3322842B2 (en) Conductive seamless belt
JPH07139541A (en) Rubber roller and manufacture thereof
JPH10240020A (en) Intermediate transfer belt and image forming device
JP3409280B2 (en) Conductive belt
JP2006292915A (en) Double-layer seamless belt
JP3604062B2 (en) High elastic modulus belt and intermediate transfer belt
JP2005154567A (en) Fire-resistant rubber belt substrate and belt for oa equipment
JP2008026392A (en) Developing device
JP2004117674A (en) Coating agent for electrophotographic device member, belt member for electrophotographic device and roll member for electrophotographic device
JP2005141100A (en) Seamless belt
JPH11227063A (en) Elastic seamless belt
JP2005164844A (en) Electrophotographic conductive roller and die used for molding of elastic layer of the roller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees