JP2004263391A - Method for obtaining structural characteristic of bracket joint and method for designing framed structure having bracket joint - Google Patents

Method for obtaining structural characteristic of bracket joint and method for designing framed structure having bracket joint Download PDF

Info

Publication number
JP2004263391A
JP2004263391A JP2003052992A JP2003052992A JP2004263391A JP 2004263391 A JP2004263391 A JP 2004263391A JP 2003052992 A JP2003052992 A JP 2003052992A JP 2003052992 A JP2003052992 A JP 2003052992A JP 2004263391 A JP2004263391 A JP 2004263391A
Authority
JP
Japan
Prior art keywords
bracket
bracket joint
joint
splice plate
spring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052992A
Other languages
Japanese (ja)
Inventor
Hitoshi Ito
均 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003052992A priority Critical patent/JP2004263391A/en
Publication of JP2004263391A publication Critical patent/JP2004263391A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining structural characteristic of a bracket joint precisely and to provide a method for designing a framed structure rationally using the structural characteristic. <P>SOLUTION: The bracket joint joined by a bolt through a splice plate is modeled as a wire substitution model, which has a longitudinal member composed of a rigid bar element, an unyielding spring element, a truss element, and a span provided with at least one kind of element among beam elements provided with a pin at the center. The spring element, the truss element, and the beam element having the pin at the center turn the bolt of the bracket joint, performance in the axial direction of the splice plate, and bending performance of a web splice plate into models, respectively. When designing the framed structure having the bracket joint, the framed structure is turned into model using the bracket joint as the rotary spring element, and the rotary spring element has the structural characteristic. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明はブラケット接合部の構造特性を求める方法および該ブラケット接合部を有する骨組構造の設計方法に関し、特に骨組構造におけるブラケット接合部を半剛接構造としてモデル化することにより該ブラケット接合部の構造特性を精度良く求める方法および該構造特性を用いて合理的に骨組構造を設計する方法に関する。
【0002】
【従来の技術】
構造体をモデル化する際、はりの端部は剛接合、ピン接合、半剛接合に大別される。 現実の構造物では完全な剛接合、ピン接合の実現は困難であるにもかかわらず、その設計において半剛接は剛接合またはピン接合に仮定されることが多く、はりの端部を半剛接構造として扱うことは力学的挙動などの検討程度に留まっていた(例えば非特許文献1参照)。図7は曲げモーメントー相対回転角関係曲線図の一例を示し、半剛接の一部は剛接合、ピン接合とされている。
【0003】
はりの端部として図1に示すように柱に接合されたブラケットに、梁をスプライスプレートを介してボルト接合したブラケット接合部等が用いられることが多い。
【0004】
柱梁接合部100において、ブラケット接合部105は柱103に取りつけたブラケット102と梁101をスプライスプレート104を介してボルト接合して形成される。
【0005】
【非特許文献1】日本建築学会学術講演概要集1995年8月22251鋼構造柱梁半剛接部の力学的挙動に関する基礎的研究 下田 和秋等
なお、[発明の実施の形態]の項目において、本出願人の未公開先行出願について説明するが、その出願番号をここに記載しておく。すなわち特願2002−236183号(未公開出願1)である。
【0006】
【発明が解決しようとする課題】
しかし、構造体として信頼性を保ちつつ、より経済的に製作、建設するため、には、はりの端部における構造特性を正確に求めることが必要で、本発明はブラケット接合部における、構造特性、特に剛性および降伏強度を定量的に求める方法および得られた構造特性を用い骨組構造物を合理的に設計する方法を提案する。
【0007】
【課題を解決するための手段】
本発明者はまず、ブラケット接合部の構成要素を適切にモデル化し構造性能を求め、次に骨組構造を、ブラケット接合部を回転バネ要素としてモデル化し、設計する方法を開発した。
【0008】
すなわち、本発明は、
1.スプライスプレートを介してボルト接合されるブラケット接合部の構造特性を求める際、前記ブラケット接合部は線材置換モデルとしモデル化され、前記線材置換モデルは、剛棒要素からなる縦材と、降伏しないバネ要素、トラス要素、中央にピンを備えたビーム要素の少なくとも一種の要素を備えたスパンを有し、前記バネ要素は前記ブラケット接合部のボルトを、前記トラス要素はスプライスプレートの軸方向性能を、中央にピンを有するビーム要素はウエブスプライスプレートの曲げ性能をモデル化したものであることを特徴とするブラケット接合部の構造特性を求める方法。
2.前記バネ要素の剛性を、スプライスプレートを介したボルト接合部の引張試験により求めることを特徴とする1記載のブラケット接合部の構造特性を求める方法。
3.ブラケット接合部を有する骨組構造を設計する際、前記ブラケット接合部を回転バネ要素として骨組構造がモデル化され、前記回転バネ要素は1または2記載の方法によって求められた構造特性を有することを特徴とするブラケット接合部を有する骨組構造の設計方法。
4.モデル化する骨組構造が鋼構造骨組構造物であることを特徴とする3記載の骨組構造の設計方法。
5.3記載の方法により設計された鋼構造骨組構造物。
【0009】
【発明の実施の形態】
本出願人は、H形鋼柱の弱軸側にブラケットを取りつけ、スプライスプレートを介してH形鋼からなる梁をボルト接合する際、ブラケットと梁の下側フランジ部のボルト接合を省略し、製作コストを低減させたブラケット接合部に関する未公開技術を開発している(未公開出願1)。
【0010】
図2は未公開出願1に係るブラケット接合部105の構造の一例を示し、図2(a)は上面図、(b)はA方向、(c)はB方向からの正面図を示す。 柱に取りつけられたブラケット102と梁101はスプライスプレート104を介してボルト接合されるが、H形鋼からなる梁とブラケットの下フランジ同士のボルト接合は省略され、半剛接構造となっている。
【0011】
以下、半剛接構造のブラケット接合部を用いる骨組構造物を対象に本発明を図面を用いて詳細に説明する。
【0012】
本発明ではまず、骨組構造物の柱梁構造における半剛接構造ブラケット接合部の剛性、および降伏強度を求める。図3に半剛接構造のブラケット接合部を有する柱梁構造を、図4にモデル化された柱梁構造を示す。図3、4において1は柱、2はブラケット、3は梁、4は半剛接構造のブラケット接合部を示す。
【0013】
モデル化においては、柱1、ブラケット2、梁3をビーム要素とし、半剛接構造のブラケット接合部4を部分骨組とする。
【0014】
半剛接構造のブラケット接合部4の剛性および降伏強度は、図4に示すモデル化された柱梁構造において、梁3の先端に漸増する荷重を作用させ弾塑性骨組構造解析を行い得られた曲げモーメントー相対回転角関係曲線図から求める。
【0015】
次に、半剛接構造のブラケット接合部を、回転バネ要素として、骨組構造物をモデル化し、構造設計を行う。回転バネ要素の剛性および降伏強度は上述した値を用いる。図8はモデル化した骨組構造物19を示し、図において18は半剛接構造のブラケット接合部をモデル化した回転バネ要素である。
【0016】
本発明では半剛接構造ブラケット接合部の剛性、および降伏強度を求める際、部分骨組にモデル化することが特徴であり、以下に詳述する。
【0017】
図5は半剛接構造のブラケット接合部をモデル化した部分骨組を示すもので、図において、4はブラケット接合部、5はウエブスプライスプレート、6はボルト、7はビーム要素、8は剛棒要素、9はピン、10はトラス要素、11はバネ要素、12は剛接部を示す。13は中央にピン9を持ち、剛棒要素8と剛接部12を有するビーム要素でウエブスプライスプレートの曲げ性能をモデル化した部分を示す。
【0018】
本発明では、部分骨組にモデル化する際、ブラケット接合部4のボルト列に対応する層数を有する1スパン多層の線材置換モデルとし、ブラケット接合部4におけるボルト6を降伏しないバネ要素(図では2本のボルトを一つのバネ要素とする)、スプライスプレートの軸方向性能(軸方向力による軸方向剛性および強度)をトラス要素10とし、軸方向変形をモデル化した。更にせん断力によるせん断変形をモデル化するため、ウエブスプライスプレート全体のせん断変形として、スプライスプレートの材軸方向の重心に、中央にピン9を持つビーム要素7を構成する。
【0019】
ボルトをバネ要素とする際、単一の剛性をボルト接合部引張試験を行って求める。弾性体と仮定し、同じ高さに複数のボルトがある場合、バネ要素の剛性は各ボルトの剛性の和として求める。図6にボルト接合部引張試験に用いる試験体を示す。図において14はブラケットのフランジまたはウエブ、15はスプライスプレート、16はボルト孔、17は梁のフランジまたはウエブを示す。
【0020】
スプライスプレートの軸方向性能をトラス要素とする際、剛性をヤング係数より定める。局部座屈を考慮して、降伏強度は等価な値として公称降伏強度の1/2とする。
【0021】
ウエブスプライスプレートの曲げ性能を、中央にピンを持つビーム要素とする際、剛性をヤング係数より定め、弾性体とする。
【0022】
また、部分骨組においては、各要素中心線と梁中心線とを剛性および降伏強度無限大の剛棒要素で連結させる。
【0023】
【実施例】
半剛接構造のブラケット接合部を有する鋼構造骨組構造物を対象に本発明を具体的に説明する。図9は半剛接構造のブラケット接合部4を示し、ブラケット2に梁3がウエブスプライスプレート5を介してボルト接合されている。ブラケット接合部4の上部フランジはスプライスプレート5a,5b,5cを介してボルト接合されている。
【0024】
図10はブラケット接合部4をモデル化した部分骨組で、13はウエブスプライスプレートの曲げ性能を示すためにモデル化されたビーム要素を示す。
【0025】
まず、モデル化した部分骨組の構造特性として剛性および降伏強度を求める。この際、バネ剛性をK=2×306tonf/cm(弾性体)、スプライスプレート引張性能はその有効面積をボルトの有効面積×板厚合計としσy=2.4/2=1.2tonf/cm(軟鋼の局部座屈を考慮した等価降伏強度)、ウエブスプライスプレート曲げ性能は2PL−9×380のA=68.4cm,I=8231cm(弾性体)とする。
【0026】
図11に構造解析の結果得られた曲げモーメントー相対回転角関係曲線図を、図12に別途、ブラケット接合部について行った実験で得られた曲げモーメントー相対回転角関係曲線図を示す。
【0027】
図11より剛性は45281tonfm/rad,降伏強度は19.24tonfmとなり、図11、12の比較から、上記の値が、安全側に構造特性を評価するものであることが確認される。
【0028】
次に、鋼構造骨組構造物を、半剛接構造のブラケット接合部を回転バネ要素としてモデル化し、構造設計を行う。この際、回転バネ要素の剛性、降伏強度として図11で得られた値を用いる。図13にモデル化された鋼構造骨組構造物を示す。
【0029】
【発明の効果】
本発明によれば、骨組構造における半剛接の構造特性が精度良く求まるので、骨組構造を合理的に構造設計することが可能で、信頼性を保ちつつ経済性に優れた骨組構造の製作が可能となる。また、構造特性を求める際、費用の係る実体構造モデルによる実験などを要せず経済的である。
【図面の簡単な説明】
【図1】ブラケット接合部の一例を示す外観図で、(a)は側面図、(b)は正面図。
【図2】半剛接構造のブラケット接合部の外観図で、(a)は上面図、(b)はB方向からの外観図、(c)はA方向からの外観図。
【図3】本発明の説明に用いる半剛接構造のブラケット接合部を有する柱梁接合部の外観を示す図。
【図4】図3をモデル化した図。
【図5】モデル化された半剛接構造のブラケット接合部を示す図。
【図6】バネ要素の剛性を求める際の引張試験に用いるボルト接合部を示す図。
【図7】曲げモーメントー相対回転角関係曲線図の一例を示す図。
【図8】ブラケット接合部を回転バネ要素としてモデル化された骨組構造を示す図。
【図9】ブラケット接合部(実施例)の外観を示す図。
【図10】モデル化されたブラケット接合部(実施例)を示す図。
【図11】モデル解析により得られた曲げモーメントー相対回転角関係曲線を示す図。
【図12】モデル実験により得られた曲げモーメントー相対回転角関係曲線を示す図。
【図13】ブラケット接合部を回転バネ要素としてモデル化された骨組構造(実施例)を示す図。
【符号の説明】
1 柱
2 ブラケット
3 梁
4 半剛接構造のブラケット接合部
5 ウエブスプライスプレート
5a,5b,5c フランジスプライスプレート
6 ボルト
7 ビーム要素
8 剛棒要素
9 ピン
10 トラス要素
11 バネ要素
12 剛接部
13 ウエブスプレイスプレートの曲げ性能をモデル化した部分
14 ブラケットのフランジまたはウエブ
15 ウエブスプライスプレート
16 ボルト孔
17 梁のフランジまたはウエブ
100 梁接合部
101 梁
102 ブラケット
103 柱
104 スプライスプレート
105 ブラケット接合部
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining structural characteristics of a bracket joint and a method for designing a frame structure having the bracket joint, and more particularly, to modeling a bracket joint in a frame structure as a semi-rigid structure. The present invention relates to a method for accurately determining the structural characteristics of the bracket joint portion and a method for rationally designing a frame structure using the structural characteristics.
[0002]
[Prior art]
When modeling a structure, the ends of the beam are roughly classified into rigid joints, pin joints, and semi-rigid joints. Although it is difficult to realize perfect rigid joints and pin joints in actual structures, semi-rigid joints are often assumed to be rigid joints or pin joints in the design, and the ends of the beam are semi-rigid. Handling as a tangent structure has been limited to the study of mechanical behavior and the like (for example, see Non-Patent Document 1). FIG. 7 shows an example of a bending moment-relative rotation angle relationship curve diagram, in which a part of semi-rigid contact is rigid joint and pin joint.
[0003]
As shown in FIG. 1, a bracket joint, in which a beam is bolted via a splice plate, to a bracket joined to a column as shown in FIG.
[0004]
In the beam-column joint 100, the bracket joint 105 is formed by bolting the bracket 102 attached to the column 103 and the beam 101 via a splice plate 104.
[0005]
[Non-Patent Document 1] Summary of Academic Lectures of the Architectural Institute of Japan 221952 Basic research on the mechanical behavior of semi-rigid joints of steel columns and columns Kazuaki Shimoda et al. The applicant's unpublished prior application will be described, and its application number is described here. That is, Japanese Patent Application No. 2002-236183 (Unpublished Application 1).
[0006]
[Problems to be solved by the invention]
However, in order to manufacture and construct more economically while maintaining the reliability as a structure, it is necessary to accurately determine the structural characteristics at the end of the beam. In particular, a method for quantitatively determining rigidity and yield strength and a method for rationally designing a framed structure using the obtained structural characteristics are proposed.
[0007]
[Means for Solving the Problems]
The inventor of the present invention firstly developed a method of appropriately modeling and designing structural components of a bracket joint to obtain structural performance, and then modeling and designing a frame structure using the bracket joint as a rotating spring element.
[0008]
That is, the present invention
1. When determining the structural characteristics of the bracket joints that are bolted via the splice plate, the bracket joints are modeled as wire replacement models, and the wire replacement models include a vertical member made of a rigid bar element and a spring that does not yield. Element, a truss element, a span with at least one element of a beam element with a pin in the center, the spring element bolts of the bracket joint, the truss element the axial performance of the splice plate, A method for determining structural characteristics of a bracket joint, wherein the beam element having a pin in the center is a model of the bending performance of a web splice plate.
2. 2. The method according to claim 1, wherein the rigidity of the spring element is determined by a tensile test of a bolt joint via a splice plate.
3. When designing a frame structure having a bracket joint, a frame structure is modeled using the bracket joint as a rotary spring element, and the rotary spring element has structural characteristics determined by the method according to 1 or 2. A method for designing a skeleton structure having a bracket joint portion.
4. 4. The method for designing a frame structure according to 3, wherein the frame structure to be modeled is a steel frame structure.
5.3 A steel framed structure designed according to the method of 5.3.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present applicant attaches a bracket to the weak axis side of the H-shaped steel column and, when bolting a beam made of H-beam through a splice plate, omits bolting of the bracket and the lower flange portion of the beam, We have developed an undisclosed technology for the bracket joint that has reduced the manufacturing cost (unpublished application 1).
[0010]
2 shows an example of the structure of the bracket joining portion 105 according to the unpublished application 1, in which FIG. 2 (a) is a top view, FIG. 2 (b) is a front view from the A direction, and FIG. 2 (c) is a front view from the B direction. The bracket 102 attached to the column and the beam 101 are bolted together via a splice plate 104, but the bolt connection between the beam made of H-section steel and the lower flange of the bracket is omitted, and a semi-rigid structure is obtained. .
[0011]
Hereinafter, the present invention will be described in detail with reference to the drawings for a frame structure using a bracket joint having a semi-rigid structure.
[0012]
In the present invention, first, the rigidity and yield strength of the semi-rigid connection bracket joint in the beam-column structure of the framed structure are determined. FIG. 3 shows a column-beam structure having a semi-rigid structure bracket joint, and FIG. 4 shows a modeled column-beam structure. 3 and 4, reference numeral 1 denotes a column, 2 denotes a bracket, 3 denotes a beam, and 4 denotes a semi-rigid connection part of the bracket.
[0013]
In modeling, the column 1, the bracket 2, and the beam 3 are used as beam elements, and the bracket joint 4 having a semi-rigid structure is used as a partial skeleton.
[0014]
The rigidity and yield strength of the semi-rigid bracket joint 4 were obtained by performing an elastic-plastic frame structure analysis by applying a gradually increasing load to the tip of the beam 3 in the modeled column-beam structure shown in FIG. Determined from the bending moment-relative rotation angle relationship curve diagram.
[0015]
Next, the frame structure is modeled and the structural design is performed using the semi-rigid structure bracket joint as a rotary spring element. The values described above are used for the rigidity and the yield strength of the rotary spring element. FIG. 8 shows a framed structure 19 modeled. In the figure, reference numeral 18 denotes a rotary spring element which models a bracket joint of a semi-rigid structure.
[0016]
In the present invention, when the rigidity and the yield strength of the semi-rigid connection bracket are obtained, they are characterized by being modeled on a partial frame.
[0017]
FIG. 5 shows a partial frame modeled on a bracket joint of a semi-rigid structure, in which 4 is a bracket joint, 5 is a web splice plate, 6 is a bolt, 7 is a beam element, and 8 is a rigid rod. The element, 9 is a pin, 10 is a truss element, 11 is a spring element, and 12 is a rigid contact part. Reference numeral 13 denotes a beam element having a pin 9 at the center and having a rigid bar element 8 and a rigid contact part 12, and a part which models the bending performance of a web splice plate.
[0018]
In the present invention, when modeling into a partial skeleton, a one-span multilayer wire replacement model having the number of layers corresponding to the bolt row of the bracket joint 4 is a spring element that does not yield the bolt 6 at the bracket joint 4 (in the figure, The axial performance (axial rigidity and strength by the axial force) of the splice plate (two bolts as one spring element) and the truss element 10 were used to model the axial deformation. Further, in order to model the shear deformation due to the shearing force, a beam element 7 having a pin 9 at the center is formed at the center of gravity of the splice plate in the material axis direction as the shear deformation of the entire web splice plate.
[0019]
When a bolt is used as a spring element, a single rigidity is determined by performing a bolt joint tensile test. If a plurality of bolts are provided at the same height assuming an elastic body, the rigidity of the spring element is obtained as the sum of the rigidities of the bolts. FIG. 6 shows a test piece used for the bolt joint tensile test. In the figure, 14 is a bracket flange or web, 15 is a splice plate, 16 is a bolt hole, and 17 is a beam flange or web.
[0020]
When the axial performance of the splice plate is used as the truss element, the rigidity is determined from the Young's modulus. In consideration of local buckling, the yield strength is set to an equivalent value, which is 1 / of the nominal yield strength.
[0021]
When the bending performance of the web splice plate is a beam element having a pin at the center, the rigidity is determined from the Young's modulus, and the elastic body is used.
[0022]
In the partial skeleton, the center line of each element and the center line of the beam are connected by a rigid bar element having rigidity and infinite yield strength.
[0023]
【Example】
The present invention will be specifically described with reference to a steel framed structure having a semi-rigid structure bracket joint. FIG. 9 shows a bracket joint 4 having a semi-rigid structure, in which a beam 3 is bolted to a bracket 2 via a web splice plate 5. The upper flange of the bracket joint 4 is bolted via splice plates 5a, 5b, 5c.
[0024]
FIG. 10 shows a partial frame modeled on the bracket joint 4, and 13 shows a beam element modeled to show the bending performance of the web splice plate.
[0025]
First, rigidity and yield strength are obtained as structural characteristics of the modeled partial frame. At this time, the spring rigidity is K = 2 × 306 tonf / cm (elastic body), and the splice plate tensile performance is the effective area of the bolt × the total thickness of the bolts, and σy = 2.4 / 2 = 1.2 tonf / cm 2 (Equivalent yield strength considering local buckling of mild steel) and web splice plate bending performance are A = 68.4 cm 2 and I = 8231 cm 4 (elastic body) of 2PL-9 × 380.
[0026]
FIG. 11 shows a bending moment-relative rotation angle relationship curve diagram obtained as a result of the structural analysis, and FIG. 12 shows a bending moment-relative rotation angle relationship curve diagram separately obtained in an experiment conducted on the bracket joint.
[0027]
From FIG. 11, the rigidity is 45281 tonfm / rad and the yield strength is 19.24 tonfm. From the comparison of FIGS. 11 and 12, it is confirmed that the above values are those for evaluating the structural characteristics on the safe side.
[0028]
Next, the steel frame structure is modeled by using a semi-rigid structure bracket joint as a rotary spring element, and a structural design is performed. At this time, the values obtained in FIG. 11 are used as the rigidity and yield strength of the rotary spring element. FIG. 13 shows a modeled steel frame structure.
[0029]
【The invention's effect】
According to the present invention, since the structural characteristics of the semi-rigid connection in the frame structure are accurately determined, it is possible to design the frame structure rationally, and it is possible to manufacture a frame structure excellent in economy while maintaining reliability. It becomes possible. In addition, when obtaining the structural characteristics, it is economical without the need for an experiment using an expensive substantial structural model.
[Brief description of the drawings]
FIGS. 1A and 1B are external views showing an example of a bracket joint, in which FIG. 1A is a side view and FIG. 1B is a front view.
FIGS. 2A and 2B are external views of a bracket joining portion having a semi-rigid structure, wherein FIG. 2A is a top view, FIG. 2B is an external view from a direction B, and FIG.
FIG. 3 is a view showing the appearance of a column-beam joint having a semi-rigid structure bracket joint used in the description of the present invention.
FIG. 4 is a diagram modeling FIG. 3;
FIG. 5 is a diagram showing a modeled bracket joint of a semi-rigid connection structure.
FIG. 6 is a diagram showing a bolted joint used for a tensile test when obtaining the rigidity of a spring element.
FIG. 7 is a diagram illustrating an example of a bending moment-relative rotation angle relationship curve diagram.
FIG. 8 is a view showing a frame structure in which a bracket joint is modeled as a rotary spring element.
FIG. 9 is a view showing the appearance of a bracket joint (example).
FIG. 10 is a diagram showing a modeled bracket joint (embodiment);
FIG. 11 is a diagram showing a bending moment-relative rotation angle relationship curve obtained by model analysis.
FIG. 12 is a diagram showing a bending moment-relative rotation angle relationship curve obtained by a model experiment.
FIG. 13 is a view showing a frame structure (embodiment) in which a bracket joint is modeled as a rotary spring element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Column 2 Bracket 3 Beam 4 Bracket connection part of semi-rigid connection structure 5 Web splice plate 5a, 5b, 5c Flange splice plate 6 Bolt 7 Beam element 8 Rigid bar element 9 Pin 10 Truss element 11 Spring element 12 Rigid connection section 13 Web A part where the bending performance of the splice plate is modeled 14 Bracket flange or web 15 Web splice plate 16 Bolt hole 17 Beam flange or web 100 Beam joint 101 Beam 102 Bracket 103 Column 104 Splice plate 105 Bracket joint

Claims (5)

スプライスプレートを介してボルト接合されるブラケット接合部の構造特性を求める際、前記ブラケット接合部は線材置換モデルとしモデル化され、前記線材置換モデルは、剛棒要素からなる縦材と、降伏しないバネ要素、トラス要素、中央にピンを備えたビーム要素の少なくとも一種の要素を備えたスパンを有し、前記バネ要素は前記ブラケット接合部のボルトを、前記トラス要素はスプライスプレートの軸方向性能を、中央にピンを有するビーム要素はウエブスプライスプレートの曲げ性能をモデル化したものであることを特徴とするブラケット接合部の構造特性を求める方法。When determining the structural characteristics of the bracket joints bolted via the splice plate, the bracket joints are modeled as a wire replacement model, and the wire replacement model includes a vertical member made of a rigid rod element and a spring that does not yield. Element, a truss element, a span with at least one element of a beam element with a pin in the center, the spring element bolts of the bracket joint, the truss element the axial performance of the splice plate, A method for determining structural characteristics of a bracket joint, wherein a beam element having a pin in the center is a model of a bending performance of a web splice plate. 前記バネ要素の剛性を、スプライスプレートを介したボルト接合部の引張試験により求めることを特徴とする請求項1記載のブラケット接合部の構造特性を求める方法。The method according to claim 1, wherein the rigidity of the spring element is determined by a tensile test of a bolt joint via a splice plate. ブラケット接合部を有する骨組構造を設計する際、前記ブラケット接合部を回転バネ要素として骨組構造がモデル化され、前記回転バネ要素は請求項1または2記載の方法によって求められた構造特性を有することを特徴とするブラケット接合部を有する骨組構造の設計方法。When designing a frame structure having a bracket joint, the frame structure is modeled using the bracket joint as a rotary spring element, and the rotary spring element has structural characteristics determined by the method according to claim 1 or 2. A method for designing a frame structure having a bracket joint. モデル化する骨組構造が鋼構造骨組構造物であることを特徴とする請求項3記載の骨組構造の設計方法。The method according to claim 3, wherein the frame structure to be modeled is a steel frame structure. 請求項3記載の方法により設計された鋼構造骨組構造物。A steel framed structure designed according to the method of claim 3.
JP2003052992A 2003-02-28 2003-02-28 Method for obtaining structural characteristic of bracket joint and method for designing framed structure having bracket joint Pending JP2004263391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052992A JP2004263391A (en) 2003-02-28 2003-02-28 Method for obtaining structural characteristic of bracket joint and method for designing framed structure having bracket joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052992A JP2004263391A (en) 2003-02-28 2003-02-28 Method for obtaining structural characteristic of bracket joint and method for designing framed structure having bracket joint

Publications (1)

Publication Number Publication Date
JP2004263391A true JP2004263391A (en) 2004-09-24

Family

ID=33117727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052992A Pending JP2004263391A (en) 2003-02-28 2003-02-28 Method for obtaining structural characteristic of bracket joint and method for designing framed structure having bracket joint

Country Status (1)

Country Link
JP (1) JP2004263391A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340352B2 (en) 2006-04-27 2008-03-04 Fujitsu Limited Inspecting method, inspecting apparatus, and method of manufacturing semiconductor device
CN105297885A (en) * 2015-11-11 2016-02-03 上海十三冶建设有限公司 Hinge and rigid connection stress conversion joint of steel structure corridor and construction method of hinge and rigid connection stress conversion joint
CN113408024A (en) * 2021-05-11 2021-09-17 北京城建设计发展集团股份有限公司 Method for calculating bending resistance and bearing capacity of grouting type mortise joint of assembled underground structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340352B2 (en) 2006-04-27 2008-03-04 Fujitsu Limited Inspecting method, inspecting apparatus, and method of manufacturing semiconductor device
CN105297885A (en) * 2015-11-11 2016-02-03 上海十三冶建设有限公司 Hinge and rigid connection stress conversion joint of steel structure corridor and construction method of hinge and rigid connection stress conversion joint
CN113408024A (en) * 2021-05-11 2021-09-17 北京城建设计发展集团股份有限公司 Method for calculating bending resistance and bearing capacity of grouting type mortise joint of assembled underground structure
CN113408024B (en) * 2021-05-11 2023-10-27 北京城建设计发展集团股份有限公司 Method for calculating bending-resistant bearing capacity of grouting tongue-and-groove joint of assembled underground structure

Similar Documents

Publication Publication Date Title
US6412237B1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
US10753096B2 (en) Ductile chord connectors for use in concrete rods in structures
JP4042996B2 (en) Friction joint structure with high-strength bolts and seismic reinforcement method for structures
JPH08165714A (en) Moment-resistant type framework beam pair column connecting section made of steel
JP2010285850A (en) Frame structure with deformation part for vibration reduction, and vibration reducing device used for frame structure
JP5358231B2 (en) Joint reinforcement structure
JP2004263391A (en) Method for obtaining structural characteristic of bracket joint and method for designing framed structure having bracket joint
JP6763653B2 (en) Unit building
JP2007146579A (en) Existing wooden building reinforcing structure
JP2006152722A (en) Vibration control structure of building
US20040003548A1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
JP2002004463A (en) Aseismatic frame structure and its designing method
JP2001349090A (en) Vibration damping device
JP4379732B2 (en) Seismic reinforcement method for buildings
JP3728597B2 (en) Beam-column joint structure
JP7171153B2 (en) How to reuse structures
JPH1171934A (en) Vibration control structure
JP7344836B2 (en) A method of introducing tensile force into the tie rods of a vibration damping device installed in a column-beam frame structure.
JPH0988182A (en) Twisting deformation preventive structure of building having open ceiling
KR100627233B1 (en) Connection member for steel structure
JP2002235456A (en) Vibration control device and vibration control structure of joint part
JP2002227126A (en) Bridge and aseismatic strength reinforcing method for bridge
JP2005299150A (en) Joint metal fitting for column and beam of wooden building, column base supporting fitting, and method for evaluating strength of wooden building by using column base supporting fitting
JPH0718780A (en) High toughness structural member