JP2004264669A - Teleconverter - Google Patents

Teleconverter Download PDF

Info

Publication number
JP2004264669A
JP2004264669A JP2003055784A JP2003055784A JP2004264669A JP 2004264669 A JP2004264669 A JP 2004264669A JP 2003055784 A JP2003055784 A JP 2003055784A JP 2003055784 A JP2003055784 A JP 2003055784A JP 2004264669 A JP2004264669 A JP 2004264669A
Authority
JP
Japan
Prior art keywords
lens
positive
teleconverter
refractive power
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055784A
Other languages
Japanese (ja)
Other versions
JP4383758B2 (en
Inventor
Norihiro Nanba
則廣 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003055784A priority Critical patent/JP4383758B2/en
Publication of JP2004264669A publication Critical patent/JP2004264669A/en
Application granted granted Critical
Publication of JP4383758B2 publication Critical patent/JP4383758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Accessories Of Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized teleconverter while suppressing the occurrence of a variety of aberrations. <P>SOLUTION: In a teleconverter lens T which is mounted on an object side of a master lens M to increase the focal length, a front group LF of positive refracting power has a junction lens 1C of the positive refracting power with a negative lens 11 and a positive lens 12 joined therein and a positive lens 13, a rear group LR of negative refracting power has a junction lens 2C of the wholly negative refracting power with a positive lens 21 and a negative lens 22 joined therein, and a shape of an air lens formed between the lens 1C and the positive lens 13 in the front group LF is appropriately set. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えばデジタルカメラ、ビデオカメラ等の撮影レンズの物体側に装着し、撮影レンズの焦点距離を長い方に変換するテレコンバータに関する。
【0002】
【従来の技術】
デジタルカメラ、ビデオカメラにおいてはCCDセンサ等の固体撮像素子の高画素化が進んでおり、撮影レンズにはより低画素のものに比べ、色収差を含めて高い光学性能が要求されている。したがって、撮影レンズに装着するテレコンバータにも同様の高い光学性能が要求されている。
【0003】
撮影レンズの物体側に装着して全系の焦点距離を長い方へ変換する所謂フロントテレコンバータとして、正の屈折力の前群、負の屈折力の後群の各々を1枚のレンズにて構成した例として特許文献1が知られている。また、前群、後群共に正レンズ、負レンズを用いて各群にて色消しを行った構成として特許文献2〜6が知られている。なお、特許文献4〜6では正の屈折力の前群に含まれる正レンズを2枚とした構成が開示されている。
【0004】
【特許文献1】
特開昭55−32046号公報
【特許文献2】
特開平1−251009号公報
【特許文献3】
特開平10−197792号公報
【特許文献4】
特開平10−197792号公報
【特許文献5】
特開2000−356744号公報
【特許文献6】
特開2001−228393号公報
【0005】
【発明が解決しようとする課題】
特許文献1は前群、後群が1枚構成であり、全長短縮のために各群の屈折力を共に強めると、軸上色収差と倍率色収差の両立が困難となるばかりでなく、球面収差、像面湾曲が補正不足となり良好な光学性能を実現するのが困難となる。
【0006】
特許文献2及び3では、各群を正レンズ1枚、負レンズ1枚で構成することで各群内にて色消しを行い、軸上色収差と倍率色収差を良好に補正している。しかしながら、特に前群の屈折力を強めた際に発生する球面収差および像面湾曲は補正不足である。
【0007】
特許文献4では、正の屈折力の前群を、物体側から順に、負レンズと正レンズとの接合レンズ、両凸レンズで構成して、正レンズを2枚に分割している。しかしながら、2つの正レンズ間で構成される空気レンズの屈折力が極めて弱く、前群の正の屈折力を複数の正レンズで効果的に分担しているとは言い難い。このような構成では前群の屈折力を強めた際の球面収差、像面湾曲が補正不足となり、前群に含まれる正レンズが1枚のみの場合と同様の課題を有する。
【0008】
特許文献5では、正の屈折力の前群を、物体側から順に、正レンズと負レンズとの接合レンズ、正メニスカスレンズで構成し、その接合レンズと正メニスカスレンズで構成される空気レンズの屈折力をある程度強めた構成が開示されている。このような構成では前群の屈折力をある程度強めた際に発生しがちな球面収差、像面湾曲を良好に補正することが可能となる。しかしながら、前群の接合レンズを構成する正レンズは負レンズよりも物体側に配置されており、接合レンズの構成を順に負レンズ、正レンズとした場合に比べ正レンズの有効径が大きくなるため接合レンズ全体として大型化しやすいという課題を有する。
【0009】
特許文献6では、正の屈折力の前群を、物体側から順に、正レンズ、正レンズと負レンズとの接合レンズで構成しており、接合レンズの構成としては順に負レンズ、正レンズとした場合に比べ、特許文献5と同様に大型化しやすいという課題を有する。
【0010】
本発明はこのような従来例を鑑みなされたもので、諸収差を良好に補正しつつも小型のテレコンバータを実現することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明では、前方(物体側)より後方(像側)へ順に、正の屈折力の前群、負の屈折力の後群より成るテレコンバータにおいて、前群が、前方より後方へ順に、負レンズと正レンズとを接合した全体として正の屈折力の接合レンズ、正レンズとを有し、後群が、正レンズと負レンズとを接合した全体として負の屈折力の接合レンズを有することを前提に、前群中の接合レンズとその後方の正レンズで構成される空気レンズの形状を上記目的を達成するために適切に設定している。
【0012】
【発明の実施の形態】
以下に本発明のテレコンバータの実施形態について説明する。本実施形態のテレコンバータはデジタルカメラ、ビデオカメラ等の撮影レンズの物体側に装着して、撮影レンズの焦点距離を拡大するためのものである。
【0013】
図1,3,5,7は後述する数値実施例1〜4で示すテレコンバータレンズのレンズ断面図であり、図1と図7はそれぞれ数値実施例1と4で示すマスターレンズを装着に装着した状態のレンズ断面図となっている。各レンズ断面図において、左側が物体側(前方)であり、右側が像側(後方)である。図2,4,6,8はそれぞれ数値実施例1〜4のテレコンバータレンズをマスターレンズに装着した状態での諸収差図であり、数値実施例2と3のテレコンバータレンズは数値実施例1と同じマスターレンズに装着した状態のものである。以下、数値実施例1〜4を本実施形態と呼ぶ。
【0014】
図1,7において、Tはテレコンバータレンズ部、Mは撮影レンズであるマスターレンズ部を示し、テレコンバータレンズ部Tは、正の屈折力(焦点距離の逆数、光学的パワー)の前群LFと負の屈折力の後群LRとから構成されている。Gはマスターレンズ部の最後部に設計上設けたCCDセンサのフェースプレートやローパスフィルタ、赤外カットフィルタ等に相当するガラスブロック、IPはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の受光面が配される像面である。
【0015】
図1に示した数値実施例1のテレコンバータにおいて、前群LFは、物体側より像側へ順に、物体側に凸面を向けた負メニスカスレンズ11と物体側に凸面を向けた正レンズ12とを接合した正の屈折力の接合レンズ1C、物体側に凸面を向けた正レンズ13で構成されている。後群LRは、物体側より像側へ順に、正レンズ21と負レンズ22とを接合した負の屈折力の接合レンズ2Cで構成されている。図5に示した数値実施例3のテレコンバータも数値実施例1と同様の構成である。
【0016】
図3に示した数値実施例2のテレコンバータは、後群LRを順に負レンズ21aと正レンズ22aとを接合した負の屈折力の接合レンズ2Cで構成した点が数値実施例1との相違点である。図7に示した数値実施例4のテレコンバータは、前群LFを順に両凹形状の負レンズ11bと物体側に凸面を向けた正レンズ12bとを接合した正の屈折力の接合レンズ1C、物体側に凸面を向けた正レンズ13bで構成すると共に、後群LRの接合レンズ2Cを全体として両凹形状とした点が数値実施例1との相違点である。
【0017】
本実施形態のテレコンバータでは、前群LF、後群LRが共に正レンズ、負レンズを少なくとも1枚ずつ有し、各群にて色消しを行うことにより軸上色収差と倍率色収差を共に良好に補正している。これによりテレコンバータレンズ装着による色にじみの増加を最低限に抑えられるというメリットがある。
【0018】
また前群LFの正の屈折力を、接合レンズ1Cとその後方の正レンズ13(13b)とで分担することにより球面収差、像面彎曲を良好に補正している。このような構成は特に前群の屈折力を強めながら良好な光学性能を提供する上で有効である。
【0019】
さらに前群LFの接合レンズ1Cを物体側より順に負レンズ11(11b)、正レンズ12(12b)で構成することにより、逆の順番にした場合と比べ、正レンズ12(12b)をマスターレンズ側に近づけることができ、レンズの有効径を小さくすることができる。一般に正レンズはレンズ加工上ある程度の縁厚(コバ厚)を確保する必要がある。縁厚を加工上必要な最小限の寸法としてレンズを極力薄型化する場合、正レンズをマスターレンズに近づけるほど有効径が小さくできる分中心肉厚も薄くでき、レンズの小型軽量化が図れる。なお負レンズ11(11b)に関しても、順に正レンズ、負レンズの構成より有効径が大きくなるが、加工上の縁厚の制約はないため強度が維持できれば特に中心肉厚を気にする必要はない。結果的に接合レンズ1C全体としては負、正の順序とする方が逆の順番の場合に比べて小型、軽量化が図れる。
【0020】
なお図1に示したマスターレンズ部Mの画角2ωは12.7°であり、中望遠域のレンズである。このような画角のマスターレンズに装着するテレコンバータレンズでは、図1に示すように後群の接合レンズ2Cを物体側に凸面を向けたメニスカス形状として接合レンズ全体をコンセントリックに近い形状とするのがよい。このような構成では、接合レンズ2Cの空気と接するレンズ面において軸外光束の入射角、射出角が極端に大きくならないため、非点隔差、倍率色収差の二次成分の発生が低減されるというメリットがある。
【0021】
また、図7に示したマスターレンズ部Mの画角2ωは6.7°であり、図1に示したマスターレンズ部Mに比べかなり望遠側のレンズである。このようなマスターレンズに装着するテレコンバータレンズの後群形状としては、軸外光束の入射角、射出角を大きくしないために全体として両凹形状の方が好ましくなる。
【0022】
更に本実施形態のテレコンバータレンズは以下の条件式を満足している。
−1.0<R3a/R2b<0.5 (1)
但し、R3a:正レンズ12(12b)の像側レンズ面の曲率半径
R3b:正レンズ13(13b)の物体側レンズ面の曲率半径
【0023】
条件式(1)は正レンズ12(数値実施例4では12b)と正レンズ13(数値実施例4では13b)で構成される空気レンズの屈折力を規定する式である。本実施形態では前群LFの正の屈折力を接合レンズ1Cと正レンズ13(13b)とで分担しているが、屈折力分担されている構成では結果として接合レンズ1Cと正レンズ13(13b)との間で構成される空気レンズの屈折力が適切に設定された状態と言える。条件式(1)においては、1近傍にて空気レンズの屈折力が無い状態となり1から小さくなるほど正の屈折力が増していく。条件式(1)の上限を超えて1に近づくと空気レンズの屈折力が弱すぎるため前群にて屈折力分担する作用が薄れ、球面収差、像面湾曲が補正不足となるので好ましくない。また、下限を超えて空気レンズの屈折力が大きくなりすぎると、正レンズ12(12b)の像側レンズ面の曲率がきつく(曲率半径が小さく)なりすぎ、軸上光束の光軸から離れた光線にて射出角度が大きくなってアンダー側の球面収差が過多となるので好ましくない。
【0024】
本実施形態のテレコンバータレンズはさらに以下の条件式を満足している。
60<νP<90 (2)
20<νNN−νNP (3)
0.3<D/L<0.7 (4)
但し、νP:前群LF中の接合レンズ1Cを構成する正レンズのアッベ数
νNP:後群LR中の接合レンズ2Cを構成する正レンズのアッベ数
νNN:後群LR中の接合レンズ2Cを構成する負レンズのアッベ数
D:前群LFの最も像側レンズ面から後群LRの最も物体側レンズ面までの距離
L:前群LFの最も物体側レンズ面から後群LRの最も像側レンズ面までの距離
【0025】
条件式(2)は前群LF中の接合レンズ1Cを構成する正レンズ12(数値実施例4では12b)のアッベ数を規定する式である。条件式(2)の下限を超えてアッベ数が小さすぎる場合、すなわち分散が大きすぎる場合は、前群LFにて発生する軸上二次スペクトルが問題となる。二次スペクトルを低減するにはアッベ数と部分分散比θg,Fの関係にて硝材を適切に選択する必要がある。例えば株式会社オハラの硝材においては、アッベ数と部分分散比θg,FのグラフにてPBM2(νd=36.26,θg,F=0.5828)とNSL7(νd=60.49,θg,F=0.5436)を結んだ線を基準線とすると、光学ガラスの分布としては大まかにはνdが35程度より小さい高分散ガラスは基準線より上側に、νdが35から65程度までの低分散ガラスは基準線より下側に位置するものが多く、νdが60以上にて基準線より上側に位置する異常分散性ガラスが存在している。低分散ガラスに関しては基準線より上側に位置するものを使用するのが二次スペクトル補正に対し効果的であり基準線から離れるほど補正効果が高まる。条件式(2)の下限を超えると基準線より上側に位置する硝材が存在しないため二次スペクトルに関して補正不足となり色にじみの要因となるためよくない。また、上限を超えてアッベ数が大きすぎる場合は二次スペクトル補正の点では有利であるが硝材費が高くなるためコストの面で好ましくない。
【0026】
条件式(3)は後群LRの接合レンズ2Cを構成するレンズのアッベ数差を規定する式である。条件式(3)の下限を超えてアッベ数差が小さすぎる場合は後群内での色消しにおいて補正不足となるため、後群を接合レンズとしても色収差補正を行う効果が薄れるので好ましくない。
【0027】
条件式(4)は前群LFと後群LRの間隔を規定する式である。前群LFと後群LRの間隔を小さくして所望のアフォーカル倍率を得るためには各群の屈折力を強める必要がある。条件式(4)の下限を超えて間隔が小さすぎる場合は所望の倍率を得るために各群の屈折力を強めなければならず、球面収差、像面湾曲等の諸収差の補正が困難となるのが課題となる。また上限を超えて間隔が大きすぎると全長が増大するばかりでなく前群LFの外径が大きくなりガラス重量が増大し小型軽量化の点でよくない。
【0028】
さらに、数値実施例1〜3に示したような、中望遠のマスターレンズに装着するためのテレコンバータレンズとしては以下を満足することが好ましい。
−2.5<(RN2+RN1)/(RN2−RN1)<−1.0 (5)
但し、RN1:後群LR中の接合レンズ2Cの最も物体側レンズ面の曲率半径
RN2:後群LR中の接合レンズ2Cの最も像側レンズ面の曲率半径
【0029】
条件式(5)は後群LRの接合レンズ2Cの形状因子を規定する式である。形状因子が−1のときレンズ形状は平凹となり、−1より小さい場合は物体側に凸面を向けたメニスカス形状となる。条件式(5)の上限を超えてメニスカスの度合いが弱まると、特に物体側レンズ面がコンセントリックな曲率より弱くなり軸外光束の入射/射出角が増すため、非点隔差、倍率色収差の二次成分が過多に発生し軸外性能が低下するのでよくない。また条件式(5)の下限を超えてメニスカスの度合いが強くなりすぎると、特に像側レンズ面の曲率がきつく(曲率半径が小さく)なりすぎオーバー側の球面収差が発生する。
【0030】
次に数値実施例1〜4の数値データを示す。各数値実施例においてRiは物体側より順に第i番目の面(第i面)の曲率半径、Diは第i面と第(i+1)面との間の間隔、Niとνiはそれぞれd線に対する光学部材の屈折率、アッベ数を示す。最も像側の2つの平面は前述したように設計上設けたガラスブロックGBを構成する面である。そして、fは焦点距離、FnoはFナンバー、ωは半画角である。
【0031】
非球面形状は光軸方向にx軸、光軸と垂直方向にh軸、光の進行方向を正としRを近軸曲率半径、kを円錐定数、B,C,D、E、A´、B´、C´を各々非球面係数としたとき
【外1】

Figure 2004264669
なる式で表している。なお「e±Z」は「×10±Z」を表している。
【0032】
また前述の各条件式と数値実施例の関係を表1に示す。
【0033】
(数値実施例1)
f=74.12 Fno=3.40 2ω=8.5°
【0034】
【外2】
<テレコンバータレンズ>
Figure 2004264669
アフォーカル倍率:1.50
【0035】
【外3】
<マスターレンズ>
Figure 2004264669
【0036】
非球面係数
第18面
k=−4.28786e+00
B=7.06149e−05 C=−3.55018e−07 D=1.26966e−09 E=−1.23490e−10
A´=0 B´=0 C´=0
第19面
k=7.93007e−01
B=−2.14212e−06 C=−3.60558e−07 D=−4.53838e−09 E=−3.48248e−11
A´=0 B´=0 C´=0
第23面
k=−4.68634e−01
B=−1.91518e−05 C=3.35316e−08 D=0.00000e+00 E=0.00000e+00
A´=0 B´=0 C´=0
【0037】
(数値実施例2)
f=74.20 Fno=3.40 2ω=8.4°
【0038】
【外4】
<テレコンバータレンズ>
Figure 2004264669
アフォーカル倍率:1.50
マスターレンズのデータは数値実施例1と同じ
【0039】
(数値実施例3)
f=84.20 Fno=3.40 2ω=7.5゜
【0040】
【外5】
<テレコンバータレンズ>
Figure 2004264669
アフォーカル倍率:1.70
本数値実施例のマスターレンズのデータは数値実施例1と同じである。
【0041】
(数値実施例4)
f=87.95 Fno=3.09 2ω=4.3゜
【0042】
【外6】
<テレコンバータレンズ>
Figure 2004264669
アフォーカル倍率:1.55
【0043】
【外7】
<マスターレンズ>
Figure 2004264669
【0044】
非球面係数
第22面
k=−1.35295e−02
B=−5.05802e−05 C=8.33746e−06 D=9.57035e−08 E=−9.83705e−10
A´=−9.55108e−05 B´=−3.57623e−05 C´=−1.17900e−06
第23面
k=5.00000e+02
B=−5.32696e−05 C=−2.45843e−06 D=1.11228e−08 E=0.00000e+00
A´=8.49791e−06 B´=2.06232e−05 C´=1.79087e−08
【0045】
【表1】
(表1)
Figure 2004264669
【0046】
以下に実施形態で説明した本発明のとり得る態様について列挙する。
(態様1)前方より後方へ順に、正の屈折力の前群、負の屈折力の後群より成るテレコンバータにおいて、前記前群は、前方より後方へ順に、負レンズと正レンズAとを接合した全体として正の屈折力の接合レンズと、正レンズBとから成り、前記後群は、正レンズと負レンズとを接合した全体として負の屈折力の接合レンズを有し、前記正レンズAの後方のレンズ面及び前記正レンズBの前方のレンズ面の曲率半径をそれぞれR2b,R3aとするとき、
−1.0<R3a/R2b<0.5
なる条件を満足することを特徴とするテレコンバータ。
(態様2)前記前群の正レンズAのアッベ数をνP、前記後群の正レンズ及び負レンズのアッベ数をそれぞれνNP,νNNとするとき、
60<νP<90
20<νNN−νNP
なる条件を満足することを特徴とする態様1記載のテレコンバータ。
(態様3)前記前群の最も後方のレンズ面から前記後群の最も前方のレンズ面までの距離をD、前記前群の最も前方のレンズ面から前記後群の最も後方のレンズ面までの距離をLとするとき、
0.3<D/L<0.7
なる条件を満足することを特徴とする態様1又は2記載のテレコンバータ。
(態様4)前方より後方へ順に、正の屈折力の前群、負の屈折力の後群より成るテレコンバータにおいて、前記前群は、前方より後方へ順に、負レンズと正レンズとを接合した全体として正の屈折力の接合レンズを有し、前記後群は、正レンズと負レンズとを接合した全体として負の屈折力の接合レンズから成り、前記後群の接合レンズの最も前方及び最も後方のレンズ面の曲率半径をそれぞれRNa、RNbとするとき、
−2.5<(RNb+RNa)/(RNb−RNa)<−1.0
なる条件を満足することを特徴とするテレコンバータ。
(態様5)前記前群の接合レンズ中の正レンズのアッベ数をνP、前記後群の正レンズ及び負レンズのアッベ数をそれぞれνNP,νNNとするとき、
60<νP<90
20<νNN−νNP
なる条件を満足することを特徴とする態様4記載のテレコンバータ。
(態様6)前記前群の最も後方のレンズ面から前記後群の最も前方のレンズ面までの距離をD、前記前群の最も前方のレンズ面から前記後群の最も後方のレンズ面までの距離をLとするとき、
0.3<D/L<0.7
なる条件を満足することを特徴とする態様4又は5記載のテレコンバータ。
【0047】
【発明の効果】
本発明によれば色収差、球面収差、像面湾曲等の諸収差が良好に補正され、高画素のデジタルカメラ、ビデオカメラに対応可能な高性能かつ小型なテレコンバータレンズの提供が可能となるという効果がある。
【図面の簡単な説明】
【図1】数値実施例1のテレコンバータをマスターレンズに装着した際のレンズ断面図である。
【図2】数値実施例1のテレコンバータをマスターレンズに装着した際の全系の収差図である。
【図3】数値実施例2のテレコンバータのレンズ断面図である。
【図4】数値実施例2のテレコンバータをマスターレンズに装着した際の全系の収差図である。
【図5】数値実施例3のテレコンバータのレンズ断面図である。
【図6】数値実施例3のテレコンバータをマスターレンズに装着した際の全系の収差図である。
【図7】数値実施例4のテレコンバータをマスターレンズに装着した際のレンズ断面図である。
【図8】数値実施例4のテレコンバータをマスターレンズに装着した際の全系の収差図である。
【符号の説明】
T テレコンバータレンズ部
M マスターレンズ部
G ガラスブロック
IP 像面
LF 前群
LR 後群[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a teleconverter which is mounted on an object side of a photographing lens such as a digital camera and a video camera and converts the focal length of the photographing lens to a longer one.
[0002]
[Prior art]
2. Description of the Related Art In digital cameras and video cameras, the number of pixels of solid-state imaging devices such as CCD sensors has been increasing, and higher optical performance including chromatic aberration is required for photographing lenses than those having lower pixels. Therefore, the same high optical performance is required for the teleconverter mounted on the taking lens.
[0003]
As a so-called front teleconverter that is attached to the object side of the taking lens and converts the focal length of the entire system to a longer one, each of the front group with positive refractive power and the rear group with negative refractive power is a single lens. Patent Document 1 is known as a configuration example. Further, Patent Documents 2 to 6 are known as configurations in which achromatism is performed in each group using a positive lens and a negative lens in both the front group and the rear group. Patent Documents 4 to 6 disclose a configuration in which two positive lenses are included in a front group having a positive refractive power.
[0004]
[Patent Document 1]
JP-A-55-3246 [Patent Document 2]
Japanese Patent Application Laid-Open No. 1-251009 [Patent Document 3]
JP-A-10-197792 [Patent Document 4]
JP-A-10-197792 [Patent Document 5]
JP 2000-356744 A [Patent Document 6]
JP 2001-228393 A
[Problems to be solved by the invention]
In Patent Document 1, the front group and the rear group have a single structure. If the refractive power of each group is increased to shorten the total length, not only it becomes difficult to achieve both axial chromatic aberration and lateral chromatic aberration, but also spherical aberration and The field curvature is insufficiently corrected, and it is difficult to realize good optical performance.
[0006]
In Patent Literatures 2 and 3, each group includes one positive lens and one negative lens to perform achromatism in each group, thereby favorably correcting axial chromatic aberration and lateral chromatic aberration. However, the spherical aberration and the curvature of field that occur particularly when the refractive power of the front group is increased are insufficiently corrected.
[0007]
In Patent Literature 4, the front group having a positive refractive power includes, in order from the object side, a cemented lens of a negative lens and a positive lens, and a biconvex lens, and the positive lens is divided into two lenses. However, the refractive power of the air lens formed between the two positive lenses is extremely weak, and it cannot be said that the positive refractive power of the front group is effectively shared by the plurality of positive lenses. In such a configuration, the spherical aberration and the field curvature when the refractive power of the front group is increased are insufficiently corrected, and have the same problem as when only one positive lens is included in the front group.
[0008]
In Patent Document 5, the front group having a positive refractive power includes, in order from the object side, a cemented lens of a positive lens and a negative lens, and a positive meniscus lens, and an air lens composed of the cemented lens and the positive meniscus lens. A configuration in which the refractive power is increased to some extent is disclosed. With such a configuration, it is possible to satisfactorily correct spherical aberration and curvature of field, which tend to occur when the refractive power of the front group is increased to some extent. However, the positive lens constituting the cemented lens of the front group is disposed closer to the object side than the negative lens, and the effective diameter of the positive lens becomes larger than when the cemented lens is configured as a negative lens and a positive lens in order. There is a problem that it is easy to increase the size of the cemented lens as a whole.
[0009]
In Patent Document 6, the front group having a positive refractive power includes, in order from the object side, a positive lens, and a cemented lens of a positive lens and a negative lens. This method has a problem that it is easy to increase the size as in Patent Literature 5 as compared with the case described above.
[0010]
The present invention has been made in view of such a conventional example, and has as its object to realize a small-sized teleconverter while favorably correcting various aberrations.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a teleconverter including a front group having a positive refractive power and a rear group having a negative refractive power in order from the front (object side) to the rear (image side), From the front to the rear, in order from the front, a negative lens and a positive lens are cemented as a whole, and the cemented lens has a positive refractive power and a positive lens. The rear group has a positive lens and a negative lens cemented as a whole. Assuming that a cemented lens having power is provided, the shape of the air lens composed of the cemented lens in the front group and the positive lens behind the cemented lens is appropriately set in order to achieve the above object.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the teleconverter according to the present invention will be described below. The teleconverter according to the present embodiment is mounted on the object side of a photographing lens such as a digital camera and a video camera to extend the focal length of the photographing lens.
[0013]
1, 3, 5, and 7 are cross-sectional views of teleconverter lenses shown in Numerical Examples 1 to 4 to be described later. FIGS. 1 and 7 show master lenses shown in Numerical Examples 1 and 4, respectively. FIG. 3 is a sectional view of the lens in a state where the lens is in a state of being removed. In each lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). 2, 4, 6, and 8 are graphs showing various aberrations when the teleconverter lenses of Numerical Examples 1 to 4 are mounted on the master lens. The teleconverter lenses of Numerical Examples 2 and 3 are Numerical Example 1 respectively. This is a state in which the lens is mounted on the same master lens as that of FIG. Hereinafter, Numerical Examples 1 to 4 will be referred to as the present embodiment.
[0014]
1 and 7, T indicates a teleconverter lens unit, M indicates a master lens unit which is a photographing lens, and the teleconverter lens unit T is a front unit LF having a positive refractive power (a reciprocal of the focal length, optical power). And a rear unit LR having a negative refractive power. G is a glass block corresponding to a CCD sensor face plate, a low-pass filter, an infrared cut filter, and the like provided at the end of the master lens unit by design, and IP is a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. Is an image plane on which the light receiving surface is disposed.
[0015]
In the teleconverter according to Numerical Example 1 shown in FIG. 1, the front unit LF includes, in order from the object side to the image side, a negative meniscus lens 11 having a convex surface facing the object side and a positive lens 12 having a convex surface facing the object side. And a cemented lens 1C having a positive refractive power, and a positive lens 13 having a convex surface facing the object side. The rear unit LR includes, in order from the object side to the image side, a cemented lens 2C having a negative refractive power, in which the positive lens 21 and the negative lens 22 are cemented. The teleconverter of Numerical Embodiment 3 shown in FIG. 5 has the same configuration as Numerical Embodiment 1.
[0016]
The teleconverter of Numerical Embodiment 2 shown in FIG. 3 differs from Numerical Embodiment 1 in that the rear unit LR is constituted by a cemented lens 2C having a negative refractive power in which a negative lens 21a and a positive lens 22a are cemented in order. Is a point. The teleconverter according to Numerical Example 4 shown in FIG. 7 includes a cemented lens 1C having a positive refractive power in which a front lens group LF is sequentially joined to a biconcave negative lens 11b and a positive lens 12b having a convex surface facing the object side. The difference from Numerical Example 1 is that the positive lens 13b has a convex surface facing the object side, and the cemented lens 2C of the rear unit LR has a biconcave shape as a whole.
[0017]
In the teleconverter according to the present embodiment, both the front group LF and the rear group LR have at least one positive lens and one negative lens. It has been corrected. Thus, there is an advantage that an increase in color blur due to the attachment of the teleconverter lens can be minimized.
[0018]
The positive refractive power of the front unit LF is shared between the cemented lens 1C and the rear positive lens 13 (13b), so that spherical aberration and curvature of field are corrected well. Such a configuration is particularly effective in providing good optical performance while increasing the refractive power of the front group.
[0019]
Further, the cemented lens 1C of the front group LF is composed of the negative lens 11 (11b) and the positive lens 12 (12b) in order from the object side, so that the positive lens 12 (12b) is the master lens as compared with the case where the order is reversed. Side, and the effective diameter of the lens can be reduced. In general, a positive lens needs to have a certain edge thickness (edge thickness) in lens processing. When making the lens as thin as possible with the edge thickness being the minimum dimension required for processing, the closer the positive lens is to the master lens, the smaller the effective diameter can be, and the thinner the center thickness can be, and the lens can be reduced in size and weight. The effective diameter of the negative lens 11 (11b) also becomes larger than that of the positive lens and the negative lens in this order. However, since there is no restriction on the edge thickness in processing, if the strength can be maintained, it is not particularly necessary to care about the center thickness. Absent. As a result, it is possible to reduce the size and weight of the cemented lens 1C as a whole in the negative and positive order as compared with the reverse order.
[0020]
The angle of view 2ω of the master lens unit M shown in FIG. 1 is 12.7 °, which is a lens in the middle telephoto range. In a teleconverter lens mounted on a master lens having such an angle of view, as shown in FIG. 1, the cemented lens 2C of the rear group is formed into a meniscus shape with a convex surface facing the object side, and the entire cemented lens is shaped like a concentric lens. Is good. In such a configuration, since the incident angle and the exit angle of the off-axis light flux do not become extremely large on the lens surface of the cemented lens 2C in contact with the air, there is an advantage that occurrence of astigmatism and secondary components of chromatic aberration of magnification are reduced. There is.
[0021]
The angle of view 2ω of the master lens unit M shown in FIG. 7 is 6.7 °, which is a lens on the telephoto side considerably as compared with the master lens unit M shown in FIG. The rear group shape of the teleconverter lens mounted on such a master lens is preferably a biconcave shape as a whole so as not to increase the incident angle and the exit angle of the off-axis light beam.
[0022]
Further, the teleconverter lens of the present embodiment satisfies the following conditional expressions.
-1.0 <R3a / R2b <0.5 (1)
R3a: radius of curvature of the image-side lens surface of the positive lens 12 (12b) R3b: radius of curvature of the object-side lens surface of the positive lens 13 (13b)
Conditional expression (1) defines the refractive power of the air lens composed of the positive lens 12 (12b in Numerical Example 4) and the positive lens 13 (13b in Numerical Example 4). In the present embodiment, the positive refractive power of the front group LF is shared by the cemented lens 1C and the positive lens 13 (13b). However, in the configuration where the refractive power is shared, the cemented lens 1C and the positive lens 13 (13b) It can be said that the refracting power of the air lens formed between (1) and (2) is appropriately set. In the conditional expression (1), the refractive power of the air lens does not exist near 1, and the positive refractive power increases as the value decreases from 1. If the value exceeds the upper limit of conditional expression (1) and approaches 1, the refractive power of the air lens is too weak and the function of sharing the refractive power in the front group is weakened, and spherical aberration and curvature of field are insufficiently corrected. If the refractive power of the air lens exceeds the lower limit and becomes too large, the curvature of the image-side lens surface of the positive lens 12 (12b) becomes too tight (the radius of curvature becomes small), and the distance from the optical axis of the on-axis light flux increases. It is not preferable because the exit angle becomes large with the light beam and the spherical aberration on the under side becomes excessive.
[0024]
The teleconverter lens of the present embodiment further satisfies the following conditional expressions.
60 <νP <90 (2)
20 <νNN−νNP (3)
0.3 <D / L <0.7 (4)
Here, νP: Abbe number of the positive lens constituting the cemented lens 1C in the front group LF νNP: Abbe number of the positive lens constituting the cemented lens 2C in the rear group LR NN: constituting the cemented lens 2C in the rear group LR Abbe number D of the negative lens: Distance from the most image-side lens surface of the front unit LF to the most object-side lens surface of the rear unit LR L: The most image-side lens of the front unit LF from the most object-side lens surface Distance to surface
Conditional expression (2) is an expression that defines the Abbe number of the positive lens 12 (12b in Numerical Example 4) constituting the cemented lens 1C in the front group LF. If the Abbe number is too small below the lower limit of conditional expression (2), that is, if the variance is too large, the on-axis secondary spectrum generated in the front group LF becomes a problem. In order to reduce the secondary spectrum, it is necessary to appropriately select a glass material based on the relationship between the Abbe number and the partial dispersion ratio θg , F. For example, in the glass material of OHARA INC, PBM2 graphically Abbe number and the partial dispersion ratio θ g, F (νd = 36.26 , θ g, F = 0.5828) and NSL7 (νd = 60.49, θ g, F = 0.5436) as a reference line, the distribution of the optical glass is roughly higher than the reference line for high dispersion glass having νd smaller than about 35, and νd is about 35 to 65. In many cases, the low dispersion glass is located below the reference line, and there is an anomalous dispersion glass located above the reference line when vd is 60 or more. It is effective for secondary spectrum correction to use a low-dispersion glass positioned above the reference line, and the correction effect increases as the distance from the reference line increases. If the lower limit of the conditional expression (2) is exceeded, there is no glass material located above the reference line, so that the secondary spectrum is insufficiently corrected and causes color bleeding. On the other hand, if the Abbe number exceeds the upper limit and the Abbe number is too large, it is advantageous in terms of secondary spectrum correction, but the glass material cost increases, which is not preferable in terms of cost.
[0026]
Conditional expression (3) is an expression that defines the Abbe number difference between the lenses constituting the cemented lens 2C of the rear unit LR. If the Abbe number difference is too small below the lower limit of the conditional expression (3), correction will be insufficient in achromatism in the rear group, and the effect of performing chromatic aberration correction with the rear group as a cemented lens will be undesirably weak.
[0027]
Conditional expression (4) is an expression that defines an interval between the front group LF and the rear group LR. In order to reduce the distance between the front group LF and the rear group LR and obtain a desired afocal magnification, it is necessary to increase the refractive power of each group. If the interval is smaller than the lower limit of conditional expression (4), the refractive power of each group must be increased to obtain a desired magnification, and it is difficult to correct various aberrations such as spherical aberration and field curvature. Is the challenge. On the other hand, if the interval exceeds the upper limit and the interval is too large, not only does the overall length increase, but also the outer diameter of the front lens group LF increases, and the glass weight increases, which is not good in terms of reducing the size and weight.
[0028]
Further, as shown in Numerical Examples 1 to 3, it is preferable that the teleconverter lens to be mounted on a medium telephoto master lens satisfies the following.
-2.5 <(RN2 + RN1) / (RN2-RN1) <-1.0 (5)
Where RN1: radius of curvature of the most object-side lens surface of the cemented lens 2C in the rear group LR RN2: radius of curvature of the most image-side lens surface of the cemented lens 2C in the rear group LR
Conditional expression (5) is an expression that defines the shape factor of the cemented lens 2C of the rear group LR. When the shape factor is -1, the lens shape is plano-concave, and when smaller than -1, the lens shape is a meniscus shape with the convex surface facing the object side. If the degree of meniscus exceeds the upper limit of conditional expression (5), the object side lens surface becomes weaker than the concentric curvature, and the incidence / emission angle of off-axis light flux increases. It is not good because the next component is excessively generated and the off-axis performance is reduced. When the lower limit of conditional expression (5) is exceeded and the degree of meniscus becomes too strong, the curvature of the image side lens surface becomes too tight (the radius of curvature becomes too small), and spherical aberration on the over side occurs.
[0030]
Next, numerical data of Numerical Examples 1 to 4 are shown. In each numerical example, Ri is the radius of curvature of the i-th surface (i-th surface) in order from the object side, Di is the distance between the i-th surface and the (i + 1) -th surface, and Ni and νi are each with respect to the d-line. Shows the refractive index and Abbe number of the optical member. The two planes closest to the image are surfaces constituting the glass block GB provided for design as described above. F is the focal length, Fno is the F number, and ω is the half angle of view.
[0031]
The aspherical shape has an x-axis in the optical axis direction, an h-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature, k is a conic constant, B, C, D, E, A ′, When B ′ and C ′ are aspheric coefficients, respectively.
Figure 2004264669
It is represented by the following equation. Note that “e ± Z” represents “× 10 ± Z ”.
[0032]
Table 1 shows the relationship between the above-described conditional expressions and the numerical examples.
[0033]
(Numerical Example 1)
f = 74.12 Fno = 3.40 2ω = 8.5 °
[0034]
[Outside 2]
<Teleconverter lens>
Figure 2004264669
Afocal magnification: 1.50
[0035]
[Outside 3]
<Master lens>
Figure 2004264669
[0036]
Aspheric surface coefficient eighteenth surface k = −4.28786e + 00
B = 7.06149e-05 C = -3.555018e-07 D = 1.2669e-09 E = -1.234990e-10
A '= 0 B' = 0 C '= 0
19th page k = 7.93007e-01
B = −2.14212e−06 C = −3.605558e−07 D = −4.53838e−09 E = −3.448248e−11
A '= 0 B' = 0 C '= 0
23rd surface k = -4.68634e-01
B = -1.91518e-05 C = 3.335316e-08 D = 0.00000e + 00 E = 0.00000e + 00
A '= 0 B' = 0 C '= 0
[0037]
(Numerical example 2)
f = 74.20 Fno = 3.40 2ω = 8.4 °
[0038]
[Outside 4]
<Teleconverter lens>
Figure 2004264669
Afocal magnification: 1.50
The data of the master lens is the same as in Numerical Example 1.
(Numerical example 3)
f = 84.20 Fno = 3.40 2ω = 7.5 ゜
[Outside 5]
<Teleconverter lens>
Figure 2004264669
Afocal magnification: 1.70
The data of the master lens of this numerical example is the same as that of numerical example 1.
[0041]
(Numerical example 4)
f = 87.95 Fno = 3.09 2ω = 4.3 ゜
[Outside 6]
<Teleconverter lens>
Figure 2004264669
Afocal magnification: 1.55
[0043]
[Outside 7]
<Master lens>
Figure 2004264669
[0044]
Aspheric coefficient 22nd surface k = -1.35352e-02
B = -5.0802e-05 C = 8.33746e-06 D = 9.57035e-08 E = -9.83705e-10
A '=-9.555108e-05 B' =-3.57623-05 C '=-1.17900e-06
23rd surface k = 500000e + 02
B = -5.3696e-05 C = -2.45843e-06 D = 1.12828e-08 E = 0.00000e + 00
A '= 8.49791e-06 B' = 2.06322-05 C '= 1.79087e-08
[0045]
[Table 1]
(Table 1)
Figure 2004264669
[0046]
The possible modes of the present invention described in the embodiments will be listed below.
(Aspect 1) In a teleconverter including a front group having a positive refractive power and a rear group having a negative refractive power in order from the front to the rear, the front group includes a negative lens and a positive lens A in order from the front to the rear. The rear unit includes a cemented lens having a positive refractive power as a whole and a positive lens B, and the rear group has a cemented lens having a negative refractive power as a whole in which a positive lens and a negative lens are cemented. When the radii of curvature of the rear lens surface of A and the front lens surface of the positive lens B are R2b and R3a, respectively,
-1.0 <R3a / R2b <0.5
A teleconverter characterized by satisfying certain conditions.
(Aspect 2) When the Abbe number of the positive lens A in the front group is νP, and the Abbe numbers of the positive lens and the negative lens in the rear group are νNP and νNN, respectively:
60 <νP <90
20 <νNN-νNP
The teleconverter according to aspect 1, wherein the following condition is satisfied.
(Aspect 3) The distance from the rearmost lens surface of the front group to the frontmost lens surface of the rear group is D, and the distance from the frontmost lens surface of the front group to the rearmost lens surface of the rear group is When the distance is L,
0.3 <D / L <0.7
3. The teleconverter according to aspect 1 or 2, wherein the following conditions are satisfied.
(Embodiment 4) In a teleconverter including a front group having a positive refractive power and a rear group having a negative refractive power in order from the front to the rear, the front group joins the negative lens and the positive lens in order from the front to the rear. The rear group includes a cemented lens having a negative refractive power as a whole in which a positive lens and a negative lens are cemented, and the front lens and the cemented lens of the rear group as a whole. When the curvature radii of the rearmost lens surface are RNa and RNb, respectively,
−2.5 <(RNb + RNa) / (RNb−RNa) <− 1.0
A teleconverter characterized by satisfying certain conditions.
(Aspect 5) When the Abbe number of the positive lens in the cemented lens of the front group is νP, and the Abbe numbers of the positive lens and the negative lens of the rear group are νNP and νNN, respectively:
60 <νP <90
20 <νNN-νNP
The teleconverter according to aspect 4, wherein the following condition is satisfied.
(Aspect 6) The distance from the rearmost lens surface of the front group to the frontmost lens surface of the rear group is D, and the distance from the frontmost lens surface of the front group to the rearmost lens surface of the rear group is When the distance is L,
0.3 <D / L <0.7
The teleconverter according to aspect 4 or 5, wherein the following condition is satisfied.
[0047]
【The invention's effect】
According to the present invention, various aberrations such as chromatic aberration, spherical aberration, curvature of field, etc. are satisfactorily corrected, and it is possible to provide a high-performance and small-sized teleconverter lens compatible with a high-pixel digital camera and a video camera. effective.
[Brief description of the drawings]
FIG. 1 is a lens cross-sectional view when the teleconverter according to Numerical Example 1 is mounted on a master lens.
FIG. 2 is an aberration diagram of the entire system when the teleconverter according to Numerical Example 1 is mounted on a master lens.
FIG. 3 is a lens cross-sectional view of a teleconverter according to Numerical Example 2.
FIG. 4 is an aberration diagram of the entire system when the teleconverter according to Numerical Example 2 is mounted on a master lens.
FIG. 5 is a lens cross-sectional view of a teleconverter according to Numerical Example 3.
FIG. 6 is an aberration diagram of the entire system when the teleconverter according to Numerical Example 3 is mounted on a master lens.
FIG. 7 is a lens cross-sectional view when the teleconverter according to Numerical Example 4 is mounted on a master lens.
FIG. 8 is an aberration diagram of the entire system when the teleconverter according to Numerical Example 4 is mounted on a master lens.
[Explanation of symbols]
T Teleconverter lens unit M Master lens unit G Glass block IP Image plane LF Front group LR Rear group

Claims (1)

前方より後方へ順に、正の屈折力の前群、負の屈折力の後群より成るテレコンバータにおいて、前記前群は、前方より後方へ順に、負レンズと正レンズAとを接合した全体として正の屈折力の接合レンズ、正レンズBから成り、前記後群は、正レンズと負レンズとを接合した全体として負の屈折力の接合レンズを有し、前記正レンズAの後方のレンズ面及び前記正レンズBの前方のレンズ面の曲率半径をそれぞれR2b,R3aとするとき、
−1.0<R3a/R2b<0.5
なる条件を満足することを特徴とするテレコンバータ。
In a teleconverter including a front group having a positive refractive power and a rear group having a negative refractive power in order from the front to the rear, the front group includes a negative lens and a positive lens A which are joined in order from the front to the rear. The rear group includes a cemented lens having a positive refractive power and a cemented lens having a negative refractive power as a whole, in which the positive lens and the negative lens are cemented, and a lens surface behind the positive lens A. And when the radii of curvature of the lens surface in front of the positive lens B are R2b and R3a, respectively:
−1.0 <R3a / R2b <0.5
A teleconverter characterized by satisfying the following conditions.
JP2003055784A 2003-03-03 2003-03-03 Teleconverter Expired - Fee Related JP4383758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055784A JP4383758B2 (en) 2003-03-03 2003-03-03 Teleconverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055784A JP4383758B2 (en) 2003-03-03 2003-03-03 Teleconverter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009133167A Division JP4621288B2 (en) 2009-06-02 2009-06-02 Teleconverter

Publications (2)

Publication Number Publication Date
JP2004264669A true JP2004264669A (en) 2004-09-24
JP4383758B2 JP4383758B2 (en) 2009-12-16

Family

ID=33119692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055784A Expired - Fee Related JP4383758B2 (en) 2003-03-03 2003-03-03 Teleconverter

Country Status (1)

Country Link
JP (1) JP4383758B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070433A (en) * 2006-09-12 2008-03-27 Canon Inc Teleconverter lens and imaging apparatus with the same
DE102015101516A1 (en) 2014-02-07 2015-08-27 Fujifilm Corporation Teleconverter lens and imaging device
CN109324391A (en) * 2018-12-03 2019-02-12 福建福光股份有限公司 Wide spectrum achromatism laser acquisition camera lens and its working method with overlength focal length

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399393B (en) * 2013-08-15 2015-10-28 福建福光股份有限公司 One inch of target surface four constituent element high resolving power pick-up lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070433A (en) * 2006-09-12 2008-03-27 Canon Inc Teleconverter lens and imaging apparatus with the same
DE102015101516A1 (en) 2014-02-07 2015-08-27 Fujifilm Corporation Teleconverter lens and imaging device
US9726864B2 (en) 2014-02-07 2017-08-08 Fujifilm Corporation Teleconverter lens and imaging apparatus
CN109324391A (en) * 2018-12-03 2019-02-12 福建福光股份有限公司 Wide spectrum achromatism laser acquisition camera lens and its working method with overlength focal length
CN109324391B (en) * 2018-12-03 2023-08-01 福建福光股份有限公司 Wide-spectrum achromatic laser detection lens with ultra-long focal length and working method thereof

Also Published As

Publication number Publication date
JP4383758B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP7347991B2 (en) imaging lens
JP5651861B2 (en) Imaging lens
JP6029111B2 (en) Imaging lens
JP3822268B2 (en) Zoom lens
JP5265218B2 (en) Zoom lens
JP2007304241A (en) Zoom lens system
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
JP5795692B2 (en) Imaging lens and imaging apparatus provided with the same
WO2014129156A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP2009192614A (en) Photographic lens, optical equipment equipped with the photographic lens, and image forming method
JP2017068164A (en) Wide angle optical system and image capturing device having the same
JP7352400B2 (en) imaging lens
JP2012042927A (en) Zoom lens system, imaging apparatus, and camera
CN109239896B (en) Zoom lens and image pickup apparatus
JP2008116794A (en) Imaging lens
JP2013195560A (en) Optical system, optical device, and method of manufacturing optical system
JP5688562B2 (en) Imaging lens
JP4217040B2 (en) Large aperture wide angle lens
WO2013118469A1 (en) Super-wide angle lens, and imaging device using same
CN113534406B (en) Reduction optical system and image pickup apparatus
JP4383758B2 (en) Teleconverter
JP6517563B2 (en) Inner focus type lens
JP4416411B2 (en) Lens system
JPH0511181A (en) Zoom lens
JP2004069768A (en) Fish-eye lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees